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(57) Abstract: A system is described that comprises a memory for storing data representative of at least one kernel, a plurality of
spiking neuron circuits, and an input module for receiving spikes related to digital data. Each spike is relevant to a spiking neuron circuit
and each spike has an associated spatial coordinate corresponding to a location in an input spike array. The system also comprises a
packet collection module configured to collect spikes and to organize the collected relevant spikes in the packet based on the spatial
coordinates of the spikes, and a convolutional neural processor configured to perform event-based convolution using memory and at
least one of the transformed input spike array and the transformed kernel.

[Continued on next page]



WO 2023/146523 AT | [IN 1]} 00 000 00RO 00 00O

(74) Agent: HICKS, Ross, G. et al.; Sterne, Kessler, Goldstein
and Fox P.L.L.C., 1100 New York Avenue, NW, Washing-
ton, District of Columbia 20005 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW,BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))



WO 2023/146523 PCT/US2022/014123

EVENT-BASED EXTRACTION OF FEATURES IN
A CONVOLUTIONAL SPIKING NEURAL NETWORK

BACKGROUND

Field

[0001] Embodiments herein relate to feature extraction and object recognition in a deep

spiking neural network.

Background

[0002] A conventional deep convolutional neural network is comprised of many layers of
neurons comprised of computed functions, whereby the input values and output value are
floating-point numbers. The foremost use of convolutional neural networks is in object
classification in digital images. The input values to the first layer of the neural network
are samples of the signals for which classification is desired. Typical signals are sensory
signals, such as visual signals, audio signals, and the like. Samples of visual signals
include pixel values expressing color intensities in an image, while samples of audio
signals include frequency component values as input values. Deep convolutional neural
networks have three or more layers of neurons. Each layer receives inputs from the layer
before it. Each input value is multiplied by a value that represents the weight of the
connection, which are generally 32-bit integer or floating point numbers. Each neuron in
the neural network can have many inputs, and the result of these multiplications is added
to create a sum value. A non-linear function, such as the rectified linear function (ReLU)
is applied to the sum value to produce an output value. The convolution is a function that
is computationally applied to floating-point data to extract a feature from a defined area
of the previous layer. Pooling layers are commonly inserted between convolutional layers
to down-size the data. Pooling layers operate on a defined block of data from the previous
layer and perform a max, average or mean pooling to reduce dimensionality.

[0003] Deep convolutional neural networks have been very successful in object
classification tasks using image datasets. A typical deep convolutional neural network
may need to perform in excess of 3 billion multiply-accumulate functions to classify a
single object in an image. The processing nodes used in general-purpose computers are

usually not fast enough to perform the billions of operations required for classification
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within a reasonable time span. Arrays of specialized multiply-accumulate devices,
graphics processing units (GPU), vector processors, analog multipliers and Digital signal
processors have been used to increase the throughput and reduce the latency of deep
convolutional neural networks. All these devices have in common that they operate
computational cores in parallel and process sequences of data rapid succession, thus being
able to process large data sets in a short time. However, with great computational power
comes high power consumption. A typical graphics processing unit may consume as
much as 200 to 300 watts. There have been attempts to create devices that work by the
same principles and consume less power, but due to their limited number of processing
cores these are not capable of processing image data at the same speed. There is a need
for a device that can classify objects in images at a high speed and at low power
consumption.

[0004] Spiking neural networks have the advantage that the neural circuits consume
power only when they are switching, this is, when they are producing a spike. In sparse
networks, the number of spikes is designed to be minimal. The power consumption of
such circuits is very low, typically thousands of times lower than the power consumed by
a graphics processing unit used to perform a similar neural network function. However,
up to now temporal spiking neural networks have not been able to meet the accuracy
demands of image classification. Spiking neural networks comprise a network of
threshold units, and spike inputs connected to weights that are additively integrated to
create a value that is compared to one or more thresholds. No multiplication functions are
used. Previous attempts to use spiking neural networks in classification tasks have failed
because of erroneous assumptions and subsequent inefficient spike rate approximation of
conventional convolutional neural networks and architectures. In spike rate coding
methods, the values that are transmitted between neurons in a conventional convolutional
neural network are instead approximated as spike trains, whereby the number of spikes
represent a floating-point or integer value which means that no accuracy gains or sparsity
benefits may be expected. Such rate-coded systems are also significantly slower than
temporal-coded systems, since it takes time to process sufficient spikes to transmit a
number in a rate-coded system. The present invention avoids those mistakes and returns

excellent results on complex data sets and frame-based images.
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SUMMARY OF THE INVENTION

[0005] In accordance with a first aspect of the present invention, there is provided a
system, comprising:

a memory for storing data representative of at least one kernel,

a plurality of spiking neuron circuits;

an input module for receiving spikes related to digital data, wherein each spike is
relevant to a spiking neuron circuit and each spike has an associated spatial coordinate
corresponding to a location in an input spike array;

a transformation module configured to:

transform a kernel to produce a transformed kernel having an increased resolution
relative to the kernel; and/or

transform the input spike array to produce a transformed input spike array having
an increased resolution relative to the input spike array;

a packet collection module configured to collect spikes until a predetermined
number of spikes relevant to the input spike array have been collected in a packet in
memory, and to organize the collected relevant spikes in the packet based on the spatial
coordinates of the spikes; and

a convolutional neural processor configured to perform event-based convolution
using memory and at least one of the transformed input spike array and the transformed
kernel.

[0006] In an embodiment, the event-based convolution using the transformed input spike
array produces a transposed convolved output.

[0007] In an embodiment, the transformation module is arranged to transform the input
spike array by dilating the input spike array.

[0008] In an embodiment, the transformation module is arranged to transform the input
spike array by padding the input spike array with zeros.

[0009] In an embodiment, the memory stores data representative of transformed input
spike arrays.

[0010] In an embodiment, the memory stores data representative of input spike arrays and
the transformation module is arranged to transform an input spike array after the input

spike array is read from memory.
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[0011] In an embodiment, the event-based convolution using the transformed kernel
produces a dilated convolved output.

[0012] In an embodiment, the transformation module is arranged to transform the kernel
by dilating the kernel.

[0013] In an embodiment, the memory stores data representative of transformed kernels.

[0014] In an embodiment, the memory stores data representative of kernels and the

transformation module is arranged to transform a kernel after the kernel is read from
memory.

[0015] In an embodiment, the data representative of at least one kernel is data
representative of a 180° rotated kernel.

[0016] In an embodiment, the digital data is representative of an image; and

the system is arranged to:

apply a transformation function to the received spikes in order to generate
transformed spikes related to at least one further image that is similar to the input image,
or

apply a transformation function to the spiking neuron circuits in order to simulate
transformed neuron circuits, so that the transformed neuron circuits receive the spikes
related to the input image; and

wherein the convolutional neural processor determines a convolution output for
the further image, the convolutional neural processor configured to perform event-based
convolution using memory and at least one of

the transformed spikes received by the spiking neuron circuits, and

the spikes received by the transformed neuron circuits.

[0017] In an embodiment, the received spikes correspond to a plurality of channels, and
the packet collection module is further configured to organize the collected relevant
spikes by channel in the packet.

[0018] In an embodiment, the memory is further configured to store kernel weights
indexed by channel.

[0019] In an embodiment, the system comprises an inbound filter configured to select
relevant spikes for reception by the input layer.

[0020] In an embodiment, the inbound filter is configured to remove spikes that are

outside a scope of the convolution neural processor.
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[0021] In an embodiment, the convolution neural processor is configured to implement

event-based convolution by:
identifying spike values in an input spike array or transformed spike array;
multiplying each element of a kernel or transformed kernel by each identified
spike value in the input spike array or the transformed spike array;
calculating a potential using the multiplied elements and spike values; and

using the potential to produce an output event.

[0022] In accordance with a second aspect of the present invention, there is provided a

system comprising:

a memory for storing data representative of at least one kernel,

a plurality of spiking neuron circuits;

an input module for receiving spikes related to an input image, wherein each spike
is relevant to a spiking neuron circuit;

a transformation module configured to:

apply a transformation function to the received spikes in order to generate
transformed spikes related to at least one further image that is similar to the input image,
or

apply a transformation function to the spiking neuron circuits in order to simulate
transformed neuron circuits, so that the transformed neuron circuits receive the spikes
related to the input image; and

a convolutional neural processor to determine a convolution output for the further
image, the convolutional neural processor configured to perform event-based convolution
using memory and at least one of

the transformed spikes received by the spiking neuron circuits, and

the spikes received by the transformed neuron circuits.

[0023] In accordance with a third aspect of the present invention, there is provided a

method for performing event-based convolution, comprising:

storing in memory, data representative of at least one kernel;

receiving, by an input module, spikes related to digital data, wherein each spike is
relevant to a spiking neuron circuit and each spike has an associated spatial coordinate
corresponding to a location in an input spike array;

transforming, by a transformation module,
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a kernel to produce a transformed kernel having an increased resolution relative to
the kernel; and/or

the input spike array to produce a transformed input spike array having an
increased resolution relative to the input spike array;

collecting, by packet collection module, spikes until a predetermined number of
spikes relevant to the input spike array have been collected in a packet in memory, and to
organize the collected relevant spikes in the packet based on the spatial coordinates of the
spikes; and

a convolutional neural processor to determine a convolution output for the further
image, the convolutional neural processor configured to perform event-based convolution
using memory, kernels and the received spikes.

[0024] In accordance with a fourth aspect of the present invention, there is provided a

method of performing convolution, the method comprising:

storing in memory, data representative of at least one kernel;

receiving, by an input module, spikes related to an input image, wherein each
spike is relevant to a spiking neuron circuit;

applying, by a transformation module,

a transformation function to the received spikes in order to generate transformed
spikes related to at least one further image that is similar to the input image, or

a transformation function to the spiking neuron circuits in order to simulate
transformed neuron circuits, so that the transformed neuron circuits receive the spikes
related to the input image; and

determining, by a convolution processor, a convolution output for the further
image using memory, kernels and the received spikes.
Further features and advantages, as well as the structure and operation of various
embodiments, are described in detail below with reference to the accompanying drawings.
It is noted that the specific embodiments described herein are not intended to be limiting.
Such embodiments are presented herein for illustrative purposes only. Additional
embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings

contained herein.
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BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0025] The accompanying drawings, which are incorporated herein and form part of the
specification, illustrate embodiments of the present invention and, together with the
description, further serve to explain the principles of the present invention and to enable a
person skilled in the relevant art(s) to make and use the present invention.

[0026] FIG. 1 illustrates a diagram of how 3-channel (red, green and blue) convolutions

are performed in a conventional convolutional neural network.

[0027] FIG. 2 illustrates an example of a 1-channel convolution for a single Sx5x1 filter.
[0028] FIG. 3 illustrates the difference between rate coding and event-based rank coding.
[0029] FIG. 4 illustrates the learning process in fully connected and convolutional layers.
[0030] FIG. 5 illustrates three different user-configurable modes of convolutional neural

processors and fully connected neural processors.

[0031] FIG. 6 is a high-level description of a traditional neuron state storage approach
that may be contrasted with the neuron state storage approach of certain embodiments of
the present approach.

[0032] FIG. 7 illustrates an exemplary approach by which each CNP processes events.

[0033] FIG. 8 shows a comparison between a traditional convolution algorithm and an
event-based convolution algorithm.

[0034] FIG. 9 illustrates the main steps to process spikes in a packet, in accordance with

an event-based convolution.

[0035] FIG. 10 illustrates a filter SRAM layout example for ternary filters or binary filter
configurations.

[0036] FIG. 11 illustrates inverted kernels.

[0037] FIG. 12 illustrates a hardware architecture and flow diagram to implement event-

based convolution in hardware.

[0038] FIG. 13 describes event-based convolution using the filter and neuron terms.
[0039] FIG. 14 illustrates the context of an exemplary K-WTA hardware implementation.
[0040] FIG. 15 illustrates that the sizes of the groups can vary.

[0041] FIG. 16 illustrates how the winners are chosen in a “Best Offer” form.

[0042] FIG. 17 illustrates an example of K-WTA in “First Good Offer” mode.

[0043] FIG. 18 illustrates implementation in an SNN.



WO 2023/146523 PCT/US2022/014123

8
[0044] FIG. 19 illustrates a block diagram of an embodiment that generates filter results
input to a WTA block.
[0045] FIG. 20 illustrates a hardware architecture and flow diagram according to an

embodiment of the present invention, the architecture implementing event-based
transposed convolution, event-based dilated convolution, and data augmentation in
hardware.

[0046] FIG. 21 illustrates examples of classical convolution and event-based convolution.

[0047] FIGs. 22(1), 22(i1) and 22(ii1) illustrate frame-based transposed convolution
techniques.

[0048] FIG. 23 illustrates an example of event-based transposed convolution in
accordance with an embodiment of the present invention.

[0049] FIGs. 24(1) and 24(i1) illustrate frame-based dilated convolution techniques.

[0050] FIG. 25 illustrates an example of event-based dilated convolution in accordance
with an embodiment of the present invention.

[0051] FIG. 26() illustrates an example input layer of a conventional neural network.

[0052] FIG. 26(ii1) illustrates example data transformation operations implemented by an
embodiment of the present invention.

[0053] FIG. 26(iii1) illustrates transformation of an example input array using a vertical
flip transformation operation.

[0054] FIGs. 27(1) and 27(i1) illustrate conventional and transformed arrangements for
connecting an input to input neurons in accordance with an embodiment of the invention.

[0055] FIGs. 27(ii1) and FIG. 27(1v) illustrate transformation of neurons of an input layer
and processing of an input by the transformed neurons in accordance with another
embodiment of the invention.

[0056] The features and advantages of the present invention will become more apparent
from the detailed description set forth below when taken in conjunction with the
drawings, in which like reference characters identify corresponding elements throughout.
In the drawings, like reference numbers generally indicate identical, functionally similar,
and/or structurally similar elements. The drawing in which an element first appears is

indicated by the leftmost digit(s) in the corresponding reference number.
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DETAILED DESCRIPTION OF THE INVENTION

Glossary

[0057] In this description, the memory location where a neuron's potential is incremented
or decremented on a per event basis is denoted as the potential. Each neuron has a 20-bit
signed potential. After neurons are fully processed, they output a neuronal activation.
This activation is from 1-4 bits and is unsigned. These activations are events that are
delivered to the next layer, which is stored on a different CNP. The neuron potential can
be interpreted to be an unprocessed neuron state while the activation can be viewed as
processed neuron state.

[0058] Activation: Activations are processed neuron states. Neurons process multiple
events in a packet of events. After all events have been processed, they are converted
from potentials (unprocessed neuron states) to activations via a transformation that
defines how the 20-bit signed potential gets transformed to a 1-4-bit activation. This
transformation is called an activation function.

[0059] DVS Camera: DVS stands for dynamic vision sensor. DVS cameras generate
events which event-based processors like embodiments of the present approach can
process directly. Most cameras produce frame-based images. The main advantage to DVS
cameras is the low-latency and the potential for extremely low-power operation.

[0060] CNP: Convolutional Neural Processor. Each NP is a processing core in the chip
embodying the present approach. Each can be either a CNP or an FNP depending on user-
configuration, but not both. The CNPs perform event-based convolution or separable
convolution operations.

[0061] FNP: Fully-connected Neural Processor. These processing cores are connected to
inputs by the fully-connected topology.

[0062] Input Event Buffer/Input Event Buffer Memory: The input event buffer memory
holds the incoming events until they are ready for processing by the current layer. The
input event buffer memory can be used as a single buffer or as a double ping-pong buffer.

[0063] Inverted Kernel Format: The inverted kernel format is the format in which
individual filter kernels are stored. The kernels are a 180° rotation of the original filter
kernels. The inverted kernel format allows the CNP hardware to quickly calculate the

address of the potential to which an event-weight product should be delivered.
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[0064] Max Pooling: Max pooling is an operation that has N inputs and produces a single
output that has the value of the maximum input. Spatial pooling is often done only on the
spatial component of convolution. When max pooling is mentioned, it refers specifically
to a 2x2 max pooling implementation. A 2x2 max pooling implementation has 2x2=4
input values and a single output value. Max pooling is often used to reduce the
dimensionality of a network input and therefore reduce the number of parameters and
amount of computation required.

[0065] NP: Neural processor. Neural processors can be configured to be either FNPs or
CNPs. The chip embodying the present approach has multiple NPs (currently 80).

[0066] Ping-Pong Buffer: A ping-pong bufter is a buffer that is broken up into two
separate buffers. The first buffer (capture buffer) captures inputs as they arrive
asynchronously while the second buffer (processing buffer) contains the inputs that are
currently being processed by the NP. A ping-pong buffer is used to hold the input events
as it allows the CNP to collect events asynchronously, as they come in. After all the
current events have been processed in the processing buffer and the capture buffer has all
events in the packet, the capture buffer will transfer all the events to processing buffer for
processing.

[0067] Potential: A potential is an unprocessed neural state. In the NPs, potentials are
stored as 20-bit signed integers. After all events have been processed, a neuron transforms
a potential into an event using an activation function. It's possible that a potential does not
cross a threshold to become an activation event. In this case, no event is sent.

[0068] Processed Neuron State: Another name for activation or neural activation.

[0069] Scratchpad memory: The part of the CNP memory that each of the 8 neural
processing engines has to store neuron potentials as events are processed. The scratchpad
memory is large enough to store 512 20-bit neuron potentials per neural processing

engine. Each neural processing engine has its own scratchpad memory.

[0070] Unprocessed Neuron State: Another name for potential or neuron potential.
Introduction
[0071] This specification discloses one or more embodiments that incorporate the

features of this invention. The disclosed embodiment(s) merely exemplify the present
invention. The scope of the present invention is not limited to the disclosed

embodiment(s).
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[0072] The embodiment(s) described, and references in the specification to "one

embodiment", "an embodiment

"non
2

an example embodiment", etc., indicate that the
embodiment(s) described may include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particular feature, structure, or
characteristic. Moreover, such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, or characteristic is described in
connection with an embodiment, it is understood that it is within the knowledge of one
skilled in the art to effect such feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described.

[0073] Embodiments of the present invention may be implemented in hardware,
firmware, software, or any combination thereof. Embodiments of the present invention
may also be implemented as instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A machine-readable medium may
include any mechanism for storing or transmitting information in a form readable by a
machine (e.g., a computing device). For example, a machine-readable medium may
include read only memory (ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices; electrical, optical, acoustical
or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals,
etc.), and others. Further, firmware, software, routines, instructions may be described
herein as performing certain actions. However, it should be appreciated that such
descriptions are merely for convenience and that such actions in fact result from
computing devices, processors, controllers, or other devices executing the firmware,
software, routines, instructions, etc.

[0074] Before describing such embodiments in more detail, however, it is instructive to
present an example environment in which embodiments of the present invention may be
implemented.

[0075] A deep neural network (DNN) is defined as an artificial neural network that has
multiple hidden layers between its input and output layers, each layer comprising a
perceptron. A Convolutional Neural network (CNN) is a class of DNN that performs
convolutions and is primarily used for vision processing. CNNs share synaptic weights
between neurons. Shared weight values in a perceptron are referred to as filters (aka

kernels). Each layer in a conventional CNN is a perceptron. In the present embodiment,
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event-based convolution is implemented in a Spiking Neural Network (SNN) using event-
based rank-coding rather than rate-coding, which has advantages in speed and
considerably lower power consumption. Rank coding differs from rate-coding of spike
events in that values are encoded in the order of spikes transmitted. In rate coding the
repetition rate of spikes transmitted expresses a real number. CNNs process color images
which are defined as: imageWidth x imageHeight x channelNumber. A color image
generally has 3 channels (Red, Green, and Blue). CNNs often have many layers, so the
output of a convolutional layer is the input to the next convolutional layer. Descriptions
are provided as to how convolutions take place in conventional perceptron-based CNN
before discussing the event-based convolution methods implemented in the present
invention and show that the result of convolution in a CNN and event-based convolution

in the present invention return the same results.

Convolution

[0076] FIG. 1 illustrates the convolution method 100. Two 5 by 5 filters 120, 130 out of a
plurality of filters are shown. Filter #1 (120) and #2 (130) have 3 color channel kernels
170a, 170b, 170c, one for each color Red, Green and Blue from the respective input
channels 140, 150, 160. The width and height of the filters are smaller than the image,
with 3 by 3, S by 5, and 7 by 7 being the most common sizes. The filter array is moved
across the image area. The results of the convolution are summed into a single value in an
array storing neural potentials. The dotted outlines show where the filter #1 convolutions
take place over the inputs. The smaller dotted box in the 3 by 3 potential array for filter
#1 (120) shows where these inputs are summed.

[0077] A feature of the present invention is the absence of multiplications for the case
where either the input or the weights or both the inputs and the weights are represented as
ternary or 1-bit values. Values are summed and compared to a variable threshold value,
which results in a spike event if the threshold value is reached or exceeded. The spike
event is transmitted over an internal bus to the next layer of the network. The absence of
multiplications results in a distinct speed advantage over prior art.

[0078] FIG. 2 illustrates three convolution methods that are implemented in embodiments
of the present invention using rank coding. In valid convolution 202, the resulting image
area will be smaller than the original since the filter region is moved around the center of

the image, leaving the edges out of consideration. In full convolution 204, the image
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region is padded with zeros, allowing the full image region including the edges to be
included in the convolution. In same convolution 206, the edges are included, but the
convoluted region is the same as the original image region.

[0079] FIG. 3 illustrates the difference between neural network spike rate coding,
Temporal Spike rank coding, conventional perceptron neuron Multiply Accumulate
operations (MAC) and conventional binary coding of characters in a computer system. In
the present invention spike rank coding is used.

[0080] Rate coding is shown in the top panel 310. The spikes received by two input
synapses 320, 330 of a multitude of synapses are shown over one complete integration
period labeled t1, in a plurality of integration periods. The first synapse received 25
spikes, while the second synapse received 27 spikes during this integration period. The
sum of all synapses is 52, which is the simulated membrane potential of the neuron.
Subsequently a non-linear function such as Tanh(n) or a linear rectifier (ReLU) function
is applied to the simulated output value. The resulting output value is transmitted as a
series of spikes to one or more synapses in the next neural layer. The integration time is
long to allow sufficient spikes to occur to receive a value. In the lower left panel 330,
rank coding is illustrated. The spikes received by four of a multitude of synapses is shown
for six integration periods labeled tO to t5. The integration time is short, and repeating
spikes within each integration period are ignored. The integrated value for the first
integration period is three, and four in the subsequent four integration periods. The last
integration period has the value 2. These values are the simulated membrane potential of
the neuron. If the simulated membrane potential reaches or exceeds a threshold value, a
spike is transmitted to one or more synapses in the next neural layer. In the middle right
hand panel 350, the integration method of a section of a neuron of a plurality of neurons
in a conventional perceptron is shown. A collection of weight values labeled W11 to W95
are multiplied with input values 10 to I9. The resulting values are accumulated to form the
neuron simulated membrane potential. Subsequently a non-linear function such as
Tanh(n) or a linear rectifier (ReLU) function is applied to the simulated output value. The
resulting output value is transmitted as an integer or floating-point value to one or more
synapses in the next neural layer. In the lower right-hand panel 370, a conventional binary

coding method is shown for reference. Binary coding schemes are widely used in
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conventional computer systems to encode characters and numbers. Boolean algebra is

applied to compute with binary coded numbers and characters.

[0081] FIG. 4 illustrates the learning method that is used in embodiments of the present
invention. Two on-chip memory blocks and their content are shown. According to the
method:

(1)  An array of simulated membrane potentials of five neurons with value 5, 1, 0, 3
and 4 are loaded from data structures in memory into working memory. These
values are derived from spikes that have been received by the neuron at synapses
that contained weight values other than zero.

(2) The neuron with a potential that is above the learning threshold is selected. In the
illustration this is 5.

(3) The event packet is sorted in order from low to high.

4) The packet of events for that neuron is loaded into memory, together with the
relevant weight vectors.

(5)  An Unused-Weights entry is created in an array wherever weight vectors do not
coincide with event packet values, and an Unused-Inputs entry is created in a
second array wherever an input event has an associated zero weight value.

(6) Both Unused-Inputs and Unused-Weights arrays are shuffled to create
randomness in the learning rule.

(7) The first position in Unused-Inputs and Unused-Weights is selected.

(8)  After step (7), the next entry in Unused-Weights and Unused-Inputs array is
selected, this process is repeated until all entries have been iterated.

%) The connection-list array is loaded into working memory.

(10-11) The connection list array is iterated to remove the ID of the neuron with
the maximum potential.

(12)  Unused spikes are spikes that have an associated weight value of 0.

(13)  The unused spike location is swapped with an unused weight value.

(14-15) After the neuron ID is added to the connection list, the weight vectors are stored
in a sorted format (16).

[0082] FIG. 5 illustrates the organization of neural processors (NP). Each neural
processor is comprised of a plurality of neurons and a second plurality of synapses. (A)

Four neural processors are in a group consisting of three Convolutional Neural Processors
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(CNP1-CNP3) and one Fully Connected Neural Processor (FNP1) that may be configured
during initialization as the fourth CNP (CNP4), or (B) as a fully connected neural
processor with limited connectivity (type 2). Type 2 FNP connectivity can be increased
using off-chip DRAM. In yet another configuration (C) (type 3) the FNP will use all of
the resources of the CNP within the same group. In this case, the FNP will not need to use
any external memory which is beneficial in stand-alone applications. A plurality of
groups communicates over a common network on a chip, called the mesh illustrated in
(D). Input events are placed in a dual buffer (ping-pong buffer) whereby one buffer is
processed while the other buffer is filled. Each NP has 8 parallel engines that update a
plurality of neurons and a plurality of synapses in parallel. Synapse weights are stored in
the Weights SRAM that is on-chip. Each of the 8 parallel engines also communicates
with the common mesh bus. The address of the neuron is placed in a packet on the bus
when a neuron generates a spike or transmits a potential to the next NP. At the receiving
NP, the packet is received into the Input Events Buffer SRAM also named the Ping-Pong
buffer for processing by that NP. The t+n (whereby n is a value) in the image indicates
the timing of events; t+30 indicates that the information is received in the buffer at time t
+ 30 cycles, where the values are stored in the buffer at time t.

[0083] As is known in the art, deep neural networks (DNNs) have become a popular
choice for tasks such as image classification, face recognition, and the like. However, the
typical implementation has resulted in the need for massive computations on von
Neumann architectures, which use substantial energy and require large areas.
Consequently, efforts have seen a shift away from conventional digital hardware to
implement neural algorithms, including various types of special purpose hardware.
However, prominent among the challenges of special purpose hardware is the need for
scalability, efficiency and power consumption.

[0084] In deriving an architecture in response to these challenges, the inventors identified
at least three contributions:

(a) event based operation,
(b) design of the of the hardware, which controls how much information is pushed
through, and thereby controls the accuracy and power consumption of the process,

and
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(c) design of the actual procedure and the precision/bit numbers for the weights and
activations in the neural network so that less memory space is used.

[0085] The choice of the number of bits is one important consideration in the design of
the layers in neural network architecture. The default number of bits commonly used in
neural networks is 32 bits, with multipliers being 32 bit by 32 bit. Lesser bits may be
used, with a resulting smaller power consumption and chip area required, but with a loss
of accuracy. Thus, a 1 bit x 1 bit multiplier would represent the lowest limit on bit
choice. Initial experiments have shown that a 92% accuracy is achievable using ternary
weights. Experiments by the inventors have also shown that a 4x4 bit multiplier provides
a sweet spot in terms of relatively low reduction in accuracy (compared with the
traditional 32 bit x 32 bit approach), while not significantly increasing the power
consumption and chip area requirement over that required for a 1 bit x 1 bit solution. The
sweet spot choice results in a reduction by a factor of 3 to 4 in the number of overall
parameters used. In various embodiments, the number of bits used may be different on
different layers, i.e., in these embodiments, a layer by layer choice of the number of bits
to use (I1x1, 2x2, 4x4 etc.) may be made.

[0086] In order to make advancements in a hardware-based implementation of a spiking
neural network, the inventors sought to reduce the operation count. In various
embodiments, the approach is event-based, and the spikes are encoded when necessary,
rather than every single convolution stride. Spikes occur only when there are activations,
and since events are processed only when spikes occur (rather than upon every
convolution stride), there are far fewer events. Since there are fewer events, this results in
fewer operations. In a typical embodiment of the present disclosure, the operation count
may be reduced by a factor of 3 or 4 by adopting this approach.

[0087] The inventors also sought to use a particular convolution type that requires fewer
parameters (e.g., weights). Since these parameters require storage in order to perform the
necessary neural computations, a reduction in the requirement of physical memory entries
results. Although the calculations involved in such a separable convolution are more
involved, the additional calculations are manageable and lead to a substantial reduction in
the number of parameters, and associated physical memory entries. Such a reduction in
the number of physical memory entries enables a much larger neural computational

capacity to fit within the given RAM area of a particular chip.



WO 2023/146523 PCT/US2022/014123
17

[0088] Conventional neural network implementations typically require substantial
memory (e.g., SRAM) to save the potential value at each neuron. With the large number
of neurons in a typical neural network, the majority of available memory (e.g., SRAM) is
used to save potentials associated with the neurons. Consequently, the total number of
neurons available in a hardware implementation of an SNN neural network is ultimately
limited by the available memory (e.g., SRAM). In order to make advancements in a
hardware-only implementation of a spiking neural network, the inventors sought to use
memory differently by saving the activation levels, rather than the potential. The
magnitude of activation levels requires typically 12 to 20 bits to capture their value, while
a spike may be captured in only 1, 2, or 4 bits. This resulting six-fold reduction in bit
requirements substantially increases the effective storage capability.

[0089] Conventional implementations of neural networks perform the computations in
the network by following its structure, one layer at a time. This approach produces a large
amount of intermediate data that are steadily output to memory as the computation
progresses. Upon completion of a layer, the intermediate data are sent back to the same
computational hardware, and the process repeats until computation in all layers has
concluded. The amount of intermediate data that must be transported between the
computational hardware and memory increases with increasing neural network size. In an
additional advancement, the inventors have employed fusion of the computation across
multiple layers. Rather than processing each layer to completion before proceeding to the
next layer, the inventors have restructured the computation such that multiple layers are
computed together, which avoids the need to store or retrieve the intermediate data from
the memory. In short, fusing takes the operations of two or more layers and fuses them

into a single operation.

Quantitative Metrics

[0090] A description is now provided of three areas of quantitative benefit:
(1) the efficiency of the storage of the representation of a “neuronal potential” within the
convolutional neural processor (CNP);,
(2) the approach to event-based convolution algorithm; namely the filtering of events,
ordering of filters, and individual application of increments or decrements to
neuronal potentials; and

(3) anunsupervised learning algorithm for convolutional operations in neural networks.
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Figures of Merit for Efficient Neuron State Storage on CNPs

[0091] Before describing the details of how neurons are stored on CNPs, various terms
and the approach by which CNPs process events are described. The memory location
where the value of a neuron potential is stored is incremented or decremented on a per-
event basis is known simply as the potential. By way of example, each neuron may have a
20-bit signed potential. After neurons are fully processed, they output a neuronal
activation. Again, by way of example, this activation may be from 1-4 bits and is
unsigned. These activations are events that are delivered to the next layer in the neural
network, which is stored on a different CNP. The neuron potential can be interpreted to
be an unprocessed neuron state while the activation can be viewed as processed neuron
state. If the input to a particular CNN layer has dimensions MXNxC, where M is the
height of input, N is the width of input, and C is the number of channels of the input, and
the dimensions of the filters are HxWxC, (H and W are filter height and width) and there
are F filters in the layer, then the total number resulting potentials (and therefore
activations) is MxXNxF. A small number of 20-bit signed potentials are temporarily stored
in the CNP, where the layer resides, while all activations are stored in the CNPs where
these activations will be delivered as events to target layers. Because only a small subset
of the 20-bit potentials are stored, a neuron state may be stored at a very high density.

[0092] FIG. 6 is a high-level description of a traditional neuron state storage approach
612 that may be contrasted with the neuron state storage approach 614 of certain
embodiments of the present approach. Broadly speaking, the entirety of the unprocessed
neuron state is not stored at one time when processing a single input, but rather a small
subset of it at one time. The subset of unprocessed neuron state that gets stored is then
overwritten with new unprocessed neuron state until all computations associated with the
input data are completed. By taking this approach, the amount of memory used to store
unprocessed neuron state with the present approach in FIG. 6B is less than the amount of
memory used in the traditional approach in FIG. 6A. The same number of unprocessed
neuron states can be processed using the hardware implementation of the present
approach.

[0093] Turning now to a description of the neuron state memory management approach
in greater detail, there are three main operations that must be performed for a packet, or

collection of events, to be fully processed. The first two operations occur for each event.
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The third operation occurs for each neuron. Before processing, the events are sorted by
the neuron. For each event, if the weight value or activation are both greater than ternary,
the event value must first be multiplied by the weight value (step 1) (multiplication
operations are not necessary when 1 bit or ternary bits are used) and the resulting product
must then be added to the potential that corresponds to the neuron being computed (step
2). Third, each potential value is exposed to a unique function that transforms the 20-bit
signed potential to a 1-4 bit unsigned activation (signed in the case of ternary activations).
Next is a description of when and where a neuron state is stored for each step.

[0094] FIG. 7A illustrates an exemplary approach by which each CNP processes events.
In a particular example, each CNP has 8 neural processing engines 702 that run in
parallel. The memory 704 within these neural processing engines is used to store the
potentials and is reused. Steps 1-3 are done across the 8 neural processing engines per
CNP. A small subset of the total events are processed at the same time across the 8 neural
processing engines. During this time, each of the 8 neural processing engines has enough
memory to store 512 20-bit signed potentials. This memory is referred to as neural
processing engine scratchpad memory. The combined scratchpad memory 704 across all
8 neural processing engines is then 512%20%*8 = 81,920 bits. This means that each neural
processing engine processes 512 neurons at a time. After 512 neurons have been
processed, the neural processing engines place the 1-4 bit activation events on the mesh to
be delivered to the CNP that is running the layer these events are connected to. The 1-4
bit activation events are routed to the target CNP and stored in this CNPs input event
buffer memory (blue rectangles in FIG. 2B). The size of the input event buffer memory is
344,064 bits. Therefore, the total amount of memory per CNP used to store all neuron
state is 81,920 bits + 344,064 bits = 425,984 bits. As one of ordinary skill in the art would
appreciate, the above numbers are exemplary rather than limiting values of embodiments
of the invention.

[0095] FIG. 7 is also an example of how a CNP processes events (in ping-pong buffer
mode). The external facing buffer (top box 706 in input events RAM) of the ping-pong
buffer places incoming events 708 in their corresponding place as they come in from the
mesh. An 'End of Packet Signal' 710 is eventually received, causing the events 712 to be
moved from the external facing buffer to the internal facing buffer (bottom box 714 in

input events RAM). These events are processed by the 8 NP engines. Output events 716
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are placed on the mesh for routing to the next NP as soon as they are calculated, so there
is no need to store 20-bit potentials. The time units are arbitrary and just meant to show
the order of when things are occurring.

[0096] A useful figure of merit - the total number of neurons that can be represented per
unit memory - may be used to capture the quantitative benefit of the advancements of
various embodiments of the present approach. A neuron is defined to be represented if
both its unprocessed state (potential) and processed state (activation) are stored in the
memory (e.g., on-chip memory) at some point in time during the event-processing
calculation. By memory, only the memory dedicated to holding the neuron state is being
referred to, not the entire on-chip memory.

[0097] In computing various scenarios for the figure of merit, two considerations should
be acknowledged, as part of the calculation of the figure of merit. First, in these
exemplary calculations, activation events can range from 1-4 bits in size. Second, CNPs
may be configured to use a single-buffer input events buffer or a double-buffer (aka ping-
pong) input events buffer. Single-buffers can handle double the number of events that
double-buffers can handle at the cost of an increase in latency. With these two
considerations in mind, a high-end neuronal density scenario and a low-end neuronal
density scenario may be formulated.

[0098] In the high-end neuronal density scenario, activation events are only 1-bit and a
single-buffer input events bufter is being used. This means the entire input event buffer
memory can be dedicated to storing 1-bit activation events, which means 344,064 neurons
may be represented. However, the cost of the scratchpad memory needs to be included
when the total memory being used is calculated. The ratio of neurons to memory in the
high-end neuronal density scenario is then:

[0099] Neurons Represented/Unit Memory = (344,064 Neurons)/(425,984 bits)=(344,064
Neurons)/(425,984 bits)=0.81 Neurons/bit

[0100] In the low-end neuronal density scenario, activation events are 4-bits and a
double-buffer input events buffer is being used. The double-buffer means that only half
the amount of input event buffer memory is available as was the case for the single-buffer
case. Replacing 1-bit activations with 4-bit activations also means a requirement of 4-bit

storage for each activation instead of 1 bit; which reduces the total number of activations
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that can be stored by a factor of 4. The total number of neurons able to be represented per
unit memory is reduced by a factor of 8:

[0101] Neurons Represented/Unit Memory = (344,064 Neurons)/(8*425,984
bits)=(43,008 Neurons)/(425,984 bits)=0.10 Neurons/bit

[0102] The range of values for these two scenarios is 0.81 - 0.10 Neurons/bit. Were one
able to use a smaller scratchpad memory and/or potentials that are smaller than 20 bits
along with 1 bit activations, then one could presumably achieve even higher densities. It
seems that the practical neuron density limit for embodiments would be close to 1
neuron/bit if no compression was used to store the activations. In this scenario, one would
calculate the potential for a neuron one at a time and have a single register as the
scratchpad memory. The theoretical limit could be greater than 1 if some type of
compression was utilized. However, the computational cost of encoding or decoding the
activations would potentially outweigh the benefits.

[0103] In various embodiments, memory may be realized by various types of memory

including volatile SRAM, as well as non-volatile memory technologies.

Figures of Merit for Event-Based Convolution

[0104] The next figure of merit captures event-based convolution in the CNP. The CNP is
designed to process events and increment (or decrement) the corresponding potential in
the scratchpad memory of each neural processing engine in an efficient manner. To
ensure that the events can be processed quickly and in parallel by the neural processing
engines, a number of optimizations have been integrated into various embodiments of the
present approach.

[0105] FIG. 8 shows a comparison between a traditional convolution algorithm and the
present event-based convolution algorithm. In FIG. 8A, all entries must be computed,
even if their values are zero. The convolutional filter 802 is “slid” across the inputs 804.
Note that all contributions to a given potential entry are computed at once in the
traditional convolution algorithm. FIG. 8B shows the event-based convolution approach.
The frame-based image must be converted into an event-based image 806 first. This can
be done by preprocessing or by a dedicated spike encoding area on the chip using the new
event-based convolution algorithm. Event-based images from DVS cameras can be
directly processed by the algorithm. The gray entries 808 in the preprocessed input are

events that must be processed. Note that the number of computations an event-based
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convolution must perform is directly proportional to the number of events (gray squares).
The term ‘event sparsity’ is the ratio of events to pixels. Note that not all contributions to
a given neuron's potential are computed at the same time. Two events may affect the same
neuron, and therefore all events must be processed before the event-based convolution
computation may be termed complete.

[0106] In FIG. 8, it is assumed that the input is a frame-based image. The gray input
squares indicate entries that must be computed. Computations are only shown for a single
input channel. Part A shows that a traditional convolution must compute every entry in
the input by sliding the weight kernel 802 across the input images. The output squares
810 indicate entries in the potential array, with the darker squares 812 corresponding to
entries being computed currently. Part B shows the event-based convolution. First, note
that frame-based image must be converted to an event-based image via preprocessing.
The filter must be rotated by 180°. This allows the hardware to deliver the product of the
weight and the input to the current potential location. In this picture, only 4 of the
calculations shown in the figure are necessary for the event-based convolution.

[0107] Next a description is provided of the process by which an event-based convolution
is performed. Note that in this description, the terms “event” and “spike” are used
synonymously. Also, recall that events are composed of four pieces of information: the x
location of the event, the y location of the event, the channel of the event, and the 1-4-bit

value of the event. Events are organized into groups of events called packets.

The Event-Based Convolution

[0108] An overview of the architecture of an exemplary convolutional neural processor
(the basic unit of processing) includes the following blocks:
(1) inbound filter block,
(2) packet collection block,
(3) filter memory and kernel, and
(4) convolution operation.

[0109] Prior to these blocks there is a spike converter that takes the input data in its native
format, and converts it to spikes that may be processed by the subsequent blocks.

[0110] The purpose of the first block, the inbound filter block, is to select the spikes of

interest for each neuron. Each neuron has a particular portion of an input for which it has
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an interest, and therefore it activates only when a spike is within its zone of interest. In a
color image, an embodiment of the filter for each neuron may have three RGB channels.

[0111] The packet collection block accumulates the input spikes over time until there are
sufficient spikes to form a packet to process. A packet is a collection of events (spikes) of
a fixed predetermined size. Included with the packet collection block are memory, which
may be in the form of SRAM or other memory, in which to store the packet as it is being
formed. A packet is a collection of events of fixed size, pre-defined. Within the memory,
the events (spikes) are organized by channel (e.g., RGB in the case of color image data)
and sorted by two-dimensional coordinates. In other words, the events (spikes) are
accessible based on a C, I, J index, where C represents a channel, and I, J represents
indices into the two dimensional spatial coordinates of the image data.

[0112] The next block has the filter memory and kernel, where the filter memory stores
the weights (parameters) for the convolution operation.

[0113] The next block performs the convolution operation, including the summation, to
provide the final result. In an embodiment, the convolution uses an efficient hardware
implementation, with a resulting reduction in memory requirement and also a reduction in
the number of neurons necessitated on a layer within the neural network. Such reductions
result in the fan-in and number of filters forming the overall limitations of the network.

[0114] The efficient hardware implementation is made possible by the order in which the
data from an input packet is provided. This order enables each calculation to focus on a
row-by-row calculation. Thus, the net effect of this efficient ordering is that following
the completion of one row, the next stride in the operation is one row down. Thus, rows
may be reused for the next input row spikes. The net effect is that the top row is no
longer needed in the computation, and therefore only a small amount of memory is
necessary for storage of the potential. In summary, instead of having to store the entire
set of potentials, the ordering means that only storage for one buffer is needed, which is a
big reduction in the memory requirement at each convolution neural processor. The
result from one computation is then forwarded to the next convolution neural processor.

[0115] More details are illustrated in FIG. 9, which shows the main steps of performing
an event-based convolution. In step 1, the inbound (IB) mesh delivers events from other
cores. Events are filtered out if the x, y location is not found on the current CNP in step 2.

If the event x, y location does belong to the CNP, then its x and y coordinates are



WO 2023/146523 PCT/US2022/014123
24

transformed to local CNP coordinates when necessary. In step 3, all events are collected
until an end of packet (EOP) signal is received. If ping-pong buffers are used, the input
events buffers are swapped when the EOP signal is received. Note that the second part of
the pooling operation (row pooling) is also done in this step. Column pooling was done
before the events were sent. Both row and column pooling are only done when the max
pooling operation is associated with the output of a particular layer. Thus, some layers
perform pooling operations while others do not.

[0116] In step 4, the channel of the event is read and is used as an offset address to index
into the filter SRAM (where the weights are stored). Next, all filter kernels corresponding
to the event’s channel are copied from the filter SRAM memory. This can be done
because of how the filters are arranged in the filters SRAM. This is shown in FIG. 10.

[0117] FIG. 10 shows a filter SRAM layout example for ternary filters or binary filter
configurations. For both ternary and binary filters, positive and negative values are
separated into different filters. The same is true for multibit filter values (not shown). The
important thing to note is that the filters, which contain the weights for the neural
network, are arranged by channel in the filter SRAM memory. This configuration allows
the hardware to quickly index (find) the correct filter kernels based only on the input
channel. Because the filter kernels are arranged contiguously in memory, they can be
efficiently copied to the neural processing engines for the convolution calculation.

[0118] Because filters may be spread across multiple CNPs, the start and ending filter
indices are calculated. Each neural processing engine processes a single filter at a time.
Thus, the first 8 filters in the CNP will be processed by the 8 neural processing engines.
The 8 neural processing engines now have the appropriate filter kernel addresses and can
perform the following operations in step 5:

1) Each neural processor initializes (zeros out) potentials in scratchpad memory.
The scratchpad memory is arranged in 8 rows of 64 columns, leading to the
temporary storage of 512 20-bit potentials. Potentials in scratchpad memory are
arranged in row major order, so column entries are contiguous in memory.

2) Input events are read from the input events buffer in x, ch, y order. This allows
the neural processing engine to process all the events related to a single potential
at a time.

3) Neural processors begin processing events. Each engine:
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a. Gets the first event's channel and loads the 1x1, 3x3, 5x5, or 7x7 kernel

that corresponds to:

1. the filter the current neural processing engine is working on
il. the channel from the event.

b. Finds the rows of the kernel that are non-zero.

C. Loads a single non-zero kernel row

d. Calculates the potential and output event SRAM addresses of each row

using the inverted kernel format (see FIG. 6).

e. Multiplies all kernel row elements by event value (1-4-bit value)

f Increments the corresponding potentials by the product using addresses
from part d.

g After all events have been processed for the current filter, transform

potential to an output activation (event)

h. If the output activation is non-zero, update the status fire array with a
true or 1 entry. This array is a list of neurons that have fired and whose
activation values must be sent to the next layer.

[0119] FIG. 11 illustrates inverted kernels. The neural processing engines use the
inverted kernel element positions with the event's local x, y coordinates to find the
address of the potentials that must be updated. The filter kernels must be stored in the
inverted kernel format to allow the neural processing core to quickly calculate the
potential's address.

[0120] Step 6 consists of checking the status fire array to see if a neuron has fired and
calculating the neuron's x, y, ch. If pooling is enabled in this layer, then the column-wise
component of pooling is done at this time. Here it is important to note that implementing
the max pooling operation (see Glossary) in two-steps is efficient from a computational
standpoint. FIG. 12 shows the steps where the max pooling operations are being
performed. Step 7 converts the activation event X, y, ch coordinates local to the CNP to
global network coordinates and finds all NPs to deliver the event to. Finally, at step 8, the
event is sent through the routing mesh to the relevant NPs.

[0121] FIG. 12 shows an example of a 2x2 max pooling operation being performed. At
step 3, row pooling is performed on a 1x2 activations array to produce a single 1x1

activation that is used during step 4 to compute the convolution. Step 5 produces a new
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2x2 activations array. Step 6 performs column pooling to reduce the 2x2 activations array
to a 1x2 activations array.

[0122] The 2x2 max pooling operation is performed in two parts; where row pooling is
done on step 3 and column pooling is done on step 6 of the event-based convolution
algorithm.

[0123] Performing row pooling on step 3 is efficient because both elements (activations)
of the row are sent whenever they are calculated. If one of the elements is already present
in the input events buffer, the second element need only compare itself with the current
element to see if it is greater than it. If it is, then it simply overwrites the current element
with its own value. This allows the hardware to perform row pooling in an asynchronous
manner.

[0124] Performing column pooling on step 6 allows the CNP to send only half of the 4
possible elements across the mesh network. This reduces event traffic on the mesh
network.

[0125] The filters, which contain the weights for the neural network, are arranged by
channel in the filter SRAM memory. This configuration allows the hardware to quickly
index (find) the correct kernels based only on the input channel. The contiguous sorting
of the kernel filters by channel also allows them to be efficiently copied from the filter
SRAM to the 8 neural processor engines that perform the convolutional operations.

[0126] During step 5 when the convolutions are being computed within each neural
processor engine, filter kernels are stored in inverted kernel format so the coordinates of
the affected neurons (i.e. their potentials) can be quickly calculated.

[0127] The description next discusses some possible figures of merit (or ways to possibly
compute them) for the design of the event-based convolution in the CNP. The initial idea
for a figure of merit was based on the relationship between the size of an input image
with dimensions MxNXC, where M is the height of image, N is the width of the image,
and C is the number of channels of the image (this will usually be 3 for color images), the
total number of events across the image, and the speed with which a convolutional
operation can be performed over the image.

[0128] Developing a figure of merit that is centered on efficiency or power consumption
seems appropriate. To do this, one first defines a synaptic operation (SO) as an addition

or decrement of an integer to another integer value that represents the neuron potential.
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The power calculations (not shown) suggest that the hardware spends 5 pJ/SO (picojoules
per synaptic operation). This is a measure of efficiency and is independent of the network
structure or the input data but specific to the CNP design. The more efficient the hardware
is, the smaller this number is. This number varies slightly for different convolution kernel
sizes, but the choice is something close to the worst case. Thus, the figure of merit is for a
system that performs event-based convolutions with an efficiency of 5 pJ/SO. It may be

possible to pair this figure of merit with the previous figure of merit as they are both for

event-based convolutions.

Figures of Merit for Unsupervised Learning Rule

[0129] The proposed unsupervised learning rule is made up of a collection of simple, but
significant modifications to the conventional learning rule. In short, the novel
unsupervised learning rule is the application of the conventional learning rule to the
convolutional connection topology in place of the fully-connected layer topology for
which conventional learning rule was developed, with additional modifications to ensure
the same pattern isn’t learned too often. The original conventional algorithm is first
described and then the changes are described that allow the conventional learning rule to
be applied to convolutional connection topologies.

[0130] The conventional unsupervised learning rule finds repeating patterns in data. It is
robust to noise and often only requires the pattern to be repeated 2-5 times. The
conventional rule can perform dimensionality reduction because neurons learn to become
sensitive to only a single pattern and therefore only send a few events indicating whether
a particular pattern has been detected. The conventional learning rule detects patterns
because the conventional learning rule can only detect a pattern within a packet, which is
a collection of events that are close to one another in time. The conventional learning rule
assumes binary synapses (weights) that can be either O or 1 and binary or ternary
activations that can have values of either 0, 1, and in the ternary case, -1. The descriptions
will consider the binary weights/binary activations case.

[0131] At its core, the conventional learning rule consists of M classes of inputs arranged
in a packet of events of length N. N must be less than M. One next connects P neurons to
all M inputs with the caveat that each of the neurons may have only / connections
(weights) with a value of 1 and M-I/ connections with a value of 0. To form a packet, you

allow N unique events to be placed into a bit-array of length M and represent the presence
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of an event with a ‘1’ entry and the absence of an event with a ‘0’ entry as is shown in

Table 1.
Event # 1 2 7 8 9 10 11 12 13 14
State 0 0 0 0 0 1 0 1 0 0

[0132]

between W (a neuron’s weights) and the input packet. This computation is efficient

Table 1 A single event packet with M=14 and N=4.

Each neuron ‘processes’ a packet by computing the number of common events

because it can be done using a logical bit-wise AND function. The number of matches is

the neuron potential. Table 2 shows the matches found in red. Each neuron has a different

firing threshold (Trire) that acts as an activation function because it transforms the

potential into a binary activation.

Event # 112 |3 |4 5 6 8 95 10 (11 |12 |13 |14

State 0 (0|1 |0 1 0 0 0 1 0 1 0 0 Pot.
Neuronl |0 |1 0 0 0 0 0 0 0 0 0 0 1
Neuron2 |1 | O 0 0 0 0 0 0 0 0 3
Neuron3 |0 |0 |0 |1 0 1 1 0 0 0 0 0 0 0

Table 2 The weight arrays of 3 neurons is shown processing a packet (W=3). The matches
are in vesl, The number of matches is the value of the potential shown in the last

[0133]

column.

The conventional learning algorithm is as follows. After all neurons have

computed their potentials, each compares its potential to both Trire and the learning
threshold, Tream. As mentioned previously, a neuron’s output is set to 1 when its potential
is over Trire. Whenever a neuron’s potential is over TLeam, the ‘weight swapping rule’ is
initiated. According to this rule, a certain number of their unused weights, nswap, are
moved to active but unused inputs. Both unused weights and unused inputs are chosen
randomly. Unused weights are defined as weights that have a ‘1’ in a position that has a
corresponding ‘0’ in the input packet. Unused inputs are defined as those inputs that have

a ‘1’ in a position that has a corresponding ‘0’ in the weight array. For instance, in Table
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2, Neuron 1 has an unused weight at position 2 because there is a ‘1’ entry in the weights
array but the corresponding input packet entry is ‘0’. Additionally, input event 5 is an
unused input when compared with Neuron 1’s weight array. The effect of this learning is
to gradually make a neuron’s weight array more similar to an input pattern that is
repeated over time. The neuron’s weights are initialized randomly. This allows different
neurons to look for different patterns. Of equal importance is the fact that the number of
non-zero weights W stays constant during the learning process. This is critical for
unsupervised learning rules because without a homeostatic process (i.e. the constancy of
W), the learning rule can easily become unstable and much more difficult to use.

[0134] The learning rate, nswap, and the learning threshold, Tream, are varied
independently for each neuron. When learning begins, a low TLearn 1S necessary to begin
moving the weights. As learning progresses, the potentials caused by the repeating
patterns tend to increase. This means that TrLeam can slowly be increased to decrease the
false alarm rate without missing the patterns. At this point, it’s also useful to increase
Nswap until nswap = 0. At this point the neuron would no longer learn new patterns. The

equations used to adjust TrLeam and nswap are as follows:

Ty earn = Min(Ty, g, potential)
Nswap = MIN(Nmin, Nswap — ANswap * (Potential-Trearn))
Where dngwap is a parameter that tunes how fast the learning rate is decreased.

[0135] Before describing the unsupervised learning rule, one needs to define a few terms.
FIG. 13 describes event-based convolution using the filter and neuron terms. A filter is a
3D collection of weights (shown in blue) while a neuron is the specific application of a
single filter to a specific spatial location of the inputs. A single filter will be applied to
every spatial location of the inputs and generate an entire plane of neuron potential
entries. During the discussion of the unsupervised learning rule, it is important to
understand the distinction between these two concepts.

[0136] A filter is a 3D collection of weights that has spatial and channel extent. Each
filter has a different set of weights. The filters are denoted in blue and have
dimensionality 3x3x3 (height = 3, width = 3, channels = 3). Neurons can be defined as
filters applied to a specific x,y location of the input as shown at the bottom half. A single
neuron has a single entry in the potential array shown in light orange. Each plane of

potentials array is generated when a single filter is applied (centered) at every spatial
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location of the inputs. The single neuron entry in gray in the potential array was
calculated from filter 1’s weights applied to the location of the input denoted in the lower
left display of the input. The dotted red line denotes the receptive field of the neuron
centered at the event.
[0137] The present unsupervised learning rule can be described as being based on a
conventional learning rule, with the following key changes:
(1) the conventional learning rule allows any neurons over their learning threshold,
Trearn, to learn. The novel unsupervised learning rule only allows one neuron
per filter to learn. An additional modification restricts the number of neurons in
a layer that can learn to just one;
(2) during the weight-swapping, the input events are filtered to include only those
events relevant to the specific neuron undergoing learning; and
(3) the algorithm supports pseudo-supervised learning to allow neurons to learn

different patterns.

Change 1 (Limiting Neurons Allowed to Learn)

[0138] Recall that a single filter is applied at every spatial location of the input. The
number of neurons per filter allowed to learn at a single event packet must be reduced to
one. This is because all neurons for a single filter share a single set of filter weights. The
convolutional operation is what allows the system to search for the same pattern at every
spatial input location. If the algorithm can find the pattern at any spatial input location,
then the algorithm is said to be translation invariant. To preserve translation invariance,
only one spatial location (neuron) per filter should be allowed to learn per input packet.

[0139] Of additional note is that the current implementation further limits the number of
neurons allowed to learn on a single event packet to one per CNP. After some

experimentation, it was found that neurons still learned repeating patterns quite quickly.

Change 2 (Filtering Input Events During Learning)

[0140] Once a neuron has been selected to learn, the weight swap rule is applied to:
(1) the weights corresponding to the neuron’s filter; and
(2) only the subset of input events that overlap with the receptive field of the

neuron’s position.
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[0141] The subset of input events that overlap with the receptive field of the neuron’s
position are shown in FIG. 13. The events that fall within the dotted-red line are the
events that will be used during the learning rule weight swap. Note that the dotted-red line
in FIG. 13 extends to all channels and not just the current channel. In the FIG. 13
example, this means that filter 1, which has size of 3 X 3 X 3, has 27 weights and the 27
corresponding input events will be used during the weight-swapping portion of the
learning rule. One can see that the 3 X 3 X 3 weights and inputs can be flattened into two
1 X 1 X 27 linear bit arrays. The original conventional learning rule weight swapping

algorithm can now be applied to these bit arrays.

Change 3 (Pseudo-Supervised Learning and Competition)

[0142] Unsupervised learning algorithms often suffer from a redundancy issue. Without a
mechanism to either consolidate similar patterns or allow neurons that represent similar
patterns to compete with or inhibit one another, you can easily have many neurons find
and learn the same pattern. This is wasteful and should be avoided. The conventional
learning rule had no mechanism to prevent this. Pseudo-supervised learning solves this
problem by breaking filters into different groups and associating a group label with each
filter group. When an input event packet is presented, a group label is presented along
with it. Only filters within the group that has the same label as the input event packet are
eligible to learn from the input event packet. This allows different groups of filters to be
assigned to different input event packet labels. Note that it is still possible for filters (and
neurons) within a group to learn the same pattern. However, the user now has a
mechanism to plan for how much redundancy to allow for a given set of input event
packets. This is a significant improvement on the efficiency of the conventional
algorithm.

[0143] The present system and method performs unsupervised learning on an event-based
convolutional neural network architecture. Two components that are combined into a
unique system and method are:

(1) an unsupervised learning algorithm on a device; and
(2) an event-based convolutional neural network with the learning algorithm

simultaneously on that same device.
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Winner Takes All

[0144] Winner Takes All (WTA) picks at most one winning feature for each location. In
a large field of features, too much relevant information may be discarded. Without WTA,
the best fitting features at a location will still spike, but they will also be accompanied by
spikes of lesser fitting features. Those lesser fitting features cost power and processing
time. By applying WTA in strategically chosen groups, the lesser fitting features can be
eliminated while retaining all of the best fits.

[0145] The power consumption and processing speed of an SNN is strongly tied to the
sparsity of spikes in a SNN. The purpose of the present invention is to reduce the number
of propagated spikes by strategically grouping the filters from each location in the input
stream and applying a WTA technique on those groups. The context of the K-WTA
hardware implementation is shown in FIG. 14. The WTA grouping can be hand designed
if the kernels are a predefined structure, or a clustering algorithm can be used to define
the groups with similar or dissimilar features. The sizes of the groups can vary in size
(FIG. 15).

[0146] The K-WTA can operate in multiple modes. FIG. 16 illustrates how the winners
are chosen in the “Best Offer” form.

[0147] For some features, it is only necessary to know that any one of the potentials in a
group is above threshold. This will be the case for dissimilar features where only one of
the features is expected to be above threshold. In this case, the processing speed can be
increased and the power reduced by only processing filters in a group until any one of
them is above threshold. In order to reduce bias, the order of potentials in each group are
changed for each pass. FIG. 17 is an example of K-WTA in “First Good Offer” mode.

[0148] For context, FIG. 18 shows how an embodiment of this scheme could fit into an
Spiking Neural Network architecture. The block diagram for an embodiment that
generates the filter results input to the WTA block is shown in FIG. 19.

[0149] The present system and method are also arranged to carry out event-based
transposed convolution on an input event array that has the effect of upsampling the input
array to an output array having a desired resolution. Upsampling an input event array in
this way can be useful in semantic segmentation and super-resolution applications. The
present system and method are also arranged to carry out event-based dilated convolution

and training data augmentation.
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[0150] It will be understood that the present system and method are implemented with
minimum hardware changes compared to the implementation described in relation to
FIGs. 1 to 19. Importantly, the spiking neuron circuits that implement event-based
standard convolution functions (for object detection) are additionally also used to
implement the present event-based transposed convolution. The event-based transposed
convolution implementations (on neuromorphic hardware) will reduce power
consumption when compared to known techniques.

[0151] In the examples described below, a transposed convolution operation is performed
by first carrying out a transformation operation on an input event array so that the input
event array is appropriately sized for production of an output array of desired resolution.

[0152] Fig. 20 shows a hardware architecture and flow diagram according to an
embodiment of the invention, the architecture and flow diagram for implementing event-
based convolution in hardware, including event-based transposed convolution described
below; and/or event-based dilation convolution and/or data augmentation described
subsequently. The hardware architecture and flow diagram shown in FIG. 20 is similar to
the hardware architecture and flow diagram shown in Figure 12, except that
transformation functionality 2002 is added to carry out transformation operations on the
input event array and/or the kernels when transposed convolution or dilated convolution
is performed. The transformation functionality 2002 may be implemented using a
dedicated transformation component or using any one or more component of the
neuromorphic chip.

[0153] In some embodiments, the transformation operation carried out on an input event
(spike) array is performed in accordance with a transposed convolution process by adding
zero locations to the edge of the input event array (padding) or by dilating the input event
array. A dilation operation is a type of transformation that changes the size of a data
array by adding zero locations between locations of the array, with the resultant size
depending on a dilation factor. If the dilation factor is more than 1, the size of the data
array is increased. If the dilation factor is less than 1, the size of the data array is reduced.

[0154] In addition or alternatively, embodiments may include performing a
transformation operation on the or each kernel in accordance with a dilated convolution
process by dilating the kernel(s) (or 180-degree rotated kernel(s)). Using dilated kernels

to perform event-based convolution is effective since it incorporates surrounding context
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by enlarging a receptive field size using a relatively small number of parameters.
Advantageously, more memory efficient and/or advanced Al-applications can be
implemented.

[0155] In some embodiments, the transformation functionality 2002 is implemented by a
spike converter that receives input data/kernels in their native format and converts them
for further processing by the neural processor(s).

[0156] In some embodiments, the spike converter is part of a neuromorphic chip, but not
part of a neural fabric (mesh that includes the processor(s)) of the chip. In such a case,
the neural fabric receives the dilated input and performs event-based convolution as
described in the earlier embodiments to determine a convolved output, which represents
an event-based transposed convolved output; or receives a dilated kernel and performs
event-based convolution as described in the earlier embodiments to determine a
convolved output which represents an event-based dilated convolved output.

[0157] In some embodiments, the transformation functionality 2002 is part of the neural
fabric and therefore the transformation functions are performed in the neural fabric.

[0158] In some embodiments, the transformation functionality 2002 is a part of a separate
neuromorphic system, for example running on a separate device with one or more
processor(s) or a cloud network (server).

[0159] In some embodiments, all operations and components shown in FIG. 20 are
performed on a neuromorphic chip.

[0160] Before describing event-based transposed convolution, classical convolution and
event-based convolution that does not involve transposed convolution will first be
described with reference to FIG. 21 which shows a diagrammatic representation of
classical convolution 2101 and event-based convolution 2103.

[0161] In the classical convolution example 2101, a 5x5 input array 2105 zero-padded
(not shown) with a 1x1 border is convolved with a 3x3 kernel 2107 to produce an output
array 2109. Since to perform convolution, one function require inversion, the kernel is
180-degree rotated. The 180-degree rotated kernel is used to perform MAC operations
with the input array 2105. The MAC operation is performed at each position of the input
with stride 1, to achieve convoluted output 2109.

[0162] As discussed above in relation to FIG. 8, event-based convolution reduces the

number of multiply and/or accumulate operations (MAC operations) compared to
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classical frame-based convolution, since generally the input array is sparse and does not
include non-zero events at each address in the array. It will be understood that the input
array may comprise data that is provided to the network during training or during
inference, or that is output from a previous layer of the network.

[0163] In the event-based convolution example 2103, MAC operations are performed
between a 5x5 input array 2102 (in this example, 1-channel) and a 3x3 kernel 2104 (and
not between the input and the 180-degree rotated kernel, which is the case in classical
approach described earlier). Furthermore, the MAC operation are not performed at each
position of the input, however, only at the positions where events (non-zero spike values)
exist. This event-based convolution technique is described further in detail.

[0164] It will be understood that if a relatively large size image is fed to the network
during training or inference, multiple neural processors may be used to implement event-
based convolution, with each neural processor acting on a different part of the image.
Referring to FIG. 5, in this example, each neural processor is configured to identify
relevant spikes designated to it, and to perform event-based convolution in hardware on
an input array including identified relevant spikes.

[0165] During event-based convolution, the convolution neural processor identifies
relevant events in the input array, in the present example first, second and third non-zero
spike values 2106, 2108 and 2110, and implements MAC operations only in relation to
the identified non-zero spike values 2106, 2108 and 2110. In the illustrated example, the
non-zero spike values 2106, 2108 and 2110 are respectively located at three address
locations (1, 2), (2, 2) and (2, 1). In some embodiments, multiple convolution neural
processors (e.g. shown in fig. 5) are configured to identify relevant events (non-zero spike
values) in the input array and implement MAC operations only in relation to the identified
events (non-zero spike values).

[0166] The calculations performed during the event-based convolution example will now
be described. It will be understood that these operations are performed by spiking neuron
circuits of the neural processor on neuromorphic hardware.

[0167] For the first spike value 2110 at address location (2,1), each value of the kernel
2104 is multiplied by the first spike value (1) and the resultant 3x3 matrix is placed at

address (2,1) of a 5x5 zero matrix to produce a 5x5 first matrix 2118.
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[0168] For the second spike value 2108 at address location (2, 2), each value of the
rotated kernel 2104 is multiplied by the second spike value (2) and the resultant 3x3
matrix is centered at address location (2,2) of the first matrix and summed with the first
matrix 2118 to produce a 5x5 second matrix 2120.

[0169] For the third spike value 2106 at address location (1, 2), each value of the rotated
kernel 2104 is multiplied by the third spike value (1) and the resultant 3x3 matrix is
centered at address location (1,2) of the second matrix 2120 and summed with the second
matrix 2120 to produce a 5x5 third matrix 2122,

[0170] The third matrix 2122 represents the event-based convolved output in this
example, which is noted to be same as the convolved output achieved by the classic
frame-based convolution example 2102.

[0171] It will be appreciated that memory can be configured to store kernels in standard
format or 180-degree rotated format, as the neural processor can simply produce the
required kernel format for processing by rotating stored standard kernels on-the-fly if
necessary.

[0172] In at least some embodiments, the above-described standard event-based
convolution process is also used to implement event-based transposed convolution by
first transforming the input event (spike) array, for example by dilating the input array.

[0173] Examples of transposed convolution that has the effect of upsampling an input
array are shown in FIGs. 22(1), 22(i1) and 22(iii).

[0174] FIG. 22(i) illustrates frame-based transposed convolution of a 2x2 padded input
array using a 3x3 kernel and a unit stride. The padding is added to the outer frame of the
input array so that the desired size/resolution output is produced. As a result of this
operation, a 2x2 input is converted to a 4x4 output, thereby achieving upsampling of the
input.

[0175] Fig. 22(i1) illustrates dilated input transposed convolution. In this example, the
input is a 2-dilated 2x2 array with an added 2x2 zero border padding to obtain a
transformed 7x7 input array. After carrying out the transformation step on the input
array, a convolution operation is performed using a 3x3 kernel to produce a 5x5
transposed convolved output.

[0176] Fig. 22(1ii) illustrates a further example of a dilated input transposed convolution.
In this example, the input is a 3x3 dilated array with an added 1x1 padding border to
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obtain a transformed 7x7 input array. After carrying out the transformation step on the
input array, a convolution operation is performed using a 3x3 kernel to produce a 5x5
transposed convolved output.

[0177] To implement event-based transposed convolution in the present embodiments,
the transformation functionality 2002 shown in FIG. 20 is used to receive input event
(spike) arrays and transform the input arrays, for example using padding and/or dilation.
After transforming an input array, event-based convolution as described above, for
example in relation to FIG. 21, is carried out to obtain an event-based transposed
convolved output. The event-based transposed convolved output may be used by the
neural processor to implement other functionality, for example for semantic segmentation
or super-resolution processing purposes.

[0178] One advantage of implementing event-based transposed convolution is to achieve
reusability of the spiking neuron circuits, which will reduce the size and cost of the
neuromorphic hardware (e.g. a chip). In other words, the neuromorphic hardware is
optimized to implement a diverse variety of use cases by effectively reusing the spiking
neuron circuits available on the hardware.

[0179] A specific example of an event-based transposed convolution using input array
dilation is shown in FIG. 23.

[0180] As shown in FIG. 23, an example 4x4 input event (spike) array 2302 includes
non-zero events 2312, 2314, 2316 at respective spatial coordinates (1,0), (2,1) and (0,3).
The input array 2302 is transformed using the transformation functionality 2002 to a
dilated input array 2304 that includes non-zero events 2316, 2318, 2320 at respective
coordinates (3,1), (5,3) and (1, 7). Padding is also applied to the input array 2302 so that
a top and side of the transformed array is padded with zeros. After dilation and padding
of the input array, event-based convolution is carried out on the transformed input array.
In this way, even though the input array has increased in size, no additional processing
cost is incurred because only the non-zero events are processed during event-based
convolution.

[0181] In the present example, the input array is 2-dilated (with 1x1 padding to the top
and side) to produce an 8x8 transformed input array 2304. However, it will be understood

that other dilation arrangements may be used, depending on the desired output array
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upsampling characteristics. For example, the input array may be 3-dilated, 4-dilated, and
so on, and may include different padding arrangements.

[0182] In some embodiments, for 2-dilated event-based transposed convolution with
padding as shown in FIG. 23, the spatial coordinates of the non-zero events in the output
array may be calculated using the following function:

X (new)=2* X (old) + 1
Y(new) =2 * Y(old) + 1

[0183] In some embodiments, each transformed input array is stored and subsequently
used by the neural processor by reading the transformed array during the event-based
convolution processing, although this may not be memory efficient as it may require
additional memory to store the transformed input arrays.

[0184] Referring to the example in FIG. 23, after transformation of the input array 2302
using dilation and padding, event-based convolution, for example as described in relation
to FIG. 21, is performed to produce an event-based transposed convolved output. As
depicted in FIG. 23, MAC operations are performed only for 3 non-zero first, second and
third spike input values 2316, 2318, 2320 using a kernel 2306.

[0185] For the first spike value 2316 at address location (3,1), each value of the rotated
kernel 2306 is multiplied by the first spike value (1) and the resultant 3x3 matrix is placed
at address (3,1) of an 8x8 zero matrix to produce an 8x8 first matrix 2308.

[0186] For the second spike value 2318 at address location (5,3), each value of the rotated
kernel 2306 is multiplied by the second spike value (1) and the resultant 3x3 matrix,
centered at address location (5,3) of the first matrix 2308 is summed with the first matrix
2118 to produce an 8x8 second matrix 2310.

[0187] For the third spike value 2320 at address location (1,7), each value of the rotated
kernel 2306 is multiplied by the third spike value (1) and the resultant 3x3 matrix,
centered at address location (1,7) of the second matrix 2310 is summed with the second
matrix 2310 to produce an 8x8 third matrix 2322.

[0188] The third matrix 2322 represents the event-based transposed convolved output in
this example.

[0189] It will be appreciated that in this example a 4x4 input array (2312) is up-sampled
to an 8x8 array (2322) after performing the event-based transposed convolution operation.

Advantageously, the event-based transposed convolution reduces the computation and
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power requirement of the system due to the smaller number of MAC operations required
compared to non-event-based transposed convolution, and a smaller number of spiking
neuron circuits are required to perform this operation.

[0190] In some embodiments, the type of dilation (2-dilation, 3-dilation, and so on) and
padding of the input array is user controllable and configured when a neural network is
initially configured. The transformation component 2002 can be part of the convolution
neural processor or a separate processor/assembly working with the neural processor
(fabric).

[0191] An example of a dilated convolution process using kernel dilation is shown in
FIGs. 24 (i) and (i1).

[0192] FIG. 24(i)(a), FIG. 24(i)(b) and FIG. 24(i)(c) show examples of a 3x3 kernel that
has been 1-dilated 2401, 2-dilated 2402 and 4-dilated 2406 respectively. In a similar
way to dilation of an input array discussed above in relation to FIGs. 22 and 23, dilation
of a kernel increases the size of a kernel by inserting zero gaps between the kernel
elements.

[0193] FIG. 24 (11) illustrates frame-based dilated convolution 2408 of a 7x7 input array
using a 3x3 kernel that has been transformed to a 5x5 kernel using 2-dilation.

[0194] A specific example of event-based dilated convolution using kernel dilation is
shown in FIG. 25.

[0195] In this example, the dilated convolution process is implemented using the
transformation functionality 2002 shown in FIG. 20 to dilate the kernels, although it will
be understood that the dilated convolution process may be implemented by any
component of the neuromorphic chip. After dilating the kernels, event-based convolution
as described above, for example in relation to FIG. 21, is carried out to obtain an event-
based dilated convolved output.

[0196] Referring to Fig. 25, a 3x3 kernel 2502 is dilated (in this example, 2-dilated) to
produce a 5x5 dilated kernel (2506). After dilation of the kernel 2502, event-based
convolution, for example as described above in relation to FIG. 21, is performed on an
input (spike) array 2504 to produce an event-based dilated convolved output 2512. As
shown in FIG. 25, MAC operations are performed only at 2 non-zero first and second
spike input values 2508, 2510 using the transformed rotated kernel 2506.

Advantageously, event-based dilated convolution reduces the computation and power
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requirement of the system due to a smaller number of MAC operations and requires a
smaller number of spiking neuron circuits to perform the operation.

[0197] For the first spike value 2508 at address location (1,0), each value of the rotated
kernel 2502 is multiplied by the first spike value (1) and the resultant matrix values that
coincide with a valid matrix location are placed in a 4x4 zero matrix centered at address
(1,0) to produce a 4x4 first matrix 2511.

[0198] For the second spike value 2510 at address location (2,1), each value of the rotated
kernel 2502 is multiplied by the second spike value (1) and the resultant matrix values
that coincide with a valid matrix location are summed with matrix values of the first
matrix 2511 centered at address (2,1) to produce a 4x4 second matrix 2512.

[0199] The second matrix 2512 represents the event-based dilated convolved output in
this example.

[0200] It will be appreciated that in this example the event-based dilated convolution
process creates a 4x4 output array based on a 4x4 input array 2504, and in this way the
size of the array remains the same. Advantageously, the event-based dilated convolution
reduces the computation and power requirement of the system due to the smaller number
of MAC operations required compared to non-event-based dilated convolution, and a
smaller number of spiking neuron circuits are required to perform this operation.

[0201] In some embodiments, to perform event-based convolution using dilated kernels,
the kernel (or 180-degree rotated kernels) are dilated on reading (on 180-degree rotated
reading) from SRAM. That is, kernels (or 180-degree rotated kernels) may be stored in
SRAM in their compressed (nondilated form - 2502), thereby optimizing both the number
of kernels that can be stored and the energy required for lookup from memory. The
kernels (or rotated kernels) are dilated (2506) on reading. Further, processing of the
dilated kernels (or 180-degree rotated kernels) is optimized in this architecture because
the all-zero rows are skipped in subsequent processing.

[0202] In some embodiments, the kernels (or 180-degree rotated kernels) are dilated and
stored in dilated form such that when the kernels (or 180-degree rotated kernels) are read
from memory by the neural processor, they are already dilated. This technique may not be
as memory efficient as storing undilated kernels, since it may require additional memory

to store the dilated kernels (or dilated rotated kernels).
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[0203] In some embodiments, the type of dilation (2-dilation, 3-dilation, and so on) of
kernels (or 180-degree rotated kernels) is user controllable and configured when a neural
network is initially configured. The transformation component 2002 can be part of the
convolution neural processor or a separate processor/assembly working with the neural
processor (fabric).

[0204] It will be understood that other event-based convolution processes that involve
transformation of the input array and/or of the kernel(s) are envisaged. For example,
event-based transposed convolution may be carried out on an input array that has been
padded but not dilated, or event-based convolution may be carried out based on a
transformed input array and a dilated kernel.

[0205] The present method and system also includes data augmentation capability
arranged to augment the network training phase by automatically training the network to
recognize patterns in images that are similar to existing training images. In this way,
feature extraction during feature prediction by the network is enhanced and a more robust
network achieved.

[0206] Training data augmentation is a known pre-processing step that is performed to
generate new and varying examples of original input data samples. When used in
conjunction with convolutional neural networks, data augmentation techniques can
significantly improve the performance of the neural network model by exposing robust
and unique features.

[0207] Existing training data augmentation techniques, largely implemented in separate
dedicated software, apply transformation functions to existing training samples as a pre-
processing step in order to create similar training samples that can then be used to
augment the set of training samples used to train a network. Typical transformations
include mirror image transformations, for example that are obtained based on a horizontal
or vertical axis passing through the center of the existing sample.

[0208] However, existing training data augmentation techniques are carried out
separately of the neural network, which is cumbersome, expensive and time consuming.

[0209] According to an embodiment of the present invention, an arrangement is provided
whereby the set of training samples is effectively augmented on-the-fly by the network
itself by carrying out defined processes on existing samples as they are input to the

network during the training phase. Accordingly, with the present system and method,



WO 2023/146523 PCT/US2022/014123
42

training data augmentation is performed on a neuromorphic chip, which substantially
reduces user involvement, and avoids the need for separate preprocessing before
commencement of the training phase.

[0210] Figure 26(1) illustrates an example input layer of a convolutional neural network
that receives a 4 x 4 input 2612 and applies a convolution to the input using a 3 x 3 kernel
2610 (in this example with unit stride and no padding). The input 2612 is indexed by
columns and rows such that a single column-row pair forms a coordinate of the input. As
the input is convolved, features of the input data are extracted using 16 input layer
neurons and 4 output layer neurons 2602, 2604, 2606, 2608. The input and output layer
neurons each have an associated plurality of synapses defined using convolution
topology. For example, neuron 2602 is only connected to input layer neurons associated
with input coordinates (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2) and (2,2) since
these are the only input neurons required for the MAC operation associated with a stride
shown at 2615. The synapses are configured based on the values contained in the kernels.
The membrane potential value achieved by each neuron 2602, 2604, 2606 and 2608 is
represented by values at 2614, 2616, 2618 and 2620 respectively in a 2x2 convolved
output 2613.

[0211] According to the present embodiment, the convolutional neural network is
arranged, during a training phase, to augment the training data set of training input
samples artificially by applying transformation operations to training samples as they are
input to the network.

[0212] Figure 26(i1) illustrates example data transformation operations that may be
applied to an existing training sample 2630 by a transformation module, in this example
in order to produce a ‘flipped’ sample 2632 wherein the transformed sample is a mirror
image (based on a horizontal or vertical axis), a rotated version 2634 of the existing
sample 2630, a translated version 2636 of the existing sample 2630, or a sheared version
2638 of the existing sample 2630 of the existing sample 2630. However, it will be
understood that any suitable transformation function may be used.

[0213] In some embodiments, the transformation module transforms the input coordinates
(x,y) to output coordinates using a transformation function selected from a set of
transformation functions. Each transformation function may correspond to a different

matrix function. For each function, x and y represent the coordinates of the input array,
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and C and C, represent the coordinates of the center of the array. The coordinates are
indexed starting from coordinate (0,0). The centers may be floating point numbers. For
example, a (4 x 4) input could have center coordinates C,, = 1.5 and C,, = 1.5. If any
transformation function result is a floating point number, it will be converted to an integer
before being output as a coordinate. One way to do this is via truncation. For example, if
a coordinate of 1.7 is produced during transformation, then the output coordinate will be
1. Another way is via rounding, for example such that if the floating point number
produced is 1.7, the output coordinate will be 2. If a transformed coordinate of the input
is out of bounds for the input layer (spiking neuron circuits), it will be ignored. If there is

no input at a neuron coordinate, it will be treated as a non-event.

[0214] Example transformation operations will now be described in more detail.
[0215] 1. Flip:
[0216] A ‘flip’ transformation operation is arranged to transform an input by creating a

mirror image of the input about a vertical or horizontal axis passing through the center of
the input. A horizontal flip operation transforms the input data such that a mirror image
is produced about a horizontal axis passing through the center of the input. A vertical flip
operation transforms the input data such that a mirror image is produced about a vertical
axis passing through the center of the input . Various techniques could be implemented to
perform flipping of spatial coordinates in this way. Example horizontal and vertical flip

transformation functions are as follows:

izontal fl formation function = % )+ (&
a.  Horizontal flip transformation function = <_ Y+ Cy) + < Cy)

. . . . —x + Cx Cx
b.  Vertical flip transformation function = ( _C ) + ( C )
Y=Ly y

[0217] 2. Rotation:

[0218] A rotation transformation operation is arranged to transform an input by rotating

the input about the center by 6 degrees/radians.

[0219] Various techniques could be implemented to perform rotation of spatial

coordinates. An example rotation function is as follows:

(8 0)((0 N ()« ()

[0220] The above rotation operation will transform the input data such that it is rotates

anticlockwise by a defined angle. This rotation is most effective when used to rotate
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square inputs by any 90° interval. However, it will be understood that the angle is not
restricted to 90° increments, or square inputs. If a non 90° angle of rotation is used, and a
floating-point value is produced by the function, the floating point value will be converted
to an integer coordinate. This will be done using either truncation or rounding as
described previously. If any output coordinate is out of bounds of the input layer (i.e. the
coordinate does not correspond to any input layer neuron), then it will simply be ignored.
If no input is received by an input layer neuron, it will be treated as a non-event. For
example, if a (3 x 3) input is to be rotated anticlockwise by 80°, then the transformed
output coordinate for the value at coordinate (0, 0) in the original input will be (1.81,
2.15), and thus the output coordinate via the transformation module will be either (1, 2) if
truncation is used or (2, 2) if rounding is used.

[0221] 3. Shear:

[0222] A shear transformation operation is arranged to transform the input data such that
it is sheared horizontally by a factor of Sy and vertically by a factor of S;. Various
techniques could be implemented to perform a shear transformation of spatial

coordinates. An example shear function is as follows:

(1 0 ) (( 1 SH> <—x + Cx>> N <Cx>

0 —1/\\$y 1 y—Cy Cy

[0223] If a floating-point shear factor is used, floating point values may be produced by
the function. In this case, the floating-point value must be converted to an integer, for
example using either truncation or rounding as described above.

[0224] 4. Translation:

[0225] A translation transformation operation is arranged to transform input data such

that it is translated horizontally by T units and vertically by Ty, units. Various techniques

could be implemented to perform translation of spatial coordinates. An example

()+ (7))

[0226] One or more of these operations may be used in succession or combined to form

translation function is as follows:

more complex transformations. It will be appreciated that the transformation operations
can be used for image or non-image data, such as sensor data.
[0227] Figure 26(ii1) illustrates an example input array that is transformed using a vertical

flip transformation. As shown, the input coordinate (x, y) is transformed such that the
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value at the coordinate is moved to a new coordinate (x;, y,) that is a mirror image of the
input coordinate (x,y) about a vertical axis passing through a center coordinate (Cx,Cy)

[0228] In some embodiments, the transformation operations are applied to an input by
changing the connections between the coordinates of the input array and the input
neurons. For example, as shown in FIG. 27(1), without transformation the coordinates of
the input array are connected to the input layer neurons using a first pattern, and with
transformation, as shown in FIG. 27(i1), the coordinates of the input array are connected
to the input layer neurons using a different second pattern. The second pattern represents
the desired transformation operation, in this example a vertical flip operation.

[0229] Other operations that transform the input data in order to produce modified
versions of the input data for training data set augmentation purposes are also envisaged.
For example, a transformation operation may be applied wherein selected data present in
the input data is obscured, removed or modified, for example in order to simulate noise or
distortion effects.

[0230] In one such transformation operation, the data in the input is masked or relevant
input neurons are masked, controlled or otherwise arranged to prevent the data from being
incorporated in the subsequent convolution operations. For example, selected input
coordinates may be ignored, data associated with selected input coordinates may be
zeroed, or new data could be added to an input coordinate, for example randomly, to
simulate random noise, and/or to simulate particular color space manipulations by
masking color channels. Such data changing operations may be carried out in addition to
any one or more other transformation operation.

[0231] In addition or alternatively, a transformation could be applied directly to neurons
in the input layer, for example to ‘mask’ selected neurons by preventing the selected
neurons from receiving an input in response to reception by the network of a training data
sample, such as by disabling sending of values to the relevant neurons in the input layer
or discarding values as they are received at the relevant neurons at the input layer.

[0232] In some embodiments, the inputs to be masked or modified can be randomly or
arbitrarily chosen or can be predefined. New input values, if any, assigned to the masked
inputs can be randomly/arbitrarily allocated or allocated based on one or more predefined
value(s) (e.g. a zero value). Random masking could be defined as blocking random

sections of input that are spatially adjacent. The spatial shapes to be blocked, sizes of
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masked portions, number of masks, and the proportion of an image to be masked could be
user defined or randomly decided. For example, this would emulate covering a portion of
an image so that it is obscured or fed to the network with distortion. Randomly or
arbitrarily blocking sections may increase robustness of a model, and in this way it may
increase the likelihood of an object being correctly detected during inference even though
it is partially obstructed.

[0233] In some embodiments, particular input samples and/or particular portions of input
samples for blocking/masking/obscuring/modification are manually selected, although
manually defining areas to be blocked can increase selective robustness in a model. An
example of this transformation operation may enable more reliable prediction in more
constrained environments, for example if an image of a face is provided for training a
face recognition model, by blocking the lower part of the face the model can be trained to
learn features required to recognize the person when they are wearing a mask.

[0234] In some embodiments, noise is introduced to an image by randomly masking
and/or carrying out modification actions at particular input layer neurons.

[0235] In some embodiments, masking or data modification is applied selectively to one
or more color channels to thereby perform color space transformations and enhance
accuracy of a model during inference. For example, one or more input channel may be
selectively masked to achieve color-space transformation. This may improve model
performance by enhancing contrast between objects in the data. For example, if an
objective is to detect sharks under water, removing the blue color channel could increase
contrast between the water and the shark. Another application may be in the agricultural
domain. For example, if an objective is to detect apples in an orchard, and red and green
apple variants exist, it may be beneficial to remove the red color channel as it may
prevent a model from learning the features of an apple based on color, and instead
promote learning based on spatial features, thus making the model robust to color
variations.

[0236] In some embodiments, masking is performed on multi-channel training data
before the training data is provided to the input layer. In this case, masking is applied to
each channel separately.

[0237] To implement masking and/or data modification, the neural processor is

configured to randomly mask or modify particular input values and produce random
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inputs when the model is being trained on a sample data. In some embodiments, this
operation is only performed by the neural processor in response to user input.

[0238] In some embodiments, the neural processor or any supplementary processor
connected to the neural processor is arranged to receive user command or parameters that
define the masking/data modification characteristics.

[0239] In some embodiments, the data on which masking is performed is image data or
non-image data.

[0240] In some embodiments, in order to perform the desired transformation on the input
data, the input layer may be reconfigured such that spatial coordinates for the input
neurons are changed using a transformation module. An example of such an operation is
shown in FIG. 27(iii), which shows transformation of each input layer neuron coordinate
to a new coordinate. FIG. 27(1v) shows a sample input being passed to the newly
reconfigured input layer. This technique is useful when it is desired to transform more
than one data sample in the same way. For example, suppose if ‘n’ transformations per
sample are to be created, the input layer will only need to be reconfigured once per
augmentation, as opposed to once per sample per augmentation. Thus, reducing
computational complexity from O(m X n) to O(n) where ‘n’ is the number of
augmentations per sample, and m is the number of samples.

[0241] It will be appreciated that the disclosed data augmentation technique produces a
more robust machine learning model by effectively creating different training inputs
using existing training data. Performing transformations on the data can create new
samples for the model to train on, and varying the data through transformations can cover
a larger input domain with limited samples. Advantageously, transforming the data
creates new input samples, artificially creating different scenarios for the model to train
on. This technique can also be used to create new samples while implementing one/low
shot learning in the spiking domain.

[0242] In some embodiments, the above disclosed data augmentation technique is
performed during inference, independently of whether train-time data augmentation
technique is performed or not. The data augmentation is applied to a test data (e.g. input
image) by transforming spikes or spiking neuron circuits, which result in processing of
the spikes related to a flipped, a rotated, a sheared and/or translated image of an input

image. Based on the processing, features are extracted and are classified for prediction.
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[0243] In some embodiments, when spikes related to transformed image(s) are used for
predictions, whichever class corresponding to a spiking neuron circuit is predicted most
frequently amongst multiple spiking neuron circuits (of a classifying layer of a spiking
neural network) representing various classes, is considered to be a winning class for the
input data (e.g. input image) and predicted.

[0244] In some embodiments, when spikes related to transformed image(s) are used for
predictions, whichever spiking neuron circuit has the highest membrane potential value
more number of time (dominant class during inference for the input image and
transformed image(s)), amongst multiple spiking neuron circuits (of a classifying layer of
a spiking neural network) representing various classes, is considered to be a winning class
for the input data (e.g. input image) and predicted.

[0245] A person skilled in the art will appreciate that the above embodiments that use
transpose convolution, dilated convolution and training set data augmentation describe
techniques for 1-channel data only, although it will be appreciated that the techniques can
similarly be implemented with multi-channel data, for example that include red, green
and blue colour channels.

[0246] A person skilled in the art will appreciate that when implementing the data
augmentation-based embodiments for flipping, rotation, translation and shearing, all the
spikes associated with an image are used when performing transformation.

[0247] A person skilled in the art will appreciate that when implementing event-based
transpose convolution / dilated convolution and masking based data augmentation
embodiments, the spikes of only a portion of an image could be used when performing
transformation by a corresponding neural processor.

[0248] In some embodiments, one or more data augmentation techniques are
implemented on a neuromorphic hardware without any user intervention.

[0249] In the claims which follow and in the preceding description of the invention,
except where the context requires otherwise due to express language or necessary
implication, the word “comprise” or variations such as “comprises” or “comprising” is
used in an inclusive sense, i.e. to specify the presence of the stated features but not to
preclude the presence or addition of further features in various embodiments of the

invention.
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[0250] The foregoing description of the specific embodiments will so fully reveal the
general nature of the invention that others can, by applying knowledge within the skill of
the art (including the contents of the documents cited and incorporated by reference
herein), readily modify and/or adapt for various applications such specific embodiments,
without undue experimentation, without departing from the general concept of the present
invention. Therefore, such adaptations and modifications are intended to be within the
meaning and range of equivalents of the disclosed embodiments, based on the teaching
and guidance presented herein. It is to be understood that the phraseology or terminology
herein is for the purpose of description and not of limitation, such that the terminology or
phraseology of the present specification is to be interpreted by the skilled artisan in light
of the teachings and guidance presented herein, in combination with the knowledge of
one skilled in the art.

[0251] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example, and not
limitation. It will be apparent to one skilled in the relevant art(s) that various changes in
form and detail can be made therein without departing from the spirit and scope of the
invention. Thus, the present invention should not be limited by any of the above-
described exemplary embodiments, but should be defined only in accordance with the
following claims and their equivalents.

[0252] It is to be understood that, if any prior art publication is referred to herein, such
reference does not constitute an admission that the publication forms a part of the
common general knowledge in the art, in Australia or any other country.

[0253] It will be understood to persons skilled in the art of the invention that many

modifications may be made without departing from the spirit and scope of the invention.
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WHAT IS CLAIMED IS:

1. A system, comprising:
a memory for storing data representative of at least one kernel,
a plurality of spiking neuron circuits;
an input module for receiving spikes related to digital data, wherein each spike is
relevant to a spiking neuron circuit and each spike has an associated spatial coordinate
corresponding to a location in an input spike array;
a transformation module configured to:

transform a kernel to produce a transformed kernel having an increased
resolution relative to the kernel; and/or

transform the input spike array to produce a transformed input spike array
having an increased resolution relative to the input spike array;

a packet collection module configured to collect spikes until a
predetermined number of spikes relevant to the input spike array have been collected in a
packet in memory, and to organize the collected relevant spikes in the packet based on the
spatial coordinates of the spikes; and

a convolutional neural processor configured to perform event-based convolution
using memory and at least one of the transformed input spike array and the transformed

kernel.

2. The system as claimed in claim 1, wherein the event-based convolution using the

transformed input spike array produces a transposed convolved output.

3. The system as claimed in claim 2, wherein the transformation module is arranged to

transform the input spike array by dilating the input spike array.

4. The system as claimed in claim 2 or claim 3, wherein the transformation module is

arranged to transform the input spike array by padding the input spike array with zeros.

5. The system as claimed in any one of the preceding claims, wherein the memory stores

data representative of transformed input spike arrays.
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The system as claimed in any one of claims 1 to 4, wherein the memory stores data
representative of input spike arrays and the transformation module is arranged to

transform an input spike array after the input spike array is read from memory.

The system as claimed in any one of the preceding claims, wherein the event-based

convolution using the transformed kernel produces a dilated convolved output.

The system as claimed in claim 7, wherein the transformation module is arranged to

transform the kernel by dilating the kernel.

The system as claimed in any one of the preceding claims, wherein the memory stores

data representative of transformed kernels.

The system as claimed in any one of claims 1 to 8, wherein the memory stores data
representative of kernels and the transformation module is arranged to transform a kernel

after the kernel is read from memory.

The system as claimed in any one of the preceding claims, wherein the data representative

of at least one kernel is data representative of a 180° rotated kernel.

The system as claimed in any one of the preceding claims, wherein:

the digital data is representative of an image; and

the convolutional neural network is configured to apply a transformation function
to an existing training image in order to simulate at least one further training image that is
similar to the existing training image, and to perform network training based on the

existing training image and the at least one further training image.

The system as claimed in any one of the preceding claims, wherein the received spikes
correspond to a plurality of channels, and the packet collection module is further

configured to organize the collected relevant spikes by channel in the packet.
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The system as claimed in any one of the preceding claims, wherein the memory is further

configured to store kernel weights indexed by channel.

The system as claimed in any one of the preceding claims, comprising an inbound filter

configured to select relevant spies for reception by the input module.

The system as claimed in claim 15, wherein the inbound filter is configured to remove

spikes that are outside a scope of the convolution neural processor.

The system of any one of the preceding claims, wherein the convolution neural processor
is configured to implement event-based convolution by:

identifying spike values in an input spike array or transformed spike array;

multiplying each element of a kernel or transformed kernel by each identified
spike value in the input spike array or the transformed spike array;

calculating a potential using the multiplied elements and spike values; and

using the potential to produce an output event.

A system, comprising:
a memory for storing data representative of at least one kernel,
a plurality of spiking neuron circuits;
an input module for receiving spikes related to an input image, wherein each spike
is relevant to a spiking neuron circuit;
a transformation module configured to:
apply a transformation function to the received spikes in order to generate
transformed spikes related to at least one further image that is similar to the input image,
or
apply a transformation function to the spiking neuron circuits in order to
simulate transformed neuron circuits, so that the transformed neuron circuits receive the
spikes related to the input image; and
a convolutional neural processor to determine a convolution output for the further
image, the convolutional neural processor configured to perform event-based convolution

using memory, kernels and the received spikes.
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19. The system as claimed in claim 18, wherein the convolutional neural processor, to
determine the convolution output for the further image, is configured to perform event-
based convolution using memory, kernels and at least one of:

the transformed spikes received by the spiking neuron circuits, and

the spikes received by the transformed neuron circuits.

20. The system as claimed in claim 18 or claim 19, wherein the further image is at least one
of:

a flipped image of the input image; a rotated image of the input image; a sheared

image of the input image; a translated image of the input image; and a masked image of

the input image.

21. A method for performing event-based convolution, comprising:

storing in memory, data representative of at least one kernel;

receiving, by an input module, spikes related to digital data, wherein each spike is
relevant to a spiking neuron circuit and each spike has an associated spatial coordinate
corresponding to a location in an input spike array;

transforming, by a transformation module,

a kernel to produce a transformed kernel having an increased resolution relative to
the kernel; and/or

the input spike array to produce a transformed input spike array having an
increased resolution relative to the input spike array;

collecting, by packet collection module, spikes until a predetermined number of
spikes relevant to the input spike array have been collected in a packet in memory, and to
organize the collected relevant spikes in the packet based on the spatial coordinates of the
spikes; and

performing, by a convolution neural processor, event-based convolution using

memory and at least one of the transformed input spike array and the transformed kernel.

22. The method as claimed in claim 21, wherein the event-based convolution using the

transformed input spike array produces a transposed convolved output.
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The method as claimed in claim 22, further comprising,
transforming, by the transformation module, the input spike array by dilating the

input spike array.

The method as claimed in claim 22 or claim 23, further comprising,
transforming, by the transformation module, the input spike array by padding the

input spike array with zeros.

The method as claimed in any one of claims 21 to 24, further comprising,

storing data representative of transformed input spike arrays in memory.

The method as claimed in any one of claims 21 to 24, further comprising,
transforming an input spike array after the input spike array is read from memory,

wherein the memory stores data representative of input spike arrays.

The method as claimed in any one of claims 21 to 26, wherein the event-based

convolution using the transformed kernel produces a dilated convolved output.

The method as claimed in claim 27, further comprising, transforming the kernel by

dilating the kernel.

The method as claimed in any one of claims 21 to 28, wherein the memory stores data

representative of transformed kernels.

The system as claimed in any one of claims 21 to 28, further comprising,
transforming, by the transformation module, a kernel after the kernel is read from

memory, wherein the memory stores data representative of kernels.

The method as claimed in any one of claims 21 to 30, wherein the data representative of

at least one kernel is data representative of a 180° rotated kernel.
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The method as claimed in any one of claims 21 to 31, further comprising:

applying a transformation function, by the convolutional neural network, to an
existing training image in order to simulate at least one further training image that is
similar to the existing training image, and performing network training based on the
existing training image and the at least one further training image, wherein the digital data

is representative of an image.

The method as claimed in any one of claims 21 to 32, further comprising,
organizing by the packet collection module, the collected relevant spikes by

channel in the packet, wherein the received spikes correspond to a plurality of channels.

The method as claimed in any one of claims 21 to 33, wherein the memory is further

configured to store kernel weights indexed by channel.

The method as claimed in any one of claims 21 to 34, further comprising, selecting by an

inbound filter, relevant spies for reception by the input module.

The method as claimed in claim 35, further comprising, removing by the inbound filter,

spikes that are outside a scope of the convolution neural processor.

The method of any one of claims 21 to 36, further comprising, implementing by the
convolution neural processor, event-based convolution by:

identifying spike values in an input spike array or transformed spike array;

multiplying each element of a kernel or transformed kernel by each identified
spike value in the input spike array or the transformed spike array;

calculating a potential using the multiplied elements and spike values; and

using the potential to produce an output event.

A method of performing convolution, the method comprising:
storing in memory, data representative of at least one kernel;
receiving, by an input module, spikes related to an input image, wherein each

spike is relevant to a spiking neuron circuit;
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applying, by a transformation module,

a transformation function to the received spikes in order to generate transformed
spikes related to at least one further image that is similar to the input image, or

a transformation function to the spiking neuron circuits in order to simulate
transformed neuron circuits, so that the transformed neuron circuits receive the spikes
related to the input image; and

determining, by a convolution processor, a convolution output for the further

image using memory, kernels and the received spikes.

39.  The method as claimed in claim 38, further comprising,
determining, by a convolution processor, the convolution output for the further
image using memory, kernels and at least one of
the transformed spikes received by the spiking neuron circuits, and

the spikes received by the transformed neuron circuits.

40. The method as claimed in claim 38 or claim 39, wherein the further image is at least one
of:

a flipped image of the input image; a rotated image of the input image; a sheared

image of the input image; a translated image of the input image; and a masked image of

the input image.
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