发明名称
高效微生物制氢及氢能-电能转化一体化装置

摘要
涉及一种利用微生物发酵有机物制氢及氢能-电能转化的一体化装置。设有生物制氢反应装置，气体纯化装置接口接反应装置接口，贮氢装置接纯化装置，氢能-电能转化装置的氢气进气口接贮氢装置的氢气出气口。利用分解微生物将各种复杂有机物质转化为易被微生物利用的简单物质，通过高效产氢微生物的代谢活动产生氢。最后在燃料电池中被转化为电能。可实现生物质能-电能的可控转化。适用于高浓度有机废水排放企业的废水处理及资源化利用、城市环保部门有机废物或废水的环保处理与资源化利用、乡村农户对农作物秸秆的能源化利用、偏远山区或海岛利用当地的秸秆或有机废物发电等。
1、高效微生物制氢及氢能-电能转化一体化装置，其特征在于设有：

生物制氢反应装置，生物制氢反应装置设有发酵罐、温控系统、搅拌系统和 pH 值控制系统，发酵罐包括外壳、内筒和密封盖，温控系统设于内筒内，内筒内作为混合反应区，温控系统包括探头、水浴调温环形管与进出口、加热棒；在内、外筒间设置沉淀分离区、进料口、排出口，搅拌系统采用机械搅拌系统或液流喷射搅拌系统，或机械搅拌系统和液流喷射搅拌系统，机械搅拌系统包括电动机和搅拌叶片，搅拌叶片设于内筒内；

气体纯化装置，气体纯化装置的进口气导气管接生物制氢反应装置的氢气出气口，气体纯化装置包括水封装置、碱洗脱塔和干燥装置，水封装置的进气口接生物制氢反应装置的氢气出气口，碱洗脱塔接于水封装置与干燥装置之间，碱洗脱塔包括塔筒体、内导气管、气体分散头、活动介质承载板、填充介质、淋喷头、分流开关和泵；

贮氢装置，贮氢装置的进气口接气体纯化装置的氢出气口；

氢能-电能转化装置，氢能-电能转化装置的氢气进气口接贮氢装置的氢气出气口。

2、如权利要求 1 所述的高效微生物制氢及氢能-电能转化一体化装置，其特征在于液流喷射搅拌系统包括环流泵、微孔喷嘴和回流管，微孔喷嘴设于外筒底部，回流管接环流泵、微孔喷嘴和内筒。

3、如权利要求 1 所述的高效微生物制氢及氢能-电能转化一体化装置，其特征在于沉淀分离区内设有三相分离挡板，内筒壁上设有锯形挡板，在外筒底部设排空管。
说明书

高效微生物制氢及氢能—电能转化一体化装置

（1）技术领域

本发明涉及一种生物制氢及氢能—电能转化一体化装置，尤其是一种利用微生物发酵有机物制氢及氢能—电能转化的一体化装置。

（2）背景技术

包括石油、天然气和煤炭在内的化石燃料是当今能源结构的主体。然而石油、天然气等化石燃料是一类非常宝贵的不可再生资源，全球已探明的储量按现消费水平仅可用 50 年左右。另一方面，化石能源的大量利用已给环境带来了严重的影响，造成大气、水体和土壤被污染。随着经济和社会的发展，人类对能源的需求不断增加，能源的需求与供给之间的缺口将变得越来越大。为了保持国民经济的可持续发展，开发可再生的能源体系是一种必然选择。可再生能源包括太阳能、水能、风能、生物质能、氢能等。其中氢能因具有诸多优点而备受关注。

目前氢的制备主要包括化石燃料制氢、电解水制氢和生物制氢等。前两种方法以消耗不可再生的化石燃料或电能为代价，因而不太可能被选择作为大规模制取燃料氢的途径。生物制氢是利用产氢微生物发酵分解各种有机物而产生氢，有机物的来源十分广泛，包括城市和工厂排放的有机废物和废水、农作物秸秆、变质的粮食等。这些有机物都来自于植物的光合作用，全球每年通过光合作用固定的太阳能是全球能源总消费量的十倍以上，因而利用微生物分解有机物制氢具有无可比拟的优越性。

微生物制氢研究始于 20 世纪 80 年代。目前国内外对利用产氢微生物分解有机废水制氢进行了较多的研究，但主要停留在实验室研发阶段。微生物制氢实用化过程存在的问题主要表现在：1）微生物产氢的效率低，国外报道高产氢微生物菌株的产氢活性可达 26.9 mmolH₂/h・g cell（Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic material as solid matrices. Enzyme Microbial Technol, 2001, 29:280-287）, 国内报道微生物产氢的活性可达 24.9 mmolH₂/h・g cell（林明，王琪，王爱杰，等. 高效能产氢发酵细菌在不透气条件下产氢. 中国沼气，2002，20(2):3-7）；2）制氢反应器过于复杂或对提高菌株放氢速率的影响不理想；3）制氢成本昂贵。目前国内外在生物制氢研究中，主要考
虑如何制氢，而很少考虑如何利用微生物产出的氢。

（3）发明内容

本发明的目的在于将微生物制氢与氢的利用形成一个完整的系统，即将高效微生物制氢装置、贮氢装置及氢能－电能转化装置（例如氢燃料电池）三部分有机结合起来组成一种高效微生物制氢及氢能－电能转化一体化装置，最终将该系统直接应用于日常生活中。

本发明设有

生物制氢反应装置，用于将各类有机物质发酵产氢；

气体纯化装置，用于除去发酵气中的二氧化碳等组份（含气体的干燥处理），气体纯化装置的进气口经导气管接生物制氢反应装置的氢气出气口；

贮氢装置，用于储存经气体纯化装置纯化和干燥处理过的氢气，贮氢装置的进口气口接气体纯化装置的氢气出气口；

氢能－电能转化装置（或燃料电池），用于将氢能转化为电能，氢能－电能转化装置的氢气进气口接贮氢装置的氢气出气口。

所说的生物制氢反应装置设有发酵罐、温控系统、搅拌系统和pH值控制系统。

发酵罐包括外壳、内筒和密封盖。

温控系统设有内筒内，内筒内作为混合反应（发酵）区，温控系统包括探头、水浴调温环形管及进出口、加热棒等。在内、外筒间设置沉淀分离区、进料口、排出口。pH值控制系统包括控制电极（或探头）、酸碱液加料口。

搅拌系统可采用机械搅拌系统或液流喷射搅拌系统，或两者一并使用。机械搅拌系统包括电动机和搅拌叶片，搅拌叶片设于内筒内。液流喷射搅拌系统包括环流泵、微孔喷嘴和回流管，微孔喷嘴设于外筒底部，回流管将环流泵、微孔喷嘴和内筒连接成一个完整的液流喷射搅拌系统。

沉淀分离区内设有三相分离挡板。内筒壁上设有锯形挡板。在外筒底部可设排空管。

装置采用水密封和物理密封，水密封采用水封盖，物理密封采用密封圈和紧固件。

气体纯化装置包括水封装置、碱洗脱塔和干燥装置，水封装置的进气口接生物制氢反应装置的氢气出气口。碱洗脱塔接于水封装置与干燥装置之间。碱洗脱塔包括塔筒体、内导气管、气体分散头、活动介质承载板、填充介质、淋喷头、分流开关和泵。

所说的贮氢装置可选用储氢气瓶，储氢罐等。氢能－电能转化装置可采用燃料电池，例如质子膜燃料电池。

本发明利用分解微生物将各种复杂有机物质（例如淀粉、纤维素、糖类、有机酸等）
转化为易被微生物利用的简单物质（例如单糖类等），通过高效产氢微生物的代谢活动产生氢。发酵气体经碱液洗脱塔等气体纯化装置除去二氧化碳等气体并干燥后储存于贮氢装置中。最后在燃料电池中被转化为电能，用于驱动电机或照明。利用本发明可实现生物质能—电能的可控转化。它适用于高浓度有机废水排放企业的废水处理及资源化利用、城市环保部门有机废物或废水的环保处理与资源化利用、乡村农户对农作物秸秆的资源化利用、偏远山区或海岛利用当地的秸秆或有机废物发电等。

（4）附图说明

图 1 为本发明实施例的结构示意图。

图 2 为本发明实施例的生物制氢反应装置结构示意图。

图 3 为本发明实施例的碱洗脱塔结构示意图。

（5）具体实施方式

以下实施例将结合附图给出本发明的详细说明：

如图 1 所示，本发明包括生物制氢反应装置 1、水封装置 3、碱洗脱塔 4、干燥装置 5、储氢气瓶 6、储氢罐 7、开关 8、质子膜燃料池 9 等部分，并通过导线 10 与用电设备 11（例如照明或电动装置）连接。图 2 为生物制氢装置的结构示意图，生物制氢装置设有发酵罐、搅拌系统、温控系统和 pH 控制系统等。发酵罐包括倒锥体外壳 23、内简 19 及密封盖 16 等 3 个部分。外壳 23 由内外两层组成，中间为隔热层。内简 19 由外壳上内伸的数个（一般为 6 个）支架支撑，内简内为混合发酵区 21，有机物质及产氢微生物通过设于外壳与内筒上的进料口 18 直接进入混合发酵区；在机械搅拌（由电动机 26 和搅拌叶片 31 组成）或喷流搅拌（由环流泵 27、微孔喷嘴 28 和回流管 30 组成，上述两套搅拌系统可单独或同时使用）的作用下在混合反应区 21 内充分混合，使产氢微生物得以生长并发酵产氢，同时使产生的气体逸出液面。为防止筒内反应物质形成涡流，在内简 19 的内壁上等距离焊有数个（根据反应器的大小而定）坚向锯形挡板 32。

内简 19 与外壳 23 之间为沉淀分离区 22。反应液通过内筒与外壳的下端进入沉淀分离区，排出口 34 在沉淀分离区的上端，在排出口的下侧有三相分离挡板 33，挡板 33 上有圆形小孔；反应液在沉淀分离区内继续发生反应，产生的气体不断上升逸出液面，与混合反应区 21 内产生的气体合并。固体颗粒在沉淀分离区内不断沉淀，由于气泡运动或排放水流的带动作用，一部分固体颗粒向上运动，在分离区与三相分离挡板 33 碰撞后向下沉淀，重新进入混合反应区。

生物制氢反应装置的顶盖 16 上有温控系统探头孔 14（以便放置温控系统探头）、酸
碱度 pH 自动控制系统 pH 电极（探头）孔 15、酸碱加料口 13 及若干个预留的孔。顶盖 16 与外壳 23 之间设有密封圈 17，并通过紧固螺丝 36 封紧，以防止气体逸出；顶盖的盖缘紧贴外壳的内壁并没入液面以下十几公分，以达到水封 35 的效果。在外壳的底部可设排空管 25。

生物制氢反应器内包括两套温控系统，即电加热温控系统（包括探头和加热棒 29）和循环水浴调温系统（包括环形管出口 12、环形管 20 和环形管进水管 24）。循环水浴调温系统中冷水或热水由进水管 24 进入，流经内置环形（水）管 20 对反应系统降温或升温，由出（水）口 12 排出。

参见图 1～3，生物制氢反应装置产生的气体经由氢气导管 2、水封装置 3 输送至碱液洗脱塔 4 以除去二氧化碳等气体组份。碱洗脱塔由耐酸碱的材料制成，设有洗脱塔筒体 37、内导气管 38、气体分散头 39、活动介质承载板 40、填充介质 41、淋喷头 42、分流开关 43 与 45 和碱循环泵 44 等。其中气体分散头将气体分散为微气泡而与碱液充分接触，达到洗气的目的。设置循环泵前后端的分流开关 43 和 45，是为了方便更换碱液或清洗洗脱塔。

参见图 1，发酵气体经碱洗脱塔 4 洗脱后由氢气导管 2 输送至干燥装置 5 进行干燥，干燥装置内储有干燥剂，可定期更换。干燥后得到的纯氢先由氢气导管输送至储氢气瓶 6，再进入高效储氢罐 7，通过通气开关 8 控制氢的利用。氢与氧（或空气）在质子膜燃料电池 9 中发生反应，产生电能用于照明或带动电器设备 11。