

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2005-350144
(P2005-350144A)

(43) 公開日 平成17年12月22日(2005.12.22)

(51) Int.C1.⁷

B65D 47/20

B65D 47/34

F 1

B 65 D 47/20

B 65 D 47/20

B 65 D 47/34

U

M

D

テーマコード(参考)

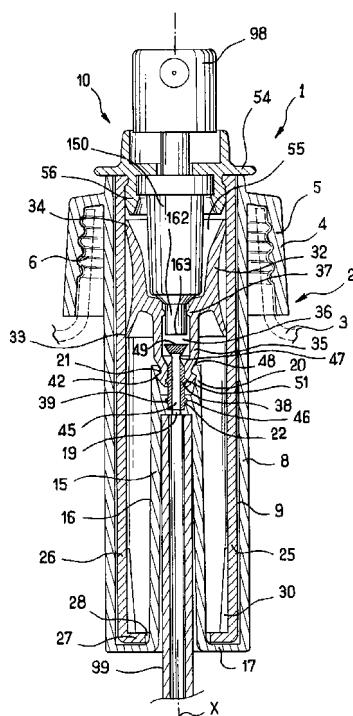
3 E 084

審査請求 有 請求項の数 32 O L 外国語出願 (全 46 頁)

(21) 出願番号 特願2005-151542 (P2005-151542)
 (22) 出願日 平成17年4月21日 (2005.4.21)
 (31) 優先権主張番号 0404207
 (32) 優先日 平成16年4月21日 (2004.4.21)
 (33) 優先権主張国 フランス (FR)

(71) 出願人 391023932
 ロレアル
 フランス国パリ、リュ ロワイヤル 14
 (74) 代理人 100082005
 弁理士 熊倉 賢男
 (74) 代理人 100067013
 弁理士 大塚 文昭
 (74) 代理人 100065189
 弁理士 宍戸 嘉一
 (74) 代理人 100082821
 弁理士 村社 厚夫
 (74) 代理人 100088694
 弁理士 弟子丸 健
 (74) 代理人 100103609
 弁理士 井野 砂里

最終頁に続く


(54) 【発明の名称】液体、特に化粧品の包装兼用小出し組立体

(57) 【要約】

【課題】 比較的単純であって液体を比較的正確に小出しきできる構造の包装兼用小出し組立体を提供する。

【解決手段】 液体の包装兼用小出し組立体(1)であって、液体容器(2)と、補充可能ユニット(10)とを有し、補充可能ユニットは、本体(25)及び本体と協働して液体を収容する可変容積の貯蔵室(55)を構成するピストン(32)を有し、貯蔵室(55)は、容器と流体連通状態に配置可能であり、補充可能ユニットは、補充可能ユニットを容器に取り付けると液体を容器から取り出すことができ、補充可能ユニットが容器から分離しているとき液体を貯蔵室(55)から取り出すことができるポンプ(150)を更に有し、ポンプは貯蔵室(55; 338)とは異なるポンプ室(157)を有する組立体。

【選択図】 図2

【特許請求の範囲】

【請求項 1】

液体の包装兼用小出し組立体(1；300)であって、
 ・一回分の液体を収容する容器(2；202；301)と、
 ・分離可能に容器に取り付けられるようになった補充可能なユニット(10；10；310)とを有し、補充可能なユニットは、

・本体(25；330)及び本体に対して動くことができ、本体と協働して液体を収容する可変容積の貯蔵室(55；338)を構成するピストン(32；337)を有し、貯蔵室(55；338)は、補充可能なユニット(10；10；310)を容器(2；301)に取り付けると、容器から充填されるようにするために容器と流体連通状態に配置可能であり、補充可能なユニットは、

・補充可能なユニットを容器に取り付けると、液体を容器から取り出すことができ、補充可能なユニットが容器から分離しているとき、液体を貯蔵室(55；338)から取り出すことができるポンプ(150)を更に有し、ポンプは、貯蔵室(55；338)とは異なるポンプ室(157)を有する前記組立体において、

貯蔵室(55)は、補充可能なユニットをヘッドアップ状態で見たときに、ピストン(32；337)の下に形成されることを特徴とする組立体。

【請求項 2】

補充可能なユニット(10；10；310)は、少なくとも貯蔵室(55)が容器と流体連通状態にあるときに吸引力を貯蔵室内に生じさせて貯蔵室に充填できるようにするよう構成されていることを特徴とする請求項1記載の組立体。

【請求項 3】

容器は、充填目的で補充可能なユニットの貯蔵室(55；338)と流体連通状態をなすよう押されるのに適した出口オリフィス(19；323)を有し、容器は、前記出口オリフィス(19；323)に液体を送ることができるポンプを備えていないことを特徴とする請求項1又は2記載の組立体。

【請求項 4】

ポンプ室(157)は、少なくともポンプが液体を小出ししている間、貯蔵室(55；338)から隔離されることを特徴とする請求項1～3のうちいずれか一に記載の組立体。

【請求項 5】

ポンプ室(157)の容積は、貯蔵室(55；338)の最大容積よりも小さいことを特徴とする請求項1～4のうちいずれか一に記載の組立体。

【請求項 6】

ポンプは、吸引オリフィス(163)を有し、補充可能なユニットを容器に取り付けると、ポンプ(150)の前記吸引オリフィス(163)は、前記出口オリフィスと垂直方向に位置合わせ状態で容器の出口オリフィス(19；323)に近接して配置されるのに適していることを特徴とする請求項1～5のうちいずれか一に記載の組立体。

【請求項 7】

ポンプ(150)は、エアレスポンプであることを特徴とする請求項1～6のうちいずれか一に記載の組立体。

【請求項 8】

容器は、補充可能なユニットを受け入れるよう構成された支持体(4；204；303)を有し、前記支持体(4；204；303)は、容器の残部に対し静止状態にあることを特徴とする請求項1～7のうちいずれか一に記載の組立体。

【請求項 9】

補充可能なユニット及び容器はそれぞれ、特にスナップ留め又はねじ締結により解除自在に協働するのに適した締結部分(41，42；317；347)を有することを特徴とする請求項1～8のうちいずれか一に記載の組立体。

【請求項 10】

10

20

30

40

50

補充可能ユニット及び容器のうち少なくとも一方は、少なくとも補充可能ユニットを用いて液体を容器から取り出す場合、ポンプの吸引オリフィス(63)を外部から漏れ止め状態で隔離するために補充可能ユニット及び容器のうち他方と協働するのに適した凹凸部(49；22；46；318；348)を有することを特徴とする請求項1～9のうちいずれか一に記載の組立体。

【請求項11】

容器は、空気取り入れ通路を有することを特徴とする請求項1～10のうちいずれか一に記載の組立体。

【請求項12】

容器は、空気取入れ口を備えていないことを特徴とする請求項1～10のうちいずれか一に記載の組立体。

【請求項13】

補充可能ユニット(10；310)を容器(2)に取り付けてポンプが特に容器の浸漬管(99)と連通した状態でポンプが液体を容器から取り出すことができるようとする場合、貯蔵室(55；338)の容積は、その最小状態にあることを特徴とする請求項1～12のうちいずれか一に記載の組立体。

【請求項14】

ピストン(32；337)は、容器(2；301)を貯蔵室(55；338)に流体連通させるのに適したオリフィス(38；355)を有することを特徴とする請求項1～13のうちいずれか一に記載の組立体。

【請求項15】

補充可能ユニット(10；310)は、ピストンの前記オリフィス(38；355)を閉鎖する第1の位置と、液体が前記オリフィス(38；355)を通って流れができるようとする第2の位置との間で動くことができる逆止弁(39；351)を有することを特徴とする請求項14記載の組立体。

【請求項16】

逆止弁(39)は、内部通路(45)を備えた本体を有することを特徴とする請求項15記載の組立体。

【請求項17】

逆止弁は、ボール(351)を有し、補充可能ユニット(310)は、ボールを閉鎖された第1の位置に戻す傾向のある力をボールに加えるよう構成された弾性戻し部材(354)を有することを特徴とする請求項15記載の組立体。

【請求項18】

ピストン(32；337)は、実質的にポンプ(150)の外形に一致した形状を備えていることを特徴とする請求項1～17のうちいずれか一に記載の組立体。

【請求項19】

ピストン(32；337)は、補充可能ユニットを容器に取り付けると、容器の締結部分(20；317)と解除可能に協働するのに適した締結部分(42；347)を有することを特徴とする請求項1～18のうちいずれか一に記載の組立体。

【請求項20】

ピストン(32)は、ピストンのオリフィス(38)と連通する通路を構成するスカート(35)を有し、スカート(35)は、締結部分(42)を有することを特徴とする請求項19記載の組立体。

【請求項21】

ピストンは実質的に同軸の内側及び外側スカート(341；340)を有し、締結部分(347)は、外側スカートに設けられていることを特徴とする請求項19記載の組立体。

【請求項22】

容器(2)は、前記補充可能ユニットを容器に取り付けると、補充可能ユニット(10)の本体(26；330)に嵌合するのに適した中央部分(15；313)を有し、前記

10

20

30

40

50

中央部分(15;313)は、ピストンの締結部分(42;347)と協働するのに適した締結部分(20)を有することを特徴とする請求項1~21のうちいずれか一に記載の組立体。

【請求項23】

中央部分(15;313)は、浸漬管(99)を締結するのに役立つことを特徴とする請求項22記載の組立体。

【請求項24】

容器にはケア製品、特に香水を含む化粧品が入っていることを特徴とする請求項1~23のうちいずれか一に記載の組立体。

【請求項25】

液体は、クリームであることを特徴とする請求項24記載の組立体。

【請求項26】

容器に分離可能に取り付けられるよう構成された補充可能なユニット(10;10;310)であって、

・本体(25;330)及び本体に対して動くことができ、本体と協働して液体を収容する可変容積の貯蔵室(55;338)を構成するピストン(32;337)を有し、貯蔵室(55;338)は、補充可能ユニット(10;10;310)を容器(2;301)に取り付けると、容器から充填されるようにするために容器と流体連通状態に配置可能であり、補充可能ユニットは、

・補充可能ユニットを容器に取り付けると、液体を容器から取り出すことができ、補充可能ユニットが容器から分離しているとき、液体を貯蔵室(55;338)から取り出すことができるポンプ(150)を更に有し、ポンプは、貯蔵室(55;338)とは異なるポンプ室(157)を有する前記補充可能なユニットにおいて、

貯蔵室(55)は、補充可能ユニットをヘッドアップ状態で見たときに、ピストン(32;337)の下に形成されることを特徴とする補充可能ユニット。

【請求項27】

補充可能ユニットは、少なくとも貯蔵室(55;338)が容器(2)と流体連通状態にあるとき、吸引力を貯蔵室内に生じさせてこのようにして生じた吸引力の影響下で貯蔵室に充填できるよう構成されていることを特徴とする請求項26記載の補充可能ユニット。

【請求項28】

ポンプ室(157)の容積は、貯蔵室(55;338)の最大容積よりも小さいことを特徴とする請求項26又は27記載の補充可能ユニット。

【請求項29】

ピストン(32;337)は、容器(2;301)を貯蔵室(55;338)に流体連通させるのに適したオリフィス(38;355)を有することを特徴とする請求項26~28のうちいずれか一に記載の補充可能ユニット。

【請求項30】

液体を小出しする方法であって、

・1回分の液体を収容する容器(2;301)及び請求項26~29のうちいずれか一に記載の補充可能ユニット(10;310)を有する包装兼用小出し組立体(1;300)を用意する段階と、

・補充可能ユニットを容器に取り付けると液体を容器から取り出し又は補充可能ユニットが容器から分離しているとき、液体を補充可能ユニットの貯蔵室から取り出すよう補充可能ユニットを使用する段階と、

・ポンプをフルストロークで作動させることにより補充可能ユニットによって取り出された量の液体を小出しする段階とを有し、小出しされる液体の量は、貯蔵室の最大容積のほんの一部、特にその1/10未満に相当していることを特徴とする方法。

【請求項31】

ポンプは、吸引オリフィス(163)を有し、容器は、出口オリフィス(19;323)

10

20

30

40

50

) を有し、前記方法は、

- ・吸引オリフィス(163)を出口オリフィス(19)に連通させる段階と、
- ・液体を容器から取り出す段階とを有することを特徴とする請求項30記載の方法。

【請求項32】

- ・補充可能ユニット(10;310)を容器(2;301)に取り付ける段階と、
- ・ピストンを本体に対して動かして貯蔵室の容積を増大させる段階とを有し、ピストンは、この運動中、ポンプから遠ざかることを特徴とする請求項31記載の方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、液体、特にケア製品を含む化粧品の包装兼用小出し組立体に関する。

【背景技術】

【0002】

本発明の意味において、「化粧品」という用語は、指令76/768/EECを改訂した1993年6月14日付け指令93/35/EECで定義された化粧品を示すために用いられている。

【0003】

フランス国特許出願第2,773,443号明細書は、液体を貯蔵する室を備えた本体を有する補充可能なアトマイザスプレーを開示している。アトマイザは、本体内に摺動自在に受け入れられていて、室の容積を減少させて液体を小出しするために押し下げ可能なピストンを更に有する。小出しされる物質の量は、ピストンの押し下げストロークの長さで決まり、室は、ピストンをそのフルストロークにわたって押し下げると、完全に空になる。このアトマイザによっては、室の最大容量の一部に相当する正確な量の液体を小出しすることは容易ではない。

フランス国特許出願第2,705,039号明細書は、1回分の液体を収容していて、第1のポンプを備えた容器と、第2のポンプを備えた補充可能なびんとを有するディスペンサ装置を記載している。びんに第1のポンプを介して液体を補充することができる。びんに入っている液体を小出しするために、ユーザは、びんを容器から分離し、次に第2のポンプを作動させる。

【0004】

フランス国特許出願第2,813,291号明細書は、主要びんから補助びんに充填するシステムを記載している。主要びんは、主要びんと補助びんを互いに流体連通させることができる管を備えている。補助びんはポンプを備え、ポンプは、補充のために主要びんと補助びんを相互連結する前に取り外さなければならない。

フランス国特許第2,802,447号明細書は、タンクと、ポンプを備えたスプレーとを有する補充可能なスプレーシステムを記載している。タンク及びスプレーは、スプレーを補充できるようにするために一時的に互いに連結されるのに適したダクトを備えている。スプレー中へ延びるダクトは、液体がスプレーシステムのタンク内に直接流入できるようにするためにその頂端部が開口している。

フランス国特許出願第2,556,091号明細書は、本体と、本体内に摺動自在に受け入れられたピストンとを有する着脱自在な補充可能装置を記載している。この装置は、ポンプを備えていない。

【発明の開示】

【発明が解決しようとする課題】

【0005】

本発明は、比較的単純であって液体を比較的に正確に小出しできる構造を備えた包装兼用小出し組立体を提供しようとするものである。

【課題を解決するための手段】

【0006】

かくして、本発明は、液体の包装兼用小出し組立体であって、

10

20

30

40

50

- ・一回分の液体を収容する容器と、
- ・分離可能に容器に取り付けられるようになった補充可能なユニットとを有し、補充可能なユニットは、

・本体及び本体に対して動くことができ、本体と協働して液体を収容する可変容積の貯蔵室を構成するピストンを有し、貯蔵室は、補充可能なユニットを容器に取り付けると、容器から充填されるようにするために容器と流体連通状態に配置可能であり、補充可能なユニットは、

・補充可能なユニットを容器に取り付けると、液体を容器から取り出すことができ、補充可能なユニットが容器から分離しているとき、液体を貯蔵室から取り出すことができるポンプを更に有し、ポンプは、貯蔵室とは異なる、即ち、貯蔵室とは一致していないポンプ室を有する上記組立体において、

貯蔵室は、補充可能なユニットをヘッドアップ状態で見たときに、ピストンの下に形成されることを特徴とする組立体を提供する。

【0007】

本発明により、補充可能なユニットを容器とは別個に用いる場合、1以上測定された量の液体を比較的正確に小出しすることができ、各量は、貯蔵室の最大容積のほんの一部に相当する。小出しされる量は、ポンプ室の最大容量によって定められ、この場合、ポンプ室の最大容量は、貯蔵室の最大容量よりも小さい。

また、ポンプを用いると液体を容器内に入っている1回分の液体から取り出すことができる。

容器が補充目的で補充可能なユニットの貯蔵室と流体連通状態に配置されるのに適した出口オリフィスを有する場合、容器は、上記出口オリフィスに液体を供給することができるポンプを備える必要はない。かくして、容器の構造は、比較的単純である。

かくして、本発明の組立体は、たった1つのポンプ、即ち、補充可能なユニットのポンプを有することができ、かくしてコストを減少させることができる。

有利には、補充可能なユニットは、少なくとも貯蔵室が容器と流体連通状態にあるときに吸引力を貯蔵室内に生じさせて貯蔵室に充填できるようにするよう構成されている。

【0008】

本発明の実施形態では、ポンプ室は、少なくともポンプが液体を小出ししている間、貯蔵室から隔離される。

本発明の実施形態では、ポンプは、吸引オリフィスを有し、補充可能なユニットを容器に取り付けると、ポンプの上記吸引オリフィスは、例えば上記出口オリフィスと垂直方向に位置合わせ状態で容器の出口オリフィスに近接して配置されるのに適している。

かくして、出口オリフィスを通じて容器を出た液体は、比較的短い経路を辿ってポンプの吸引オリフィスに向かって流れることができ、それにより損失水頭が制限される。

【0009】

本発明の実施形態では、ポンプは、「エアレス」ポンプ、即ち、空気取入れ口を備えていないポンプである。ポンプは、あらかじめ圧縮されていてもよく、あらかじめ圧縮されていなくてもよい。

容器は、補充可能なユニットを受け入れるよう構成された支持体を有するのがよく、上記支持体は、例えば容器の残部に対し静止状態にある。支持体は、別個の部品によって構成されたものであってよく、或いは、容器と一緒に形成されてもよい。

補充可能なユニット及び容器はそれぞれ、特にスナップ留め、ねじ締結、差込み形締結、摩擦又は他の何らの方法で解除自在に互いに協働するのに適した締結部分を有するのがよい。これにより、貯蔵室が充填されている間及び(又は)補充可能なユニットのポンプが液体を容器から取り出すために用いられている間、補充可能なユニットを容器に固定することができる。

【0010】

有利には、補充可能なユニット及び容器のうち少なくとも一方は、少なくとも補充可能なユニットを用いて液体を容器から取り出す場合、ポンプの吸引オリフィスを外部から漏れ止

め状態で隔離するために補充可能ユニット及び容器のうち他方と協働するのに適した凹凸部を有する。

容器は、補充可能ユニットのポンプが液体を容器から取り出すために用いられているとき、空気を取り入れることができる空気取り入れ通路を受け入れるのがよい。

【0011】

変形例として、容器は、空気取り入れ口を備えておらず、特に、液体と接触状態にあるピストン又はバッグを有する。一例を挙げると、容器は、容器から抜き取られている液体に応答して動くピストンを有するのがよい。一例を挙げると、変形例として、液体を軟質バッグ内に入れてもよい。

好みしくは、補充可能ユニットを容器に取り付けてポンプが特に容器の浸漬管と連通した状態でポンプが液体を容器から取り出すことができるようとする場合、貯蔵室の容積は、その最小状態にあり、例えば実質的にゼロである。

ピストンは、ピストンは、容器を貯蔵室に流体連通させるのに適したオリフィスを有するのがよい。

ピストンは有利には、ポンプの外形に実質的に一致した形状を備え、それにより、貯蔵室の容積がその最終状態にあるとき、補充可能ユニット内に残る液体の量を減少させることができる。

補充可能ユニットは、ピストンの上記オリフィスを閉鎖する第1の位置と、液体が上記オリフィスを通って流れることができるようとする第2の位置との間で動くことができる逆止弁を有するのがよい。逆止弁は、内部通路を備えた本体を有するのがよい。

【0012】

変形例として、逆止弁は、ボールを有し、補充可能ユニットは、ボールを閉鎖された第1の位置に戻す傾向のある力をボールに加えるよう構成された弾性戻し部材を有する。

ピストンは、補充可能ユニットを容器に取り付けると、特にねじ締結又はスナップ留めにより、容器の締結部分と解除可能に協働するのに適した締結部分を有するのがよい。

本発明の実施形態では、ピストンは、ピストンのオリフィスと連通する通路を構成するスカートを有し、スカートは、締結部分を有する。

【0013】

変形例として、ピストンは実質的に同軸の内側及び外側スカートを有し、締結部分は、外側スカートに設けられ、内側スカートは、特に、ピストンのオリフィスと連通した通路を構成する。

容器は、上記補充可能ユニットを容器に取り付けると、補充可能ユニットの本体に嵌合するのに適した中央部分を有するのがよく、上記中央部分は、ピストンの締結部分と協働するのに適した締結部分を有する。中央部分は、浸漬管を締結するのに役立つのがよい。

容器には化粧品又はケア製品を入れることができ、特に、香水を入れることができる。液体は、例えばクリームであってもよい。

【0014】

本発明は又、容器に分離可能に取り付けられるよう構成された補充可能なユニットであって、

・本体及び本体に対して動くことができ、本体と協働して液体を収容する可変容積の貯蔵室を構成するピストンを有し、貯蔵室は、補充可能ユニットを容器に取り付けると、容器から充填されるようにするために容器と流体連通状態に配置可能であり、補充可能ユニットは、

・補充可能ユニットを容器に取り付けると、液体を容器から取り出すことができ、補充可能ユニットが容器から分離しているとき、液体を貯蔵室から取り出すことができるポンプを更に有し、ポンプは、貯蔵室とは異なるポンプ室を有する上記補充可能なユニットにおいて、

貯蔵室は、補充可能ユニットをヘッドアップ状態で見たときに、ピストンの下に形成されることを特徴とする補充可能ユニットを提供する。

【0015】

10

20

30

40

50

補充可能ユニットは、少なくとも貯蔵室が容器と流体連通状態にあるとき、吸引力を貯蔵室内に生じさせてこのようにして生じた吸引力の影響下で貯蔵室に充填できるよう構成されたものであるのがよい。

ポンプ室の容積は好ましくは、貯蔵室の最大容積よりも小さい。

ピストンは、容器を貯蔵室に流体連通させるのに適したオリフィスを有するのがよい。

【0016】

本発明は又、別の特徴では、液体を小出しする方法であって、

・1回分の液体を収容する容器及び上述したような補充可能ユニットを有する包装兼用小出し組立体を用意する段階と、

・補充可能ユニットを容器に取り付けると液体を容器から取り出し又は補充可能ユニットが容器から分離しているとき、液体を補充可能ユニットの貯蔵室から取り出すよう補充可能ユニットを使用する段階と、

・ポンプをフルストロークで作動させることにより補充可能ユニットによって取り出された量の液体を小出しする段階とを有し、小出しされる液体の量は、貯蔵室の最大容積のほんの一部、特にその1/10未満に相当していることを特徴とする方法を提供する。

【0017】

ポンプが吸引オリフィスを有し、容器が出口オリフィスを有する場合、上記方法は、

・吸引オリフィスを出口オリフィスに連通させる段階と、

・液体を容器から取り出す段階とを有する。

補充可能な容器が本体及び本体内で摺動するピストンを有する場合、上記方法は、

・補充可能ユニットを容器に取り付ける段階と、
・ピストンを本体に対して動かして貯蔵室の容積を増大させる段階とを有するのがよく、ピストンは、この運動中、ポンプから遠ざかる。

【発明を実施するための最良の形態】

【0018】

本発明の内容は、その非限定的な実施形態についての以下の詳細な説明を読み、添付の図面を参照すると一層よく理解できる。

図1は、本発明の包装兼用小出し組立体又はディスペンサ型包装組立体1を示す図である。

組立体1は、容器本体3及び本体3に固定された支持体4から成る容器2を有する。

容器2は、1回分の液体を収容している。

この実施形態では、液体は、化粧品、特に香水又は例えばアルコール系溶剤を含む他の或る低粘性液体である。

【0019】

変形例では、液体は、クリーム、例えばケア製品、ローション又は身体又は顔面の一部(毛を含む)に塗布される他の或る液体であってよい。

支持体4は、容器本体3をネック6にねじ締結できる組立て用スカート5と、補充可能ユニット10を受け入れるハウジング9を形成する軸線Xの実質的に円筒形の壁8と、ハウジング9の内部に延びる中央部分15とを有している。壁8の断面は、円形、橢円形又は他の或る形状であってよい。

この例では、組立て用スカート5は、ネック6にねじ締結されるが、変形例では、他の或る方法で、特にスナップ留め又は圧着により固定してもよい。

必要な場合、ネック6及び支持体4のうち少なくとも一方は、支持体4が容器2に対し回るのを阻止する回転防止手段、例えば凹凸部(図示せず)を有するのがよい。

支持体4は、液体が逃げ出るのを阻止する一方で、容器2の内部と外部との間に空気取り入れ通路を形成したままにするために、ネック6に圧接される。

【0020】

変形例では、容器は、内部と外部との間に空気取り入れ口を備える必要がない。

壁8の断面は、円形、橢円形又は他の或る形状のものであってよい。

中央部分15は、僅かに切頭円錐形であって上方にテーパしており、底端部が底壁17

10

20

30

40

50

を介して壁 8 に連結される軸線 X の管状壁 16 を有する。

変形例では、壁 16 の形状は、他の或る形状であってよい。

浸漬管 99 が、管状壁 16 によって構成された内部空間内に固定され、この浸漬管は、その頂端部が中央部分 15 に形成された出口オリフィス 19 のところで開口している。

出口オリフィス 19 の上では、中央部分 15 の頂端部は、締結部分 20 を有し、この締結部分は、この例では、環状ビード 21 を備え、その目的については以下に説明する。

【0021】

中央部分は、締結部分 20 とオリフィス 19 との間に内部環状溝 22 を有している。

補充可能ユニット 10 は、軸線 X の円筒形壁 26 及び底壁 27 を備えた本体 25 を有している。この底壁は、補充可能ユニット 10 を容器のハウジング 9 内に挿入するとき、中央部分 15 を挿通させることができる開口部 28 を備えている。10

本体 25 は、その底部に、スライイン 30 を備え、これらスライインは、軸線 X に平行であって、以下に説明するように当接部として役立つよう設計されている。

補充可能ユニット 10 は、底部環状リップ 33 及び頂部環状リップ 34 を介して本体 25 の内面に圧接するピストン 32 を有している。

【0022】

ピストン 32 は、本体 25 と協働してピストン 32 の上に可変容積の貯蔵室 55 を形成する。ピストンは、リップ 33, 34 の下に延びるスカート 35 を有し、このスカートは、ピストン 32 の上に位置した空間を上記ピストンの下に位置する空間に連通させる通路 36 を構成している。20

スカート 35 は、その頂部に、内側環状ビード 37 を有し、その底部に、逆止弁 39 が嵌め込まれたオリフィス 38 を有している。

この例では、スカート 35 の底部は、環状溝 48 を備えた締結部分 42 に連結され、容器 2 の環状ビード 21 をスナップ留めによりこの環状溝 48 に嵌合させることができる。

【0023】

逆止弁 39 は、軸線 X の内部通路 45 を備えた中空本体を有し、この通路は、その頂部が側方開口部 47 を介して外部に向かって開口している。

逆止弁 39 は、その外面に、環状ビード 46 を有し、この環状ビード 46 は、容器 2 の溝 22 内にスナップ留めするのに適しており、それにより、逆止弁 39 と容器 2 の中央部分 15 との間の漏れ止め支承及びこれら相互間の締結を行なっている。30

追加の環状ビード 51 が環状ビード 46 の上方で逆止弁 39 の外面に設けられ、かかる環状ビード 51 は、逆止弁 39 をオリフィス 38 内で上方に動かすと、或る大きさの摩擦力でスカート 35 の内面に圧接し、補充可能ユニット 10 を容器 2 に定位置で取り付けると、逆止弁 39 の運動を制限するようになっている。

ビード 51 は又、補充可能ユニット 10 を容器 2 とは別個に用いる場合、逆止弁 39 を閉鎖位置に維持して補充可能ユニット 10 が漏れ止め状態であるようにすることができる。

【0024】

逆止弁 39 は、切頭円錐形頂部 49 を備え、この切頭円錐形頂部 49 は、スカート 35 の切頭円錐形表面 52 に圧接するのに適していて、それにより補充可能ユニット 10 を図 3 で理解できるように容器 2 から分離すると、ピストン 5 のオリフィス 38 を閉鎖するようになっている。40

補充可能ユニット 10 は、本体 25 内に固定される組立て用スカート 56 を備えた頂壁 54 を有している。

スカート 56 は、ポンプ室 157 を備えたエアレスポンプ 150 を保持するのにも役立つ。

ポンプ 150 は、本体 25 の高さと比較して比較的短いダクト 162 を有し、このダクトの底端部は、吸引オリフィス 163 を有している。

【0025】

図 4 に示すように、ポンプ 150 は、例えばスナップ留めによりスカート 56 に固定さ

れた本体 151 を有するのがよい。

操作棒 152 が、圧縮状態で働く戻しばね 153 の作用に抗して摺動するよう本体 151 内に設けられている。端部品 154 が、操作棒 152 の底端部に固定されている。

アクチュエータ部材として働くと共にディスペンサ部材として働く押しボタン 98 が、図 2 で理解できるように、操作棒 152 の頂端部に圧力嵌めとして嵌着されている。

操作棒 152 は、その頂端部まで延び、半径方向オリフィス 155 を介してポンプ室 150 内へ開口する軸方向ボア 158 を有している。

ピストン 156 が、操作棒 152 回りに摺動するよう設けられ、ピストン 156 は、本体 151 と協働してポンプ室 157 を構成する。

本体 151 は、ボール 159 の受け座を形成し、このボール 159 は、休止状態では、オリフィス 163 を閉鎖する。

【0026】

操作棒 152 が休止状態にあるとき、オリフィス 155 は、ピストン 156 によって閉鎖される。

ユーザが押しボタン 98 を押すと、操作棒 152 は、本体 151 内へ押し下げられる。ピストン 156 は、その押し下げストロークの開始時には、操作棒 152 によっては駆動されない。かくして、操作棒は、ピストン 156 に対して動き、それによりオリフィス 155 を解放する。操作棒 152 の押し下げストロークが続いているとき、これは、ピストン 156 を下方に同伴する。次に、ポンプ室 157 内の液体が圧縮され、そして小出しされるためにオリフィス 155 を経てボア 158 内へ流れる。

操作棒 152 が下方に動いている間、ボール 159 は、本体 151 の底部のその受け座に圧接されたままであり、それによりポンプ室 157 は、貯蔵室 55 から隔離される。

【0027】

ユーザが押しボタン 98 を放すと、操作棒 152 は、ピストン 156 内で摺動することにより動作が始まって遂には端部品 154 に頂部のところで当接するようになる。

すると、軸方向ボア 158 は、ポンプ室 157 から隔離され、操作棒 152 がばね 153 からの駆動力を受けて引き続き上方に動くことにより、ポンプ室 157 内に吸引力が生じ、これに伴ってボール 159 が持ち上がり、液体がポンプ室 157 内へ吸い込まれる。

当然のことながら、ポンプ 150 は、本発明の範囲から逸脱することなく他の或る構造のものであってよく、特に、ボール 159 に代えて例えばエラストマーで作られた吸引逆止弁を用いてもよい。

【0028】

ピストン 32 は、ポンプ 150 の外形に実質的に一致する形状を備え、したがって、貯蔵室及び通路 36 の容積は、ピストンが完全に持ち上げられると、できる限り小さくなるようになっている。

オリフィス 163 は、空気の層が貯蔵室 55 の頂部内の液体よりも上に位置している場合であっても、液体中に浸漬されるよう貯蔵室 55 の頂壁から見て遠くに位置している。

この例では、スカート 35 は、僅かな隙間を置いてポンプのダクト 162 を包囲し、ビード 37 は、漏れ止め態様でポンプ 150 に圧接する。

組立体 1 を種々の仕方で用いることができる。

容器 2 内に入っている液体を取り出して小出しする目的で、ユーザは、補充可能ユニット 10 を容器 2 に取り付けてピストン 32 の締結部分 42 が図 2 に示すように容器 2 の中央部分 15 の締結部分 21 に嵌着状態になるようにする。

【0029】

クロージャ部材 39 を上方に動かして側方開口部 47 を開き、それにより内部通路 45 が先ず最初にスカート 35 の通路 36 と連通し、次に容器 2 の出口オリフィス 19 と連通するようにすることができる。

補充可能ユニット 10 を容器 2 に固定すると、貯蔵室 55 の容積は、その最小状態にあり、ピストン 32 は、ポンプ 150 に圧接するまで押され、環状ビード 37 は、図 2 で理解できるように、ポンプ 150 のダクト 162 に漏れ止め態様で圧接する。

10

20

30

40

50

ユーザが押しボタン 9 8 を押すことにより、ポンプ 1 5 0 のポンプ室内に入っている液体を小出しする。

押しボタン 9 8 を放すことにより、ポンプ 1 5 0 は、容器 2 内に入っている液体を吸い込み、液体は、浸漬管 9 9 、出口オリフィス 1 9 、逆止弁の内部通路 4 5 及びスカート 3 5 の通路 3 6 を経て通る経路に沿って流れる。

【 0 0 3 0 】

押しボタン 9 8 に追加の圧力を加えると、このように吸い込まれた液体を小出しすることができる。

貯蔵室 5 5 の充填を行うため、ユーザは、補充可能ユニットの本体 2 5 を容器 2 に対し上方に動かし、ピストン 3 2 は、容器 2 の締結部分 2 0 に固定されたままである。

かくして、ピストン 3 2 が本体 2 5 に対し下方に摺動し、それにより貯蔵室 5 5 内に吸引力を生じさせ、かかる吸引力により、容器 2 内に入っている液体をクロージャ部材 3 9 の内部通路 4 5 を経由して吸い込むことができる。

【 0 0 3 1 】

ストロークの終わりに、ピストン 3 2 の底部リップ 3 3 は、比較的剛性の高い部分を介してスライド 3 0 に圧接してユーザが引き続き補充可能ユニット 1 0 を上方に動かすと

、
・スカート 3 5 が中央部分 1 5 から解除され、逆止弁 3 9 は中央部分 1 5 に固定されたままであり、次に、

・切頭円錐形部分 4 9 がスカート 3 5 の対応の切頭円錐形表面 5 2 に圧接してオリフィス 3 8 を閉じ、次に、

・逆止弁 3 9 が中央部分 1 5 から解除されるようになっている。

【 0 0 3 2 】

このような順序にすることにより、逆止弁 3 9 が補充可能ユニット 1 0 を取り外したときに閉鎖位置にあるようにすることができる。

補充可能ユニット 1 0 を容器 2 から分離すると、ユーザは、ポンプ 1 5 0 を作動させることにより貯蔵室 5 5 内に入っている液体を小出しすることができる。

ピストン 3 2 は、貯蔵室 5 5 が空になると本体 2 5 内で上昇する。

補充可能ユニット 1 0 が部分的に液体で満たされているとき、かかる補充可能ユニットを容器 2 に定位置で取り付けることにより、貯蔵室 5 5 内に入っていた液体は、容器 2 内に追い出され、逆止弁 3 9 は、ピストン 3 2 が中央部分 1 5 に締結されるようになる前に開放位置に移る。当然のことながら、本発明は、上述の実施形態には限定されない。

【 0 0 3 3 】

図 5 は、本発明の別の実施形態の包装兼用小出し組立体又はディスペンサ型包装組立体 2 0 0 を示している。

組立体 2 0 0 は、上述の補充可能なユニットと実質的に同一の補充可能なユニット 1 0 を有する。

補充可能ユニット 1 0 は、補充可能ユニット 1 0 よりも短い高さ及びこれよりも大きな断面を備えるのがよい。

補充可能ユニット 1 0 を容器 2 0 2 により補充することができ、この容器 2 0 2 は、支持体 2 0 4 が例えばスナップ留めにより固定されるネック 2 0 6 を備えた容器本体 2 0 3 を有している。

一例を挙げると、この支持体は、補充可能ユニット 1 0 を受け入れるために容器本体 2 0 3 のネック 2 0 6 の上に延びる軸線 X の管状スカート 2 0 5 を有している。

【 0 0 3 4 】

図 6 及び図 7 は、本発明の別の実施形態の包装組立体 3 0 0 を示している。

この組立体 3 0 0 は、容器本体 3 0 2 及び本体 3 0 2 に固定された支持体 3 0 3 を備えた容器 3 0 1 を有する。

支持体 3 0 3 は、容器本体 3 0 2 をネック 3 0 5 に螺着できる組立て用スカート 3 0 4 と、ネック 3 0 5 の頂部セグメントに圧接する横方向壁 3 0 7 と、補充可能ユニット 3 1

0を受け入れるハウジング309を形成する軸線Xの実質的に円筒形の壁308とを有する。

壁308の大部分は、組立体300をヘッドアップ(ヘッドを上にした)状態で観察した場合、横方向壁307の下に延び、壁308は、横方向壁307の上方に円筒形部分312を形成する。

【0035】

支持体303は、ハウジング309内へ延びる中央部分313を更に有し、この中央部分313は、その底端部が底壁315を介して壁308に連結された軸線Xの実質的に円筒形の壁314を有している。

壁314は、その頂端部に、溝318を備えた締結部分317を有し、溝318の目的については以下に説明する。 10

中央部分313は、壁314によって構成された内部空間内へ延びる端部品319を有し、この端部品319は、締結部分317の下で壁314に連結された切頭円錐形壁320を有する。

切頭円錐形壁320の延長部として軸線Xの円筒形部分322が設けられ、この円筒形部分322は、その頂端部が出口オリフィス323と連通している。

浸漬管99が、円筒形部分322によって構成された内部空間内に固定され、この浸漬管99は、その頂端部が出口オリフィス323に向かって開口している。

【0036】

補充可能ユニット310は、軸線Xの管状壁331を備えた本体330を有し、この管状壁331は、その底端部のところに戻り縁部332を有している。 20

縁部332は、環状縁又はリム333を備えた上方にテーパしている僅かに切頭円錐形の形状のものであり、その内径は、締結部分317の最大直径よりも僅かに小さい。

リム333は、補充可能ユニット310を容器301のハウジング309内に挿入するとき、中央部分313を挿通させることができる開口部335を備えている。

補充可能ユニット310は、ピストン337を有し、このピストン337は、本体330と協働してピストン337の上方に可変容積の貯蔵室338を形成する。

ピストンは、外側及び内側の同軸スカート340, 341を有し、内側スカート341は、上記外側スカート340の上方で実質的に真ん中のところの外側スカート340の内面に連結され、下方にテーパした実質的に切頭円錐形の形状の開口部342を形成している。 30

【0037】

ピストン337は、外側スカート340に連結され、本体330の内面に圧接された底部及び頂部環状リップ345, 346を有する。

外側スカート340は、環状ビード348を備えた締結部分347を有し、この環状ビード348は、補充可能ユニット310を容器のハウジング309内に挿入すると、容器301の締結部分317の溝318内にスナップ留めにより嵌まり込んだ状態になるよう構成されている。

内側スカート341は、ボール351を有する逆止弁を受け入れるよう構成されたハウジング350を形成し、ハウジング350は、内側スカート341により構成された通路353を閉鎖するためにボール351を圧接させることができる支承面352を備えている。 40

【0038】

補充可能ユニット310は、力をボール351に及ぼすよう構成された弾性戻し部材354を有し、この力は、このボールを支承面352に圧接させて通路353を閉鎖する傾向がある。

この例では、弾性戻し部材354は、螺旋ばねから成り、この螺旋ばねは、一端部が、ボール351に圧接し、反対側の端部がピストン337に圧接している。

環状支承面352は、容器の出口オリフィス323と流体連通させるのに適したオリフィス355を構成する。 50

本体 330 は、その頂端部に、ビード 357 を有し、このビード 357 により、ポンプ 150 をフレット (fret) 358 により定位位置に配置することができる。

ポンプ 150 は、開口部 342 を介してピストン 337 の通路 353 内に嵌まるのに適したダクト 162 を有する。

【0039】

ピストンは、ポンプ 150 の外形に実質的に一致した形状のものである。

組立体 300 を種々の仕方で用いることができる。

容器 301 内に入っている液体を取り出して小出しする目的で、ユーザは、補充可能ユニット 310 を容器 301 に取り付け、図 6 に示すようにビード 348 を溝 318 内に挿入することにより補充可能ユニット 310 の締結部分 347 が容器の締結部分 317 に嵌着状態になるようにする。

ピストン 337 の内側スカート 341 を容器の端部品 319 に漏れ止め態様で圧接させる。

ばね 354 によって及ぼされる力に抗して端部品 319 を上方に押すことによりボール 351 を変位させ、それによりこれが支承面 352 から遠ざかってオリフィス 355 を開くようとする。

【0040】

補充可能ユニット 310 を容器 301 に固定すると、貯蔵室 338 の容積は、その最小状態であり、ピストン 337 は、これがポンプ 150 に圧接するまで押される。

ポンプ 150 をピストン 337 に漏れ止め態様で圧接させる。

ユーザは、押しボタン 98 を押すことによりポンプ 150 のポンプ室内に入っている液体を小出しする。

押しボタン 98 を放すことにより、ポンプ 150 は、容器 301 内に入っている液体を吸い込み、液体は、浸漬管 99、出口オリフィス 323 及びスカート 341 の通路 353 を経て通る経路に沿って流れる。

貯蔵室 338 の充填を行うため、ユーザは、補充可能ユニットの本体 330 を容器 301 に対し上方に動かし、ピストン 337 は、容器の締結部分 317 に固定されたままである。

【0041】

かくして、ピストン 337 は、本体 330 に対して摺動し、それにより貯蔵室 338 内に吸引力を生じさせ、かかる吸引力により、容器内に入っている液体を容器のオリフィス 323 及びピストン 337 の通路 353 経由で吸い込むことができる。

ストロークの終わりで、本体 330 の環状縁 333 は、容器の締結部分 317 及びピストン 337 の締結部分 347 に圧接され、それにより弾性変形による容器の溝 318 からの環状ビード 348 の解放に寄与する。

補充可能ユニット 310 を容器から取り外すと、ばね 354 は、ボール 351 を戻してこれを支承面 352 に当てて図 7 に示すようにオリフィス 355 を閉鎖する。

ユーザは、ポンプ 150 を作動させることにより貯蔵室 358 内に入っている液体を小出しすることができる。

ピストン 337 は、貯蔵室 338 が空になると、本体 330 内で上昇する。

本明細書全体を通じ、部材個数に関し、「～を有する又は含む (comprises a)」という用語は、特段の指定がなければ、「～を少なくとも一つ有する又は含む (comprises at least of)」という表現と同義であると解されるべきである。

【図面の簡単な説明】

【0042】

【図 1】本発明の包装兼用小出し組立体の概略部分図である。

【図 2】図 1 の組立体の概略部分軸方向断面図である。

【図 3】容器から分離された図 2 の組立体の解除自在なユニットの概略部分軸方向断面図である。

【図 4】図 2 及び図 3 の組立体の補充可能ユニットのポンプの概略部分軸方向断面図であ

10

20

30

40

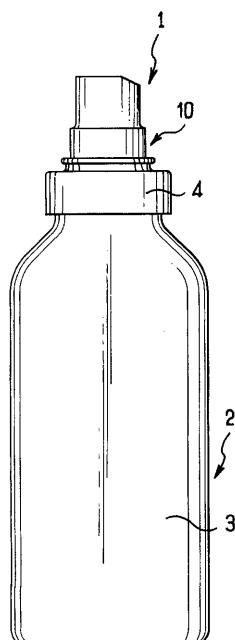
50

る。

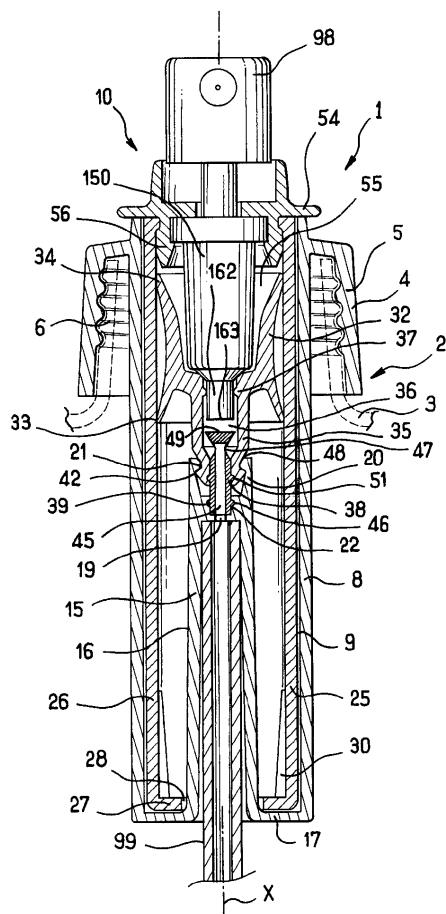
【図5】本発明の別の実施形態を構成する包装兼用小出し組立体の概略部分軸方向断面図である。

【図6】本発明の別の実施形態を構成する包装組立体を2つの互いに異なる位置のうちの一方で示す概略部分軸方向断面図である。

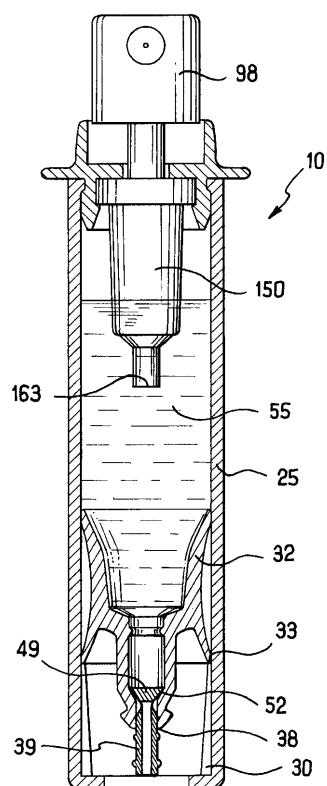
【図7】本発明の別の実施形態を構成する包装組立体を2つの互いに異なる位置のうちの他方で示す概略部分軸方向断面図である。

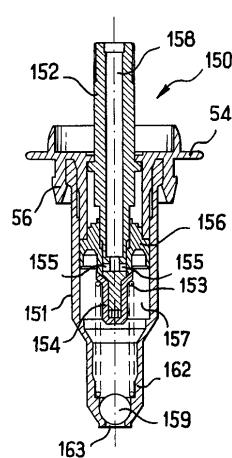

【符号の説明】

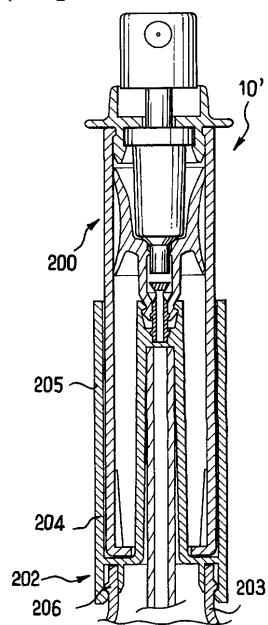
【0043】

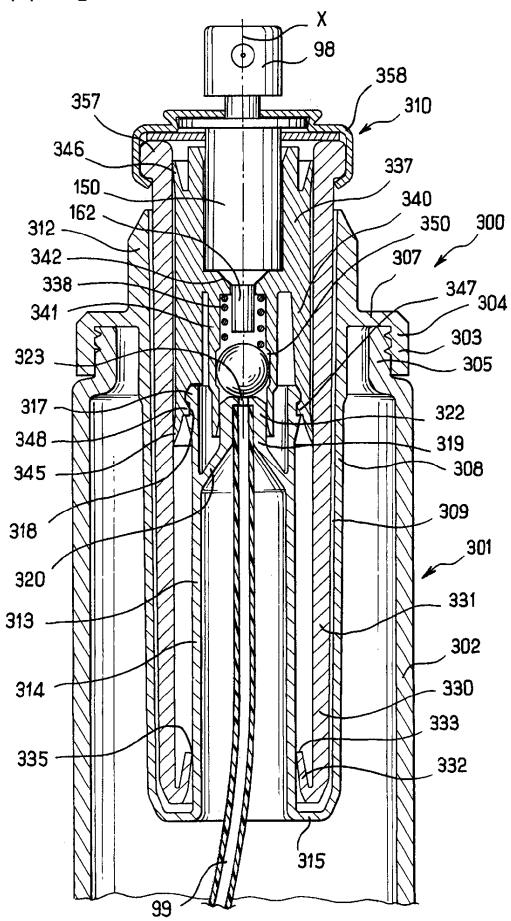

1, 300 液体の包装兼用小出し組立体
 2, 202, 301 容器
 10, 10 310 補充可能なユニット
 19, 323 出口オリフィス
 25, 330 本体
 32, 337 ピストン
 55, 338 貯蔵室
 150 ポンプ
 157 ポンプ室

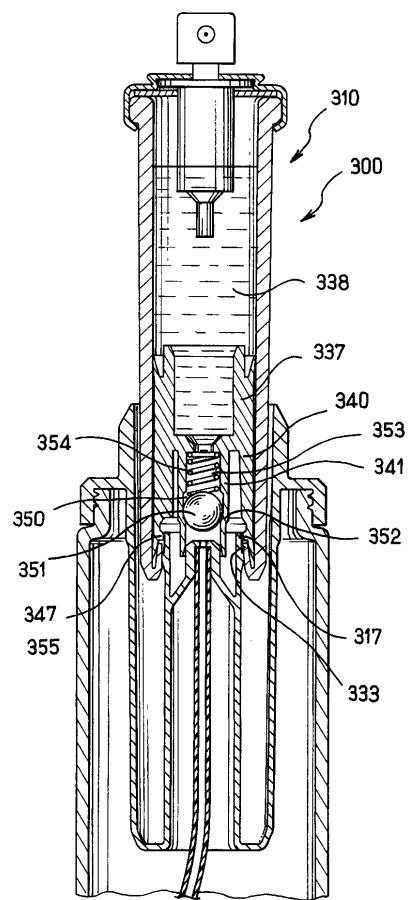
10


【図1】


【図2】


【図3】


【図4】


【図5】

【図6】

【図7】

フロントページの続き

(72)発明者 マルク ラム

フランス 92600 アスニール リュー ガンベッタ 16

(72)発明者 ダニエル コルスニエール

フランス 76550 オッフランヴィル リュー ジャック ランティ 14

F ターム(参考) 3E084 AA04 AA12 AA24 AB05 BA03 CA01 CB02 CC03 DA01 DB12

DB13 DC03 FB01 FC07 FC08 GA04 GA08 GB04 KB06 LD22

LE11

【外国語明細書】

AN ASSEMBLY FOR PACKAGING AND DISPENSING LIQUID, IN PARTICULAR COSMETICS

The present invention relates to an assembly for packaging and dispensing liquid, in particular cosmetics, including care products.

In the meaning of the present invention, the term "cosmetic" is used to designate a cosmetic product as defined in the June 14, 1993 Directive 93/35/EEC amending Directive 76/768/EEC.

Patent application FR 2 773 443 discloses a refillable atomizer spray comprising a body defining a chamber for storing liquid. The atomizer further comprises a piston slidably received in the body and capable of being pressed down in order to reduce the volume of the chamber and dispense the liquid. The quantity of substance that is dispensed depends on the length of the depression stroke of the piston with the chamber being completely emptied when the piston is depressed over its full stroke. That atomizer does not make it easy to dispense an accurate quantity of liquid corresponding to a fraction of the maximum volume of the chamber.

Patent application FR 2 705 039 describes a dispenser device comprising a receptacle containing a supply of liquid and fitted with a first pump, and a refillable flask fitted with a second pump. The flask can be refilled with liquid via the first pump. In order to dispense the liquid contained in the flask, the user separates the flask from the receptacle and then actuates the second pump.

Patent application FR 2 813 291 describes a system for filling a secondary flask from a main flask. The main flask is fitted with tubes enabling the main and secondary flasks to be put into fluid communication. When the secondary flask is fitted with a pump, the pump must be removed before interconnecting the main and secondary flasks for refilling.

Patent application FR 2 802 447 describes a refillable spray system comprising a tank and a spray fitted with a pump. The tank and the spray are provided with ducts suitable for being temporarily interconnected in order to enable the spray to be refilled. The duct extending into the spray is open at its top end to allow the liquid to flow directly into the tank of the spray system.

Patent application FR 2 556 091 describes a removable refillable device comprising a body and a piston slidably received in the body. That device does not have a pump.

The present invention seeks to provide a packaging and dispensing assembly which presents a structure that is relatively simple and which enables the liquid to be dispensed in relatively precise manner.

The invention thus provides an assembly for packaging and dispensing liquid, the assembly comprising:

- a receptacle for containing a supply of liquid;

and

- a refillable unit arranged to be placed in separable manner on the receptacle, the refillable unit comprising:

- a body and a piston that is movable relative to the body and that co-operates therewith to define a storage chamber of variable volume for containing the liquid, the storage chamber being capable of being put into fluid communication with the receptacle in order to be filled therefrom when the refillable unit is placed on the receptacle; and

- a pump capable of taking liquid from the receptacle when the refillable unit is placed thereon, and of taking liquid from the storage chamber when the refillable unit is separate from the receptacle, the pump having a pump chamber that is distinct from the storage chamber, i.e. that does not coincide therewith,

the assembly being characterized by the fact that the storage chamber is formed under the piston when the refillable unit is observed in the head-up position.

By means of the invention, when the refillable unit is used separately from the receptacle, it is possible to dispense one or more measured quantities of liquid relatively accurately, each quantity corresponding to a fraction only of the maximum volume of the storage chamber. The quantity dispensed is determined by the maximum volume of the pump chamber, where the maximum volume of the pump chamber is smaller than the maximum volume of the storage chamber.

The pump can also be used to take liquid from the supply of liquid in the receptacle.

When the receptacle has an outlet orifice suitable for being put into fluid communication with the storage chamber of a refillable unit for refilling purposes, the receptacle need not have a pump capable of feeding said outlet orifice with liquid. The structure of the receptacle can thus be relatively simple.

Thus, the assembly of the invention may include only one pump, that of the refillable unit, thus enabling costs to be reduced.

Advantageously, the refillable unit is arranged to enable suction to be generated in the storage chamber, at least when the storage chamber is in fluid communication with the receptacle, so as to enable the storage chamber to be filled.

In an embodiment of the invention, the pump chamber is isolated from the storage chamber, at least while the liquid is being dispensed by the pump.

In an embodiment of the invention, the pump has a suction orifice that is suitable for being disposed close to an outlet orifice of the receptacle, e.g. vertically in register with said outlet orifice, when the refillable unit is placed on the receptacle.

Thus, the liquid leaving the receptacle via the outlet orifice can flow towards the suction orifice of the pump following a path that is relatively short, thereby limiting head losses.

In an embodiment of the invention, the pump is an "airless" pump, i.e. a pump without any air intake. The pump may be with or without precompression.

The receptacle may include a support arranged to receive the refillable unit, said support being held stationary relative to the remainder of the receptacle, for example. The support may be constituted by a separate part or it may be made monolithically with the receptacle.

The refillable unit and the receptacle may include respective fastener portions suitable for co-operating in releasable manner, in particular by snap-fastening, screw-fastening or by a bayonet-type fastening, by friction, or in some other way. This makes it possible to secure the refillable unit to the receptacle while the storage chamber is being filled and/or while the pump of the refillable unit is being used to take liquid from the receptacle.

Advantageously, at least one of the refillable units and the receptacle includes portions in relief suitable for co-operating with the other refillable unit and the receptacle in order to isolate the suction orifice of the pump in leakproof manner from the outside, at least when the refillable unit is used to take liquid from the receptacle.

The receptacle may include an air intake passage enabling air to be taken in when the pump of the refillable unit is used to take the liquid from the receptacle.

In a variant, the receptacle does not have an air intake, and in particular has a piston or a bag in contact with the liquid. By way of example, the receptacle may have a piston that moves in response to

liquid being extracted from the receptacle. By way of example, the liquid may alternatively be contained in a flexible bag.

Preferably, when the refillable unit is placed on the receptacle so that the pump can take liquid therefrom, the pump communicating with a dip tube of the receptacle, for example, the volume of the storage chamber is at its minimum, for example being substantially zero.

The piston may have an orifice suitable for putting the receptacle into fluid communication with the storage chamber.

The piston advantageously presents a shape that substantially matches the outside shape of the pump, thereby making it possible to reduce the quantity of liquid remaining in the refillable unit when the volume of the storage chamber is at its minimum.

The refillable unit may include a check valve disposed in the orifice of the piston, the check valve being movable between a first position in which it closes the orifice of the piston, and a second position in which it enables liquid to flow through said orifice. The check valve may comprises a body with an inside passage.

In a variant, the check valve comprises a ball, and the refillable unit includes a resilient return member arranged to apply a force on the ball, tending to return the ball into the closed first position.

The piston may include a fastener portion suitable for co-operating in releasable manner, in particular by screw-fastening or by snap-fastening, with a fastener portion of the receptacle when the refillable unit is placed on the receptacle.

In an embodiment of the invention, the piston includes a skirt defining a passage in communication with an orifice of the piston, the skirt including the fastener portion.

In a variant, the piston includes substantially coaxial inner and outer skirts, the fastener portion being provided on the outer skirt, the inner skirt defining, in particular, a passage in communication with an orifice of the piston.

The receptacle may include a central portion suitable for being engaged in the body of the refillable unit when said refillable unit is placed on the receptacle, the central portion including a fastener portion suitable for co-operating with a fastener portion of the piston. The central portion may serve to fasten a dip tube.

The receptacle may contain a cosmetic or a care product, and in particular it may contain a perfume. The liquid could also be a cream, for example.

The invention also provides a refillable unit arranged to be placed in separable manner on a receptacle, the refillable unit comprising:

- a body and a piston that is movable relative to the body and that co-operates therewith to define a storage chamber of variable volume for containing the liquid, the storage chamber being capable of being put into fluid communication with the receptacle in order to be filled therefrom when the refillable unit is placed on the receptacle; and

- a pump capable of taking liquid from the receptacle when the refillable unit is placed on the receptacle, and of taking liquid from the storage chamber when the refillable unit is separate from the receptacle, the pump having a pump chamber that is distinct from the storage chamber,

the assembly being characterized by the fact that the storage chamber is formed under the piston when the refillable unit is observed in the head-up position.

The refillable unit may be arranged so as to enable suction to be generated in the storage chamber, at least when the storage chamber is in fluid communication with

the receptacle, so as to enable the storage chamber to be filled under the effect of the suction created in this way.

The volume of the pump chamber is preferably smaller than the maximum volume of the storage chamber.

The piston may have an orifice capable of putting the receptacle into fluid communication with the storage chamber.

In another of its aspects, the invention also provides a method of dispensing liquid, the method comprising the following steps:

- providing a packaging and dispenser assembly, comprising:

- a receptacle for containing a supply of liquid; and

- a refillable unit as described above;

- using the refillable unit to take liquid either from the receptacle when the refillable unit is placed on the receptacle, or from the storage chamber of the refillable unit when the refillable unit is separate from the receptacle; and

- dispensing a quantity of liquid taken by means of the refillable unit by actuating the pump over a full stroke, the quantity of liquid dispensed corresponding to a fraction only of the maximum volume of the storage chamber, and in particular to less than one-tenth thereof.

For a pump having a suction orifice and a receptacle having an outlet orifice, the method may include the following steps:

- putting the suction orifice into communication with the outlet orifice; and
- taking liquid from the receptacle.

For a refillable unit having a body and a piston sliding in the body, the method may include the following steps:

- placing the refillable unit on the receptacle; and

· moving the piston relative to the body in order to increase the volume of the storage chamber, the piston moving away from the pump during this movement.

The present invention can be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:

· Figure 1 is a diagrammatic and fragmentary view of a packaging and dispenser assembly in accordance with the invention;

· Figure 2 is a diagrammatic and fragmentary axial section view of the Figure 1 assembly;

· Figure 3 is a diagrammatic and fragmentary axial section view of the releasable unit of the Figure 2 assembly, separated from the receptacle;

· Figure 4 is a diagrammatic and fragmentary axial section view of the pump of the refillable unit of the assembly of Figures 2 and 3;

· Figure 5 is a diagrammatic and fragmentary axial section view of a packaging and dispenser assembly constituting another embodiment of the invention; and

· Figures 6 and 7 are diagrammatic and fragmentary axial section views of a packaging assembly constituting another embodiment of the invention in two different positions.

Figure 1 shows a packaging and dispenser assembly 1 in accordance with the invention.

The assembly 1 comprises a receptacle 2 which comprises a receptacle body 3 and a support 4 secured on the body 3.

The receptacle 2 contains a supply of liquid.

In the example described, the liquid is a cosmetic, in particular a perfume or some other low-viscosity liquid, e.g. containing an alcohol-based solvent.

In a variant, the liquid may be a cream, for example a care product, a lotion, or some other liquid for

applying to a portion of the body or the face, including the hair.

The support 4 comprises: an assembly skirt 5 enabling the receptacle body 3 to be screw-fastened on the neck 6; a substantially cylindrical wall 8 of axis X forming a housing 9 for receiving a refillable unit 10; and a central portion 15 extending inside the housing 9. The wall 8 presents a cross-section that may be circular, elliptical, or of some other shape.

In the example described, the assembly skirt 5 is screw-fastened on the neck 6, however in a variant it could be secured in some other way, in particular by snap-fastening or by crimping.

Where appropriate, at least one of the neck 6 and the support 4 may include antirotation means, e.g. a portion in relief (not shown) preventing the support 4 from turning relative to the receptacle 2.

The support 4 is pressed against the neck 6 in order to prevent liquid escaping, while also leaving an air intake passage between the inside of the receptacle 2 and the outside.

In a variant, the receptacle need not have an air intake between the inside and the outside.

The wall 8 presents a cross-section that may be circular, elliptical, or of some other shape.

The central portion 15 comprises a tubular wall 16 of axis X that is slightly frustoconical, tapering upwards, and that is connected at its bottom end to the wall 8 via a bottom wall 17.

In a variant, the wall 16 can present some other shape.

A dip tube 99 is secured in the inside space defined by the tubular wall 16, which dip tube opens out at its top end on an outlet orifice 19 formed on the central portion 15.

Above the outlet orifice 19, the top end of the central portion 15 comprises a fastener portion 20 which,

in the example described, is provided with an annular bead 21 whose purpose is described below.

Between the fastener portion 20 and the orifice 19, said central portion includes an internal annular groove 22.

The refillable unit 10 includes a body 25 which comprises a cylindrical wall 26 of axis X and a bottom wall 27. Said bottom wall is provided with an opening 28 enabling the central portion 15 to be inserted through said opening 28 when the refillable unit 10 is inserted in the housing 9 of the receptacle.

At its bottom portion, the body 25 is provided with splines 30 that are parallel to the axis X and that are designed to serve as abutments, as described below.

The refillable unit 10 includes a piston 32 pressing against the inside surface of the body 25 via a bottom and top annular lip 33 and 34.

Together with the body 25, the piston 32 forms a storage chamber 55 of variable volume above the piston 32. The piston includes a skirt 35 extending beneath the lips 33 and 34, the skirt defining a passage 36 putting the space situated above the piston 32 into communication with the space situated beneath said piston.

At its top portion, the skirt 35 includes an inner annular bead 37, and its bottom portion it includes an orifice 38 in which a check valve 39 is engaged.

In the example described, the bottom of the skirt 35 is connected to a fastener portion 42 having an annular groove 48 in which the annular bead 21 of the receptacle 2 can be engaged by snap-fastening.

The check valve 39 comprises a hollow body defining an inside passage 45 of axis X, said passage opening out at its top portion to the outside via lateral openings 47.

On its outside surface, the check valve 39 includes an annular bead 46 suitable for being snap-fastened in the groove 22 of the receptacle 2, so as to provide

leaktight bearing between the check valve 39 and the central portion 15 of the receptacle 2, and fastening therebetween.

Additional annular beads 51 are provided on the outside surface of the check valve 39 above the annular bead 46, so as to come to press with a certain friction force against the inside surface of the skirt 35 when the check valve 39 is moved upwards in the orifice 38, so as to limit the movement of the check valve 39 when the refillable unit 10 is put in place on the receptacle 2.

The beads 51 also enable the check valve 39 to be maintained in the closed position when the refillable unit 10 is used separately from the receptacle 2, so as to ensure that the refillable unit 10 is leaktight.

The check valve 39 is provided with a frustoconical top portion 49 suitable for coming to press against a frustoconical surface 52 of the skirt 35, so as to close the orifice 38 of the piston 5 when the refillable unit 10 is separated from the receptacle 2, as can be seen in Figure 3.

The refillable unit 10 includes a top wall 54 with an assembly skirt 56 secured in the body 25.

The skirt 56 also serves to hold an airless pump 150 including a pump chamber 157.

The pump 150 includes a duct 162 that is relatively short compared to the height of the body 25, the bottom end of said duct including a suction orifice 163.

As shown in Figure 4, the pump 150 can include a body 151 secured on the skirt 56, e.g. by snap-fastening.

A control rod 152 is mounted in the body 151 to slide against the action of a return spring 153 working in compression. An endpiece 154 is secured to the bottom end of the control rod 152.

A pushbutton 98 that serves both as an actuator member and as a dispenser member is engaged as a force-fit on the top end of the control rod 152, as can be seen in Figure 2.

The control rod 152 has an axial bore 158 extending to its top end and opening out into the pump chamber 157 via radial orifices 155.

A piston 156 is disposed to slide around the rod 152, the piston 156 co-operating with the body 151 to define the pump chamber 157.

The body 151 forms a seat for a ball 159 that, at rest, closes the orifice 163.

When the control rod 152 is at rest, the orifices 155 are closed by the piston 156.

When the user presses on the pushbutton 98, the control rod 152 is depressed into the body 151. At the beginning of its depression stroke, the piston 156 is not driven by the control rod 152. The control rod thus moves relative to the piston 156, thereby releasing the orifices 155. As the depression stroke of the control rod 152 continues, it entrains the piston 156 downwards. The liquid in the pump chamber 157 is then compressed and flows into the bore 158 via the orifices 155 in order to be dispensed.

While the control rod 152 is moving downwards, the ball 159 remains pressed against its seat in the bottom of the body 151, thereby isolating the pump chamber 157 from the storage chamber 55.

When the user releases the pushbutton 98, the control rod 152 begins by sliding in the piston 156 until it comes into top abutment against the endpiece 154.

The axial bore 158 is then isolated from the pump chamber 157 and continued upward movement of the control rod 152 under drive from the spring 153 generates suction in the pump chamber 157, which is accompanied by the ball 159 lifting and liquid being sucked into the pump chamber 157.

Naturally, the pump 150 could present some other structure without thereby going beyond the ambit of the present invention, and in particular the ball 159 could

be replaced by a suction check valve made of elastomer, for example.

The piston 32 presents a shape that substantially matches the outside shape of the pump 150, so that the volume of the storage chamber and of the passage 36 is as small as possible when the piston is completely raised.

The orifice 163 is situated remote from the top wall of the storage chamber 55, so as to be immersed in the liquid even when a layer of air is present above the liquid in the top portion of the storage chamber 55.

In the example described, the skirt 35 surrounds the duct 162 of the pump with a small amount of clearance, and the bead 37 comes to press against the pump 150 in leaktight manner.

The assembly 1 can be used in various ways.

For the purpose of taking and dispensing the liquid contained in the receptacle 2, the user places the refillable unit 10 on the receptacle 2 so that the fastener portion 42 of the piston 32 becomes engaged on the fastener portion 21 of the central portion 15 of the receptacle 2, as shown in Figure 2.

The closure member 39 is moved upwards so as to free the lateral openings 47, thereby enabling the inside passage 45 to communicate firstly with the passage 36 of the skirt 35, and secondly with the outlet orifice 19 of the receptacle 2.

When the refillable unit 10 is secured on the receptacle 2, the volume of the storage chamber 55 is at its minimum, the piston 32 being pushed until it comes to press against the pump 150, the annular bead 37 comes to press in leaktight manner against the duct 162 of the pump 150, as can be seen in Figure 2.

By pressing on the pushbutton 98, the user causes the liquid contained in the pump chamber of the pump 150 to be dispensed.

By releasing the pushbutton 98, the pump 150 sucks in the liquid contained in the receptacle 2, the liquid

flowing along a path passing via the dip tube 99, the outlet orifice 19, the inside passage 45 of the check valve, and the passage 36 of the skirt 35.

Additional pressure on the pushbutton 98 enables the liquid sucked in in this way to be dispensed.

In order to fill the storage chamber 55, the user moves the body 25 of the refillable unit upwards relative to the receptacle 2, the piston 32 remaining secured to the fastener portion 20 of the receptacle 2.

Thus, the piston 32 slides downwards relative to the body 25, thereby generating suction in the storage chamber 55 enabling the liquid contained in the receptacle 2 to be sucked in via the inside passage 45 of the closure member 39.

At the end of stroke, the bottom lip 33 of the piston 32 comes to press via a relatively stiff portion against the splines 30, so that when the user continues to move the refillable unit 10 upwards:

- the skirt 35 is released from the central portion 15, the check valve 39 remaining secured to the central portion 15, then

- the frustoconical portion 49 comes to press against the corresponding frustoconical surface 52 of the skirt 35, so as to close the orifice 38, then

- the check valve 39 is released from the central portion 15.

Such a sequence makes it possible to ensure that the check valve 39 is in the closed position when the refillable unit 10 is removed.

When the refillable unit 10 is separated from the receptacle 2, the user can dispense the liquid contained in the storage chamber 55 by actuating the pump 150.

The piston 32 rises in the body 25 as the storage chamber 55 empties.

When the refillable unit 10 is partially full of liquid, putting said refillable unit in place on the receptacle 2 causes the liquid that was contained in the

storage chamber 55 to be expelled into the receptacle 2, the check valve 39 passing into the open position before the piston 32 becomes fastened on the central portion 15.

Naturally, the invention is not limited to the embodiments described above.

Figure 5 shows a packaging and dispenser assembly 200 in accordance with another embodiment of the invention.

The assembly 200 includes a refillable unit 10' that is substantially similar to the refillable unit described above.

The refillable unit 10' can present a height that is shorter, and a cross-section that is greater than the refillable unit 10.

The refillable unit 10' can be refilled by means of a receptacle 202 comprising a receptacle body 203 with a neck 206 on which a support 204 is secured, e.g. by snap-fastening.

By way of example, said support comprises a tubular skirt 205 of axis X extending above the neck 206 of the receptacle body 203 in order to receive the refillable unit 10'.

Figures 6 and 7 show a packaging assembly 300 in accordance with another embodiment of the invention.

The assembly 300 includes a receptacle 301 comprising a receptacle body 302 and a support 303 secured to the body 302.

The support 303 comprises: an assembly skirt 304 enabling the receptacle body 302 to be screwed onto a neck 305; a transverse wall 307 that presses against the top segment of the neck 305; and a substantially cylindrical wall 308 of axis X forming a housing 309 for receiving a refillable unit 310.

A major fraction of the wall 308 extends beneath the transverse wall 307 when the assembly 300 is observed head-up, the wall 308 forming a cylindrical portion 312 above the transverse wall 307.

The support 303 further comprises a central portion 313 extending into the housing 309 and comprising a substantially cylindrical wall 314 of axis X connected at its bottom end to the wall 308 via a bottom wall 315.

At its top end, the wall 314 includes a fastener portion 317 provided with a groove 318 whose purpose is described below.

The central portion 313 includes an endpiece 319 extending into the inside space defined by the wall 314, the endpiece 319 comprising a frustoconical wall 320 that is connected to the wall 314 beneath the fastener portion 317.

The frustoconical wall 320 is extended by a cylindrical portion 322 of axis X communicating at its top end with an outlet orifice 323.

A dip tube 99 is secured in the inside space defined by the portion 322, the dip tube 99 opening out at its top end to the outlet orifice 323.

The refillable unit 310 includes a body 330 comprising a tubular wall 331 of axis X, having a return margin 332 at its bottom end.

The margin 332 presents an upwardly-tapering, slightly frustoconical shape with an annular edge 333, and has an inside diameter that is slightly smaller than the maximum diameter of the fastener portion 317.

The rim 333 defines an opening 335 enabling the central portion 313 to be inserted through said opening 335 when the refillable unit 310 is inserted into the housing 309 of the receptacle 301.

The refillable unit 310 includes a piston 337 which co-operates with the body 330 to form a storage chamber 338 of variable volume above the piston 337.

The piston includes outer and inner coaxial skirts 340, 341, the inner skirt 341 being connected to the inside surface of the outer skirt 342 substantially midway up said outer skirt, forming an opening 342 of substantially frustoconical shape that tapers downwards.

The piston 337 includes bottom and top annular lips 345, 346 connected to the outer skirt 340 and pressed against the inside surface of the body 330.

The outer skirt 340 includes a fastener portion 347 presenting an annular bead 348 arranged to become engaged by snap-fastening in the groove 318 of the fastener portion 317 of the receptacle 301 when the refillable unit 310 is inserted into the housing 309 of the receptacle.

The inner skirt 341 forms a housing 350 arranged to receive a check valve comprising a ball 351, the housing 350 presenting a bearing surface 352 against which the ball 351 can be pressed in order to close a passage 353 defined by the inner skirt 341.

The refillable unit 310 includes a resilient return member 354 arranged to exert a force on the ball 351, said force tending to press said ball against the bearing surface 352 so as to close the passage 353.

In the example described, the resilient return member 354 comprises a helical spring which, at one end, presses against the ball 351, and at an opposite end, presses against the piston 337.

The annular bearing surface 352 defines an orifice 355 suitable for being put into fluid communication with the outlet orifice 323 of the receptacle.

At its top end, the body 330 includes a bead 357 enabling a pump 150 to be put in place by means of a fret 358.

The pump 150 includes a duct 162 that is suitable for being engaged in the passage 353 of the piston 337 via the opening 342.

The piston presents a shape that substantially matches the outside shape of the pump 150.

The assembly 300 can be used in various ways.

For the purpose of taking and dispensing the liquid contained in the receptacle 301, the user places the refillable unit 310 on the receptacle 301 so that the

fastener portion 347 of the refillable unit 310 becomes engaged on the fastener portion 317 of the receptacle by inserting the bead 348 in the groove 318, as shown in Figure 6.

The inner skirt 341 of the piston 337 is pressed in leaktight manner against the endpiece 319 of the receptacle.

The ball 351 is displaced by pressing upwards against the endpiece 319, against the force exerted by the spring 354, so as to move away from the bearing surface 352 and open the orifice 355.

When the refillable unit 310 is secured on the receptacle 301, the volume of the storage chamber 338 is at its minimum, the piston 337 being pushed until it comes to press against the pump 150.

The pump 150 is pressed in leaktight manner against the piston 337.

By pressing on the pushbutton 98, the user causes the liquid contained in the pump chamber of the pump 150 to be dispensed.

By releasing the pushbutton 98, the pump 150 sucks in the liquid contained in the receptacle 301, the liquid flowing along a path passing via the dip tube 99, the outlet orifice 323, and the passage 353 of the skirt 341.

In order to fill the storage chamber 338, the user moves the body 330 of the refillable unit upwards relative to the receptacle 301, the piston 337 remaining secured to the fastener portion 317 of the receptacle.

Thus, the piston 337 slides relative to the body 330, thereby generating suction in the storage chamber 338 enabling the liquid contained in the receptacle to be sucked in via the orifice 323 of the receptacle and the passage 353 of the piston 337.

At the end of the stroke, the annular edge 333 of the body 330 is pressed against the fastener portion 317 of the receptacle and the fastener portion 347 of the piston 337 so as to contribute to releasing the annular

19
J

bead 348 from the groove 318 of the receptacle by elastic deformation.

When the refillable unit 310 is removed from the receptacle, the spring 354 returns the ball 351 against the bearing surface 352 so as to close the orifice 355, as shown in Figure 7.

The user can dispense the liquid contained in the storage chamber 358 by actuating the pump 150.

The piston 337 rises in the body 330 as the storage chamber 338 empties.

Throughout the description, including in the claims, the term "comprising a" should be understood as being synonymous with "comprising at least one" unless specified to the contrary.

CLAIMS

1. An assembly (1; 300) for packaging and dispensing liquid, the assembly comprising:
 - a receptacle (2; 202; 301) for containing a supply of liquid; and
 - a refillable unit (10; 10'; 310) arranged to be placed in separable manner on the receptacle, the refillable unit comprising:
 - a body (25; 330) and a piston (32; 337) that is movable relative to the body and that co-operates therewith to define a storage chamber (55; 338) of variable volume for containing the liquid, the storage chamber (55; 338) being capable of being put into fluid communication with the receptacle (2; 301) in order to be filled therefrom when the refillable unit (10; 10'; 310) is placed on the receptacle; and
 - a pump (150) capable of taking liquid from the receptacle when the refillable unit is placed thereon, and of taking liquid from the storage chamber (55; 338) when the refillable unit is separate from the receptacle, the pump having a pump chamber (157) that is distinct from the storage chamber (55; 338), the assembly being characterized by the fact that the storage chamber (55) is formed under the piston (32; 337) when the refillable unit is observed in the head-up position.
2. An assembly according to the preceding claim, characterized by the fact that the refillable unit (10; 10'; 310) is arranged to enable suction to be generated in the storage chamber, at least when the storage chamber (55) is in fluid communication with the receptacle, so as to enable the storage chamber to be filled.
3. An assembly according to either one of the two preceding claims, characterized by the fact that the receptacle has an outlet orifice (19; 323) suitable for

being pushed into fluid communication with the storage chamber (55; 338) of the refillable unit for filling purposes, and by the fact that the receptacle does not have a pump capable of feeding said outlet orifice (19; 323) with liquid.

4. An assembly according to any preceding claim, characterized by the fact that the pump chamber (157) is isolated from the storage chamber (55; 338), at least while the pump is dispensing liquid.

5. An assembly according to any preceding claim, characterized by the fact that the volume of the pump chamber (157) is smaller than the maximum volume of the storage chamber (55; 338).

6. An assembly according to any preceding claim, the pump including a suction orifice (163), the assembly being characterized by the fact that, when the refillable unit is placed on the receptacle, said suction orifice (163) of the pump (150) is suitable for being placed close to an outlet orifice (19; 323) of the receptacle, vertically in register with said outlet orifice.

7. An assembly according to any preceding claim, characterized by the fact that the pump (150) is an airless pump.

8. An assembly according to any preceding claim, characterized by the fact that the receptacle includes a support (4; 204; 303) arranged to receive the refillable unit, said support (4; 204; 303) being stationary relative to the remainder of the receptacle.

9. An assembly according to any preceding claim, characterized by the fact that the refillable unit and the receptacle have respective fastener portions (41, 42;

317; 347) suitable for co-operating in releasable manner, in particular by snap-fastening or by screw-fastening.

10. An assembly according to any preceding claim, characterized by the fact that at least one of the refillable unit and of the receptacle includes portions in relief (49; 22; 46; 318; 348) suitable for co-operating with the other one of the refillable unit and the receptacle in order to isolate the suction orifice (63) of the pump in leaktight manner from the outside at least when the refillable unit is used to take liquid from the receptacle.

11. An assembly according to any preceding claim, characterized by the fact that the receptacle includes an air intake passage.

12. An assembly according to any one of claims 1 to 10, characterized by the fact that the receptacle does not have an air intake.

13. An assembly according to any preceding claim, characterized by the fact that, when the refillable unit (10; 310) is placed on the receptacle (2) so that the pump can take liquid from the receptacle, with the pump communicating in particular with a dip tube (99) of the receptacle, the volume of the storage chamber (55; 338) is at its minimum.

14. An assembly according to any preceding claim, characterized by the fact that the piston (32; 337) has an orifice (38; 355) suitable for putting the receptacle (2; 301) into fluid communication with the storage chamber (55; 338).

15. An assembly according to the preceding claim, characterized by the fact that the refillable unit (10;

310) includes a check valve (39; 351) that is movable between a first position in which it closes said orifice (38; 355) of the piston, and a second position in which it enables liquid to flow through said orifice (38; 355).

16. An assembly according to the preceding claim, characterized by the fact that the check valve (39) comprises a body with an inside passage (45).

17. An assembly according to claim 15, characterized by the fact that the check valve comprises a ball (351), and by the fact that the refillable unit (310) includes a resilient return member (354) arranged to apply a force on the ball, tending to return the ball into the closed first position.

18. An assembly according to any preceding claim, characterized by the fact that the piston (32; 337) presents a shape that substantially matches the outside shape of the pump (150).

19. An assembly according to any preceding claim, characterized by the fact that the piston (32; 337) includes a fastener portion (42; 347) suitable for co-operating in releasable manner with a fastener portion (20; 317) of the receptacle when the refillable unit is placed on the receptacle.

20. An assembly according to claim 19, characterized by the fact that the piston (32) includes a skirt (35) defining a passage in communication with an orifice (38) of the piston, the skirt (35) including the fastener portion (42).

21. An assembly according to claim 19, characterized by the fact that the piston includes substantially coaxial

inner and outer skirts (341; 340), the fastener portion (347) being provided on the outer skirt.

22. An assembly according to any preceding claim, characterized by the fact that the receptacle (2) includes a central portion (15; 313) suitable for being engaged in the body (26; 330) of the refillable unit (10) when said refillable unit is placed on the receptacle, said central portion (15; 313) including a fastener portion (20) suitable for co-operating with a fastener portion (42; 347) of the piston.

23. An assembly according to the preceding claim, characterized by the fact that the central portion (15; 313) serves to fasten a dip tube (99).

24. An assembly according to any preceding claim, characterized by the fact that the receptacle contains a cosmetic, including a care product, and in particular a perfume.

25. An assembly according to the preceding claim, characterized by the fact that the liquid is a cream.

26. A refillable unit (10; 10'; 310) arranged to be placed in separable manner on a receptacle, the refillable unit comprising:

- a body (25; 330) and a piston (32; 337) that is movable relative to the body (25; 330) and that co-operates therewith to define a storage chamber (55; 338) of variable volume, the storage chamber being capable of being put into fluid communication with the receptacle order to be filled therefrom when the refillable unit is placed on the receptacle; and

- a pump (150) capable of taking liquid from the receptacle when the refillable unit is placed on the receptacle, and of taking liquid from the storage chamber

when the refillable unit is separate from the receptacle, the pump having a pump chamber (157) that is distinct from the storage chamber (55; 338), the assembly being characterized by the fact that the storage chamber (55; 338) is formed under the piston (32) when the refillable unit is observed in the head-up position.

27. A refillable unit according to the preceding claim, characterized by the fact that it is arranged to enable suction to be generated in the storage chamber, at least when the storage chamber (55; 338) is in fluid communication with the receptacle (2), so as to enable the storage chamber to be filled under the effect of the suction created in this way.

28. A refillable unit according to either one of the two preceding claims, characterized by the fact that the volume of the pump chamber (157) is smaller than the maximum volume of the storage chamber (55; 338).

29. A refillable unit according to any one of claims 26 to 28, characterized by the fact that the piston (32; 337) has an orifice (46; 355) capable of putting the receptacle (2; 301) into fluid communication with the storage chamber (55).

30. A method of dispensing liquid, the method comprising the following steps:

- providing a packaging and dispenser assembly (1; 300), comprising:
 - a receptacle (2; 301) for containing a supply of liquid; and
 - a refillable unit (10; 310) according to any one of claims 26 to 29;
 - using the refillable unit to take liquid either from the receptacle when the refillable unit is placed on

7
J

the receptacle, or from the storage chamber of the refillable unit when the refillable unit is separate from the receptacle; and

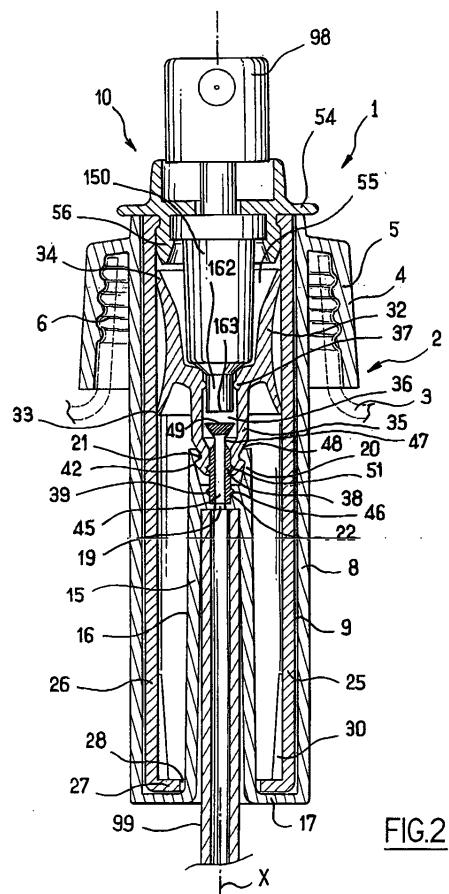
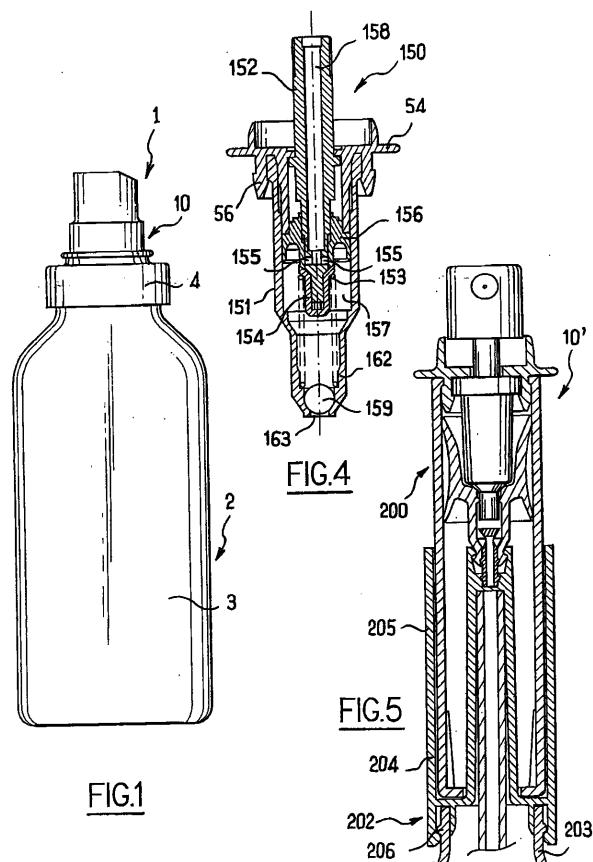
· dispensing a quantity of liquid taken by means of the refillable unit by actuating the pump over a full stroke, the quantity of liquid dispensed corresponding to a fraction only of the maximum volume of the storage chamber, and in particular to less than one-tenth thereof.

31. A method according to the preceding claim, in which the pump includes a suction orifice (163) and the receptacle includes an outlet orifice (19; 323), the method being characterized by the fact that it includes the following steps:

· putting the suction orifice (163) into communication with the outlet orifice (19); and
· taking liquid from the receptacle.

32. A method according to claim 31, characterized by the fact that the method includes the following steps:

· placing the refillable unit (10; 310) on the receptacle (2; 301); and
· moving the piston relative to the body in order to increase the volume of the storage chamber, the piston moving away from the pump during this movement.



A B S T R A C T

The present invention relates to an assembly (1) for packaging and dispensing liquid, the assembly comprising:

- a receptacle (2) for containing a supply of liquid; and
- a refillable unit (10) arranged to be placed in separable manner on the receptacle, the refillable unit comprising:

- a body (25) and a piston (32) that is movable relative to the body and that co-operates therewith to define a storage chamber (55) of variable volume for containing the liquid, the storage chamber (55) being capable of being put into fluid communication with the receptacle (2) in order to be filled therefrom when the refillable unit (10) is placed on the receptacle; and

- a pump (150) capable of taking liquid from the receptacle when the refillable unit is placed thereon, and of taking liquid from the storage chamber (55) when the refillable unit is separate from the receptacle, the pump having a pump chamber that is distinct from the storage chamber (55).

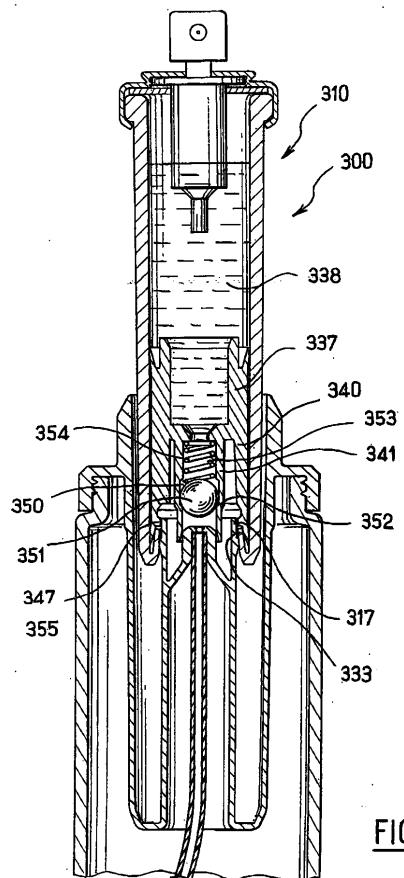


FIG. 7