A track and hold amplifier for use in adc-converters comprises in succession an input buffer, a pn-junction switch and a hold capacitor. A feedback is provided between the hold capacitor and the input buffer and means are provided to disable the feedback during the hold mode.
A track and hold amplifier

The invention relates to a track and hold amplifier comprising an input buffer for receiving an input signal and for transferring the received input signal to a first terminal of a pn-junction switch a second terminal of which is connected to a hold capacitor, and means to supply a switching signal to said first terminal of the pn-junction switch for translating the buffered input signal through the switching pn-junction to the hold capacitor during a track mode and for blocking this transfer during a hold mode. A track and hold amplifier of this kind is known from the article “A 12-b, 60-Msample/s Cascaded Folding and Interpolating ADC”, by P. Vorenkamp and R. Roovers in IEEE Journal of Solid State Circuits, Vol 32, No 12, December 1997, Pages 1876-1886.

A track and hold amplifier is often used in the input of an analog to digital converter to separate the sampling operation from the quantization operation. Present day multistep AD-architecture has a number of comparators, which do not operate simultaneously. However, it is necessary that all the comparators see the same analog signal value. The function of the track and hold amplifier is to determine the voltage level of the input signal at the sampling instant of the track and hold amplifier, and to maintain this value during a certain time period, so as to ensure that all comparators see the same analog input value. Moreover, each comparator has input capacitance which causes the input signal level to be compared to reach its correct level only after some delay. Therefore, without a track and hold amplifier, the comparator would compare an incorrect signal level, especially at higher signal frequencies. The track and hold amplifier samples the input signal at the correct value and maintains this value during the hold mode, so that the comparator-input has enough time to reach its correct signal level for subsequent quantization.

A drawback of the abovementioned prior art track and hold amplifier is that during the track mode larger currents flow into the hold capacitor, especially at higher signal frequencies. These larger currents flow into the holding capacitance through the pn-junction
switch. This results in large non linear signal distortion and consequently in incorrect signal sampling. The signal distortion, caused by the pn-junction, may easily reach values of some tens of millivolts, which is too large for modern applications, where the total signal amplitude is not more than 1 Volt.

The present invention has for its object to overcome this drawback of the prior art track and hold amplifier and the track and hold amplifier of the present invention is therefore characterized by a feedback connection from the second terminal of the pn-junction switch to the input buffer and means to enable the feedback during the track mode and to disable the feedback during the hold mode. The feedback from the second terminal of the pn-junction switch to the input buffer reduces the signal distortion at this second terminal and shifts the distortion to the first terminal of the pn-junction switch, where it does not harm. However, this feedback has a detrimental effect on the hold feedthrough of the amplifier because the input signal could reach the holding capacitance through this feedback path. Therefore the feedback is disabled during the hold mode. The feedback may for instance be disabled during the hold mode by cutting off the current through the input buffer. This however has inter alia the drawback that the input impedance of the amplifier varies with the track and hold switching signal. A preferred arrangement according to the invention is therefore characterized in that said means to enable the feedback during the track mode and to disable the feedback during the hold mode comprises a second pn-junction switch within said feedback connection and second means to supply the switching signal to the second pn-junction switch.

The said second means to supply the switching signal to the second pn-junction switch may cause a large voltage jump on the part of the feedback connection between the input buffer and the second pn-junction switch. This voltage jump may cause interference of the voltage of the hold capacitor through the junction capacitance of the second pn-junction switch. It is a further object of the invention to limit this interference and the track and hold amplifier of the invention may be further characterized by clamping means connected to the part of the feedback connection between the input buffer and the second pn-junction switch.

It is another object of the invention to provide a track and hold amplifier which is characterized by resistive means between the second terminal of the first pn-junction switch and the hold capacitor for increasing the stability of the feedback path.
These and other aspects of the invention will be further explained with reference to the attached Figures. Herein shows:

Figure 1 an embodiment of a track and hold amplifier which is known in the art,

Figure 2 a first embodiment of a track and hold amplifier according to the invention and

Figure 3 a second embodiment of a track and hold amplifier according to the invention.

The prior art track and hold amplifier of Figure 1 comprises an input buffer I_B with a first emitter-coupled transistor pair T_1-T_2 and a common emitter current source S_1. The transistor T_2 has its collector- and base-electrodes interconnected and a collector load current source S_2. This well known arrangement transfers an input signal voltage V_i applied to the base electrode of transistor T_1, to a substantially identical voltage at the base electrode of transistor T_2, especially when the current of the source S_1 is twice the current of source S_2.

The output of the input buffer is coupled, through a connection point P to the base electrode of a switching emitter follower transistor T_3. The emitter electrode of this transistor T_3 is connected to a hold capacitor C_H and to the input of an output buffer O_B. This output buffer comprises a second emitter-coupled transistor pair T_4-T_5 with a common emitter current source S_3. The transistor T_5 has its collector- and base-electrodes interconnected and a collector load current source S_4. Moreover a DC-shift transistor T_6 with interconnected collector and base electrode, is inserted between the collector electrode of transistor T_5 and the current source S_4. The interconnection between the current source S_4 and the DC-shift transistor T_6 constitutes the output O of the track and hold amplifier.

The arrangement further comprises a third emitter-coupled transistor-pair T_7-T_8 with common emitter-current-source S_5. The collector-electrode of transistor T_7 is connected to the base-electrode of the emitter follower transistor T_3 and the collector electrode of transistor T_8 is connected to the emitter electrode of transistor T_3. The base electrodes of the transistors T_7 and T_8 receive a track and hold switching pulse T/H which makes the base electrode of the transistor T_8 high and the base electrode of the transistor T_7 low during the track mode and, inversely, the base electrode of transistor T_8 low and that of transistor T_7 high during the hold mode.
In operation, during the track mode the current of current source S_5 flows through the transistor T_8 into the emitter electrode of the emitter follower transistor T_3. Consequently, the signal voltage V_s, which is applied through the input buffer to the base electrode of transistor T_3, appears at low impedance and one V_{be} junction voltage shift lower at the hold capacitor C_H and at the input of the output buffer O_B. Equally as with the input buffer, especially when the current of source S_5 is twice the current of source S_4, the currents through the transistors T_4 and T_5 are equal, so that the base (and collector) voltage of transistor T_5 is equal to the base voltage of transistor T_4. The buffered signal is shifted upwardly one V_{be} junction voltage by transistor T_6 in order to compensate for the downward voltage shift caused by the emitter follower transistor T_3, and thereafter applied to the output O of the amplifier. Consequently, during the track mode, the output signal of the track and hold amplifier is substantially equal to the input signal.

During the hold mode, the current of source S_5 flows through the transistor T_7 and pulls the voltage of point P down. Now the transistor T_3 is switched off and the base voltage of transistor T_4 and consequently the output voltage at terminal O is determined by the voltage of the hold capacitor at the level which it had at the end of the track mode. It may be noted, that the voltage drop at point P biases the emitter-base junction of transistor T_2 in cutoff direction. Therefore the function of the input buffer, apart from lowering the impedance level at the input during the track mode, is also to isolate point P from the input signal source during the hold mode, so that the voltage of point P is allowed to be pulled downwardly.

The arrangement of Figure 1 additionally has a clamping transistor T_9, whose base electrode is connected to the output terminal O and whose emitter electrode is connected to point P. During the track mode the voltage at point P and the voltage at the output terminal O are substantially equal so that the clamping transistor T_9 is cut off and inoperative. During the hold mode, however, if point P is pulled down more than one V_{be} junction voltage, the transistor T_9 becomes conducting thereby limiting the voltage drop at point P to one V_{be} junction voltage. This measure is taken because a too large voltage drop at point P would result, through the parasitic base-emitter capacitance of transistor T_3, in a too large transient pulse in the output voltage.

A drawback of the prior art arrangement of Figure 1 is that during the track mode the signal variations cause large currents flowing into the hold capacitor C_H, especially at the higher signal frequencies of e.g. 20 Mhz. These large currents flow into the hold capacitor through the emitter follower transistor T_3 and thereby cause, across the non-linear
base-emitter junction of this transistor large and non-linear voltage variations, so that the track and hold amplifier actually samples and holds a distorted signal level.

The arrangement of Figure 2, in which corresponding circuit elements as in Figure 1 have the same reference numerals, seeks to avoid the above described distortion. In this arrangement the base electrode of transistor T₂, in stead of being coupled to the collector electrode of this transistor, is coupled, through a transistor T₁₀, to the emitter electrode of transistor T₃, so that a feedback loop is constituted from the collector electrode of transistor T₂ through the base-emitter junction of transistor T₃ and through the transistor T₁₀ to the base electrode of transistor T₂. While the input buffer seeks to make the base voltage of T₂ substantially equal to the input voltage, this feedback loop seeks to make the emitter voltage of transistor T₃ substantially equal to the base voltage of transistor T₂, so that, as a result, the emitter voltage of transistor T₃ represents the input voltage substantially without distortion. In fact, the distortion which is caused by the emitter-base junction of transistor T₃ appears now at the base electrode of his transistor in stead of at the emitter electrode.

When the base electrode of transistor T₂ and the emitter electrode of transistor T₃ would be directly connected to each other, a problem arises during the hold mode. During this mode the transistor T₃ is cut off so that the base electrode of T₂ now follows the hold voltage of the hold capacitor C₄. When the input voltage Vᵢ rises during the hold mode the base emitter junction of transistor T₂ blocks, however when the input voltage decreases the base emitter junction of transistor T₂ conducts a large current which (de)charges the hold capacitor so that the hold voltage is distorted. This undesired hold mode feedthrough is prevented by the insertion of a pn-junction switch in the feedback path between the emitter electrode of T₃ and the base electrode of T₂. In the arrangement of Figure 2 this switch is implemented by the transistor T₁₀, which has interconnected base- and collector electrodes and therefore operates as a diode. To operate this switch the arrangement of Figure 2 further comprises a current source S₆ connected to the collector/base of transistor T₁₀ and a fourth emitter coupled transistor pair T₁₁-T₁₂ with an emitter current source S₇, with the collector of transistor T₁₁ connected to the base electrode of transistor T₁₀ and the collector electrode of transistor T₁₂ connected to the emitter electrode of transistor T₁₀. Equally as in the case of the transistor pair T₇-T₈, the base electrodes of the transistors T₁₁ and T₁₂ receive a track and hold switching pulse T/H. During the track mode, the current of source S₆ flows through the transistors T₁₀ and T₁₂, so that the base emitter junction of transistor T₁₀ is conductive. On the other hand, during the hold mode and provided the current of source S₇ is larger than the current of source S₆, the current of source S₆ flows through the transistor T₁₁, the base-emitter
junction of transistor T_{10} is cut off and the aforementioned undesired hold mode feedthrough is prevented.

It may be observed that the original track mode distortion by the conductive base-emitter junction of transistor T_3 in the arrangement of Figure 1, is not replaced in the arrangement of Figure 2 by a similar distortion due to the conductive base-emitter junction of T_{10}. This is because through the conductive base-emitter junction of T_{10} substantially only DC current flows and the AC signal-current flowing through this junction is negligible.

It is further observed, that, during the hold mode, the conductive transistor T_{11} pulls down the voltage of point Q, i.e. the interconnection of the base electrodes of the transistors T_2 and T_{10}. This pull down may be limited by a further clamping transistor T_{13} which has its base electrode connected to the output terminal O and its emitter electrode to point Q. This voltage pull down of point Q does not only cut off the transistor T_{10} but also the transistor T_2, which gives a further reduction of the hold mode feedthrough. If the voltage pull down at point Q is not sufficiently large to cutoff the transistor T_2 for all values of the input voltage V_i, this pull down can be increased by inserting a resistor (R_1) of appropriate value in the emitter lead of clamping transistor T_{13}.

A further resistor R_2 is included between the emitter electrode of the switched emitter follower transistor T_3 and the hold capacitor C_H. The function of this resistor is threefold:

- The emitter of transistor T_3 represents an inductive impedance which, with the large hold capacitor C_H constitutes an LC-loop. The resistor R_2 damps out undesired ringing of this LC-loop.

- The resistor R_2 filters KT/C noise from reaching the hold capacitor C_H.

- The resistor R_2 separates the hold capacitor C_H from the feedback loop T_3, T_{10}, T_2. This improves the stability of this feedback loop.

An alternative arrangement is shown in Figure 3, in which again corresponding elements as in Figure 1 and 2 have the same reference numerals. As in the arrangement of Figure 2, this has also a feedback connection from the emitter electrode of transistor T_3 to the base electrode of transistor T_2, however in this arrangement the switching transistor T_{10} fails. In order to disable the feedback during the hold mode, the current source S_1 of the input buffer has been replaced by an emitter-coupled transistor pair T_{14}-T_{15} with common emitter source S_8. The collector electrode of transistor T_{15} is connected to the common emitter electrodes of transistor pair T_1-T_2 and the collector electrode of transistor T_{14} is connected to the positive supply. A further current source S_9 is connected between the
positive supply and the common emitters of T₁ and T₂. The base electrodes of transistor pair T₁₄-T₁₅ receive the track and hold switching pulse T/H, which makes the base electrode of T₁₅ high during the track mode and which makes the base electrode of T₁₄ high during the hold mode.

In operation, during the track mode, with the transistor T₁₅ conducting and the transistor T₁₄ cut off, the coupled emitter electrodes of T₁ and T₂ carry the current of source S₈ minus the current of source S₉. With the current of S₈ greater than the current of S₉, the difference current has the same function as the current of source S₁ in the arrangements of Figures 1 and 2 and the transistors T₁ and T₂ operate as usual for buffering the input signal.

During the hold mode, the transistor T₁₅ is cut off and the transistor T₁₄ conducts the current of the source S₈. The current of the source S₈ now lifts the potential of the two emitter electrodes of T₁ and T₂, thereby cutting off these two transistors. With the transistor T₂ cut off, the feedback from the emitter electrode of transistor T₃ to the transistor T₂ is disabled and the hold mode feedthrough through this connection is largely prevented. Therefore, in the arrangement of Figure 3 the transistor T₂ has taken over the function of the transistor T₁₀ in the arrangement of Figure 2. The simultaneous cut off of the transistor T₁ assists in the reduction of the hold mode feedthrough.

In order to reduce the amplitude of the voltage pulse at the common emitter electrodes of the transistor pair T₁-T₂, a clamping transistor (diode) T₁₆ with interconnected base- and collector electrodes, is connected between the common emitters of the input buffer T₁-T₂ and the common emitters of the output buffer T₄-T₅. During the track mode, both common emitters have substantially the same potential, namely the input signal voltage Vᵢ minus one Vₜₑ junction voltage. The clamping transistor T₁₆ conducts during the hold mode and prevents that the voltage of the emitters of T₁ and T₂ rises above the input signal voltage Vᵢ. In the arrangement of Figure 3 the output terminal O is connected between the transistors T₅ and T₆, because in this arrangement, due to the absence of a transistor T₁₀, the voltage at the input of the output buffer is one Vₜₑ junction voltage shift higher than in the arrangement of Figure 2.

In practice, the arrangement of Figure 2 may be preferred over the arrangement of Figure 3 because the latter consumes less energy from the dc supply.

Moreover a disadvantage of the arrangement of Figure 3 is that the input impedance of the arrangement changes with the track and hold switching because the transistor T₁ is conducting during the track mode and cut off during the hold mode.
CLAIMS:

1. A track and hold amplifier comprising an input buffer (I_B) for receiving an input signal and for transferring the received input signal to a first terminal (P) of a pn-junction switch (T_3), a second terminal of which is connected to a hold capacitor (C_H), and means (T_7, T_8) to supply a switching signal to said first terminal (P) of the pn-junction switch for translating the buffered input signal through the switching pn-junction to the hold capacitor during a track mode and for blocking this transfer during a hold mode, characterized by a feedback connection from the second terminal of the pn-junction switch (T_3) to the input buffer (I_B) and means to enable the feedback during the track mode and to disable the feedback during the hold mode.

2. A track and hold amplifier as claimed in claim 1, characterized in that said means to enable the feedback during the track mode and to disable the feedback during the hold mode comprise a second pn-junction switch (T_{10}) within said feedback connection and second means (T_{11}, T_{12}) to supply the switching signal to the second pn-junction switch (T_{10}).

3. A track and hold amplifier as claimed in claim 2, characterized by clamping means (T_{13}, R_{1}) connected to the part of the feedback connection between the input buffer (I_B) and the second pn-junction switch (T_{10}).

4. A track and hold amplifier as claimed in claim 1, characterized by resistive means (R_{2}) between the second terminal of the first pn-junction switch (T_3) and the hold capacitor (C_H) for increasing the stability of the feedback path.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G11C27/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 028 459 A (KUCKREJA AJAY ET AL) 22 February 2000 (2000-02-22) column 4, line 59 -column 7, line 17 figure 4</td>
<td>1-4</td>
</tr>
</tbody>
</table>

 Further documents are listed in the continuation of box C.

 Patent family members are listed in annex.

<table>
<thead>
<tr>
<th>Special categories of cited documents:</th>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
<td>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td>"E" earlier document but published on or after the international filing date</td>
<td>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
<td>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</td>
</tr>
<tr>
<td>"O" document referring to an oral disclosure, use, exhibition or other means</td>
<td>"S" document member of the same patent family</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

19 June 2001

Date of mailing of the international search report

29/06/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer

Colling, P
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6028459 A</td>
<td>22-02-2000</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>