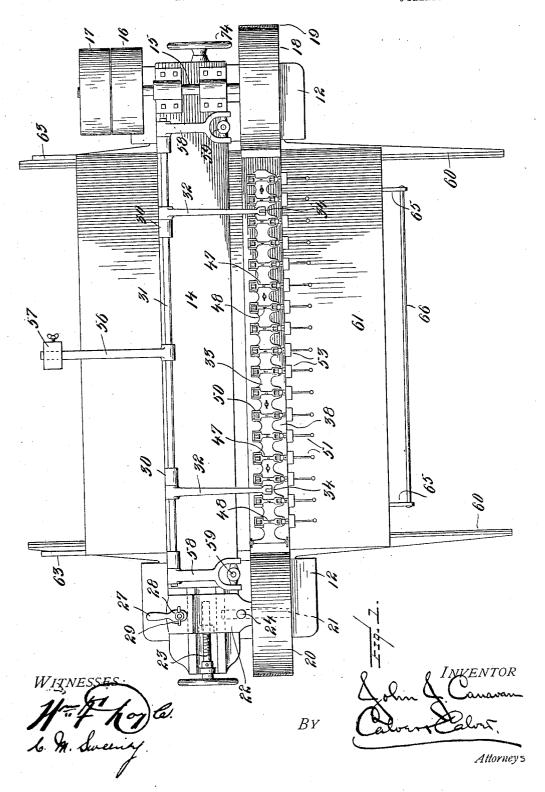
PATENTED MAR. 24, 1908.

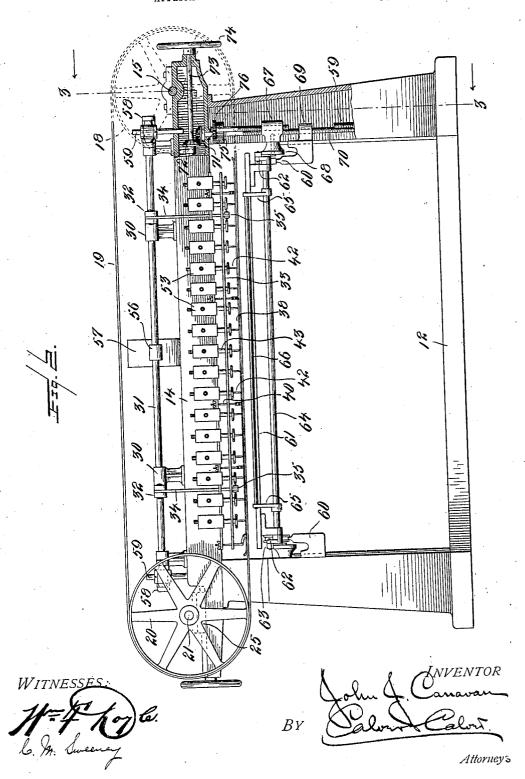

No. 882,665.

J. J. CANAVAN.

ABRADING OR POLISHING MACHINE.

APPLICATION FILED MAY 22, 1907.

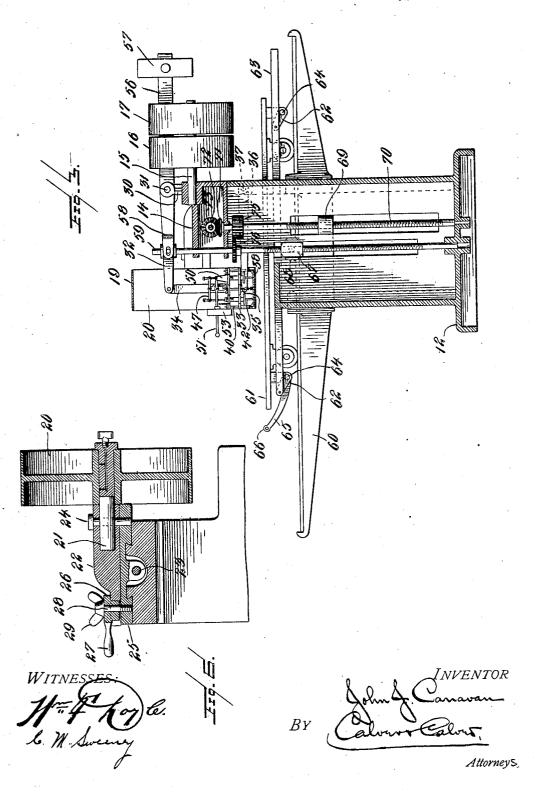
5 SHEETS-SHEET 1.


THE NORRIS PETERS CO., WASHINGTON, D.

J. J. CANAVAN.

ABRADING OR POLISHING MACHINE.

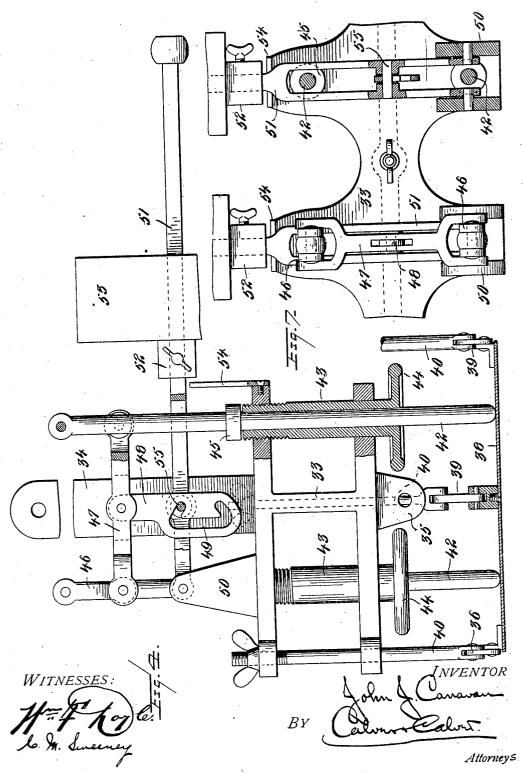
APPLICATION FILED MAY 22, 1907.


5 SHEETS-SHEET 2.

J. J. CANAVAN. ABRADING OR POLISHING MACHINE.

APPLICATION FILED MAY 22, 1907.

5 SHEETS-SHEET 3.

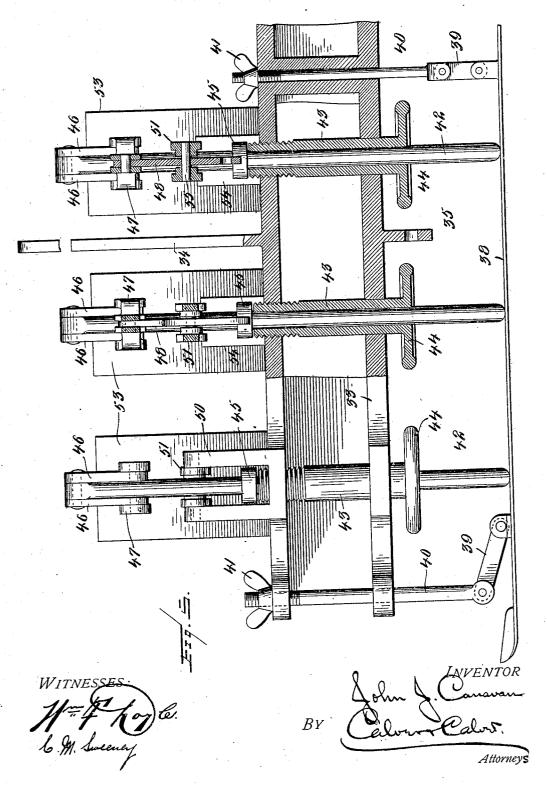


J. J. CANAVAN.

ABRADING OR POLISHING MACHINE.

APPLICATION FILED MAY 22, 1907.

5 SHEETS—SHEET 4.



PATENTED MAR. 24, 1908.

J. J. CANAVAN.

ABRADING OR POLISHING MACHINE. APPLICATION FILED MAY 22, 1907.

5 SHEETS-SHEET 5.

UNITED STATES PATENT OFFICE.

JOHN J. CANAVAN, OF BROOKLYN, NEW YORK.

ABRADING OR POLISHING MACHINE.

No. 882,665.

Specification of Letters Patent.

Patented March 24, 1908.

Application filed May 22, 1907. Serial No. 375,019.

To all whom it may concern:

Be it known that I, John J. Canavan, a citizen of the United States, residing at Brooklyn, in the county of Kings and State 5 of New York, have invented or discovered certain new and useful Improvements in Abrading or Polishing Machines, of which the following is a specification, reference being had therein to the accompanying draw-

10 ings.

The present invention relates to belt sanding machines of the type shown in the patent to De Laski T. Clemons, No. 818,518, dated April 24, 1906, in which an endless sand belt 15 is given a rapid continuous movement over the work to dress and finish the same, suitable belt guide and pressure appliances being provided to bring the belt into contact with the work. In machines of this type means 20 are provided for bringing the sand belt or belts into contact with the work so as to maintain either a uniform pressure of the sand belt upon the work to be finished or to vary the pressure along the belt at the will of 25 the operative in order that any low places in the work may be effectively reached by the belt and properly finished. In the machine shown by the patent above referred to these pressure devices are independently operated 30 by fluid pressure under the control of the workman, whereby the results above referred to are effected.

One object of my invention is to improve the belt-guide pressure-devices in machines of the type above referred to, to simplify the operating means for the said devices, and to make the same reliable in operation, to the end that effective and uniform pressure of the belt upon the work may be secured and 40 that a satisfactory variation in pressure on the belt may be quickly and conveniently effected. In the construction herewith effected. In the construction herewith shown I have provided gravity-controlled means for operating the pressure devices, 45 said means preferably comprising a series of weighted levers, the pressures of which are independently transmitted to different points along the belt guide and the amounts of which pressures are readily adjustable.

Another object of my invention is to provide improved means for supporting and adjusting the work support relative to the sand belts and for preserving a proper relative position of the table, belts, and pressure 55 mechanism.

Further objects of my invention are to

improve certain details of construction in machines of the character referred to, as will

hereinafter appear.

While I shall hereinafter describe and 60 have illustrated in the drawings a single belt sander it will be apparent that the invention is equally applicable in many respects to a sander having a plurality of belts, such, for example, as that shown in the patent above 65 referred to, and such use and application of the novel features of construction will be understood as within the range of my inven-

It will furthermore be obvious that many 70 features of my invention are useful not only in sanding machines, but would be equally applicable to machines designed for rubbing and polishing metal and other materials, in which are employed belts of felt or other 75 fabric having applied thereto pumice stone or other polishing medium, and I therefore wish it to be understood that by the term "sand belt" hereinafter employed I intend to include any suitable polishing or abrading 80

Referring to the drawings, accompanying and forming part of this specification, in which I have illustrated a preferred form of machine in which my invention may be em- 85 bodied, Figure 1 is a plan view of the machine, the upper portion of the sand belt being broken away to show the pressure meching broken away to show the pressure mechines. anism which is located between the upper and lower portions of said belt. Fig. 2 is a 90 view in side elevation of the machine, parts of the supporting frame being broken away to illustrate the supports and the adjusting mechanism for the work-table and the pressure devices. Fig. 3 is a vertical transverse 95 section of the machine, taken substantially on the line 3—3, Fig. 2. Fig. 4 is an end elevation, partly in section, on an enlarged scale, of the pressure mechanism. Fig. 5 is a side elevation, partly in section, of a portion of 100 the same. Fig. 6 is a detail view of the adjusting device for alining the belt pulleys. Fig. 7 is a detail plan view, partly in section, of a portion of the pressure mechanism.

The machine herein shown is, in many re- 105 spects, similar in its construction to the machine illustrated in Patent No. 818,518, above referred to, to which reference may be had for a more complete description of parts not herein fully described.

The frame of the machine is constructed with a suitable base 12 supporting two wide,

110

hollow pedestals in which the work-table elevating-screws and other adjusting devices are housed. To the top of each pedestal is bolted or otherwise secured a preferably 5 hollow beam 14, upon one end of which is mounted, in suitable bearings, the main driving shaft 15, provided at one end with the usual fast and loose pulleys 16, 17, which are adapted to receive power from any suitable 10 source. Mounted on said shaft 15 is the pulley 18 which drives the sand belt 19. At the opposite end of the machine is mounted a pulley 20, adapted to cooperate with the pulley 18 in supporting and driving the sand 15 belt 19, said pulley 20 being carried by a stud shaft 21, attached to a plate 22, pivoted at 24 to a block 25 suitably mounted for movement longitudinally of the machine and provided with an adjusting device herein shown 20 as a screw 23 for adjusting the tension of the

In order to adjust the plate 22 about the pivot 24, for the purpose of alining the pulley 20 with respect to the pulley 18, I have provided an eccentric 26 (see Figs. 1 and 6) having an operating handle 27 and mounted upon a screw stud 28, tapped into the plate 25 and provided with a thumb nut 29 whereby said eccentric 26, and consequently the 30 plate 22, may be locked in adjusted position.

Upon the top of the beam 14 are provided suitable bearing lugs 30 in which is journaled a rock-shaft 31, having fixed thereto forwardly extended arms 32, from the forward 35 end of which arms 32 the belt guide and its coöperating pressure devices are supported. As above suggested this belt guide, with its pressure devices, will be herein described and illustrated in connection with a single belt 40 sander, although it will be distinctly understood that this feature as well as the other novel features herein shown are equally applicable to a double belt sander.

The belt guide frame 33 is provided with suitable upwardly extending arms or members 34 by which it is supported from the arms 32, and with lugs 35 at the lower side thereof to which are connected pivoted arms 36 loosely mounted on a shaft 37, suitably 50 secured in the frame of the machine. arms 36 coöperate with the arms 32 to constitute a form of parallel motion device which

serves to maintain the frame 33 in its proper upright position, whatever vertical position it may assume. The belt-guide proper 38 55 it may assume. consists of a suitable strip of flexible and elastic material, preferably spring steel, secured to the frame 22 by suitable links 39 and rods 40, said rods 40 extending loosely 60 through openings in the frame 33, whereby free upward movement of the guide 38 is

permitted, and being provided with screwthreaded ends carrying nuts 41, for limiting the downward movement of the belt guide 65 38, whereby the normal position of said belt-

guide relative to the frame 33 may be adjusted. As shown in Fig. 5, the rods 40 and links 39 at the end of the belt guide 38 are so arranged as to permit the said belt guide to yield upwardly at these points in order to 70 take up the pull of the belt, and to allow the matter to move up and down freely, whereby undue injury to the belt at its point of initial engagement with the belt guide is prevented.

The adjustable pressure devices for hold- 75 ing the belt guide in close engagement with

the work will now be described.

Mounted in the frame 33 are pressure pins 42 slidingly mounted in sleeves 43 tapped into said frame 33. The sleeves 43 are pro- 80 vided with suitable hand wheels 44, while the pins 42 are provided with collars or shoulders 45 adapted to engage the upper ends of the sleeves 43. It will thus be seen that by turning the hand wheels 44 the lower 85 limits of movements of the pins 42 may be adjusted. The pressure pins 42 are arranged in pairs and are provided at their upper ends with links 46, and said links 46 of each pair are connected by bars 47. Pivot- 90 ally connected to the center of each bar 47 is a link or latch 48 provided with the slot 49 of substantially the form shown in Fig. 4. On the frame 33 are provided a series of lugs 50 in which are pivotally mounted a series of 95 arms or levers 51, equal in number to the number of pairs of pressure pins 42. Each arm 51 has slidingly mounted thereon a weight 53 and is provided with a pin or stud 55 cooperating with the slot 49 in the latch 100 48, whereby each pair of pressure pins 42 may be connected with or disengaged from its corresponding weighted lever 51. It will be seen that the weights 53 tend to move the arms or levers 51 downwardly about their 105 points of pivotal connection with the frame 33, thereby producing a downward pressure which may be transmitted through the latches 48 to the pressure pins 42 and thence to the belt guide 38, the amount of pressure 110 thus transmitted to any pair of pins 42 being capable of adjustment according to the position of the weight 53 upon the corresponding arm 51. Movement of the weights 53 inwardly, or toward the fulcra of the levers 51, 115 may be limited, if desired, by adjustable collars 52, mounted on said levers 51, these collars being adapted to be set in any desired positions to thereby serve as guides to indicate the proper positions of the weights 53. 120 Downward movement of the levers or arms 51 is limited by suitable stops 54 carried by the frame 33. It will be observed that the shape of the slot 49 is such that the latch 48, when disengaged from the pin 55, may be 125 moved upwardly and supported upon the top of said pin thereby to hold the pressure pins 42 of any pair out of contact with the beltguide 38.

From the construction above described it 130

882,665 8

will be seen that any desired pressure may be given to any particular pair of pins by the adjustment of the corresponding weight 53, and that the pressure imparted by both pins of any particular pair will be equalized by the pivoted bar or equalizing device 47 and links 46. Moreover any desired pair of pins may be disengaged from its weighted lever, and thereby thrown out of operation, by the disengagement of the corresponding latch 48 from its pin 55. In this manner the pressures imparted to the various points along the belt guide may be adjusted or arranged in any desired combination, thereby adapt-15 ing the belt guide to any form or design of work to be operated upon.

The rock-shaft 31 is provided with an arm 56 keyed or otherwise rigidly secured thereto, said arm being provided with a counterweight 57 tending normally to raise the belt guide and its pressure devices away from the belt. In order to bring these parts into operative position against the weight 57, arms 58 are rigidly secured to the shaft 31, said 25 arms carrying at their outer ends downwardly extending rods 59, guided at their lower ends in the machine frame. Mounted to move transversely of the machine upon tracks 60 is a carriage 61, carrying at its 30 lower side pivoted links 62 connected at their lower ends by bars 63. One of the shafts 64, upon which the links 62 are rigidly mounted, is provided with a pair of arms 65 rigidly connected thereto and carrying at their outer 35 ends a handle 66. The rods 59 are screwthreaded for a portion of their lengths to engage sleeves 67, suitably held against rotation in the machine frame, but free to move vertically therein, said sleeves carrying roll-40 ers 68, arranged below the bars 63. It will now be seen that downward motion imparted to the handle 66 will be transmitted through the bars 63, rollers 68, and rods 59

For the purpose of adjusting the vertical position of the carriage 61 to correspond with different thicknesses of work to be operated upon, the tracks 60 are supported by lugs 69, 50 carried by vertical adjusting screws 70, journaled in the machine frame and carrying at their upper ends gears 71, cooperating with gears 72 on a shaft 73, provided with a suitable hand wheel 74. Rotation of the hand 55 wheel 74, it will be seen, will operate to raise

to the arms 58, thereby carrying the frame 33

or lower the tracks 60 and consequently the

carriage 61.

45 into operative position.

In order that the normal operative position of the frame 33 and belt guide 38 may 60 not be changed when the position of the carriage is varied the following means are provided. The threaded rods 70 are provided near their upper ends with gears 75 intermeshing with gears 76 on the threaded rods 65 59. It will now be seen that when the rods

70 are turned to adjust the vertical position of the track, rods 59 will be correspondingly turned resulting in a vertical movement of the sleeves 67, thereby maintaining the rollers 68 and bars 63 in substantially the 70 same relative position irrespective of the position of vertical adjustment of the track 60.

From the foregoing description the operation of my improved machine will be clearly apparent without further explanation thereof. 75

While I, in order that my invention may be more fully understood, have chosen to illustrate and describe the same as embodied in a particular machine, I wish it to be distinctly understood that I do not limit myself $_{80}$ to the precise construction shown and described, it being obvious that many changes might be made therein without departing from the spirit and scope of my invention.

Having thus described my invention I 85 claim and desire to secure by Letters Patent:

1. In a machine of the character described, the combination with an abrading or polishing belt, of a flexible belt guide, and gravity controlled means for causing said belt guide sc to conform to the configuration of the work being operated upon.

2. In a machine of the character described, the combination with an abrading or polishing belt, of a flexible belt guide, and gravity 95 controlled means for causing said belt guide to conform to the configuration of the work being operated upon, and for pressing said

belt guide toward said work.

3. In a machine of the character described, 100 the combination with an abrading or polishing belt, of a flexible belt guide, and gravity controlled means for causing said belt guide to conform to the longitudinal and lateral configuration of the work being operated 105

4. In a machine of the character described, the combination with an abrading or polishing belt, of a flexible belt guide, and gravity controlled means for causing said belt guide 110 to conform to the longitudinal and lateral configuration of the work being operated upon, and for pressing said belt - guide toward said work.

5. In a machine of the character described, 115 the combination with an abrading or polishing belt, of a belt-guide, and a plurality of independently adjustable gravity - controlled devices for pressing said belt guide toward the work.

6. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, and a plurality of gravity-controlled devices for pressing said belt guide toward the work, said devices be- 125 ing adapted to be thrown out of operation independently of one another.

7. In a machine of the character described, the combination with an abrading or polishing belt, of a belt-guide, means for pressing 130

said belt guide toward the work, gravitycontrolled means for operating said pressing means, and means for detachably connecting said pressing means and said gravity con-

5 trolled means.

8. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a plurality of devices for pressing said belt guide toward the work 10 at a plurality of points, a gravity-controlled device for operating each of said pressing devices, and means for detachably connecting each of said pressing devices with its corresponding gravity controlled device.

9. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a pressure pin for pressing said belt guide toward the work, and gravity controlled means for operating said

20 pressure pin.

10. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a pressure pin for pressing said belt guide toward the 25 work, means for adjusting the limit of movement of said pressure pin, and gravity-controlled means for operating said pressure pin.

11. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a pressure pin for pressing said belt guide toward the work, and a weighted lever for operating said pin.

12. In a machine of the character described, the combination with an abrading 35 or polishing belt, of a belt guide, means for pressing said belt guide toward the work, and a weighted lever for operating said

pressing means.

13. In a machine of the character de-40 scribed, the combination with an abrading or polishing belt, of a belt-guide a pair of pressure pins for pressing said belt guide toward the work, and a single gravity controlled device for operating both of said pins.

14. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a plurality of pressure pins for pressing said belt guide toward the work, said pins being arranged in 50 pairs, and an independently adjustable gravity controlled device for operating each of

said pairs of pins.

15. In a machine of the character described, the combination with an abrading or 55 polishing belt, of a belt guide, a plurality of pressure pins for pressing said belt guide toward the work, said pins being arranged in pairs, a gravity controlled device for operating each of said pairs of pins, and devices for 60 independently and detachably connecting each of said pairs of pins with the corresponding gravity controlled device.

16. In a machine of the character de-

polishing belt, of a belt guide, a plurality of 65 pressure pins for pressing said belt guide toward the work, said pins being arranged in pairs, an equalizing device connecting the pins of each pair, and a gravity controlled device for operating each of said pairs of pins. 70

17. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a plurality of presure pins for pressing said belt guide toward the work, said pins being arranged in 75 pairs, an equalizing device connecting the pins of each pair, a gravity controlled device for operating each of said pairs of pins, and devices for detachably connecting said equalizing devices with said gravity-controlled de- 80 vices.

18. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a pair of pressure pins for pressing said belt guide toward 85 the work, an equalizing device connecting said pins, a weighted lever for operating said pins, a pin or stud on said lever, and a slotted link or latch attached to said equalizing device and adapted to cooperate with said pin 90 or stud for operatively connecting said pressure pins with said weighted lever.
19. In a machine of the character de-

scribed, the combination with an abrading or polishing belt, of a pair of pulleys for support- 95 ing said belt, a pivoted support for one of said pulleys, and an eccentric for adjusting said pivoted support to bring said pulleys into alinement with one another.

20. In a machine of the character de- 100 scribed, the combination with an abrading or polishing belt, of a pair of pulleys for supporting said belt, a pivoted support for one of said pulleys, an eccentric for adjusting said pivoted support to bring said pulleys into 105 alinement with one another, and means for securing said support in adjusted position.

21. In a machine of the character described, the combination with a vertically movable work-support, and a screw for ad- 110 justing said work-support, of an abrading or polishing belt, a belt guide, a rod for moving said belt guide into and out of operative position, a sleeve in screw-threaded engagement with said rod, means on said work sup- 115 port and cooperating with said sleeve for operating said rod, and cooperating gears on said rod and said screw.

22. In a machine of the character described, the combination with an abrading or 120 polishing belt, of a belt guide, means for pressing said belt guide toward the work, a lever for operating said pressing means, and a weight slidably mounted on said lever.

23. In a machine of the character de- 125 scribed, the combination with an abrading or polishing belt, of a belt guide, means for scribed, the combination with an abrading or | pressing said belt guide toward the work, a

882,665

lever for operating said pressing means, a weight slidably mounted on said lever and an

adjustable stop for said weight.

24. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, means for pressing said belt guide toward the work, a weighted lever for operating said pressing means, and a stop for limiting the movement of said lever.

25. In a machine of the character described, the combination with an abrading or polishing belt, of a belt guide, a frame from which said belt guide is supported, rods loosely mounted in said frame, links connecting said rods and belt guide, and means for

limiting the movement of said rods relatively to said frame.

26. In a machine of the character described, the combination with an abrading or 20 polishing belt, of a belt guide, a frame from which said belt guide is supported, rods loosely mounted in said frame, links connecting said rods and belt guide, and adjustable means for limiting the movement of said rods 25 relatively to said frame.

In testimony whereof I affix my signature,

in presence of two witnesses.

JOHN J. CANAVAN.

Witnesses:

HENRY CATHCART, JESSIE CASPER.