This invention relates to a folded box and a foldable flat blank for its construction. It is an object of this invention to provide a folded box having in its unfolded state the general volumetric proportion of a parallelepipedon which can be flexed so as to assume a variety of multi-planar relationships.

It is another object of this invention to provide a folded box which in its flexed condition affords easy accessibility for its removal when stored side by side with other boxes of similar construction.

It is another object of this invention to provide a flexible folded box which in its unfolded state has a volumetric shape which lends itself to economy and efficiency in the packing of said boxes and their contents for shipment.

It is another object of this invention to provide a box having a pleasing shape which affords a variety of planar surfaces for the reflection of light and the production of shadows which enhance the appearance of the package.

Other objects and attendant advantages will become apparent from the following description and in the drawings wherein:

FIG. 1 is a plan view of the inner face of a folding box blank scored or creased in accordance with this invention.

FIG. 2 is a view in perspective of one specific arrangement of the folding box as constructed in accordance with this invention.

FIG. 3 is another view in perspective of the same arrangement of the folding box as constructed in accordance with this invention.

FIG. 4 is a view in cross-section of the folding box as constructed in accordance with this invention taken as indicated by the lines and arrows IV—IV in FIG. 3, but showing the side walls of the box in their generally uniplanar relation.

FIG. 5 is a view in cross-section of the folding box as constructed in accordance with this invention taken as indicated by the lines and arrows V—V in FIG. 3.

FIG. 6 is a view in top plan of the inner face of a modification of the folding box blank as scored and constructed in accordance with this invention.

FIG. 7 is a view in perspective of a folding box as constructed from the modified blank of FIG. 6.

FIG. 8 is a view partly in perspective and partly in section showing one specific arrangement of the folding box as constructed in accordance with this invention when placed side by side with other such boxes.

FIG. 9 is a plan view of one specific arrangement of the folding box constructed in accordance with this invention.

FIG. 10 is a plan view of a modified box blank in accordance with this invention.

FIG. 11 is a view in perspective showing the application of adhesive to the modified blank of FIG. 10.

FIG. 12 is a view showing the box formed from the blank of FIG. 10 in a collapsed position.

The following description is directed to the specific forms of the apparatus and method shown in the drawings and is not intended to be addressed to the scope of the invention as exemplified by the drawings. It will be appreciated that the drawings represent preferred embodiments and that what is described is being practiced in a wide variety of forms and arrangements.

Adverting herewith to the specific form of the invention illustrated in the drawings, a flexible folding box, as seen in FIGS. 2 and 3, is formed of a folding box blank 10, of generally rectangular proportion, having a body portion consisting of alternate side and end portions coextensively arranged longitudinally of blank 10. The letters A, B and C, D respectively denote areas comprising alternate side portions and the letters E, F and G, H respectively denote areas comprising alternate end portions.

Also forming a part of the blank 10 is a top closure portion K formed coextensively with side portion A—B and a bottom closure portion L similarly formed coextensively with side portion C—D.

Top closure portion K is divided by a score or crease line 11 parallel to its terminal edge 12 which delimits the area of a top retaining flap 13. A bottom retaining flap 14 is similarly provided by the score or crease line 15 formed in the bottom closure portion L, parallel to the terminal edge thereof.

The blank 10 further comprises top end portion 16 and bottom end portion 17 formed coextensively with end areas E and F respectively. Score or crease lines 18 and 19 running parallel to terminal edges 22 and 23 of top end portion 16 and bottom end portion 17 respectively, divide each end portion from its respective end area.

Score lines 24 and 25 parallel to terminal edges 26 and 27 of top end portion 28 and bottom end portion 29, respectively, similarly divide the aforesaid end portions from their respective end areas G and H, of which they are integrally formed. As seen in FIG. 1, a tapered edge 30 of top end portion 16 and a similar edge 31 of bottom end portion 17 are severed from their respectively adjacent closure portions K and H. Likewise, tapered end portion 29 is similarly severed from adjacent closure portion L. Also formed integrally of end area G and bounded by the terminal edges 32, 33, and 34 is an upper seam flap 36 delimited from the area G by a score or crease line 37. Immediately below flap 36 is a second flap 38 also formed integrally with its coextensive area H and separated therefrom by a crease line 39. The numbers 42, 43, and 44 designate the terminal edges bounding lower seam flap 38.

It will be noted that while upper terminal edges 13, 22, 26 and 45 and lower terminal edges 20, 23, 27 and 46 of the blank 10 are substantially rectilinear, the edges 47 and 48 of side areas A and B, respectively, are biased to angle inwardly of the blank 10 at the left-hand side. The terminal edges 33 and 43 of upper seam flap 36 and lower seam flap 38, respectively, are likewise biased to angle correspondingly outward at the right-hand side of the blank 10.

In addition to the score or crease lines separating the designated areas hereinbefore described, the body of the blank 10 is further provided with other rectilinear or crease lines, the purpose of which will become hereinafter apparent. A rectilinear score or crease line 51 separates the side area A from top closure portion K, and likewise a similar line 52 separates side area D from bottom closure portion L.

The blank 10 is scored or creased centrally between its top and bottom portions parallel to the rectilinear edges 45 and 46 to provide a rectilinear flex line 53 extending horizontally across the blank 10 from its left-hand side to its right-hand side. Vertical fold lines in the body portion of the blank are provided by a score line 54 separating side portion A—B from end portion E—F, a score line 55 separating end portion E—F from side portion C—D, score line 56 separating side portion C—D from end portion G—H, as well as by score line 37, previously mentioned as separating end portions G—H from upper and lower terminal seam flaps 36 and 38.

As may be seen in FIG. 1, in addition to the afore-mentioned rectilinear flex lines, four non-rectilinear flex lines are also provided in the body portion of the blank.
by the angled score or crease lines 58, 59, 60 and 61. It will be evident that the obtuse angle formed by each of the score lines 59 and 61 within the body of the blank at the point of intersection with the flex line 53 corresponds to the obtuse angle formed by the non-rectilinear edge portions 47 and 48 at the left-hand side of the blank. Similarly, the obtuse angles formed at the point of intersection with flex line 53 by score lines 58 and 60 correspond to the obtuse angle which would be formed by the intersection of lines extended from the edge portions 33 and 43 of terminal seam flaps 36 and 38 at the extreme right-hand side of the blank.

The application of a suitable adhesive to the under-surface of terminal seam flaps 36 and 38, as indicated by the shaded area 62 of FIG. 1, the folding box shown in FIGS. 2 and 3 may be formed of the blank 10 by folding the blank along the fold line 56 so that the right-hand side of the blank is raised upward and over to lie flat upon the face of the blank with glued seam flaps 36 and 38 exposed and further folding the blank along the fold line 54 so that the right-hand side of the blank is brought upward and over to overlap the left-hand side thereof to the extent that shaded areas 63 and 64 are adjacent seam flaps 36 and 38 respectively. It will be observed that the terminal flap portions 36 and 38 of the blank 10 are constructed so that when a folding box is to be formed thereof the entire surface 62 of the aforesaid flaps successfully receives an application of adhesive. Consequently, when the adhesive surface 62 of seam flaps 36 and 38 is applied to the shaded areas 63 and 64 located at the left-hand edge of the blank 10, and sufficient pressure has been applied to the adjacent areas to effect a secure bond, a permanent and continuous bond is formed along the entire seam at the edges 47 and 48.

When the seam of the collapsed blank has been secured as aforesaid, the folded structure may be opened by the application of pressure to the opposed fold lines 54 and 56, whereupon the blank assumes a box-like structure having rectangular sides and ends, the planes of which are respectively parallel to each other. It will be evident that side portions A—B and C—D have become side walls of the structure and that end portions E—F and G—H have become end walls thereof.

To effect the closure of the bottom of the box, the closure portion L is folded along the scored line 52, and the retaining flap 14 is folded along the scored line 15 until perpendicular to closure portion L. End flaps 17 and 29 are folded to be perpendicular to end areas E and F. Finally, retaining flap 14 is tucked into the space between the tapered edges of bottom end portions 17 and 29 and the inside surface of side wall A—B. Similarly at the top of the box, end portions 16 and 28 are turned inwardly perpendicular to end walls E—F and G—H respectively and closure effected by tucking retaining flap 18 between the aforesaid end portions and the adjacent wall C—D.

When erected in the manner described, the folding box forms a closed container having regular and symmetrical proportions in all its parts, the planes of its top, bottom, sides and ends intersecting at right angles to each other, as in a parallelepiped. The angled flex lines 58 and 61 now appear upon the flat surface of the side wall A—B intermediate the corners of the box determined by the fold lines 37 and 54, and the angled flex lines 59 and 60 show upon the flat surface C—D intermediate the corners of the box determined by the fold lines 55 and 56.

Fold the box so that the uni-planar side and end walls are each connected to a pair of panels in dual-planar relation, the box is held in both hands, as shown in FIG. 4, and pressure is applied to the end walls E—F and G—H at the flex line 53. The box thereupon assumes the shape shown in FIGS. 2, 3 and 5. The areas A, B, C, D, E, F, G and H now become independent panels in the side and end walls of the box, no two of which are in the same plane. The panels of the side walls angle outward to assume a convex aspect, while the panels of the end walls angle inward to assume a concave aspect. It will be noted that the flexed box, constructed of the material as scored and creased in accordance with this invention, has side walls having a width when measured at the center flex line equal to the width of the end walls when measured at either the top or the bottom of the box. Likewise, the end walls, when the box has been flexed, have a width at the center flex line equal to the width of the side walls measured at the top or the bottom of the box. In consequence, the rectangle described by the center flex line has an area equal to the areas K and L at the top and bottom of the box respectively.

It will be evident that the particular obtuse angles formed by the vertical, non-rectilinear flex lines 58, 59, 60 and 61 at their intersection with horizontal flex line 53 as shown in FIG. 1 and selected for the specific embodiment of the invention, are by no means a limiting factor of the invention. On the contrary, in the usual practice of this invention a selection is made from a large number of possible obtuse angles which may be formed by the aforesaid vertical flex lines, selecting in each case the size, degree of concavity of end walls and convexity of side walls, or other features it is desired to incorporate into the folding box to be formed thereby.

In a modification of the invention, illustrated in FIGS. 6, 7, 8 and 9, the blank 10a has been blanked-out or scored without the fold lines 37 and 53 of blank 10. Otherwise the score lines and elements of the blank 10 are the same as those of the blank 10. It will be evident that when the left-hand side of blank 10 is brought upward and over to overlap the edge of the previously folded right-hand side in order to adhere the surface 62a to the shaded areas 64a and 65a, the primary fold lines are 54a and 56a respectively.

It will be evident that the novel folded box of this invention may be constructed equally easily from either the blank 10 or the blank 10a by applying adhesive to the left-hand side of the respective blanks. For example, the blank 10 or the blank 10a may be run through a standard automatic box-making machine having a glue wheel provided with a pair of dies each having a surface conforming in part to the inwardly angled edge of blanks 10 and 10a. In the aforesaid manner of making the folded box according to this invention, it is contemplated that only the dies so attached to the glue wheel and the aforesaid glue wheel will come into contact with the edges of the respective blanks whereby application of the adhesive is confined to the seam portion of the blank and exposure of the top closure portions K and K' to the aforesaid application of adhesives is thereby avoided. The use of the glue wheel and dies ordinarily associated with standard automatic box-making machinery will be more fully described hereinafter.

After a secure bond has been formed along the seams 47a and 48a, the blank can be expanded by applying pressure to the fold lines 54a and 56a. As may best be seen in FIG. 9, the volumetric proportions of the box prior to flexing are that generally, although not exactly, of a parallelepiped. Upon flexing the folding box by the application of pressure to the end walls at the flex line 53a, the end walls of the box each comprise a pair of panels angled inwardly of the box at the central portion thereof and assume a concave aspect, and the side walls each comprise a pair of panels angled outwardly of the box at the center portion thereof and assume a convex aspect. The side and end walls are, therefore, converted into arrays of panels having a dual-planar relationship, and so that no plane of any panel is parallel with that of any other, as illustrated in FIG. 7.

FIG. 8 illustrates the appearance of the flexed folding
box, formed of a blank as constructed according to this invention, when placed side by side on a shelf or similar support, and the manner in which the dual-planar formation of the end walls of the box provide a diamond shaped space 65 between each box, which may be utilized for grasping the box preparatory to its removal from the aforesaid shelf or other support.

Another modification of the folded box, as constructed in accordance with this invention, is illustrated in FIGS. 10, 11, and 12. The blank 10b, again of generally rectangular proportions, is constructed to have a body portion consisting of alternate side and end portions formed integrally and longitudinally of blank 10b. The letters A’, B’ and C’, D’, E’ respectively denote the side portions of the folded box and the letters E”, F”, G” and H” similarly denote areas respectively comprising alternate end portions. A top closure portion K” formed co-extensively with side portion A’, B’ is divided by a score or crease line 11b parallel to the terminal edge 12b thereof marking off the area of a top retaining flap 14b which is likewise marked off by the score or crease line 15b formed in a bottom closure portion L”, likewise parallel to the terminal edge thereof.

The blank 10b also comprises a top end portion 16b, a bottom end portion 17b formed integrally with end areas G” and H” respectively. Score or crease lines 18b and 19b which are formed parallel to terminal edges 22b and 23b of top end portion 16b and bottom end portion 17b, respectively, divide each end portion from its respective end area. Score lines 24b and 25b parallel to the terminal edges 26b and 27b of top end portion 28b and bottom and portion 29b, respectively, in like manner divide the aforesaid end portions from their respective end areas, G” and H”, of which they are integrally formed. A tapered edge 30b of top end portion 16b and similar edge 21b of bottom end portion 17b are severed from their respectively adjacent closure portions K” and H”. Likewise, tapered end portion 29b is similarly severed from adjacent closure portion L”. End area G’” is bounded at the extreme right-hand side of blank 10b by the angularly formed terminal edges 47b and 48b.

At the extreme left-hand side of the blank 10b there are formed integrally of the side areas A” and B” seam flaps 36b and 38b respectively. Seam flap 36b is bounded by the terminal edges 32b, 33b and 34b, and the terminal flap 38b is bounded by the terminal edges 42b, 43b and 44b. It will be noted that the edges 47b and 48b of end areas C” and H” respectively, are blazed to angle outwardly of the blank 10b at the extreme right-hand side thereof. The extreme right-hand edge 43b and 43b of upper seam flap 36b and lower seam flap 36b, respectively, are similarly blazed to angle corresponding inwardly at the extreme left-hand side of the blank 10b.

The body of the blank 10b is further provided with a rectilinear score or crease line 51b which extends down the side closure portion K”, and likewise, a similar line 52b is provided therein separating side area D” from bottom closure portion L”. The blank 10b is scored or creased centrally between the top and bottom portions parallel to the rectilinear edges 45b and 46b to provide a rectilinear flex line 53b extending horizontally across the blank 10b from its left-hand side to its right-hand side. The flex line 53b terminates at the apex of the angle formed by the outwardly directed terminal edges 47b and 48b.

Vertical fold lines in the body portion of the blank 10b are provided by a score line 54b separating side portion A”-B” from edge portion C”-F” and a score line 56b separating side portion C”-D” from end portion G”-H”. In addition to the aforementioned rectilinear flex lines, four non-rectilinear flex lines are also provided in the body portion of the blank 10b by the angled score or crease lines 58b, 59b, 60b, and 61b. It will be evident that the obtuse angle formed by each of the score lines 59b and 61b within the body of the blank at the point of intersection with the flex line 53b corresponds to the obtuse angle formed by the non-rectilinear terminal edges 47b and 48b at the extreme right-hand side of the blank.

Likewise, the obtuse angles formed at the point of intersection with the flex line 53b by score lines 58b and 60b correspond to the obtuse angle which would be formed by the intersection of lines extended along the terminal edges of terminal seam flaps 36b and 38b at the extreme left-hand side of the blank 10b.

In the modification of the invention as exemplified by the blank 10b, a suitable adhesive is applied to an angular area indicated by the shaded portion 63b of FIG. 10 which forms a part of end body portion G”-H” at the right-hand side of the blank. Upon application of adhesive to the aforesaid area 63b, the blank 10b is folded first along the fold line 46b in such a manner that the extreme left-hand side of the blank is brought upward and over to lie flat against the upwardly exposed face of the blank and is then folded along the fold line 56b to bring the extreme right-hand side of the blank 10b upward and over to lie flat against the exposed face of the blank and to overlap terminal seam flaps 36b and 38b which become secured to the aforesaid right-hand side of the blank upon the application of pressure to the glued seam. The appearance of the blank 10b, folded as aforesaid, is shown in FIG. 12, and the manner in which glue or other suitable adhesive may be applied to the blank 10b by the usual terminal seam flaps 36b and 38b which become secured to the aforesaid right-hand side of the blank upon the application of pressure to the glued seam. As shown in FIG. 11, a glue wheel 70b, of the kind used with standard automatic box-making machines, is equipped with the dies 71b and 72b shaped to have a surface which conforms in size and proportion to the size and proportion of the shaded area 63b. As the flat blank 10b proceeds through the standard automatic box-making machine, the extreme right-hand side of the blank passes beneath the glue wheel 70b which has been adjusted to the speed of the machine so that the dies 71b and 72b coincide in their revolutions on the periphery of the glue wheel with the shaded area 63b. Since only the dies 71b and 72b of the wheel 70b, which is automatically revolved through a glue pot, touch the blank 10b at any point, only the shaded area 63b receives an application of adhesive.

It will be evident that the dies 71b and 72b need not be used when making a folded box from the blank 10b insasmuch as the only area of blank 10b which could be exposed to the wheel is that shown in FIG. 10 as the shaded area 63b. It will be apparent that a very important advantage of this invention is contained in the fact that both the rectilinear and non-rectilinear vertical fold lines provided in the blank, as constructed according to this invention, terminate, when the box has been erected, only at the vertices of the box, thereby contributing greatly to the rigidity and stability of the box by avoiding the weakening effect of fold lines terminating at a point intermediate the aforesaid vertices.

Another important advantage of this invention is realized in the construction of a blank for a box readily adaptable to the manufacture of folding boxes by means of standard automatic box-making machinery whereby the application of adhesive to the non-rectilinear seam of the box is unnecessary and offending a completely bonded seam to the folded box.

Still another advantage of this invention lies in the
generally rectilinear and parallel planes of the surfaces of the folding box when unflexed, whereby an enhanced convenience and practicality is afforded for packing said boxes and their contents for shipment.

Still another advantage of the folding box, as constructed according to this invention, lies in the manner in which a single line formed by the vertical, non-rectilinear and parallel lines of the box, whereby a variety of articles contained by the box, such as bottles, for example, may be securely gripped and held in place within the container, thereby eliminating any worry, or corrugated linings, and the like.

Although this invention has been disclosed with reference to specific forms and embodiments thereof, it will be evident that a great number of variations may be made without departing from the spirit and the scope of this invention. For example, parts may be reversed, equivalent elements may be substituted for those specifically disclosed, and certain features of the invention may be used independently of other features, all without departing from the spirit and scope of this invention as defined in the appended claims.

Having thus described my invention, I claim:

1. A folding box formed from a foldable blank comprising a plurality of side walls adjacent one another, said walls having vertical fold lines forming at least two alternative junctures between each of said walls, said vertical fold lines forming each of said junctures terminating at the same point at the upper and lower ends of said walls, said vertical fold lines forming at least two sets of cooperating junctures in said box, one of said sets of junctures being adapted to provide substantially uniplanar walls in said box and the other of said sets of junctures being adapted to provide substantially dual-planar walls in said box, said walls having a horizontal score line thereon extending transversely to said vertical means intermediate said upper and lower ends of said walls, a pair of end sections formed integrally with at least two of said walls and extending from the top and bottom thereof, and closure means extending from opposing side walls for closing the top and bottom of said box, said closure means having retaining means associated therewith at the terminal ends thereof for retaining said closure means in position against said walls.

2. The folded box defined in claim 1 wherein said vertical fold lines comprise a plurality of lines rectilinear with respect to said upper and lower ends of said box and a plurality of lines non-rectilinear with respect to said upper and lower ends of said box, said vertical score line being adapted respectively to form alternate junctures between said side and end walls adjacent one another, said body portion having a plurality of straight and angular score lines formed vertically therein, said straight and angular score lines being adapted respectively to form alternate junctures between said side and end walls, each of said straight score lines being adjacent an angular score line and terminating therewith at the edges of said body portion, said straight score lines being adapted to provide junctures forming substantially uniplanar side and end walls in said box and said angular score lines being adapted to provide junctures forming substantially dual-planar side and end walls in said box, said dual-planar side and end walls being formed inwardly concave, said body portion having impressed in each said wall thereof a score line transverse to said vertical score lines, said body portion having a pair of terminal seam flaps formed integrally with an end wall, each of said seam flaps and said end wall having impressed therebetween a vertical score line dividing said flap from said end wall, said seam flaps each being folded along said vertical score line inwardly of said body portion at a juncture thereof and adapted to adhere to the inside of an adjacent side wall, a pair of trapzoidal end sections formed integrally with each end wall and extending therefrom, each of said end sections and said end wall having an impressed therebetween a horizontal score line dividing said end section from said end wall, each of said end sections being folded along said horizontal scored line inwardly of said body portion and perpendicularly to said end wall, and a substantially rectangular closure portion formed integrally with each side wall extending from opposite ends of said body portion, each of said closure portions and the side wall from which it is formed having a score line impressed therebetween, said closure portion being folded along said score line perpendicularly to said side wall, said closure portion consisting of a cover portion and a retaining flap portion, said cover portion and said retaining flap portion having impressed therebetween a horizontal score line dividing said cover portion from said retaining flap portion, said retaining flap portion being folded along said score line perpendicularly to said cover portion and disposed inwardly of said body portion.

4. The folded box defined in claim 3 wherein the number of straight score lines impressed vertically in said body portion equals the number of angular score lines impressed therein.

5. The folded box defined in claim 3 wherein the number of angular score lines impressed vertically in said body portion exceeds the number of straight score lines impressed therein.

6. The folded box defined in claim 5 wherein the number of angular score lines impressed vertically in said body portion is twice the number of straight score lines impressed therein.

7. A foldable blank for forming a box comprising a generally rectangular body portion, said body portion having a plurality of pairs of fold lines extending laterally across the surface thereof, each pair of said fold lines terminating at the same point at each of the lateral edges of said body portion, said pairs of fold lines being disposed serially across said body portion in longitudinally spaced relation, each of said pairs consisting of a fold line rectilinear with respect to the lateral edges of said body portion and a fold line non-rectilinear with respect thereto, said body portion having impressed therein a score line transverse to said fold lines and extending longitudinally across the surface thereof, said body portion being formed integrally with said body portion and extending from a longitudinal edge thereof, said score line forming means formed integrally with said body portion and extending from a longitudinal edge thereof, and closure means for the top and bottom of said box formed integrally with said body portion and extending from the lateral edges thereof.

8. The blank defined in claim 7 wherein said non-rectilinear fold line is an angular fold line.

9. The blank defined in claim 8 wherein the angle formed by said angular fold line is an obtuse angle.

10. A foldable blank for forming a box comprising a generally rectangular body portion, said body portion having impressed therein a plurality of straight and angular score lines extending laterally across the surface thereof, each of said straight lines forming a right angle with respect to the lateral edges of said body portion and each of said angular lines forming an acute angle with respect to the lateral edges of said body portion, said body portion being formed outwardly convex and said dual-planar end walls being formed inwardly concave, said body portion having impressed in each wall thereof a score line transverse to said vertical score lines, said body portion having a pair of terminal seam flaps formed integrally with an end wall, each of said seam flaps and said end wall having impressed therebetween a vertical score line dividing said flap from said end wall, said seam flaps each being folded along said vertical score line inwardly of said body portion at a juncture thereof and adapted to adhere to the inside of an adjacent side wall, a pair of trapzoidal end sections formed integrally with each end wall and extending therefrom, each of said end sections and said end wall having an impressed therebetween a horizontal score line dividing said end section from said end wall, each of said end sections being folded along said horizontal scored line inwardly of said body portion and perpendicularly to said end wall, and a substantially rectangular closure portion formed integrally with each side wall extending from opposite ends of said body portion, each of said closure portions and the side wall from which it is formed having a score line impressed therebetween, said closure portion being folded along said score line perpendicularly to said side wall, said closure portion consisting of a cover portion and a retaining flap portion, said cover portion and said retaining flap portion having impressed therebetween a horizontal score line dividing said cover portion from said retaining flap portion, said retaining flap portion being folded along said score line perpendicularly to said cover portion and disposed inwardly of said body portion.
ing an indentation at the opposite edge thereof conforming to the angular periphery of said flap, a plurality of trapezoidal end sections formed integrally with said body portion and extending from the lateral edges thereof, each of said sections being divided from said body portion by a longitudinally extending score line, a pair of closure sections formed integrally with said body portion and extending from the opposite lateral edges thereof, each said closure section being divided from said body portion by a longitudinally extending score line, and terminal flap portions formed of the terminal ends of said closure sections, each of said flap portions being divided from each said closure section by a longitudinally extending score line.

11. A folded box formed from a foldable blank comprising a plurality of side walls adjacent one another, said walls having vertical fold lines forming at least two alternative junctures between each of said walls, said vertical fold lines forming each of said junctures terminating at the same point at the upper and lower ends of said walls, said vertical fold lines comprising a plurality of lines rectilinear with respect to said upper and lower ends of said box and a plurality of lines non-rectilinear with respect to said upper and lower ends of said box, each of said rectilinear fold lines being adjacent a non-rectilinear fold line, said walls of said box having a substantially uniplanar relation when said rectilinear fold lines form alternative junctures between said walls, said walls of said box having a substantially dual planar relation where said non-rectilinear fold lines form said alternative junctures between said walls, said walls having a horizontal score line therearound extending transversely to said vertical fold lines intermediate said upper and lower ends of said walls, a pair of end sections formed integrally with at least two of said walls and extending from the top and bottom thereof and closure means extending from opposing side walls for closing the top and bottom of said box, said closure means having retaining means associated therewith at the terminal ends thereof for retaining said closure means in position against said walls.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,050,894</td>
<td>Paige</td>
<td>Aug. 11, 1936</td>
</tr>
<tr>
<td>2,067,998</td>
<td>Williamson</td>
<td>Jan. 19, 1937</td>
</tr>
<tr>
<td>2,176,912</td>
<td>Luckett</td>
<td>Oct. 24, 1939</td>
</tr>
<tr>
<td>2,361,877</td>
<td>Schell</td>
<td>Oct. 31, 1944</td>
</tr>
<tr>
<td>2,474,476</td>
<td>Guyer</td>
<td>June 28, 1949</td>
</tr>
<tr>
<td>2,870,949</td>
<td>Curriyan</td>
<td>Jan. 27, 1959</td>
</tr>
<tr>
<td>2,884,181</td>
<td>McCormick</td>
<td>Apr. 28, 1959</td>
</tr>
</tbody>
</table>