

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 September 2006 (28.09.2006)

PCT

(10) International Publication Number
WO 2006/101840 A1

(51) International Patent Classification:
H03K 19/00 (2006.01) *H03K 5/00* (2006.01)

(74) Agents: JACKSON, Robert, R. et al.; FISH & NEAVE IP GROUP, ROPES & GRAY LLP, 1251 Avenue of the Americas, New York, NY 10020 (US).

(21) International Application Number:
PCT/US2006/009132

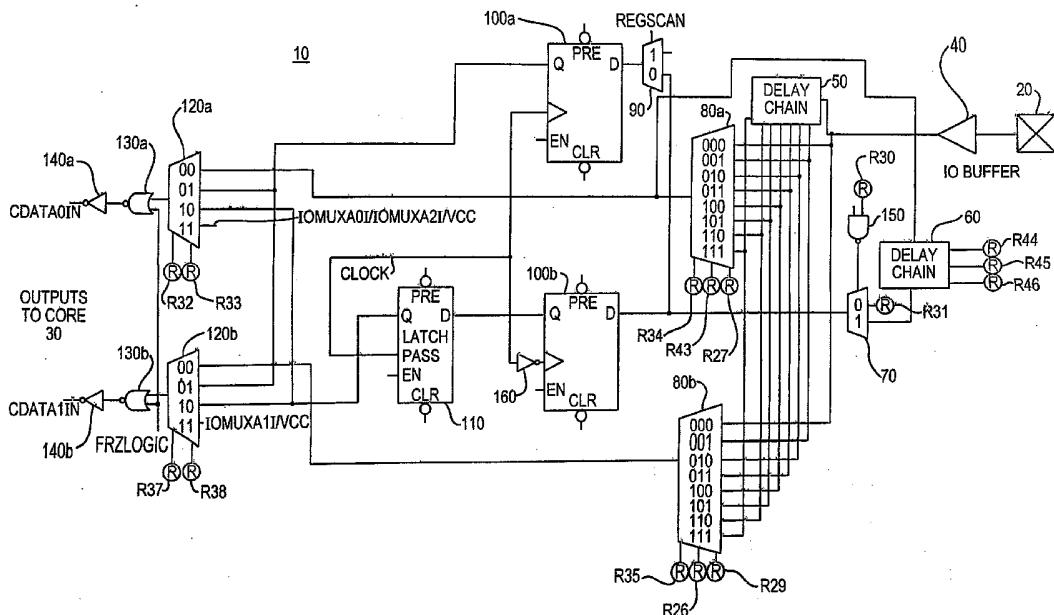
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 13 March 2006 (13.03.2006)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English


(30) Priority Data:
11/083,482 18 March 2005 (18.03.2005) US

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: VARIABLE DELAY CIRCUITRY

(57) Abstract: Circuitry for providing an input data signal to other circuitry on an integrated circuit includes a coarse delay chain and a fine delay chain. These two delay chains are cascadable, if desired, to provide a very wide range of possible amounts of delay which can be finely graded by use of the fine delay chain.

WO 2006/101840 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VARIABLE DELAY CIRCUITRYBackground of the Invention

[0001] This invention relates to variable delay circuitry, and more particularly to delay circuitry that is programmable with respect to the amount of signal delay provided.

[0002] Programmable logic devices ("PLDs") are an example of circuitry in which it is helpful to include variable delay circuitry. Such circuitry in a PLD may be used to adjust the delay between the arrival of an input data signal on the device and delivery of that data signal to core (e.g., programmable logic) circuitry of the device. The input data signal may or may not be registered in an input/output ("I/O") cell of the device, and from the I/O cell the data signal may be registered or not registered when it reaches the core of the device. The data signal may need to be delayed in the course of this handling to improve its timing relative to other signals on the device (e.g., clock signals). How the signal is used (e.g., whether and where it is registered) can affect how much and how precisely the data signal needs to be delayed. Some

- 2 -

uses of the data signal may need relatively large amounts of delay, but within a relatively broad range of acceptable values. Other uses of the data signal may need only relatively small amounts of delay, but 5 with greater precision. Still other uses of the data signal may need large amounts of delay and precision with regard to that delay.

Summary of the Invention

[0003] In accordance with this invention, circuitry 10 for delaying a signal by a selectable amount of delay may include first circuitry for delaying the signal by a selectable number of relatively large increments of delay and second circuitry for additionally delaying the signal by a selectable number of relatively small 15 increments of delay. In various embodiments the first and second circuitries can be used separately, or the first and second circuitries can be cascaded (used in series). In the cascaded case, the circuitry allows precise control of the overall signal delay over a 20 large or wide range of possible overall signal delay. The wide range is provided (for the most part) by the first circuitry, while the precision is provided by the second circuitry.

[0004] Further features of the invention, its nature 25 and various embodiments, will be more apparent from the accompanying drawing and the following detailed description.

Brief Description of the Drawing

[0005] FIG. 1 is a simplified schematic block 30 diagram of an illustrative embodiment of circuitry constructed in accordance with the invention.

- 3 -

[0006] FIG. 2 is a more detailed, but still simplified, schematic block diagram of an illustrative construction of certain portions of the FIG. 1 circuitry.

5 **[0007]** FIG. 3 is a more detailed, but still simplified, schematic block diagram of an illustrative construction of certain other portions of the FIG. 1 circuitry.

Detailed Description

10 **[0008]** The illustrative delay circuitry shown in FIG. 1 is included in an input/output ("I/O") cell or module 10 in a programmable logic device ("PLD"), although other uses of the circuitry are also possible. Because the delay circuitry is only used in connection 15 with handling an input signal, only the input signal handling portion of I/O cell 10 is shown in FIG. 1. This I/O cell circuitry is connected between an I/O pin or pad 20 of cell 10 and the core circuitry 30 of the PLD. The depicted circuitry can be used to convey an 20 input signal from pad 20 to core 30 in any of several different ways. Moreover, the manner in which the input signal is conveyed to core 30 as CDATA0IN can be the same as or different from the manner in which the input signal is conveyed to core 30 as CDATA1IN.

25 **[0009]** The circuitry shown in FIG. 1 includes the following elements: (1) I/O buffer 40, (2) coarse delay chain 50, (3) fine delay chain 60, (4) multiplexers 70, 80a, 80b, 90, 120a, and 120b, (5) registers 100a and 100b, (6) latch 110, NOR gates 130a 30 and 130b, (7) inverters 140a and 140b, (8) NAND gate 150, and (9) inverter 160.

- 4 -

[0010] Delay chain 50 is called the coarse delay chain because the increments of delay between its output taps (described in more detail below) are greater than the increments of delay that fine delay 5 chain 60 can be controlled to produce. For example, fine delay chain 60 may have eight different amounts of delay that can be selected by programmable control of RAM bits R44-R46. These different amounts of delay are preferably equally spaced apart in time, the spacing 10 being referred to as a fine increment. Coarse delay chain 50 may also have eight different amounts of delay that it can produce (e.g., in conjunction with multiplexer 80a as discussed in more detail below). These different amounts of delay are also preferably 15 equally spaced apart in time, the spacing in this case being referred to as a coarse increment. In an especially preferred embodiment the sum of eight fine increments is approximately equal to one coarse increment. This makes as many as 64 finely spaced 20 amounts of delay available when, as is possible with the circuitry of this invention, the coarse and fine delay chains 50 and 60 are cascaded (i.e., coarse delay chain 50 is connected in series with fine delay chain 60). To generalize this point somewhat, each 25 coarse increment is especially preferred to be equal to 2 to the N times a fine increment (where N is any positive, non-zero integer). This type of relationship between the coarse and fine increments is desirable for efficiency in coding of delay selection control 30 signals.

[0011] Considering the circuitry of FIG. 1 now in more detail, the data input signal applied to pad 20 is buffered by buffer 40. The output signal of buffer 40

may be considered the first (zero delay) output of coarse delay chain 50. This signal is applied to the remainder of delay chain 50 and also to what may be called the first input terminal of each of 5 multiplexers 80a and 80b. These first input terminals are labeled 000 in FIG. 1. Delay chain 50 delays the signal applied to it by seven successive coarse increments of delay. The signal is output on one of the taps of delay chain 50 after each of these coarse 10 delay increments. For example, after the first increment the signal is applied to the second input terminal (labeled 001) of each of multiplexers 80a and 80b. After two increments the signal is applied to the third input terminal (labeled 010) of each of 15 multiplexers 80a and 80b. This progression continues until after seven increments the signal is applied to the eighth input terminal (labeled 111) of each of multiplexers 80a and 80b.

[0012] Multiplexer 80a is controllable by 20 programming of RAM bits R27, R43, and R34 to select any one of its input signals to be its output signal. Multiplexer 80b operates similarly in response to programmable RAM bits R29, R28, and R35. The input signal selection made by multiplexer 80a can be the 25 same as or different from the input signal selection made by multiplexer 80b.

[0013] The output signal of multiplexer 80a is applied to fine delay chain 60 and also to the first input terminal (labeled 00) of multiplexer 120a. The 30 output signal of multiplexer 80b is applied to the first (00) input terminal of multiplexer 120b.

[0014] Fine delay chain 60 can delay the signal applied to it by any of eight finely incremented

amounts of delay as described earlier in this specification. The amount of delay introduced by fine delay chain 60 is controlled by how RAM bits R44-R46 are programmed as described above. For example, the 5 values programmed into RAM bits R44-R46 may control the speed at which a signal propagates through delay chain 60.

[0015] The output signal of fine delay chain 60 is applied to one input terminal (the terminal labeled 1) 10 of multiplexer 70. Multiplexer 70 can be controlled by the output signal of NAND gate 150 to select the signal from delay chain 60 to be the output signal of the multiplexer.

[0016] The output signal of multiplexer 70 is 15 applied to one input terminal (the terminal labeled 0) of multiplexer 90 and to the D input terminal of register or flip-flop 100b. Multiplexer 90 is controllable by its RegScan input signal to select the signal from multiplexer 70 for application to the D 20 input terminal of register or flip-flop 100a.

[0017] The Q output signal of register 100a is applied to the second input terminal (labeled 01) of each of multiplexers 120a and 120b. The Q output signal of register 100b is applied to the D input 25 terminal of latch circuit 110. The Q output signal of latch 110 is applied to the third input terminal (labeled 10) of each of multiplexers 120a and 120b. Register 100a is clocked by rising edges in the depicted clock signal. Register 100b is clocked by 30 falling edges in the clock signal (the clock signal being inverted by inverter 160 for application to register 100b). Rising edges in the clock signal also enable latch circuit 110 to pass (from D to Q) the

signal applied to the latch circuit. The purpose of latch 110 is to synchronize the outputs of registers 100a and 100b so that the outputs to multiplexers 120a and 120b will change on the rising 5 edge of the clock signal. Registers 100a and 100b can be used together as double data rate ("DDR") registers to drive core 30 through CDATA0IN and CDATA1IN simultaneously. Because registers 120a and 120b are respectively clocked by the rising and falling edges of 10 the clock signal to acquire two data inputs in one clock cycle, these two data inputs must be lined up on the rising edge of the clock signal before they are sent to PLD core circuitry 30. That is the purpose of latch 110.

15 [0018] The fourth input to multiplexer 120a can be a fixed signal such as VCC. The same is true for the fourth input to multiplexer 120b.

[0019] Multiplexer 120a is controlled by programmable RAM bits R32 and R33 to select one of its 20 input signals to be its output signal. Multiplexer 120b is similarly programmably controlled by RAM bits R37 and R38. Multiplexers 120a and 120b can select the same signals to output, or they can select different signals.

25 [0020] When NOR gates 130a and 130b are enabled by the FRZLOGIC signal, they pass the output signals of their respective multiplexers via their respective inverters 140a and 140b to PLD core circuitry 30.

[0021] From the foregoing it will be apparent that 30 the input signal from pad 20 can be applied to core 30 in a number of different ways, including (1) with or without registration and/or (2) with or without delay. If delay is employed, the delay can be coarse only,

fine only, or fine cascaded with coarse. Examples of these various options are considered in the next paragraphs.

[0022] Considering first the possibilities available

5 from multiplexer 120a, if an unregistered signal is desired, multiplexer 120a is programmably controlled to select the signal from its first (00) input terminal to be its output signal. This signal can have any amount of coarse delay (including no coarse delay), as

10 selected by the programmable control of multiplexer 80a. If a registered signal is desired from multiplexer 120a, the second (01) input to multiplexer 120a can be selected. If the second input is selected, the registered signal comes from

15 register 100a, and the signal can have any amount of cascaded coarse and fine delay (including zero delay) as a result of passage through some or all of elements 50, 80a, and 60 prior to reaching register 100a. Any desired coarse delay amount (including zero

20 coarse delay) is provided and selected by elements 50 and 80a. Added to this coarse amount of delay is any desired fine delay amount (including zero fine delay) provided by element 60 as controlled by RAM bits R44-R46. The third input to multiplexer 120a may be

25 selected in the event that DDR operation is desired.. Again, the signal can have any amount of coarse and/or fine delay. The delay is the same, and is produced in the same way, as the above-described delay of the signal going to register 100a.

30 [0023] The final possibility from multiplexer 120a results from selection of its 11 input signal.

[0024] Turning now to the possibilities for the output signal from multiplexer 120b, the first

possibility (selectable by programming multiplexer 120b to output the signal applied to its 00 input terminal) is the unregistered output from multiplexer 80b. This is a signal which can be delayed by any number of the 5 coarse delay increments (including zero increments) available from coarse delay chain 50. The number of increments used is selected by the programmable control of multiplexer 80b. This is therefore the same kind of signal as is available from selection of the first (00) 10 input to multiplexer 120a, but the amounts of delay selected by multiplexers 80a and 80b may be the same as or different from one another.

[0025] The second and third possibilities from multiplexer 120b are the same as the second and third 15 possibilities from multiplexer 120a because the 01 and 10 inputs to both of these multiplexers are the same.

[0026] The fourth possibility from multiplexer 120b results from selection of its 11 input signal.

[0027] The few signals and elements in FIG. 1 that 20 have not been described are not significant to operation of the circuitry in accordance with the invention. For example, the FRZLOGIC signal and associated circuitry are provided for such purposes as initiating operation of the circuitry in a controlled 25 way. The RegScan signal and associated circuitry are provided so that registers can be operated in a scan chain during certain kinds of testing. Elements 70 and 150 are used for performing a synchronous clear of registers 100a and 100b. The unlabeled input to NAND 30 gate 150 is an SCLR signal. This function is selectively enabled by RAM bit R30. Assuming that this function is enabled, then when the SCLR signal is asserted, it will set the registers to the value

- 10 -

specified by RAM bit R31 (1 or 0) on the next clock cycle.

[0028] Although delay chains 50 and 60 can be constructed in many different ways, an illustrative 5 construction of coarse delay chain 50 is shown in FIG. 2, and an illustrative construction of fine delay chain 60 is shown in FIG. 3. In FIG. 2 the delay chain input signal (from I/O buffer 40 in FIG. 1) is inverted by inverter 210. The output signal of inverter 210 is 10 applied to inverter 230a and to a series of delay circuit elements 220b-220h. Each delay element 220 adds one coarse increment of delay to the signal propagating through it. The output signal of each delay element 220 is applied to a respective one of 15 inverters 230b-230h. The outputs of inverters 230a-230h are respectively the 000-111 inputs to multiplexers 80a and 80b (FIG. 1).

[0029] In FIG. 3 the delay chain input (from multiplexer 80a in FIG. 1) is applied to one input of 20 multiplexer 330 and to a series of delay circuit elements 320b-320h. Each delay element 320 adds one fine increment of delay to the signal propagating through it. The output signal of each delay element 320 is applied to a respective further input to 25 multiplexer 330. RAM bits R44-R46 (FIG. 1) select which one of its inputs multiplexer 330 will output. The output of multiplexer 330 goes to multiplexer 70 in FIG. 1.

[0030] It is desirable for the delay chain circuitry 30 50/60 to have the smallest possible intrinsic (unavoidable) delay. It should be possible for the 000 control setting of the delay chain circuitry to have zero delay. If it does not, all other settings will

have this same non-zero delay added on to them to maintain equal-amount increments.

[0031] It will be understood that the foregoing is only illustrative of the principles of the invention, 5 and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the sizes (absolute and relative) and available numbers of the coarse and fine delay increments can be different than 10 in the above-described illustrative embodiment.

Similarly, the particular choices of signals that can be output via multiplexers 120a and 120b can be different than those shown and described above. The order of the coarse and fine delay chains in circuitry 15 for cascading those chains can be different than is shown in FIG. 1. For example, the fine delay chain can precede the coarse delay chain in circuitry for cascading those chains.

The Invention Claimed Is:

1. Circuitry for delaying a signal by a selectable amount of delay comprising:

first circuitry for delaying the signal by a selectable number of relatively large increments
5 of delay; and

second circuitry for additionally delaying the signal by a selectable number of relatively small increments of delay.

2. The circuitry defined in claim 1 wherein the large increments are all substantially equal amounts of delay.

3. The circuitry defined in claim 2 wherein the small increments are all substantially equal amounts of delay.

4. The circuitry defined in claim 3 wherein each of the large increments is approximately equal to a plural integer number of the small increments.

5. The circuitry defined in claim 3 wherein each of the large increments is equal to 2 to the N times one of the small increments, where N is a non-zero, positive integer.

6. The circuitry defined in claim 1 wherein the first circuitry is programmable to select the selectable number of relatively large increments of delay.

7. The circuitry defined in claim 1 wherein the second circuitry is programmable to select the

selectable number of relatively small increments of delay.

8. The circuitry defined in claim 7 wherein the first circuitry produces an intermediate signal that is delayed by the selectable number of relatively large increments of delay, and wherein the second 5 circuitry operates on the intermediate signal to additionally delay that signal by the selectable number of relatively small increments of delay.

9. The circuitry defined in claim 1 wherein the first circuitry comprises:

delay chain circuitry having a plurality of taps; and

5 multiplexer circuitry for selecting one of the taps to delay the signal by the selectable number of relatively large increments of delay.

10. The circuitry defined in claim 1 wherein the second circuitry comprises:

delay chain circuitry having selectable signal propagation speed.

11. The circuitry defined in claim 1 further comprising:

5 register circuitry for registering the signal after it has been processed by the first and second circuitry.

12. The circuitry defined in claim 11 further comprising:

multiplexer circuitry for selecting as an output either the signal after it has been processed

- 14 -

5 by the first circuitry or after it has been registered by the register circuitry.

13. The circuitry defined in claim 11 further comprising:

second register circuitry for registering the signal after it has been processed by 5 the first and second circuitry, the second register circuitry being clocked by a clock signal that is inverted relative to a clock signal used to clock the register circuitry.

14. The circuitry defined in claim 13 further comprising:

5 multiplexer circuitry for selecting as an output signal one of (1) the signal after it has been processed by the first circuitry, (2) the signal after it has been registered by the register circuitry, and (3) the signal after it has been registered by the second register circuitry.

15. The circuitry defined in claim 14 further comprising:

third circuitry for delaying the signal by a second selectable number of the relatively large 5 increments.

16. The circuitry defined in claim 15 further comprising:

second multiplexer circuitry for selecting as a second output signal one of (1) the 5 signal after it has been processed by the third circuitry, (2) the signal after it has been registered by the register circuitry, and (3) the signal after it has been registered by the second register circuitry.

17. Input circuitry for a PLD comprising:
delay circuitry for selectively delaying
an input signal by a selectable member of relatively
large delay increments and a selectable number of
5 relatively small increments;

register circuitry for registering the
signal after it has been processed by the delay
circuitry; and

10 selection circuitry for selecting as an
output signal one of (1) the signal after it has been
processed by the delay circuitry and (2) the signal
after it has been registered by the register circuitry.

18. The input circuitry defined in claim 17
further comprising:

5 second register circuitry for
registering the signal after it has been processed by
the delay circuitry, wherein the second register
circuitry is clocked by a clock signal that is inverted
relative to a clock signal used to clock the register
circuitry.

19. The input circuitry defined in claim 18
wherein the selection circuitry is additionally able to
select the output signal as (3) the signal after it has
been registered by the second register circuitry.

20. The input circuitry defined in claim 18
further comprising:

5 second delay circuitry for delaying the
signal by a second selectable number of the relatively
large delay increments; and

second selection circuitry for selecting
as a second output signal one of (1) the signal after

- 16 -

it has been processed by the second delay circuitry,
10 (2) the signal after it has been registered by the register circuitry, and (3) the signal after it has been registered by the second register circuitry.

21. Circuitry for delaying a signal by a selectable amount of delay comprising:

5 first delay chain circuitry for outputting the signal in a plurality of forms, each of the forms having a different number of relatively large delay increments relative to the signal;

selection circuitry for selecting one of the forms as an intermediate signal; and

10 second delay chain circuitry for delaying the intermediate signal by a selectable number of relatively small delay increments.

22. The circuitry defined in claim 21 wherein the selection circuitry is programmable with respect to which of the forms is selected.

23. The circuitry defined in claim 21 wherein the second delay chain circuitry is programmable with respect to the number of the relatively small delay increments.

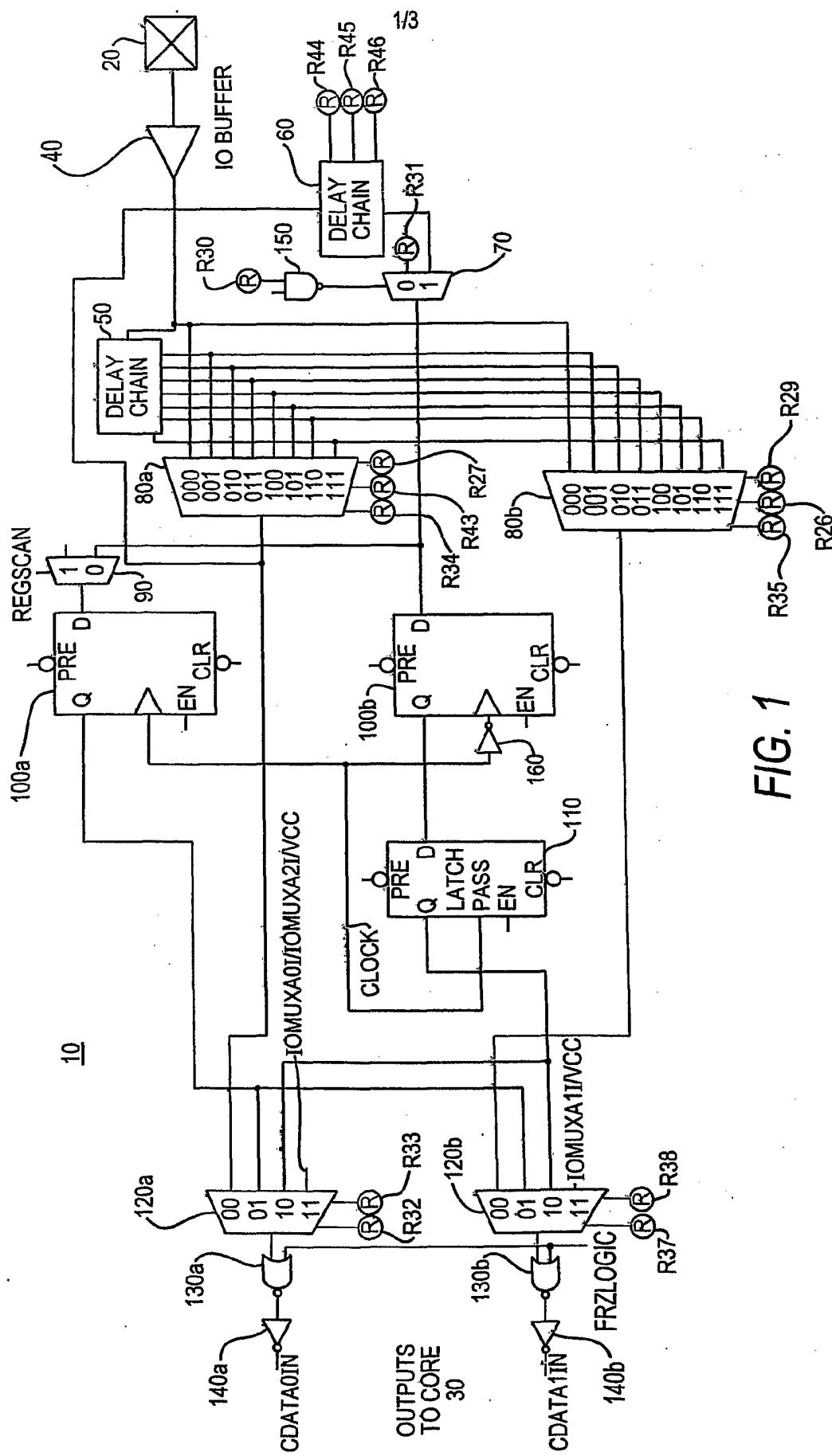


FIG. 1

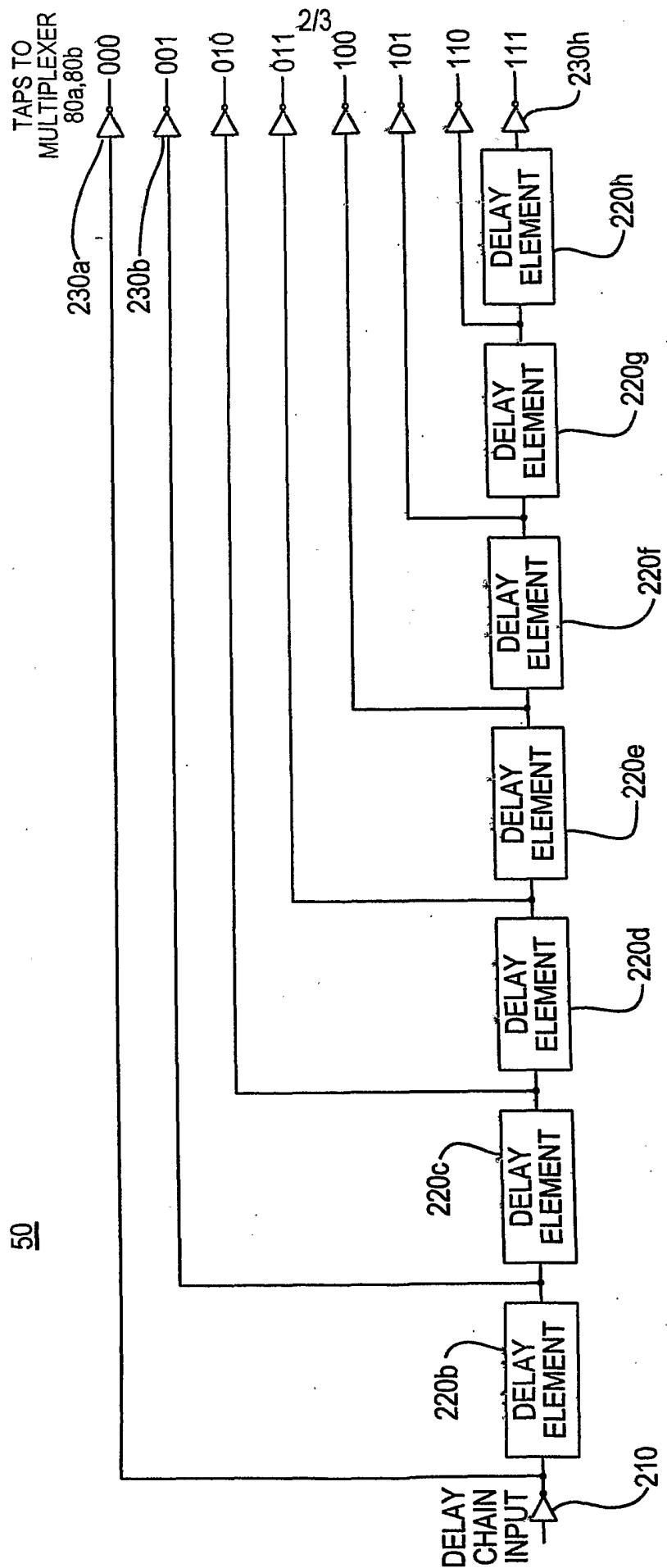


FIG. 2

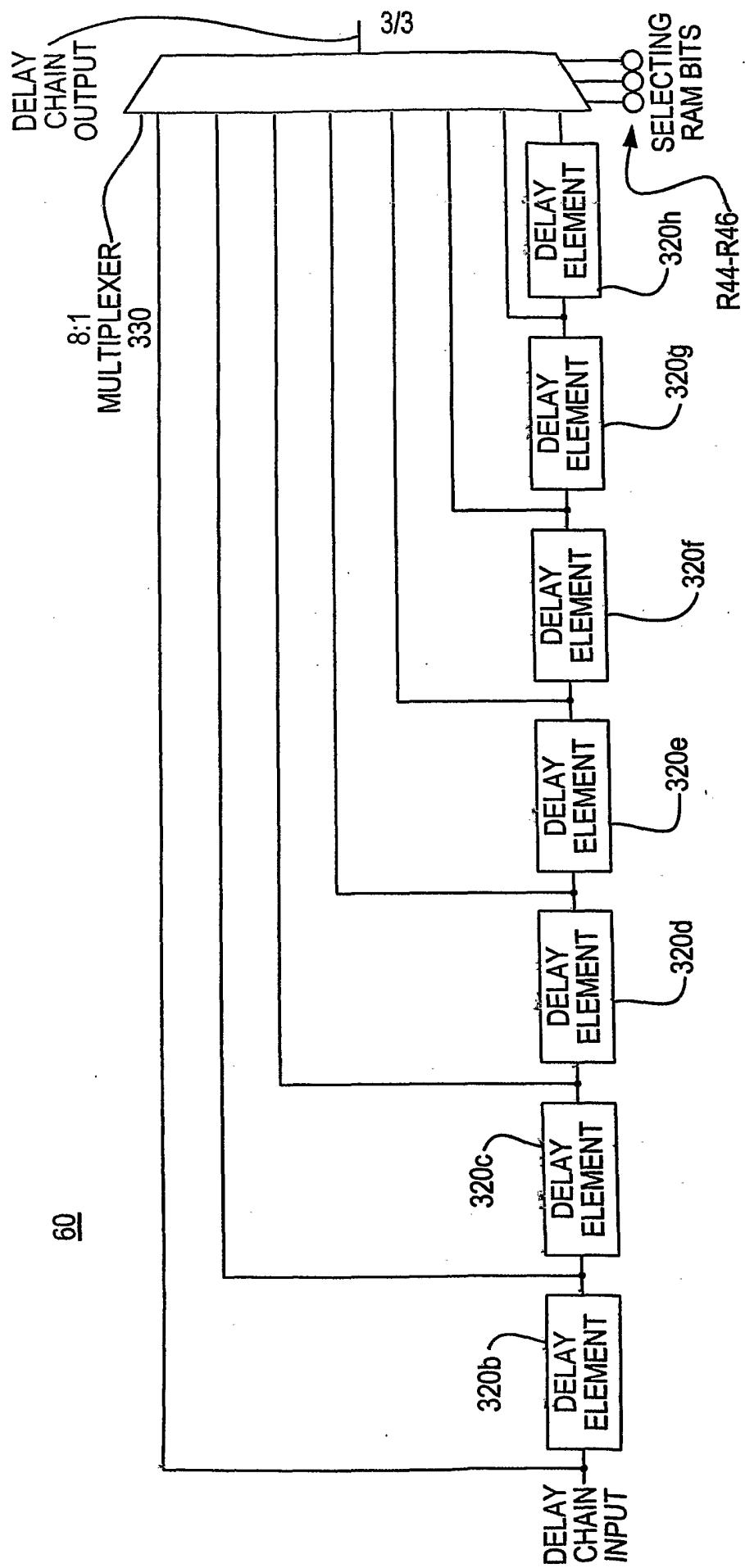


FIG. 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/009132

A. CLASSIFICATION OF SUBJECT MATTER
INV. H03K19/00 H03K5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H03K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2005/046458 A1 (SCHROEDER CHARLES G ET AL) 3 March 2005 (2005-03-03) abstract; figures 2a-2c, 3, 4a, 4b paragraphs [0008], [0034], [0038], [0043] - [0046], [0049], [0052] -----	1-23
X	US 2003/001650 A1 (CAO XIANGUO ET AL) 2 January 2003 (2003-01-02) figures 2, 3 paragraphs [0009] - [0012], [0016], [1725], [0029], [0043] -----	1-10, 17, 21-23
A	----- -----	15, 20

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

14 July 2006

24/07/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mesic, M

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2006/009132

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 704 975 A (NEC CORPORATION) 3 April 1996 (1996-04-03) abstract; figures 1,3,5,6	1-10,21
A	column 1, line 5 - line 10 column 4, line 19 - line 29 column 7, line 22 - line 31 -----	11,15, 17,20, 22,23
X	EP 0 863 612 A (NEC CORPORATION) 9 September 1998 (1998-09-09) abstract; figures 1,2,15,16a column 19, line 48 - line 54 column 19, line 57 - column 20, line 2 column 20, line 30 - line 36 -----	1-4,9, 10,21 17,20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/009132

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2005046458	A1	03-03-2005	NONE	
US 2003001650	A1	02-01-2003	CN	1393992 A 29-01-2003
EP 0704975	A	03-04-1996	DE DE JP JP KR US	69526018 D1 69526018 T2 2771464 B2 8097715 A 174125 B1 5604775 A 02-05-2002 14-08-2002 02-07-1998 12-04-1996 01-04-1999 18-02-1997
EP 0863612	A	09-09-1998	DE DE JP US	69801695 D1 69801695 T2 10256883 A 6118313 A 25-10-2001 04-07-2002 25-09-1998 12-09-2000