US 20170054754A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2017/0054754 A1l

SAHER et al.

43) Pub. Date: Feb. 23,2017

(54)

(71)
(72)

@

(22)

(63)

(60)

MALWARE AND EXPLOIT CAMPAIGN
DETECTION SYSTEM AND METHOD

Applicant: NSS LABS, INC., Austin, TX (US)

Inventors: Mohamed SAHER, Austin, TX (US);
Jayendra PATHAK, Austin, TX (US);
Ahmed ELGARHY, Austin, TX (US)

Appl. No.: 15/346,358

Filed: Nov. 8, 2016

Related U.S. Application Data

Continuation-in-part of application No. 14/482,696,
filed on Sep. 10, 2014.

Provisional application No. 61/876,704, filed on Sep.
11, 2013.

Publication Classification

Int. Cl1.
HO4L 29/06
GO6F 17/30

U.S. CL
CPC ... HO04L 63/1491 (2013.01); HO4L 63/1416
(2013.01); GOGF 17/30864 (2013.01); HO4L
63/0272 (2013.01)

(51)
(2006.01)
(2006.01)

(52)

(57) ABSTRACT

A malware and exploit campaign detection system and
method are provided that cannot be detected by the malware
or exploit campaign. The system may provide threat feed
data to the vendors that produce in-line network security and
end point protection (anti virus) technologies. The system
may also be used as a testing platform for 3’7 party products.
Due to the massive footprint of the system’s cloud infra-
structure and disparate network connections and geo-loca-
tion obfuscation techniques, NSS can locate and monitor
malware across the globe and provide detailed threat analy-
sis for each specific region, as they often support and host
different malware/cybercrime campaigns.

10
INTERNET
102
CAPTURE STACK REPLAY STACK PROXY STACK
[}]]
104 106 108
1
!
b
10 o
agu0000000]
MASTER HYPERVISOR CONTROLLER
§
:;_

112
/

Patent Application Publication Feb. 23,2017 Sheet 1 of 9 US 2017/0054754 A1
10
INTERNET
102
CAPTURE STACK REPLAY STACK PROXY STACK
o o B
— 106 108
L
A ‘
b
¢
110 T
0000000000
MASTER HYPERVISOR CONTROLLER
—
—

112

FIGURE 1

US 2017/0054754 Al

Feb. 23,2017 Sheet 2 of 9

Patent Application Publication

SHILVINVHYY ..
I J10W3H 139

Ve adnNsid

SR ss3006d |
NOLLVHINANT 13
~
SHALVIAY LY
w e E) mmm\mwa
v I A Idad
90¢

haz_xwuﬁom

$°N SO
$5330dd A1¥135H00
HNLAVD

womm_u_ F_Dl_axm_

{

¥

SINA LHIATY p

SIWA HOLINDOW

[AXQHd ONY SINA
g A1 YNGIS

| 9HNOD ATy
UL 11 HOLYIAN

o f:flm.zs\

¥

JSvavivad WOHA
geed L 1HM QYA HO L3

S ——————— e

u dv3dHL Wm

_ £ avddHL *

WO,

T%ﬁmmmﬂ:z.m
40 _ISITHOI3);

SS300Hd HITOHINDD

L Qv3adgHL 2]

gc a3dnNoiAd

US 2017/0054754 A1
-
A
R

&

10TdX3 || s3anwHo , M EENTE
ao4 lvan - [<1| sounow [|STF THPUSIA 18 139 AXOHd dNni3s
%
O e H
o
=) Ty SHALINVEVd
) wwﬁmhﬁﬁwuw RS | o I L e o
H; o— # 80T
(=)} g
-
© &
o)
107dX3 Al s3anwHo |] . V SONILLIS M.
w a H04 LIVAA &_mmtzoz 5 e LISIA S@A\ N 139 mﬁ AXOHd dni3s
h R,
72
e~
y—
>
o
e
o
=
[
= .
. -
5 a 0CC O AVO0HIZ
~et £
]
0 T e —————— e e
= .
= -
nn.... 4040
- / OVOTAYd 3
NOILNOIXT
e T SAINVHI i
= a HO LIVAR 16N 139
5 HOLINOW < >
2 AR | A . —
= ¥0C
2
-
~N—
=
[P
~N—
o]
a

US 2017/0054754 Al

Feb. 23,2017 Sheet 4 of 9

Patent Application Publication

D¢ aIHdNSDIA

~
vavlvd el 3AHIDY
ZITVNH ~ OLNI LH3SNI %ﬁ 3NI0vd w

I

-

B
! SEINECER SINIINDD | 3AHOEY L~

“1| NOISS3S 1HVLS MOV | EvH9
"
SBYEVLYD m*r IAHIEY
321N ; -
NI LH3SN

Lo sy) JINIOVd 5
a

———— U ||

INHOHY
avoTdn
avaviva L. ([Jwmoay | >a
OINI LH3SNI [39vivd
“-.- 111111111111111111111111111
e

US 2017/0054754 Al

Feb. 23,2017 Sheet 5 of 9

Patent Application Publication

1¥N HO4 d3INSISSV dl MIN

£

ac a3dnNsid

03HSIIEYLST NdA H_
lllllllllllllllll wllllllillillll!llllil!il!..lllilllllllllil!illilllilli
%’ o
NOILOITIS NOILYOOT —
M 039/ NOI93d ¥0T
T @w
INIONI NOELYISNH80
n!il.l!llllil!il-.II!III-.III.-I!IIIIilllIlll!liIlil!llllil!illil!:llllllIl!IllIillil!illlil!Im lll

Patent Application Publication Feb. 23,2017 Sheet 6 of 9 US 2017/0054754 A1

BAITNET WER QN TS
Q LIST OF CAPTURES (WITH ACTIVE SEARCH CRITERI Q9
CAPTURE | SOURCE OPERATING | PLATFORM | VALID?

O DASHR0AD OATE SYSTEM

¥ CAPLREREFORTS 1 /20013 e ool comfPsecthoet=ho=este | MOROSOET | Jk S

7 5T TR 851 0 —sgsgume_v g&g 01 rlca&ve gE@ WINDOWS 7| PDATE 27 b

Bt ha e fow%%%v

al CAPTURE GE AN %MWMM%MMMMWW

TR K&KECP Q%CEMSAKPU =Bt

4 PATRNTEES i
412013 | /188, 190.A01 eaendor WOROSOET | IDOREFRORR | &2 ([]

i 4{U4IUUPM reging e oplchim WNDUAS P | 83 i

¥ (UACE AEPORTS __
RIR0NS 108 190,101 64 seafeni MCAOSOFT | ADOBE AEACER o >
ATACOPM | regering mie fogic om WIDOWS P | 0 —
SRS o e et FKW SK/CUN 0 s s (8|4
300 %62 7/ 1009993 /ndec him | WINDOWS 7| LPDATE 27 —
SRS | heee: news conbLGTALASLCED: | WICROSOFT | ACCRFFEADRR | 4 :
B0 H WINDOWSXP | 30 —
53 tt//newsseam Wnfodlpy — uos, (w7 @[S
41800 WS 7 —

FIGURE 3

Patent Application Publication

Feb. 23,2017 Sheet 7 of 9

BAITNET WEB

QHNE e

) UAJTDUATL

& CAPTURE REROATS
& SREPOATS

& PLATFCRM REPORTS
¥ BEPLAYREPCATS
& DURCEREFORTS

/) MASTER DETAILS Q
(APTURE DATE BN 35t0 MM
CHIVEFLENANE NSSI-234063 WIVTES JREV2--25-2013-35058-4M 2o
JCHVERASH Fo00ECDODBB4TACEE M CFOCRFTRS
W B
/ SUURCE DETAILS o’
RGN DATE Se3R0 Rlm
A P gonge ol
sacthoot=fg=Seso=shoouroe=uedhios= boad=rabenOCDECRARR=nt a3l
oF%Fsmn oo aeki=y0bel iodPendAP0 YGADusp=AFOCNER
T URLOUERY
HISTPADRESS 74125227 146
HOSTAG COUNTRY ~~ UNTED STATES
/) DPERATING SYSTEM DETAILS Q2| | /2 PLATFORM DETALS Q?
ALLUAME MCROSOFTWHDONS 7 LN JAAS UFDATE)
OTNANE N SHORTNANE A
FAAALY NAME MCROSCFT YWNDWS AV NANE JA

FIGURE 4

US 2017/0054754 Al

Patent Application Publication Feb. 23,2017 Sheet 8 of 9 US 2017/0054754 A1

BATTNET WEB QHIE TS
JUEMS | =FLES | = TRAFRC
O DASHBOAD
b O (£ HLEDEAL
v RS IE HEHSH FEFE BYES
armens || 170D 10261 el it
o T OIS Mt e 085 Tede B 7430202 2Ten 0BG 4
¥ IR RS SeareProncaostene BCacC2Bed@3A0bToRubedenotad 16432
s iR R 808
COPYRIGHTO 2012 - 013 NS5 LABS
BATET S B 1

FIGURE 5

Patent Application Publication Feb. 23,2017 Sheet 9 of 9 US 2017/0054754 A1

BATNETWEB QENE TS
JUENS EFLES | ETRAFC

ODISHB0MD

¥ CAPTURE REPORTS / TRAFFIC DETALS

& (SFEPOATS REQLEST | RN

 PLATCEMIREPCTS (| Sassiont: GET et o ooglcomVnlss=thct=o=Sesr — HTon 1 000 0

4 JEPLAY REPCATS % ”/%2 %Se -4 bf&cd ﬂ&r@?g ;S&vedEOCDEBFjM&uB G%

' F) gouy gk =106 Prod P01 VG

e e T e e
Wl BJEKSeEeh miE B HTTRY)
Sessimn2: GET b e o f TR HITA! 302 Noed g
Aocgh e apctoria Comection: epdie
e ggg ggﬁ;é‘gth xUVh y
Kt o i Dt . 5y I3 00020
Connection KegpAve e e e t 5max 100
Host - wn &l gouvfr Location: Hn/hia
Refere i onge ot =Seso= - ol o /d 1t/xml duml s prsrgn

i W

|)
sourse=4enbod="Soarabed-0CDECRAARr=lh Referer htp// WSt
OF a2 e o e ngeUY]gJP eodPO1YGADwhu Server Hache20.03 TN mod 56209
| Sifsig=p

Sg=LFNETAZENCPRRONCLTOOMAPO oLy - Dend L/UQ

UBJEKK 1Egp B a'g sy, %

User-Agent - .0 oo MSE 80 Wi K Povered By: 52501
T6.!: Tdems.0)

Sessond : GET ey cbefalernoleybal o8 TP/ 300 Fand
noldes/Qomilim| damzt s perserom TP

FIGURE 6

US 2017/0054754 Al

MAILWARE AND EXPLOIT CAMPAIGN
DETECTION SYSTEM AND METHOD

PRIORITY CLAIMS/RELATED APPLICATIONS

[0001] This application claims priority under 35 USC 120
and is a continuation in part of U.S. patent application Ser.
No. 14/482,696, filed Sep. 10, 2014 and titled “MALWARE
AND EXPLOIT CAMPAIGN DETECTION SYSTEM
AND METHOD?” that in turn claims priority under 35 USC
120 and the benefit under 35 USC 119(e) to U.S. Provisional
Patent Application Ser. No. 61/876,704 filed Sep. 11, 2013
and entitled “Malware And Exploit Campaign Detection
System And Method”, the entirety of both of which are
incorporated herein by reference.

BACKGROUND

[0002] Intrinsically modern drive-by-exploitation and
malware campaigns are growing in sophistication related to
obfuscation, deployment, and execution in an effort to avoid
detection and analysis by security researchers, and modern
security systems and software. Anti-virus (AV) systems,
such as endpoint protection platforms (EPPs), as well as
breach detection services (BDS) employ virtual “sand-
boxes” or “honey nets” that operate in a cloud (virtual)
network construct. These sandboxes attempt to identify
malware and virus programs by incubating the suspect
software until such time as the malware executes and its
activities can be monitored and analyzed.

[0003] These systems often fail to identify previously
unknown malware due to the evolution within malware
development that allows the malware to recognize when it is
sitting in such a system/trap. Modern malware can be
considered to be “cognitive” and completely aware that it is
currently being incubated within a trap (monitored system),
and will continue to hibernate and therefore will not present
itself as malicious software.

[0004] Thus the sandbox system will fail to identify the
suspect file as being malicious, and therefore will allow all
similar programs to bypass future testing. Another short-
coming is that they rely on monitoring traffic that is already
affecting the victim machine or network, and because these
sandbox systems are incapable of operating in-line due to
performance limitations, they are unable to actually prevent
the attack. The best the conventional systems can do is to
inform when a breach has already occurred and thus can
never be predictive.

BRIEF SUMMARY

[0005] The system and method for malware and exploit
campaign detection (that may be known as “BaitNET”) is
different than known systems since the system has technol-
ogy that prevents detection of the system by the malware/
exploit. Unlike other technologies, BaitNET cannot be
detected by modern malware/exploits and thus the opera-
tions/actions of the malware/exploits can be collected and
analyzed without restriction. The collected malware/exploit
is replayed/tested against various operating system and
application configurations within BaitNET’s private cloud
infrastructure to determine what other system footprints are
susceptible to the malware campaign. BaitNET is able to
successfully incubate, track, and inventory the malware/
exploit. Due to the transparency of BaitNET to the malware/
exploit, BaitNET is able to perform live analysis that that

Feb. 23,2017

can track threat actors, identify where they are truly located,
and what other similar malware/exploit campaigns they have
been launching and against whom. All of this is done while
BaitNET produces threat forecasts that indicate viable and
potential targets of the threat actors. BaitNET can also be
used to measure and test the effectiveness of commercially
available EPPs, AVs, in-line network security appliances,
and BDS systems. This is done by injecting malware/
exploits into BaitNET’s construct, where these commercial
products have already been installed, and then monitoring
the delta between what BaitNET knows was injected, and
detected itself, and what the commercial product claims to
have detected. E.g., BaitNET is an advancement in technol-
ogy so far beyond modern AV, EPP, and BDS that it is used
to test the efficacy of these commercial products.

[0006] In one implementation, BaitNET is the conglom-
erate of a number of software applications, processes, and
innovations as outlined herein which afford BaitNET the
ability to shim into the operating system and the virtual
machine architecture (both guest and host) enabling Bait-
NET to obfuscate the fact that the machine itself is a
virtual/'unmanned computer. The system utilizes a multitude
of virtual private networks (VPNs) allowing a near-unlim-
ited number of unique Internet IP addresses from all across
the world to be used. These disparate IP addresses afford two
primary advantages to BaitNET. One, in order to force
re-infection, as many malware system will not “drop” (de-
ploy) malware to the same IP address more than once, it is
necessary to have BaitNET obfuscate its Internet presence.
Two, many malware campaigns limit their targets by geo-
location, which is often tracked via IP Address. E.g., Mal-
ware-infected servers often limit themselves to only infect-
ing one (1) computer from any given masked IP address, and
may limit the country of origin of the IP addresses that they
will infect. BaitNET utilizes VPNs throughout the world to
mimic dispersed geo-location and map out malware cam-
paigns in different regions. Other techniques, while not
proprietary to BaitNET, may also be used to emulate poten-
tial target qualification data points such as varying the
language pack and keyboard language configuration on the
host operating system.

[0007] After finding new malware, done by crawling
URLSs provided through various channels, BaitNET records
the attack vector, payload, critical information on exploita-
tion, and other relevant metadata and then “replays” this
attack against thousands of other hosts on the BaitNET
network. “Replay” is achieved through the use of BaitNET’s
proxy services, as outlined later in this document, and may
be done against a singular image when testing the efficacy of
a 3’7 party security system or against limitless iterations of
operating systems, application configurations, and versions
of software tools when mapping the effectiveness of the
exploit/malware. Each of the hosts used during the replay
has a different combination of web browser, suite of installed
applications, various program and operating system patch
levels, installed language packages, etc. The representation
of systems of nearly all possible combinations, Windows
and OS X, from 2005 to present day. BaitNET is also
capable of emulating mobile device operating systems, and
uses the same technology to detect and inventory malware/
exploits. All of this allows researchers to understand the true
target landscape/scope for the malware/exploit, and the
malware/exploit can be tested against anti virus (AV) and

US 2017/0054754 Al

in-line security systems such as intrusion prevention systems
(IPS), next generation firewalls (NGFs), and breach detec-
tion systems (BDS.)

[0008] The BaitNET Framework is a distributed automa-
tion framework for testing URLs in real time to detect
drive-by-exploitation attacks and malware dropped by said
attacks, and gather data from said attacks to aid in their
further analysis and prevention. URLs are tested using
various operating system and application configurations
within BaitNET’s cloud infrastructure to determine if they
are maliciously serving exploits. If a URL is found to be
malicious, BaitNET is able to successfully incubate, track,
and inventory the attack.

[0009] Due to the transparency of BaitNET to the exploit
and any malware it drops, BaitNET is able to perform live
analysis that that can track threat actors and fully enumerate
their capabilities (i.e. which exploit kits they are using,
which specific exploits are employed, which applications are
being targeted, and full details of the exploits themselves).
BaitNET therefore produces accurate predictions of which
applications are being targeted in current campaigns by
threat actors, providing predictive threat analysis AHEAD of
any breach.

[0010] BaitNET can also be used to measure and test the
effectiveness of commercially available security products,
both network and host-based. This is done by replaying
captured exploits using the same BaitNET infrastructure in
which commercial security products have been installed.
BaitNET is capable of monitoring the delta between what
BaitNET detected during the initial capture process, and
what the commercial product claims to have detected.
[0011] BaitNET has the concept of a Controller that acts as
both a unit of work ventilator, or producer, and a lightweight
in-memory message pump. Worker nodes, referred to as
Victims, register themselves with the Controller to process
units of work. The unit of work in BaitNET is a URL.
Subscriber nodes, referred to as Notification Sinks, register
themselves with the Controller to receive notifications about
a URL’s result as a Victim is processing it. The Controller,
through a series of steps, distributes URLs to registered
Victims to be processed, receives the results, and publishes
them to registered Notification Sinks. BaitNET’s cloud
infrastructure is composed of a one or more Controllers and
thousands of Victims preferably deployed in a virtualized
environment. The exact number of Victims is based on the
scope and scale of the testing and research being performed.
Victims are machines with a unique operating system and
application configuration that are responsible for testing
URLSs assigned to them by a Controller.

[0012] BaitNET is capable of running on “bare metal”
machines however due to its nature in testing potentially
malicious URLs, a virtualized environment is preferred such
as that when a Victim is comprised, it can be automatically
reset to a clean state. BaitNET is not limited to a specific
hypervisor thanks to its modular design. Its default virtual
adapter is for VMware ESXi but it was originally designed
to work with Microsoft Hyper-V. Additions can be made in
the form of additional adapters, which would allow it to run
on any hypervisor, thus supporting multiple hypervisor
communication channels, possibly within the same deploy-
ment if needed.

[0013] BaitNET provides a malware and exploit campaign
detection system and method that cannot be detected by the
malware or exploit campaign. The system may provide

Feb. 23,2017

threat feed data to the vendors that produce in-line network
security and endpoint protection technologies. The system
may also be used as a testing platform for 3rd party products.
Due to the massive footprint of the system’s cloud infra-
structure and disparate network connections and geolocation
obfuscation techniques, NSS can locate and monitor mal-
ware across the globe and provide detailed threat analysis
for each specific region, as they often support and host
different malware/cybercrime campaigns.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 shows the high-level architecture of the
major components of a system for malware and exploit
campaign detection that may be known as BaitNET.

[0015] FIGS. 2A-2D illustrates the process control and
internal operations of the BaitNET Controller Process and
its interoperability with the Capture, Replay, and Proxy
processes.

[0016] FIGS. 3-6 are examples of the user interface of the
BaitNET system of FIG. 1.

DETAILED DESCRIPTION OF ONE OR MORE
EMBODIMENTS AND IMPLEMENTATIONS OF
THE SYSTEM AND METHOD

[0017] The system and method for malware and exploit
campaign detection (known as BaitNET) is designed to seck
out, detect, itemize, and retest active URLs serving drive-by
exploits. BaitNET is a multi-leveled application operating
within the kernel and user layers of the operating system that
make it unique when compared to similar technologies
utilized to detect and prevent malware.

[0018] Note that the distinction is important—malware is
the payload that is delivered by an exploit. There are literally
hundreds of thousands of malware samples in the wild, and
it is a trivial matter to obfuscate these or morph them into
something new. In contrast, there are only a few hundred
active exploits in the wild at any given point in time—the
exploit is the mechanism whereby the threat actor compro-
mises the system in order to deliver and execute the mal-
ware. By identifying and blocking exploits, BaitNET moves
further up the kill chain from traditional malware protection
products and provides much more effective and far-reaching
predictive capabilities.

[0019] BaitNET’s core technology could be used to pre-
vent exploitation as well as detect, but that is not its primary
function. By operating out of band, BaitNET is freed from
the usual restrictions of real-time or in-line protection tech-
nologies, allowing it to be much more accurate and thorough
in its detection capabilities. BaitNET supports various types
of operating systems as a threat forecast system. BaitNET’s
virtual machines (VMs) can simulate servers, workstations,
even mobile computing devices such as smartphones and
tablets.

[0020] As shown in FIG. 1, a system 100 may utilize three
arrays of servers and networking hardware known as
“stacks.” FEach stack is any number of physical servers that
host virtual machines (“guests”.) The exact number of
servers and guests is based on the scope and scale of the
testing and research being performed. Typically, within
“Live Testing” this will be many tens of thousands of guests.
FIG. 1 illustrates the interoperation/communication of the

US 2017/0054754 Al

various stacks of servers and guests with the infrastructure
support servers, as well as which components have Internet
102 connectivity.

[0021] Specifically, the system may be implemented using
the computing resources shown in FIG. 1 including the
stacks. As shown in FIG. 1, the system may be implemented
with a capture stack 104, a replay stack 106, a proxy stack
108. The system may also have a master hypervisor con-
troller 110 that controls each of the stacks as well as one or
more data stores 112 (for storage of data and the like). As
shown in FIG. 1, the capture stack 104 and the proxy stack
108 have access to a computer network 102, such as the
Internet. The capture stack 104 implements the capture
process 204 described below, the replay stack 106 imple-
ments the replay process 206 described below and the proxy
stack 108 implements the proxy process 208 described
below. Each of the stacks may be implemented using one or
more computing resources, such as one or more cloud
computing resources or one Or more server computer
resources. Each of the one or more computing resources may
have a processor and memory and a plurality of lines of
computer code that may be stored in the memory and
executed by the processor to implement the capture, replay
and proxy processes described below. Each of the stacks also
may be implemented as one or more virtual machines that
are controlled by the hypervisor controller 110.

[0022] FIGS. 2A-2D illustrates the process control and
internal operations of the BaitNET Controller Process
(implemented by the master hypervisor controller 110) and
its interoperability with the Capture, Replay, and Proxy
processes. Each of the processes shown in FIGS. 2A-2D
may be implemented as a module/unit/device that is part of
the respective stacks shown in FIG. 1 and each process may
be implemented in software (a plurality of lines of instruc-
tions/computer code executed using a processor) or as a
hardware device that is part of the respective stack shown in
FIG. 1. A controller process 210 and part of a replay process
206 are shown in FIG. 2A with the replay process 206 also
being shown in FIGS. 2B and 2C as shown by the reference
designators (A and E) that show how FIGS. 2A, 2B and 2C
connect to each other to show the replay process 206. FIGS.
2B and 2C also show the details of the capture process 204
as shown by the reference designator D that shows how
FIGS. 2B and 2C connect to each other to show the capture
process 204. FIGS. 2B and 2C also show a ZeroDay process
220 as shown by the reference designator B that shows how
FIGS. 2B and 2C connect to each other to show the ZeroDay
process 220. FIGS. 2B and 2C also show the proxy process
208 as shown by the reference designator C that shows how
FIGS. 2B and 2C connect to each other to show the proxy
process 208. Finally, FIG. 2D shows the details of an
Obfuscation Engine 222 with references F and G showing
the interchange between the capture process 204 and the
Obfuscation Engine 222. Also illustrated are the inter-
changes with the Obfuscation Engine, Exploit Feed, and
ZeroDAY modules. FIGS. 2A-2C show an enumeration
process as shown by the reference designators (I and H) that
show how FIGS. 2A, 2B and 2C connect to each other to
show the enumeration process.

[0023] The system and method for malware and exploit
campaign detection shown in FIGS. 1-2D and described
above may be typically operated by an entity, such as NSS
Labs (“NSS”), as a cloud-based system that is used by the
entity to perform the malware and exploit campaign detec-

Feb. 23,2017

tion as shown in FIG. 1. However, the system and method
for malware and exploit campaign detection may also be
installed on a premises of a customer and perform the same
malware and exploit campaign detection. Using sources
from around the globe, BaitNET’s process begins with the
correlation and normalization of multiple threat feeds for
information regarding potentially malicious websites. This
normalized data is presented to BaitNET’s Capture Process
204 and is queued as targets for each of the configured
operating system variations that are assigned to series of
testing.

[0024] BaitNET, using the Capture Process 204, issues the
URL to each of the thousands of Victims, utilizing thousands
of variations in configurations, and each Victim in turn visits
the URL using disparate VPN tunnels, upstream HTTP
proxies, and even physical data centers, located around the
world, to obfuscate their true geographical location as well
as to explore the geolocation filtering that may be employed
by the malicious URL.

[0025] If successful, a visit to the URL will result in
exploitation of the Victim (the “exploit”) sometimes (but not
always) followed by a “drop” of malicious code (the “mal-
ware”) to the target workstation. BaitNET monitors the
progress of the exploit and records the network traffic,
creates a copy of the malicious code, and catalogs all
changes to the operating system made by the malicious code
during the capture process 204. Any malware dropped on the
Victim is also captured, as are the effects of executing that
malware on the Victim.

[0026] Note that one of the unique features of BaitNET is
that, unlike traditional anti-malware security solutions, even
if no malware is dropped, the exploit is still detected and
captured. Additionally, the Capture Process 204 may record
any and all outbound communications from the now
infected/compromised Victim. This outbound traffic will
include any command and control (C&C) communications,
often identifying the true threat actor, as well as any data
being exfiltrated from the now infected Victim.

[0027] Validation of the recorded data occurs by analyzing
the events that were generated on the Victim. Note that this
process occurs in seconds, not minutes, hours, or even days.
This is possible because BaitNET analyzes the contextual
relationship between the events that were generated to
confirm infection. Furthermore, as a threat forecast system,
the longer BaitNET is online and the more data it gathers,
the more efficient its analysis becomes.

[0028] When infection is confirmed, BaitNET provides
information such as the URL where the attack originated, the
type of URVattack used, the IP address of the server that
hosted the malicious URL, and the country of origin of the
IP address (aka “geolocation.”). For example, FIG. 6 shows
detailed information on the URI and network behavior of the
malicious website when accessed by the guest systems
inside of BaitNET Further detail is presented on the operable
target platform(s) that were successfully infected with the
malicious content. The hashes (MDS5) of the malicious
executables (files) along with the exact size of each file are
also made available. The network packet capture (PCAP)
data as well as the decoded HTTP traffic that is relevant to
understanding the attack vector is also available. Provided
are the full URI, protocol of the attack (i.e. HT'TP/1.1) the
specific web browser used (i.e. Internet Explorer 11), the
actual URL of'the drop (i.e. .DE, Germany, domain), as well
as information about the server such as the web server

US 2017/0054754 Al

operating platform (i.e. Apache 2.0.59 running on a UNIX
operating system with Open SSL). This information can be
used by end-users to write firewall rules as well as other
rules within in-line systems such as IPS, IDS, WAF, and
NGFW. The information can also be used to update endpoint
products such as anti-virus to now identify the hash values
of the now known malicious content and block it from either
being downloaded or executed. The exact vector of the
attack being provided; which includes hosting, transmission,
and target configuration are vital pieces of information that
are uniquely provided by BaitNET.

[0029] The Victim that was successfully infected is now
reset to its virgin state, thus preparing it to be reused for the
next URL in the queue. All the data collected is stored in a
data store used for logging and intelligence. BaitNET is
modular enough to support any number of different storage
technologies, including everything from traditional rela-
tional databases, NoSQL databases, and even graph-based
databases.

[0030] The infected URL is now queued up for the Replay
Process 206 using data from the data store. During the
Replay Process 206, Victims matching the configuration of
the Victim that successfully was infected during the Capture
Process 204 are prepared for testing of the malicious code.
To prepare the Victims, all recent versions of products being
tested (in-line security devices to endpoint protection prod-
ucts) are automatically configured. Copies of the worksta-
tion used during the Capture Process 204 are configured
with the latest versions of any and all endpoint protection
products being tested. In-line security products such as
intrusion prevention systems and next generation firewalls
stand in wait on the network between the Victims and the
Replay Servers. The Victims visit an internal (LAN-based)
URL that has been created by BaitNET as a perfect copy of
the malicious URL that was validated during the Capture
Process. As each copy of the Victim is presented the internal
URL, BaitNET once again monitors the Victim capturing all
metadata related to the malicious code. If the code is
successful in reaching the Victim and then executing prop-
erly, the endpoint protection product being tested has failed
to identify and/or stop the malicious code. If, during the visit
to the internal URL, the drop is prevented, thus malicious
code is prevented from ever reaching the Victim, then the
in-line security product was successful in identifying the
exploit and worked as designed.

[0031] During the Replay Process 206, the effectiveness of
the malicious code is tested in a live environment. For
example, all major makes and versions of web browsers are
tested to determine which are susceptible to the exploitation
during a drive-by-exploitation attack (i.e. an attack that
executes within the browser and does not require the end-
user to manually execute the malicious code). Different
versions of application systems, language packs (localiza-
tion data), base operating system revision, and even different
architectures can be checked against the copy of the mali-
cious URL and the malicious code itself.

[0032] During the Replay Process 206, an emulated HTTP
proxy is generated and utilized. This HTTP proxy facilitates
the ability of BaitNET to perform continual testing against
the malicious URL that was collected during the Capture
Process without the need of the original/actual malicious
URL. This is important due to the short lifespan of most
malware campaigns, security features within the malware
campaign to identify and prevent drops of malicious code to

Feb. 23,2017

systems on the same network, and to obfuscate/protect the
research and investigation into the malware campaign. The
HTTP proxy uses the original source code of the malicious
website as recorded by the Capture Process 204. The HTTP
proxy emulates the remote server, source code of the web-
site, and will serve (hand-out) the malware in the same way
that the original website did. Note that an HTTP proxy, as a
technology, is not in itself unique. The use of an HT'TP proxy
that is generated dynamically to emulate recorded network
traffic in order to test the effectiveness of security products
without depending on a live malware campaign and mim-
icking real live network traffic, as opposed to a dummy
network traffic generated by network penetration tools, is the
unique advantage provided by BaitNET.

[0033] The Capture 204 and Replay 206 Processes can be
used to continue to check localization configurations and
geolocation exit points on the Internet to determine the full
scope of the attack vector, provide intelligence on the threat
actor(s), and harvest as much viable metadata as possible.
These processes are key in enumerating the various con-
figurations of operating system, browser, applications, secu-
rity products, etc. that the malware can use to successfully
execute itself. The collation of this intelligence allows
modeling to be performed, as well as direct risk assessments,
so that consumers understand if their systems, networks, and
tools are at risk—and what to do, if anything, to protect them
against active exploit/malware campaigns.

[0034] All data are retained in the data stores and can be
reused by BaitNET at any time. New Victim configurations
can be presented to the captured malicious URL for future
testing. All tested products can be retested to confirm that
patches/updates supplied by the vendor are working as
designed, to outline exactly which systems provided by 3rd
parties are susceptible to the attack (“Gold Images™), and to
validate attack data captured during the Capture Process.
[0035] The system and method shown in FIGS. 1-2D may
define a messaging protocol, dubbed as Horus, that is an
application level protocol and consists of a set of rules for
messages that are exchanged between a Controller 110, a set
of Victims, and a set of Notification Sinks. Each message has
a special sematic meaning and is meant to provoke a certain
behavior. Horus consists of two sub-protocols: Horus/Victim
which defines how a Controller communicates with Victims
and Horus/Notification which defines how a Controller and
Victims communicate with Notification Sinks.

[0036] Horus/Victim is a synchronous and stateful
request-reply protocol, more commonly referred to as an
RPC protocol, for two endpoints, a client and a service, to
communicate with one another. The client sends a request.
The service reads the request and sends a response. The
client reads the response. Both the client and the service are
responsible for maintaining state for the duration of a
session. In BaitNET, the client is a Controller and the
services are the Victims.

[0037] Horus/Notification is an asynchronous and state-
less publisher-subscriber protocol for one endpoint, a pub-
lisher, to communicate with a set of endpoints that is of an
undefined size, the subscribers. Subscribers register with the
publisher their interest in receiving messages. The publisher
broadcasts messages to the subscribers. Subscribers receive
all messages broadcast by the publisher that they are inter-
ested in. The publisher expects no response from the sub-
scribers. In Horus/Notification, the subscribers are the Noti-
fication Sinks. Both a Controller and Victims in different
parts of Horus’ topology fulfill the role of the publisher.
[0038] A Controller is a producer, or ventilator, that
MUST produce URLSs to be distributed to interested Victims.
A Controller is also a message pump that MUST collect

US 2017/0054754 Al

results that are produced by Victims and MUST publish
them to interested Notification Sinks. We refrain from using
the term “broker” to describe a Controller in its role as a
message pump even though its purpose seems analogous to
one. Traditional middleware brokers are too complex, too
stateful, complicate an application’s deployment model, and
are usually meant to serve as a shared entity between many
different disparate systems. The Controller as a message
pump thus acts more like an intermediary to push data
downstream to interested Notification Sinks, like a switch, to
avoid a mesh topology between them and Victims.

[0039] A Victim is a consumer, or worker, that MUST
consume URLs and process them. A Victim MUST either
publish its results to a Controller or it MUST maintain its
results as state until a Controller explicitly polls it for them,
depending on the topology deployed. In either case, the
Controller MUST always forward the results downstream to
interested Notification Sinks. A Notification Sink is a col-
lector, or subscriber, that SHOULD collect results produced
by Victims. A Notification Sink SHOULD register with a
Controller its interest in receiving results produced by
Victims. In Horus, Notification Sink interest is referred to as
a Subscription.

[0040] Victims are discovered using a method we refer to
as hybrid discovery. Hybrid discovery is a mix between
traditional static and dynamic discovery methods.

[0041] Static discovery refers to Victims being known
beforehand. This is analogous to a having a configuration
data store of some sort, such as a configuration file, a
configuration database, or even a hard coded in-memory
collection, which contains relevant information about avail-
able Victims within a network. This form of discovery is
relatively easy to implement but obviously requires Victims
to be deployed manually beforehand.

[0042] Dynamic discovery refers to Victims dynamically
being deployed and providing a notification to a beacon that
they are available. This form of discovery is incredibly
difficult to implement but offers the most flexibility for
certain use cases. In BaitNET however, Victims are usually
deployed in a virtualized environment so that they can be
reset to a clean state after they process a URL. BaitNET
recognizes the importance of running in a virtualized envi-
ronment for that very reason and thus has first class support
for it. In a virtualized environment, virtualized Victims can
be deployed, and in some advanced uses cases even provi-
sioned, dynamically. Because complete control over the
environment is possible, Victims do not need to notify a
beacon on when they are available. Thus, we refer to this
mode of discovery as hybrid discovery: its static in the sense
that the virtualized environment is known before hand and
dynamic in the sense that Victims can be deployed or
provisioned dynamically in that environment.

[0043] Victims are implemented as finite state machines,
with each state representing a step in its progress in pro-
cessing a URL. This allows the Controller, with high level
of accuracy and without the dependency on third party
middleware products, to track the Victims and to distribute
URLSs to them as they become available. The different states
are:

[0044] Available—Indicates the Victim is available and
ready to process a URL

[0045] Booting—Indicates the Victim has received a URL
from a Controller and is in the process of booting

Feb. 23,2017

[0046] Acquired—Indicates the Victim has successfully
launched a browser and navigated to the URL

[0047] Completed—Indicates the Victim has successfully
completed monitoring the system and collected relevant data
[0048] Error—Indicates the Victim has encountered an
error and might need to be reset

[0049] FIG. 3 is an output from the system, which illus-
trates validated exploits that have been discovered by the
BaitNET system. The capture date, e.g. the date and time the
malware or exploit was downloaded, is shown along with
the corresponding source URL (Universal Record Locator)
which shows the full path to the file on the infected/
malicious website, the exact operating system that was used
on the guest (virtual) workstation that the malware/exploit
executed upon, and the exact application that the malware/
exploit targeted (needed to be successful.) In this example,
the first exploit in the list uses Java version 6 update 27 on
Microsoft Windows 7 and was downloaded from a URL
which was redirected (linked) on a google.com website. A
user of the system can click any of these fields to drill-down
into more detailed information. E.g., The “Source” section
provides IP addresses, packet capture data, geo-location
information, etc.

[0050] FIG. 4 is output from the system which illustrates
detailed information on the “drop” or malicious file that was
downloaded and has been validated to be malware/exploit
code. Again the pertinent date and time is displayed, a
unique filename is presented which was generated by the
system when the malware/exploit was captured. This file
contains the malicious content and can been downloaded in
its archived (safe) version for inspection and reverse engi-
neering. The hash value (MDS5) of the archived file is
presented so that the end-user can validate the file from the
repository has not been altered. The system will indicate, as
presented in this example, that the malware/exploit has been
validated. Validation occurs when the BaitNET system uti-
lizes the Proxy and Replay Processes to confirm infection
and execution of the captured malware/exploit. The center
section of the page reflects the URI where the file was
collected from (This matches the data on FIG. 3) the type of
URIJ/attack used, the IP address of the server that hosted the
malicious file, and the country of origin of the IP address
(aka “geo-location.”) Further detail is presented on the
operable target platform(s) that were successfully infected
with the malicious content.

[0051] FIG. 5 is more detailed information from the sys-
tem with regard to malicious content (malware/exploit code)
that was captured. Here the end-user can find the hash
(MD5) of the malicious executables (files) along with the
exact size of each file. This information can be used to
update in-line security systems such as an IPS, NGFW, or
even endpoint products such as anti virus to now identify the
hash values of the now known malicious content and block
it from either being downloaded (in-line devices) or
executed (end point products.)

[0052] For Threat Forecasting, the Enumeration Process/
scout algorithm can be used to continue to check localization
configurations and geolocation exit points on the Internet to
determine the full scope of the attack vector, provide intel-
ligence on the threat actor(s), and harvest as much viable
metadata as possible. This process is key in enumerating the
various configurations of operating system, browser, appli-
cations, etc. that the malware can use to successtully execute
itself. The collation of this intelligence allows modeling to

US 2017/0054754 Al

be performed, as well as direct risk assessments, so that
consumers understand if their systems, networks, and tools
are at risk—and what to do, if anything, to protect them
against active malware/exploit campaigns.

[0053] In one implementation, the entire BaitNET suite of
processes may take place in parallel, currently utilizing four
parallel threads that are responsible for managing each of the
aforementioned processes (Capture, Replay, and Proxy)
along with their sub-processes such as the Obfuscation
Engine shown in FIG. 2D and modules covered within this
document such as ZeroDAY and are collectively controlled
from the Control Process. Additionally monitoring of the
virtual machines (VMs) and the setup and tear down (estab-
lishment and reverting) of the VMs along with their guest
operating system and application configurations take place
from within the Controller Process.

[0054] Full control of the VM architecture is done through
BaitNET’s Controller Process (implemented by the Master
Hypervisor Controller in FIG. 1), which is modified to
operate natively. This control is automated and functions as
a separate thread during the Control Process and works in
parallel with the Capture, Replay, and Proxy processes.
BaitNET can procure, configure, and operate VMs on
demand, autonomously, and scale resources during testing.

[0055] Additional cloaking technologies that prevent
detection of BaitNET are covered herein within the model
overviews.

[0056] As outlined herein, BaitNET is a system of custom
developed applications, application program interfaces
(APIs), and kernel-level modification, such as the AT Mod-
ule of the system, the Obfuscation Module of the system, the
ZeroDAY module of the system and the capture process, for
example which are applications. The applications are for
both the hypervisor host and the guest functionality as well
as the operating systems. BaitNET currently supports all
versions of Microsoft Windows operating system, all Intel-
based versions of OS X, i0S, and Android. One key feature
for BaitNET is its ability to render the “VM Detection
System” (e.g. ability to discern a virtual machine from a
physical/real machine by malware) found in modern mal-
ware/exploits useless. This thwarts the ability of malware to
detect a VM, which would normally prevent it from deploy-
ing its payload as VMs are often used in anti virus systems
to incubate suspected executable files.

[0057] BaitNET’s functions are expanded and compli-
mented through the use of modular components (Modules)
described below in more detail, each of which provides
functionality used in threat forecasting and the evaluation of
3" party security product effectiveness as shown in FIG. 2.

[0058] Capture Process 204

[0059] BaitNET’s Capture Process 204 may be imple-
mented using a scout process (that may be implemented as
an algorithm when this process is implemented in software.)
The scout process may also be referred to as an enumeration
process. Like classical battle strategies in which a small
scout party is detached from the main fighting force and sent
out to gather intelligence about the enemy fighting force and
the intelligence gathered helps in formulating a strategy for
winning the battle, the scout process is designed to seek out,
by testing, as many URLs as possible to determine if they are
malicious. The intelligence gathered is thus which URLs are
worth spending precious computing resources against to
determine the capabilities of the threat actors.

Feb. 23,2017

[0060] URLs are gathered from a variety of different
sources from around the globe. The system correlates and
normalizes URLs from multiple threat feeds for information
regarding potentially malicious websites. These URLs are
then queued up for testing.

[0061] The Scout process may define what may be
referred to as Tiers. Tiers are sets of victims that are
configured to test URLs using an operating system, browser,
and application(s) combinations. Each victim may be a
virtual machine having an operating system, browser, and
one or more application(s) configuration with different strat-
egies against which an exploit may be tested to determine if
the URL is malicious with respect to each particular con-
figuration of each victim. The Scout process may define
three Tiers, each representing a different strategy.

[0062] Tier 1 defines a set of victims that have a combi-
nation of operating systems, browsers, and applications that
are highly targeted by exploit kits. More than one applica-
tion can be installed on the victim but only one operating
system and one browser can be installed. The configured
combination is reinforced through ongoing research of the
threat landscape and will change when the thread landscape
changes.

[0063] The purpose of Tier 1 is to test as many URLs as
quickly as possible and determine if they are malicious.
Identifying the full capabilities of the threat actor on Tier 1
is not important. Malicious URLs are normally live, that is
to say they are either infected or publicly accessible, for a
short amount of time. And they usually represent a small
percentage of the overall number of URLs that will be
tested. It is thus imperative that they are tested as quickly as
possible. Multiple applications are usually installed on Tier
1 Victims, though that is not absolutely necessary, to maxi-
mize the possibility of a drive-by-exploitation attack taking
place. The URL distribution algorithm on Tier 1 is a simple
load balancing or round-robin algorithm. Essentially the
URLSs that are queued up for testing are distributed to each
available Tier 1 Victim, in parallel. As each Tier 1 Victim
completes testing one URL (by accessing the URL to
determine if the URL is malicious), it is assigned the next
URL in the queue until the queue is exhausted. Once the
queue is exhausted, the Tier 1 Victims remain idle until more
URLs are queued up. The more Tier 1 Victims that are
available the more URLs that can be tested. When a URL is
found to be malicious by a Tier 1 Victim, it is queued up for
further testing on Tier 2.

[0064] Similar to Tier 1, Tier 2 defines a set of victims that
have a combination of operating systems, browsers, and
applications that are also highly targeted by exploit kits.
Unlike Tier 1 however, only one application can be installed
on the Victim. The configured combination is reinforced
through ongoing research of the threat landscape and will
change when the thread landscape changes. The Tier 2
combination of operating systems, browsers, and applica-
tions is a superset of the Tier 1 combination.

[0065] Drive-by-exploitation exploit kits usually finger-
print the Victim when a malicious URL is tested. Based on
the configuration of the Victim, a different exploit might be
served. Consider, for example, a Tier 1 Victim that has both
Microsoft Silverlight and Adobe Flash Player installed.
When such a Victim tests a malicious URL, the exploit kit
might fingerprint the Victim and determined that both
Microsoft Silverlight and Adobe Flash Player are installed.
It’s entirely possible that the exploit kit supports both

US 2017/0054754 Al

Microsoft Silverlight and Adobe Flash Player. However,
randomly at runtime, the malicious URL might decide that
it will only serve an exploit targeting one of the applications.
[0066] This is where the benefit of Tier 2 comes in, and the
primarily difference between it and Tier 1. On Tier 1, the
URL was identified as malicious but there is no strong
indication on the full extent of the capabilities of the threat
actor. When the URL is queued up on Tier 2, two Victims,
one with Microsoft Silverlight only and one Adobe Flash
Player only, will be instructed to test the URL. Now, if the
exploit kit supports both applications, testing the URL again
on Tier 2 will derive a possible addition of two more
exploits, bringing the total number of exploits potentially
being served by a single URL to three. The total number of
exploits is three because the operating system and the
browser are also considered as attack vectors in addition to
the two installed applications. This is also why it is impera-
tive that, similar to Tier 1, the URL must be live when it is
tested on Tier 2.

[0067] Of course, it is not only applications that are tested
on Tier 2 but also different operating systems and browsers.
The below matrix is an example of the possible different
combinations a URL can be tested against if it is found to be
malicious on Tier 1 and queued up on Tier 2:

Feb. 23,2017

[0068] This matrix is just a small example of the many
combinations that can be tested and does not even include
different mainstream browsers like Google Chrome and
Morzilla Firefox. The large number of possible combinations
that need to be tested is the primary reason for having
different Tiers in the scout process.

[0069] Ongoing research has suggested for quite some
time now that only about 10% of URLSs are malicious at any
given point in time. BaitNET’s design takes into consider-
ation that computing resources are precious and thus does
not attempt to test a URL using every possible combination
simply to determine if it is malicious. Instead, on Tier 1 it
simply identifies the 10% that are relevant and throws away
the remaining 90%. It is only those 10% that are tested
against the remaining combinations. This means not only
massive savings in time but also in the costs associated in
running BaitNET. It is also a precursor for Tier 3.

[0070] Tier 3 defines a set of Victims that have the same
combination of operating systems and browsers as Tier 2 but
with different versions of the applications. For example, if
Tier 2 is configured to test Microsoft Silverlight 1, and there
are ten versions of Microsoft Silverlight released, Tier 3 will
have Victims with the remaining Microsoft Silverlight 2
through Microsoft Silverlight 10.

Tier 1 Tier 2
Operating Operating
System Browser Applications System Browser Application
Windows 7 Internet Adobe Flash Windows XP Internet N/A
Explorer 9 Player, Explorer 8
Microsoft Windows 7 Internet N/A
Silverlight Explorer 9
Windows 7 Internet Adobe Flash
Explorer 9 Player
Windows 7 Internet Microsoft
Explorer 9 Silverlight
Windows 7 Internet N/A
Explorer 10
Windows 7 Internet Adobe Flash
Explorer 10 Player
Windows 7 Internet Microsoft
Explorer 10 Silverlight
Windows 7 Internet N/A
Explorer 11
Windows 7 Internet Adobe Flash
Explorer 11 Player
Windows 7 Internet Microsoft
Explorer 11 Silverlight
Windows 8 Internet N/A
Explorer 10
Windows 8 Internet Adobe Flash
Explorer 10 Player
Windows 8 Internet Microsoft
Explorer 10 Silverlight
Windows 8.1 Internet N/A

Explorer 11
Windows 8.1 Internet

Adobe Flash

Explorer 11 Player
Windows 8.1 Internet Microsoft
Explorer 11 Silverlight

Windows 10 Microsoft N/A

Edge

Windows 10 Internet N/A

Explorer 11
Windows 10 Internet

Adobe Flash

Explorer 11 Player
Windows 10 Internet Microsoft
Explorer 11 Silverlight

US 2017/0054754 Al

[0071] Normally, a single exploit will take advantage of a
vulnerability that impacts multiple different versions of an
application. It’s important to note however that for Tier 3,
the Victim does not need to test the URL while it is live.
Once a session of the attack has been recorded on either Tier
1 or Tier 2, it can be tested against multiple different version
of the same application. Since the attack has been recorded
and it impacts multiple versions, Tier 3 does not need as
much computing resources as Tiers 1 and 2 since there is no
longer a requirement to test the URL as quickly as possible.
[0072] The enormous size of BaitNET’s cloud infrastruc-
ture requires that its design take into consideration the fact
that computing resources are both precious and costly. With
the massive number of combinations that a single URL
needs to be tested against across all three Tiers, it is simply
not realistic to require a single Victim per combination. Even
if that was the case, as the number of URLs that need to be
tested grows, a single Victim will not be able to test them all
fast enough. Recall, that on Tier and Tier 2, a URL must be
tested as quickly as possible while it is live. For this reason,
Victims can be provisioned dynamically, based on the target
number of URLs that need to be tested in a time period.
Similarly, browsers and applications can be installed
dynamically on the victims such that there doesn’t need to
be one dedicated Victim for each combination.

[0073] The success of BaitNET’s Scout process is evident
by the large number of URLs that can be processed in a
24-hour period using relatively little computing resources.
With a mere 400 Victims, BaitNET can successfully process
in excess of 250,000 URLs in a 24-hour period which is
absolutely phenomenal in comparison to other threat fore-
casting systems.

[0074] ZeroDAY Module/Process 220

[0075] This module 220 is a state of the art plugin for the
BaitNET system allowing it to detect any type of exploita-
tion attack, and was developed to identify Oday attacks, e.g.,
exploits and malware that have yet to be categorized or
identified within the security community, often meaning
there is no currently known defense to these attacks as the
maintainers of the commercial or open source products
being targeted are themselves unaware of the flaw being
exploited.

[0076] This module 220 is capable of dissecting the attack
and recording the smallest components, uncovering how
every intricate step and security mitigation tactic was used
to achieve the attack. This module is based on unique
knowledge that the owner of BaitNET has developed
through various research projects.

[0077] The ZeroDAY module 220 is effective when pre-
sented with the most complex and customized/never before
seen malware as used in advanced persistent threat (APT)
attacks. The module can be set to detect and catalog the
attack, or detect and block the attack. Unlike EMET, Micro-
soft’s current security mitigation technology, the ZeroDAY
module utilizes the combined filtration of KERNEL32,
KERNELBASE and NTDLL.

[0078] The ZeroDAY module may perform any or all of
the following industry recognized tasks for recognition and
cataloging of exploits:

[0079] In-memory shellcode detection

[0080] Raw shellcode dumping (raw output of shell code
to file)

[0081] Raw shellcode disassembly (post analysis)

[0082] Shellcode emulation

Feb. 23,2017

[0083] Identify APIs used in the shellcode
[0084] Log API parameter information:
[0085] Network
[0086] Memory
[0087] File
[0088] Process
[0089] ROP detection
[0090] ROP gadgets detection
[0091] ROP gadgets dumping with backward disassembly

(module+function)

[0092] Heap spray detection

[0093] NOP sled detection

[0094] NULL page allocation detection

[0095] In general, the ZeroDAY module can monitor and

protect any application in user-land (ring-three e.g., “r3”),
but can only monitor and not protect against kernel-land
(ring-zero e.g., “r0”) exploits affecting the operating system
services directly. It will still, however, be able to protect
against kernel-based exploits being served through user-land
and any other application that utilizes this attack vector.
[0096] The ZeroDAY module provides stack validation
and monitoring that includes the protection from direct
access to KERNEL32, KERNELBASE and NTDLL APIs.
The module may also have a CODE/TEXT section permis-
sion change monitor. This monitor is a novel process/
mechanism. This mechanism allows the detection and moni-
toring of privilege escalation through a process whereby the
system monitors for CODE/TEXT changes. This is possible
due to the way that the ZeroDAY module integrates into the
kernel and ties directly into primary system sub processes.
[0097] A semi control-flow-transfer (CFT) check is part of
the system and all system calls (r3) will still tunnel back to
the original one in the kernel (r0). Therefore, calls will be
filtered through KiFastSystemCall [SystemCallStub] (trig-
gered by interrupt vector int Ox2E).

[0098] The ZeroDAY module was designed to not only to
detect and stop the attack, but also to gather information post
the attack. This information may include communication
with a command and control (C&C) server and the down-
loading of malware. It serves well to automate the detection,
post-automated analysis of the attack and gathering in-depth
information for data analysis (i.e. briefs and blog posts) that
other individuals or companies do not have.

VM+SandBox Detection Avoidance and Circumvention
Module

[0099] Almost all malware detects the presence of/if it is
hosted by an operating system managed as a virtual machine
(VM.) aka “SandBox” and will avoid execution and reveal-
ing their control-flow (CF) to be dynamically analyzed. This
was developed to circumvent this anti-detection capability in
modern malware; it will detect whether the dropped mal-
ware is a result of an exploit or was simply the result of
typical drive-by’s that attempt to avoid execution within a
VM or a Sandbox. There are multiple options for circum-
vention of the anti-detection technology within malware:
[0100] 1) Direct in-memory patching based on signatures
developed in the lab using advanced regular expressions and
Boolean algebra

[0101] 2) Hijacking the system calls made by the malware
through a proxy stub, trampolining the original code with the
new one and feeding the malware the wrong results tricking
it to run as expected on a bare-metal machine.

US 2017/0054754 Al

Al Module

[0102] This module is responsible in generating artificial
human activity in the VM. As some malware will check for
the lack of mouse activity or keyboard activity or even
processes being spawned. The absence of activity from these
human interface devices, along with the absence of ancillary
processes and applications are indicative of a automated
machine, and therefore a trap. The AT Module corrects this
oversight in other incubation systems by injecting random-
ized mouse movements and usage, keyboard input to include
realistic typing patterns, mistakes variations in speed, etc.
All of this produces a very realistic usage of the machine.
[0103] The AT module and Sandbox modules may be part
of the system (like the ZeroDay module) in FIGS. 1 and 2,
but is not shown in these figures.

VM Templates

[0104] All the VM images being used across the stacks are
created from custom made templates, which use the under-
pinning of the Control Process, which integrates the virtual
machine controls into the base operating system, thus hiding
the Guest OSes and appearing like a normal bare-metal
machine. This includes options such as:

[0105] Getting the PTR location
[0106] Setting the PTR location
[0107] Direct Exec

[0108] NT Reloc

[0109] Self Modification

[0110] Reloc

[0111] BT Segment

[0112] BT Privilege

[0113] BT Mem Space

[0114] BT IN Port

[0115] BT Out Port

[0116] The system and method for malware and exploit

campaign detection is a technical solution to a technical
problem that did not exist prior to the Internet and computer
networks. Specifically, the technical problem is trying to
detect malware and exploit campaigns on a computer and
computer networks. This technical problem did not exist
prior to computer networks and the Internet. The system and
method for malware and exploit campaign detection
addresses this problem as disclosed using the capture stack
that is configured to issue a uniform resource locator to each
computer system to download a piece of malicious code, the
replay stack that is configured to test the piece of malicious
code in a live environment and generate data about the
replay of the piece of malicious code, the proxy stack that is
configured to perform testing of the piece of malicious code
without accessing the uniform resource locator and the
master hypervisor controller that controls the capture stack,
the replay stack and the proxy stack. Furthermore, the
system and method for malware and exploit campaign
detection overcomes the limitations of the conventional
systems and methods as described above.

[0117] The system and method for malware and exploit
campaign detection use rules and the capture stack, the
replay stack and the proxy stack (and their corresponding
processes) to perform the malware and exploit campaign
detection. Furthermore, the system and method provide an
improved technical result for malware and exploit campaign
detection using the capture stack, the replay stack and the
proxy stack (and their corresponding processes) which are

Feb. 23,2017

an advance and are an inventive concept over the conven-
tional system as described above.

1. A malware and exploit campaign detection system,
comprising:

a plurality of computer systems;

a capture stack, implemented on the computer system,
that is configured to identify a plurality of malicious
uniform resource locators that each have a piece of
malicious code;

a replay stack, implemented on the computer systems, that
is configured to test each piece of malicious code from
the capture stack in a live environment using a victim
by accessing the malicious uniform resource locator
and to generate data about the replay of each piece of
malicious code, each victim having a configuration of
an operating system, a browser and at least one appli-
cation that is exploitable by an exploit; and

wherein the capture stack has a scout process that gathers
the plurality of malicious uniform resource locators and
that sends each malicious uniform resource locator to a
particular victim of the replay stack.

2. The system of claim 1, wherein the scout process
defines a first tier comprising a set of victims of the replay
stack with each victim having a combination of an operating
system, a browser and one or more applications that are
targeted by an exploit, each first tier victim testing the
uniform resource locators assigned to that first tier victim to
identify a plurality of first level malicious uniform resource
locators, wherein each first level malicious uniform resource
locator exploits the combination of the operating system, the
browser and the one or more applications on the first tier
victims.

3. The system of claim 2, wherein the scout process
defines a second tier comprising a set of victims of the replay
stack with each victim having a combination of an operating
system, a browser and one application that are targeted by an
exploit, each second tier victim testing a first level malicious
uniform resource locator identified by the first tier to identify
a plurality of second level malicious uniform resource
locators from the first level malicious uniform resource
locators, wherein each second level malicious uniform
resource locator exploits the one application.

4. The system of claim 3, wherein the scout process
defines a third tier comprising a set of victims of the replay
stack with each victim having a combination of the same
operating system and browser as the second tier victim that
identified the second level malicious uniform resource loca-
tor and a different version of the application of the second
tier victim, each third tier victim testing a second level
malicious uniform resource locator identified by the second
tier to identify a plurality of third level malicious uniform
resource locators from the second level malicious uniform
resource locators wherein each third level malicious uniform
resource locator exploits the different version of the appli-
cation.

5. The system of claim 1 further comprising a proxy stack
that is configured to perform testing of the piece of malicious
code without accessing the uniform resource locator and a
master hypervisor controller that controls the capture stack,
the replay stack and the proxy stack.

6. The system of claim 5, wherein the capture stack, the
replay stack and the proxy stack run in parallel.

7. The system of claim 5 further comprising a zero day
module that identifies zero day attacks.

US 2017/0054754 Al

8. The system of claim 1, wherein the capture stack is
configured to create a copy of the piece of malicious code
and catalogs operating system changes caused by the piece
of malicious code.

9. The system of claim 1, wherein the capture stack is
configured to capture communications with the plurality of
computer systems.

10. The system of claim 5, wherein each stack is one or
more server computers.

11. The system of claim 10, wherein each stack has a
virtual machine.

12. A method for malware and exploit campaign detec-
tion, comprising:

identifying a plurality of malicious uniform resource

locators wherein each malicious uniform resource loca-
tor contains a piece of malicious code;

sending each of the plurality of malicious uniform

resource locator to each of a plurality of victims, each
victim having a configuration with an operating system,
a browser and at least one application that are exploit-
able by an exploit of a malicious uniform resource
locator;

testing, at each victim, each of the plurality of malicious

uniform resource locators in a live environment; and
generating data about the replay of the malicious uniform
resource locator and the piece of malicious code.

13. The method of claim 12, wherein testing the plurality
of uniform resource locators further comprises accessing
each uniform resource locator using a first tier victim that
has a combination of an operating system, a browser and one
or more applications that are targeted by an exploit and
identifying a plurality of first level malicious uniform
resource locators, wherein each first level malicious uniform

Feb. 23,2017

resource locator exploits the combination of the operating
system, the browser and the one or more applications on the
first tier victims.

14. The method of claim 13, wherein testing the plurality
of uniform resource locators further comprises accessing
each uniform resource locator using a second tier victim that
has a combination of an operating system, a browser and one
application that are targeted by an exploit and identifying a
plurality of second level malicious uniform resource locators
from the first level malicious uniform resource locators,
wherein each second level malicious uniform resource loca-
tor exploits the one application of the second tier victim.

15. The method of claim 14, wherein testing the plurality
of uniform resource locators further comprises accessing
each uniform resource locator using a third tier victim that
has a combination of the same operating system and browser
as the second tier victims and a different version of the
application of the second tier victim and identifying a
plurality of third level malicious uniform resource locators
from the second level malicious uniform resource locators
wherein each third level malicious uniform resource locator
exploits the different version of the application of the third
tier victim.

16. The method of claim 12 further comprising perform-
ing testing of the piece of malicious code without accessing
the uniform resource locator.

17. The method of claim 16 further comprising identify-
ing a zero day attack.

18. The method of claim 12 further comprising creating a
copy of the piece of malicious code and cataloging operating
system changes caused by the piece of malicious code.

19. The method of claim 12 further comprising capturing
communications with the plurality of computer systems.

#* #* #* #* #*

