PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: 6:
C12N 15/32, C07K 14/32, 14/325, C12N 15/62, C12Q 1/68, C12N 15/62, A01N 63/00, A01H 5/00, C12N 1/21, G01N 33/00 // C07K 16/12, C12N 15/84, (C12N 1/21, C12R 1/07, 1/19, 1/085, 1/91)

A1

(11) International Publication Number: WO 96/10083

(43) International Publication Date: 4 April 1996 (04.04.96)

(21) International Application Number: PCT/EP95/03826

(22) International Filing Date: 27 September 1995 (27.09.95)

(30) Priority Data:
08/314,594 28 September 1994 (28.09.94) US
08/463,483 5 June 1995 (05.06.95) US

(71) Applicant: CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 141, CH-4002 Basle (CH).

(72) Inventors: WARREN, Gregory, Wayne; 324 Bond Lake Drive, Cary, NC 27513 (US); KOZIEL, Michael, Gene; 509 Carolyn court, Cary, NC 27511 (US); MULLINS, Martha, Alice; 104 Countrybrook Lane, Youngsville, NC 27566 (US); NYE, Gordon, James; 1001 Bray Court, Apex, NC 27502 (US); CARR, Brian; 1100D Lady’s Slipper Court, Raleigh, NC 27606 (US); DESAI, Nalin, Mano; 107 Silverwood Lane, Cary, NC 27511 (US); KOSTICHKA, Kristy; 5017 Wineberry Drive, Durham, NC 27713 (US); DUCK, Nicholas, Brendan; 1215 Gatehouse Drive, Cary, NC 27511 (US); ESTRUCH, Juan, Jose; 2911-E Bainbridge Drive, Durham, NC 27713 (US).

Published

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NOVEL PESTICIDAL PROTEINS AND STRAINS

(57) Abstract

The present invention is drawn to pesticidal strains and proteins. *Bacillus* strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>CH</td>
<td>Switzerland</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>CJ</td>
<td>Kazakhstan</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>CI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>CN</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>CS</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>CZE</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>DC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
NOVEL PESTICIDAL PROTEINS AND STRAINS

The present invention is drawn to methods and compositions for controlling plant and non-plant pests. Particularly, new pesticidal proteins are disclosed which are isolatable from the vegetative growth stage of Bacillus. Bacillus strains, proteins, and genes encoding the proteins are provided. The methods and compositions of the invention may be used in a variety of systems for controlling plant and non-plant pests.

Insect pests are a major factor in the loss of the world’s commercially important agricultural crops. Broad spectrum chemical pesticides have been used extensively to control or eradicate pests of agricultural importance. There is, however, substantial interest in developing effective alternative pesticides.

Microbial pesticides have played an important role as alternatives to chemical pest control. The most extensively used microbial product is based on the bacterium Bacillus thuringiensis (Bt). Bt is a gram-positive spore forming Bacillus which produces an insecticidal crystal protein (ICP) during sporulation.

Numerous varieties of Bt are known that produce more than 25 different but related ICP’s. The majority of ICP’s made by Bt are toxic to larvae of certain insects in the orders Lepidoptera, Diptera and Coleoptera. In general, when an ICP is ingested by a susceptible insect the crystal is solubilized and transformed into a toxic moiety by the insect gut proteases. None of the ICP’s active against coleopteran larvae such as Colorado potato beetle (Leptinotarsa decemlineata) or Yellow mealworm (Tenebrio molitor) have demonstrated significant effects on members of the genus Diabrotica particularly Diabrotica virgifera virgifera, the western corn rootworm (WCRW) or Diabrotica longicornis barberi, the northern corn rootworm.

Bacillus cereus (Bc) is closely related to Bt. A major distinguishing characteristic is the absence of a parasporal crystal in Bc. Bc is a widely distributed bacterium that is commonly found in soil and has been isolated from a variety of foods and drugs. The organism has been implicated in the spoilage of food.

Although Bt has been very useful in controlling insect pests, there is a need to expand the number of potential biological control agents.
Within the present invention compositions and methods for controlling plant pests are provided. In particular, novel pesticidal proteins are provided which are produced during vegetative growth of *Bacillus* strains. The proteins are useful as pesticidal agents.

More specifically, the present invention relates to a substantially purified *Bacillus* strain which produces a pesticidal protein during vegetative growth wherein said *Bacillus* is not *B. sphaericus* SSII-1. Preferred are a *Bacillus cereus* strain having Accession No. NRRL B-21058 and *Bacillus thuringiensis* strain having Accession No. NRRL B-21060. Also preferred is a Bacillus strain selected from Accession Numbers NRRL B-21224, NRRL B-21225, NRRL B-21226, NRRL B-21227, NRRL B-21228, NRRL B-21229, NRRL B-21230, and NRRL B-21439.

The invention further relates to an insect-specific protein isolatable during the vegetative growth phase of *Bacillus* spp, but preferably of a *Bacillus thuringiensis* and *B. cereus* strain, and components thereof, wherein said protein is not the mosquitocidal toxin from *B. sphaericus* SSII-1. The insect-specific protein of the invention is preferably toxic to Coleoptera or Lepidoptera insects and has a molecular weight of about 30 kDa or greater, preferably of about 60 to about 100 kDa, and more preferably of about 80 kDa.

More particularly, the insect-specific protein of the invention has a spectrum of insecticidal activity that includes an activity against *Agrotis* and/or *Spodoptera* species, but preferably a black cutworm [*Agrotis ipsilon* ; BCW] and/or fall armyworm [*Spodoptera frugiperda*] and/or beet armyworm [*Spodoptera exigua*] and/or tobacco budworm and/or corn earworm [*Helicoverpa zea*] activity.

The insect-specific protein of the invention can preferably be isolated, for example, from *Bacillus cereus* having Accession No. NRRL B-21058, or from *Bacillus thuringiensis* having Accession No. NRRL B-21060.

The insect-specific protein of the invention can also preferably be isolated from a *Bacillus spp* strain selected from Accession Numbers NRRL B-21224, NRRL B-21225, NRRL B-21226, NRRL B-21227, NRRL B-21228, NRRL B-21229, NRRL B-21230, and NRRL B-21439.

The present invention especially encompasses an insect-specific protein that has the amino acid sequence selected from the group consisting of SEQ ID NO:5 and
SEQ ID NO:7, including any proteins that are structurally and/or functionally homologous thereto.

Further preferred is an insect-specific protein, wherein said protein has the sequence selected from the group consisting of SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:29 SEQ ID NO:32 and SEQ ID NO:2, including any proteins that are structurally and/or functionally homologous thereto.

Especially preferred is an insect-specific protein, wherein said protein has the sequence selected from the group consisting of SEQ ID NO:29 and SEQ ID NO:32, including any proteins that are structurally and/or functionally homologous thereto.

A further preferred embodiment of the invention comprises an insect-specific protein of the invention, wherein the sequences representing the secretion signal have been removed or inactivated.

The present invention further encompasses auxiliary proteins which enhance the insect-specific activity of an insect-specific protein. The said auxiliary proteins preferably have a molecular weight of about 50 kDa and can be isolated, for example, from the vegetative growth phase of a *Bacillus cereus* strain, but especially of *Bacillus cereus* strain AB78.

A preferred embodiment of the invention relates to an auxiliary protein, wherein the sequences representing the secretion signal have been removed or inactivated.

The present invention further relates to multimeric pesticidal proteins, which comprise more than one polypeptide chain and wherein at least one of the said polypeptide chains represents an insect-specific protein of the invention and at least one of the said polypeptide chains represents an auxiliary protein of the invention, which activates or enhances the pesticidal activity of the said insect-specific protein.

The multimeric pesticidal proteins according to the invention preferably have a molecular weight of about 50 kDa to about 200 kDa.

The invention especially encompasses a multimeric pesticidal protein, which comprises an insect-specific protein of the invention and an auxiliary protein according to the invention, which activates or enhances the pesticidal activity of the said insect-specific protein.

The present invention further relates to fusion proteins comprising several protein domains including at least an insect-specific protein of the invention and/or an auxiliary protein according to the invention produced by in frame genetic fusions,
which, when translated by ribosomes, produce a fusion protein with at least the combined attributes of the insect-specific protein of the invention and/or an auxiliary protein according to the invention and, optionally, of the other components used in the fusion.

A specific embodiment of the invention relates to a fusion protein comprising a ribonuclease S-protein, an insect-specific protein of the invention and an auxiliary protein according to the invention.

A further specific embodiment of the invention relates to a fusion protein comprising an insect-specific protein according to the invention and an auxiliary protein according to the invention having either the insect-specific protein or the auxiliary protein at the N-terminal end of the said fusion protein.

Preferred is a fusion protein, which comprises an insect-specific protein as given in SEQ ID NO:5 and an auxiliary protein as given in SEQ ID NO: 2 resulting in the protein given in SEQ ID NO: 23, including any proteins that are structurally and/or functionally homologous thereto.

Also preferred is a fusion protein, which comprises an insect-specific protein as given in SEQ ID NO:35 and an auxiliary protein as given in SEQ ID NO: 27 resulting in the protein given in SEQ ID NO: 50, including any proteins that are structurally and/or functionally homologous thereto.

The invention further relates to a fusion protein comprising an insect-specific protein of the invention and/or an auxiliary protein according to the invention fused to a signal sequence, preferably a secretion signal sequence or a targeting sequence that directs the transgene product to a specific organelle or cell compartment, which signal sequence is of heterologous origin with respect to the recipient protein.

Especially preferred within this invention is a fusion protein wherein the said protein has a sequence as given in SEQ ID NO: 43, or in SEQ ID NO: 46, including any proteins that are structurally and/or functionally homologous thereto.

As used in the present application, substantial sequence homology means close structural relationship between sequences of amino acids. For example, substantially homologous proteins may be 40% homologous, preferably 50% and most preferably 60% or 80% homologous, or more. Homology also includes a relationship wherein one or several subsequences of amino acids are missing, or subsequences with additional amino acids are interdispersed.
A further aspect of the invention relates to a DNA molecule comprising a nucleotide sequence which encodes an insect-specific protein isolatable during the vegetative growth phase of *Bacillus* spp. and components thereof, wherein said protein is not the mosquitocidal toxin from *B. sphaericus* SSII-1. In particular, the present invention relates to a DNA molecule comprising a nucleotide sequence which encodes an insect-specific protein wherein the spectrum of insecticidal activity includes an activity against *Agrotis* and/or *Spodoptera* species, but preferably a black cutworm (*Agrotis ipsilon*; BCW) and/or fall armyworm (*Spodoptera frugiperda*) and/or beet armyworm (*Spodoptera exigua*) and/or tobacco budworm and/or corn earworm (*Helicoverpa zea*) activity.

Preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO: 4, or SEQ ID NO: 6, including any DNA molecules that are structurally and/or functionally homologous thereto.

Also preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given SEQ ID NO:19, SEQ ID NO:28, SEQ ID NO:31, or SEQ ID NO:1, including any DNA molecules that are structurally and/or functionally homologous thereto.

The invention further relates to a DNA molecule comprising a nucleotide sequence which encodes an auxiliary protein according to the invention which enhances the insect-specific activity of an insect-specific protein.

Preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given SEQ ID NO:19, including any DNA molecules that are structurally and/or functionally homologous thereto.

A further embodiment of the invention relates to a DNA molecule comprising a nucleotide sequence which encodes an insect-specific protein isolatable during the vegetative growth phase of *Bacillus* spp. and components thereof, wherein said protein is not the mosquitocidal toxin from *B. sphaericus* SSII-1, which nucleotide sequence has been optimized for expression in a microorganism or a plant.

Preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:17 or SEQ ID NO:18, including any DNA molecules that are structurally and/or functionally homologous thereto.

Also preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:27, or
SEQ ID NO:30, including any DNA molecules that are structurally and/or functionally homologous thereto.

The invention further relates to a DNA molecule which comprises a nucleotide sequence encoding a multimeric pesticidal protein, which comprises more than one polypeptide chains and wherein at least one of the said polypeptide chains represents an insect-specific protein of the invention and at least one of the said polypeptide chains represents an auxiliary protein according to the invention, which activates or enhances the pesticidal activity of the said insect-specific protein.

Preferred is a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein of the invention and an auxiliary protein according to the invention, which activates or enhances the pesticidal activity of the said insect-specific protein.

Especially preferred is a DNA molecule, wherein said molecule comprises a nucleotide sequence as given in SEQ ID NO:1 or SEQ ID NO:19, including any nucleotide sequences that are structurally and/or functionally homologous thereto.

A further embodiment of the invention relates to a DNA molecule which comprises a nucleotide sequence encoding a fusion protein comprising several protein domains including at least an insect-specific protein of the invention and/or an auxiliary protein according to the invention produced by in frame genetic fusions, which, when translated by ribosomes, produce a fusion protein with at least the combined attributes of the insect-specific protein of the invention and/or an auxiliary protein according to the invention and, optionally, of the other components used in the fusion.

Preferred within the invention is a DNA molecule which comprises a nucleotide sequence encoding a fusion protein comprising an insect-specific protein according to the invention and an auxiliary protein according to the invention having either the insect-specific protein or the auxiliary protein at the N-terminal end of the said fusion protein. Especially preferred is a DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:22, including any DNA molecules that are structurally and/or functionally homologous thereto.

The invention further relates to a DNA molecule which comprises a nucleotide sequence encoding a fusion protein comprising an insect-specific protein of the invention and/or an auxiliary protein of the invention fused to a signal sequence, preferably a secretion signal sequence or a targeting sequence that directs the
transgene product to a specific organelle or cell compartment, which signal sequence is of heterologous origin with respect to the recipient DNA.

The present invention further encompasses a DNA molecule comprising a nucleotide sequence encoding a fusion protein or a multimeric protein according to the invention that has been optimized for expression in a microorganism or plant.

Preferred is an optimized DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:42, SEQ ID NO:45, or SEQ ID NO:49, including any DNA molecules that are structurally and/or functionally homologous thereto.

The invention further relates to an optimized DNA molecule, wherein the sequences encoding the secretion signal have been removed from its 5' end, but especially to an optimized DNA molecule, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO: 35 or SEQ ID NO:39, including any DNA molecules that are structurally and/or functionally homologous thereto.

As used in the present application, substantial sequence homology means close structural relationship between sequences of nucleotides. For example, substantially homologous DNA molecules may be 60% homologous, preferably 80% and most preferably 90% or 95% homologous, or more. Homology also includes a relationship wherein one or several subsequences of nucleotides or amino acids are missing, or subsequences with additional nucleotides or amino acids are interdispersed.

Also comprised by the present invention are DNA molecules which hybridizes to a DNA molecule according to the invention as defined hereinbefore, but preferably to an oligonucleotide probe obtainable from said DNA molecule comprising a contiguous portion of the coding sequence for the said insect-specific protein at least 10 nucleotides in length, under moderately stringent conditions and which molecules have insect-specific activity and also the insect-specific proteins being encoded by the said DNA molecules.

Preferred are DNA molecules, wherein hybridization occurs at 65°C in a buffer comprising 7% SDS and 0.5 M sodium phosphate.

Especially preferred is a DNA molecule comprising a nucleotide sequence which encodes an insect-specific protein according to the invention obtainable by a process comprising
(a) obtaining a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein; and
(b) hybridizing said DNA molecule with an oligonucleotide probe according to claim 107 obtained from a DNA molecule comprising a nucleotide sequence as given in SEQ ID NO: 28, SEQ ID NO: 30, or SEQ ID NO: 31; and
(c) isolating said hybridized DNA.

The invention further relates to an insect-specific protein, wherein the said protein is encoded by a DNA molecule according to the invention.

Also encompassed by the invention is an expression cassette comprising a DNA molecule according to the invention operably linked to expression sequences including the transcriptional and translational regulatory signals necessary for expression of the associated DNA constructs in a host organism, preferably a microorganism or a plant, and optionally further regulatory sequences.

The invention further relates to a vector molecule comprising an expression cassette according to the invention.

The expression cassette and/or the vector molecule according to the invention are preferably part of the plant genome.

A further embodiment of the invention relates to a host organism, preferably a host organism selected from the group consisting of plant and insect cells, bacteria, yeast, baculoviruses, protozoa, nematodes and algae, comprising a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the genome of the host organism.

The invention further relates to a transgenic plant, but preferably a maize plant, including parts as well as progeny and seed thereof comprising a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the plant genome.

Preferred is a transgenic plant including parts as well as progeny and seed thereof which has been stably transformed with a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette.
Also preferred is a transgenic plant including parts as well as progeny and seed thereof which expresses an insect-specific protein according to the invention.

The invention further relates to a transgenic plant, preferably a maize plant, according to the invention as defined hereinbefore, which further expresses a second distinct insect control principle, but preferably a Bt δ-endotoxin. The said plant is preferably a hybrid plant.

Parts of transgenic plants are to be understood within the scope of the invention to comprise, for example, plant cells, protoplasts, tissues, callus, embryos as well as flowers, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed with a DNA molecule according to the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention.

The invention further relates to plant propagating material of a plant according to the invention, which is treated with a seed protectant coating.

The invention further encompasses a microorganism transformed with a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, wherein the said microorganism is preferably a microorganism that multiply on plants and more preferably a root colonizing bacterium.

A further embodiment of the invention relates to an encapsulated insect-specific protein which comprises a microorganism comprising an insect specific protein according to the invention.

The invention also relates to an entomocidal composition comprising a host organism of the invention, but preferably a purified Bacillus strain, in an insecticidally-effective amount together with a suitable carrier.

Further comprised by the invention is an entomocidal composition comprising an isolated protein molecule according to the invention, alone or in combination with a host organism of the invention and/or an encapsulated insect-specific protein according to the invention, in an insecticidally-effective amount, together with a suitable carrier.

A further embodiment of the invention relates to a method of obtaining a purified insect-specific protein according to the invention, said method comprising applying a
solution comprising said insect-specific protein to a NAD column and eluting bound protein.

Also comprised is a method for identifying insect activity of an insect-specific protein according to the invention, said method comprising:

growing a *Bacillus* strain in a culture;

obtaining supernatant from said culture;

allowing insect larvae to feed on diet with said supernatant; and,

determining mortality.

Another aspect of the invention relates to a method for isolating an insect-specific protein according to the invention, said method comprising:

growing a *Bacillus* strain in a culture;

obtaining supernatant from said culture; and,

isolating said insect-specific protein from said supernatant.

The invention also encompasses a method for isolating a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein exhibiting the insecticidal activity of the proteins according to the invention, said method comprising:

obtaining a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein; and

hybridizing said DNA molecule with DNA obtained from a *Bacillus* species;

and

isolating said hybridized DNA.

The invention further relates to a method of increasing insect target range by using an insect specific protein according to the invention in combination with at least one second insecticidal protein that is different from the insect specific protein according to the invention, but preferably with an insecticidal protein selected from the group consisting of *Bt* δ-endotoxins, protease inhibitors, lectins, α-amylases and peroxidases.

Preferred is a method for increasing insect target range within a plant by expressing within the said plant a insect specific protein according to the invention in combination with at least one second insecticidal protein that is different from the insect specific protein according to the invention, but preferably with an insecticidal protein selected from the group consisting of *Bt* δ-endotoxins, protease inhibitors, lectins, α-amylases and peroxidases.
Also comprised is a method of protecting plants against damage caused by an insect pest, but preferably by *Spodoptera* and/or *Agrotis* species, and more preferably by an insect pest selected from the group consisting of black cutworm (*Agrotis ipsilon*; BCW), fall armyworm (*Spodoptera frugiperda*), beet armyworm (*Spodoptera exigua*), tobacco budworm and corn earworm (*Helicoverpa zea*) comprising applying to the plant or the growing area of the said plant an entomocidal composition or a toxin protein according to the invention.

The invention further relates to method of protecting plants against damage caused by an insect pest, but preferably by *Spodoptera* and/or *Agrotis* species, and more preferably by an insect pest selected from the group consisting of black cutworm (*Agrotis ipsilon*; BCW), fall armyworm (*Spodoptera frugiperda*), beet armyworm (*Spodoptera exigua*), tobacco budworm and corn earworm (*Helicoverpa zea*) comprising planting a transgenic plant expressing a insect-specific protein according to the invention within an area where the said insect pest may occur.

The invention also encompasses a method of producing a host organism which comprises stably integrated into its genome a DNA molecule according to the invention and preferably expresses an insect-specific protein according to the invention comprising transforming the said host organism with a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette.

A further embodiment of the invention relates to a method of producing a transgenic plant or plant cell which comprises stably integrated into the plant genome a DNA molecule according to the invention and preferably expresses an insect-specific protein according to the invention comprising transforming the said plant and plant cell, respectively, with a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette.

The invention also relates to a method of producing an entomocidal composition comprising mixing an isolated *Bacillus* strain and/or a host organism and/or an isolated protein molecule, and/or an encapsulated protein according to the invention in an insecticidally-effective amount with a suitable carrier.

The invention also encompasses a method of producing transgenic progeny of a transgenic parent plant comprising stably incorporated into the plant genome a DNA
molecule comprising a nucleotide sequence encoding an insect-specific protein according to the invention comprising transforming the said parent plant with a DNA molecule according to the invention, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette and transferring the pesticidal trait to the progeny of the said transgenic parent plant involving known plant breeding techniques.

Also encompassed by the invention is oligonucleotide probe capable of specifically hybridizing to a nucleotide sequence encoding a insect-specific protein isolatable during the vegetative growth phase of *Bacillus* spp. and components thereof, wherein said protein is not the mosquitocidal toxin from *B. sphaericus* SSII-1, wherein said probe comprises a contiguous portion of the coding sequence for the said insect-specific protein at least 10 nucleotides in length and the use of the said oligonucleotide probe for screening of any *Bacillus* strain or other organisms to determine whether the insect-specific protein is naturally present or whether a particular transformed organism includes the said gene.

The present invention recognizes that pesticidal proteins are produced during vegetative growth of *Bacillus* strains. Having recognized that such a class exists, the present invention embraces all vegetative insecticidal proteins, hereinafter referred to as VIPs, except for the mosquitocidal toxin from *B. sphaericus*.

The present VIPs are not abundant after sporulation and are particularly expressed during log phase growth before stationary phase. For the purpose of the present invention vegetative growth is defined as that period of time before the onset of sporulation. Genes encoding such VIPs can be isolated, cloned and transformed into various delivery vehicles for use in pest management programs.

For purposes of the present invention, pests include but are not limited to insects, fungi, bacteria, nematodes, mites, ticks, protozoan pathogens, animal-parasitic liver flukes, and the like. Insect pests include insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Coleoptera and Lepidoptera.

Tables 1-10 gives a list of pests associated with major crop plants and pests of human and veterinary importance. Such pests are included within the scope of the present invention.
TABLE 1

Lepidoptera (Butterflies and Moth)

Maize
- *Ostrinia nubilalis*, European corn borer
- *Agrotis ipsilon*, black cutworm
- *Helicoverpa zeas*, corn earworm
- *Spodoptera frugiperda*, fall armyworm
- *Diatraea grandiosella*, southwestern corn borer
- *Elasmopalpus lignosellus*, lesser cornstalk borer
- *Diatraea saccharalis*, sugarcane borer

Sorghum
- *Chilo partellus*, sorghum borer
- *Spodoptera frugiperda*, fall armyworm
- *Helicoverpa zeas*, corn earworm
- *Elasmopalpus lignosellus*, lesser cornstalk borer
- *Feltia subterranea*, granulate cutworm

Wheat
- *Pseudaltea unipunctata*, army worm
- *Spodoptera frugiperda*, fall armyworm
- *Elasmopalpus lignosellus*, lesser cornstalk borer
- *Agrotis orthogonia*, pale western cutworm
- *Elasmopalpus lignosellus*, lesser cornstalk borer

Sunflower
- *Suleima helianthana*, sunflower bud moth
- *Homoeosoma electellum*, sunflower moth

Cotton
- *Heliothis virescens*, cotton boll worm
- *Helicoverpa zeas*, cotton bollworm
- *Spodoptera exigua*, beet armyworm
- *Pectinophora gossypiella*, pink bollworm

Rice
- *Diatraea saccharalis*, sugarcane borer
- *Spodoptera frugiperda*, fall armyworm
- *Helicoverpa zeas*, corn earworm
Soybean

Pseudoplusia includens, soybean looper
Anticarsia gemmatalis, velvetbean caterpillar
Plathypena scabra, green cloverworm
Ostrinia nubilalis, European corn borer
Agrotis ipsilon, black cutworm
Spodoptera exigua, beet armyworm
Heliothis virescens, cotton bollworm
Helicoverpa zea, cotton bollworm

Barley

Ostrinia nubilalis, European corn borer
Agrotis ipsilon, black cutworm

TABLE 2

Coleoptera (Beetles)

Maize

Diabrotica virgifera virgifera, western corn rootworm
Diabrotica longicornis barberi, northern corn rootworm
Diabrotica undecimpunctata howardi, southern corn rootworm
Melanotus spp., wireworms
Cyclocephala borealis, northern masked chafer (white grub)
Cyclocephala immaculata, southern masked chafer (white grub)
Popillia japonica, Japanese beetle
Chaetocnema punicaria, corn flea beetle
Sphenophorus maidis, maize billbug

Sorghum

Phyllophaga crinita, white grub
Eleodes, Conoderus, and Aeolus spp., wireworms
Oulema melanopus, cereal leaf beetle
Chaetocnema punicaria, corn flea beetle
Sphenophorus maidis, maize billbug

Wheat

Oulema melanopus, cereal leaf beetle
Hypera punctata, clover leaf weevil
Diabrotica undecimpunctata howardi, southern corn rootworm

Sunflower
Zygogramma exclamationis, sunflower beetle
Bothyrus gibbosus, carrot beetle

Cotton
Anthonomus grandis, boll weevil

Rice
Colaspis brunnea, grape colaspis
Lissorhoptrus oryzophilus, rice water weevil
Sitophilus oryzae, rice weevil

Soybean
Epilachna varivestis, Mexican bean beetle

TABLE 3
Homoptera (Whiteflies, Aphids etc.)

Maize
Rhopalosiphum maidis, corn leaf aphid
Anuraphis maidiradicis, corn root aphid

Sorghum
Rhopalosiphum maidis, corn leaf aphid
Sitapha flava, yellow sugarcane aphid

Wheat
Russian wheat aphid
Schizaphis graminum, greenbug
Macrosiphum avenae, English grain aphid

Cotton
Aphis gossypii, cotton aphid
Pseudatomoscelis seriatus, cotton fleahopper
Trialeurodes abutilonea, bandedwinged whitefly

Rice
Nephotettix nigropictus, rice leathopper
Soybean

Myzus persicae, green peach aphid
Empoasca fabae, potato leafhopper

Barley

Schizaphis graminum, greenbug

Oil Seed Rape

Brevicoryne brassicae, cabbage aphid

TABLE 4

Hemiptera (Bugs)

Maize

Blissus leucopterus leucopterus, chinch bug

Sorghum

Blissus leucopterus leucopterus, chinch bug

Cotton

Lygus lineolaris, tarnished plant bug

Rice

Blissus leucopterus leucopterus, chinch bug
Acrosternum hilare, green stink bug

Soybean

Acrosternum hilare, green stink bug

Barley

Blissus leucopterus leucopterus, chinch bug
Acrosternum hilare, green stink bug
Euschistus servus, brown stink bug
TABLE 5

Orthoptera (Grasshoppers, Crickets, and Cockroaches)

Maize
- Melanoplus femurrubrum, redlegged grasshopper
- Melanoplus sanguinipes, migratory grasshopper

Wheat
- Melanoplus femurrubrum, redlegged grasshopper
- Melanoplus differentialis, differential grasshopper
- Melanoplus sanguinipes, migratory grasshopper

Cotton
- Melanoplus femurrubrum, redlegged grasshopper
- Melanoplus differentialis, differential grasshopper

Soybean
- Melanoplus femurrubrum, redlegged grasshopper
- Melanoplus differentialis, differential grasshopper

Structural/Household
- Periplaneta americana, American cockroach
- Blattella germanica, German cockroach
- Blatta orientalis, oriental cockroach

TABLE 6

Diptera (Flies and Mosquitoes)

Maize
- Hylemya platura, seedcorn maggot
- Agromyza parvicornis, corn blotch leafminer

Sorghum
- Contarinia sorghicola, sorghum midge
Wheat

Mayetiola destructor, Hessian fly
Sitodiplosis mosellana, wheat midge
Meromyza americana, wheat stem maggot
Hylemya coarctata, wheat bulb fly

Sunflower

Neolasioptera murtfeldtiana, sunflower seed midge

Soybean

Hylemya platura, seedcorn maggot

Barley

Hylemya platura, seedcorn maggot
Mayetiola destructor, Hessian fly

Insects attacking humans and animals and disease carriers

Aedes aegypti, yellowfever mosquito
Aedes albopictus, forest day mosquito
Phlebotomus papatasii, sand fly
Musca domestica, house fly
Tabanus atratus, black horse fly
Cochliomyia hominivorax, screwworm fly

TABLE 7

Thysanoptera (Thrips)

Maize

Anaphothrips obscurus, grass thrips

Wheat

Frankliniella fusca, tobacco thrips

Cotton

Thrips tabaci, onion thrips
Frankliniella fusca, tobacco thrips
Soybean

Sericothrips variabilis, soybean thrips
Thrips tabaci, onion thrips

TABLE 8

Hymenoptera (Sawflies, Ants, Wasps, etc.)

Maize

Solenopsis milesta, thief ant

Wheat

Cephus cinctus, wheat stem sawfly

TABLE 9

Other Orders and Representative Species

Dermaptera (Earwigs)

Forficula auricularia, European earwig

Isoptera (Termites)

Reticulitermes flavipes, eastern subterranean termite

Mallophaga (Chewing Lice)

Cuculogaster heterographa, chicken head louse
Bovicola bovis, cattle biting louse

Anoplura (Sucking Lice)

Pediculus humanus, head and body louse

Siphonaptera (Fleas)

Ctenocephalides felis, cat flea
TABLE 10

Acarid (Mites and Ticks)

Maize

Tetranychus urticae, twospotted spider mite

Sorghum

Tetranychus cinnabarinus, carmine spider mite

Tetranychus urticae, twospotted spider mite

Wheat

Aceria tulipae, wheat curl mite

Cotton

Tetranychus cinnabarinus, carmine spider mite

Tetranychus urticae, twospotted spider mite

Soybean

Tetranychus turkestani, strawberry spider mite

Tetranychus urticae, twospotted spider mite

Barley

Petrobia lateris, brown wheat mite

Important human and animal Acari

Demacentor variabilis, American dog tick

Argas persicus, fowl tick

Dermatophagoides farinae, American house dust mite

Dermatophagoides pteronyssinus, European house dust mite

Now that it has been recognized that pesticidal proteins can be isolated from the vegetative growth phase of *Bacillus*, other strains can be isolated by standard techniques and tested for activity against particular plant and non-plant pests. Generally *Bacillus* strains can be isolated from any environmental sample, including soil, plant, insect, grain elevator dust, and other sample material, etc., by methods

Such Bacillus microorganisms which find use in the invention include Bacillus cereus and Bacillus thuringiensis, as well as those Bacillus species listed in Table 11.

TABLE 11

List of Bacillus species

Morphological Group 1
B. megaterium
B. cereus*
B. cereus var. mycoides
B. thuringiensis*
B. licheniformis
B. subtilis*
B. pumilus
B. firmus*
B. coagulans

Morphological Group 2
B. polymyxa
B. macerans
B. circulans
B. stearothermophilus
B. alvei*
B. laterosporus*
B. brevis
B. pulvifaciens
B. popiliiae*
B. lentimorbus*
B. larvae*
Morphological Group 3
B. sphaericus*
B. pasteurii

Unassigned Strains
Subgroup A
B. apiarius*
B. filicolonicus
B. thiaminolyticus
B. acalophilus

Subgroup B
B. cirroflagellosus
B. chitosporus
B. lentus

Subgroup C
B. badius
B. aneurinolyticus
B. macroides
B. freundenreichii

Subgroup D
B. pantothenticus
B. epiphytus

Subgroup E1
B. aminovorans
B. globisporus
B. insolitus
B. psychrophilus

Subgroup E2
B. psychrosaccharolyticus
B. macquariensis

* = Those Bacillus strains that have been previously found associated with insects
In accordance with the present invention, the pesticidal proteins produced during vegetative growth can be isolated from *Bacillus*. In one embodiment, insecticidal proteins produced during vegetative growth, can be isolated. Methods for protein isolation are known in the art. Generally, proteins can be purified by conventional chromatography, including gel-filtration, ion-exchange, and immunoaffinity chromatography, by high-performance liquid chromatography, such as reversed-phase high-performance liquid chromatography, ion-exchange high-performance liquid chromatography, high-performance chromatofocusing and hydrophobic interaction chromatography, etc., by electrophoretic separation, such as one-dimensional gel electrophoresis, two-dimensional gel electrophoresis, etc. Such methods are known in the art. See for example *Current Protocols in Molecular Biology*, Vols. 1 and 2, Ausubel *et al.* (eds.), John Wiley & Sons, NY (1988). Additionally, antibodies can be prepared against substantially pure preparations of the protein. See, for example, Radka *et al.* (1983) *J. Immunol.*, 128:2804; and Radka *et al.* (1984) *Immunogenetics* 19:63. Any combination of methods may be utilized to purify protein having pesticidal properties. As the protocol is being formulated, pesticidal activity is determined after each purification step.

Such purification steps will result in a substantially purified protein fraction. By "substantially purified" or "substantially pure" is intended protein which is substantially free of any compound normally associated with the protein in its natural state.

"Substantially pure" preparations of protein can be assessed by the absence of other detectable protein bands following SDS-PAGE as determined visually or by densitometry scanning. Alternatively, the absence of other amino-terminal sequences or N-terminal residues in a purified preparation can indicate the level of purity. Purity can be verified by rechromatography of "pure" preparations showing the absence of other peaks by ion exchange, reverse phase or capillary electrophoresis. The terms "substantially pure" or "substantially purified" are not meant to exclude artificial or synthetic mixtures of the proteins with other compounds. The terms are also not meant to exclude the presence of minor impurities which do not interfere with the biological activity of the protein, and which may be present, for example, due to incomplete purification.
Once purified protein is isolated, the protein, or the polypeptides of which it is comprised, can be characterized and sequenced by standard methods known in the art. For example, the purified protein, or the polypeptides of which it is comprised, may be fragmented as with cyanogen bromide, or with proteases such as papain, chymotrypsin, trypsin, lysyl-C endopeptidase, etc. (Oikey et al. (1982) J. Biol. Chem. 257:9751-9758; Liu et al. (1983) Int. J. Pept. Protein Res. 21:209-215). The resulting peptides are separated, preferably by HPLC, or by resolution of gels and electroblotting onto PVDF membranes, and subjected to amino acid sequencing. To accomplish this task, the peptides are preferably analyzed by automated sequencers. It is recognized that N-terminal, C-terminal, or internal amino acid sequences can be determined. From the amino acid sequence of the purified protein, a nucleotide sequence can be synthesized which can be used as a probe to aid in the isolation of the gene encoding the pesticidal protein.

It is recognized that the pesticidal proteins may be oligomeric and will vary in molecular weight, number of protomers, component peptides, activity against particular pests, and in other characteristics. However, by the methods set forth herein, proteins active against a variety of pests may be isolated and characterized.

Once the purified protein has been isolated and characterized it is recognized that it may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the pesticidal proteins can be prepared by mutations in the DNA. Such variants will possess the desired pesticidal activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.

In this manner, the present invention encompasses the pesticidal proteins as well as components and fragments thereof. That is, it is recognized that component protomers, polypeptides or fragments of the proteins may be produced which retain pesticidal activity. These fragments include truncated sequences, as well as N-terminal, C-terminal, internal and internally deleted amino acid sequences of the proteins.
Most deletions, insertions, and substitutions of the protein sequence are not expected to produce radical changes in the characteristics of the pesticidal protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays.

The proteins or other component polypeptides described herein may be used alone or in combination. That is, several proteins may be used to control different insect pests.

Some proteins are single polypeptide chains while many proteins consist of more than one polypeptide chain, i.e., they are oligomeric. Additionally, some VIPs are pesticidally active as oligomers. In these instances, additional protomers are utilized to enhance the pesticidal activity or to activate pesticidal proteins. Those protomers which enhance or activate are referred to as auxiliary proteins. Auxiliary proteins activate or enhance a pesticidal protein by interacting with the pesticidal protein to form an oligomeric protein having increased pesticidal activity compared to that observed in the absence of the auxiliary protein.

Auxiliary proteins activate or increase the activity of pesticidal proteins such as the VIP1 protein from AB78. Such auxiliary proteins are exemplified by, but not limited to, the VIP2 protein from AB78. As demonstrated in the Experimental section of the application, auxiliary proteins can activate a number of pesticidal proteins. Thus, in one embodiment of the invention, a plant, Parent 1, can be transformed with an auxiliary protein. This Parent 1 can be crossed with a number of Parent 2 plants transformed with one or more pesticidal proteins whose pesticidal activities are activated by the auxiliary protein.

Amongst the pesticidal proteins of the invention a new class of insect-specific proteins could be surprisingly identified within the scope of the present invention. The said proteins, which are designated throughout this application as VIP3, can be obtained from Bacillus spp strains, but preferably from Bacillus thuringiensis strains and most preferably from Bacillus thuringiensis strains AB88 and AB424. The said VIPs are present mostly in the supernatants of Bacillus cultures amounting to at least 75% of the total in strain AB88. The VIP3 proteins are further characterized by their unique spectrum of insectical activity, which includes an activity against Agrotis and/or Spodoptera species, but especially a black cutworm (BCW) and/or fall...
armyworm and/or beet armyworm and/or tobacco budworm and/or corn earworm activity.

Black cutworm is an agronomically important insect quite resistant to δ-endotoxins. MacIntosh et al (1990) J Invertebr Pathol 56, 258-266 report that the δ-endotoxins CryIA(b) and CryIA(c) possesses insecticidal properties against BCW with LC₅₀ of more than 80 µg and 18 µg/ml of diet respectively. The vip3A insecticidal proteins according to the invention provide >50% mortality when added in an amount of protein at least 10 to 500, preferably 50 to 350, and more preferably 200 to 300 fold lower than the amount of CryIA proteins needed to achieve just 50% mortality. Especially preferred within the invention are vip3A insecticidal proteins which provide 100% mortality when added in an amount of protein at least 260 fold lower than the amount of CryIA proteins needed to achieve just 50% mortality.

The vip3 insecticidal proteins according to the invention are present mostly in the supernatants of the cultures and are therefore are to be classified as secreted proteins. They preferably contain in the N-terminal sequence a number of positively charged residues followed by a hydrophobic core region and are not N-terminally processed during export.

As the other pesticidal proteins reported hereto within the scope of the invention, the VIP3 proteins can be detected in growth stages prior to sporulation establishing a further clear distinction from other proteins that belong to the δ-endotoxin family. Preferably, expression of the insect-specific protein starts during mid-log phase and continues during sporulation. Owing to the specific expression pattern in combination with the high stability of the VIP3 proteins, large amounts of the VIP3 proteins can be found in supernatants of sporulating cultures. Especially preferred are the VIP3 proteins identified in SEQ ID NO:29 and SEQ ID NO:32 and the corresponding DNA molecules comprising nucleotide sequences encoding the said proteins, but especially those DNA molecules comprising the nucleotide sequences given in SEQ ID NO:28, SEQ ID NO:30 and SEQ ID NO:31.

The pesticidal proteins of the invention can be used in combination with Bt endotoxins or other insecticidal proteins to increase insect target range. Furthermore, the use of the VIPs of the present invention in combination with Bt δ-endotoxins or other insecticidal principles of a distinct nature has particular utility for the prevention and/or management of insect resistance. Other insecticidal principles include
protease inhibitors (both serine and cysteine types), lectins, α-amylase and peroxidase. In one preferred embodiment, expression of VIPs in a transgenic plant is accompanied by the expression of one or more Bt δ-endotoxins. This co-expression of more than one insecticidal principle in the same transgenic plant can be achieved by genetically engineering a plant to contain and express all the genes necessary. Alternatively, a plant, Parent 1, can be genetically engineered for the expression of VIPs. A second plant, Parent 2, can be genetically engineered for the expression of Bt δ-endotoxin. By crossing Parent 1 with Parent 2, progeny plants are obtained which express all the genes introduced into Parents 1 and 2. Particularly preferred Bt δ-endotoxins are those disclosed in EP-A 0618976, herein incorporated by reference.

A substantial number of cytotoxic proteins, though not all, are binary in action. Binary toxins typically consist of two protein domains, one called the A domain and the other called the B domain (see Sourcebook of Bacterial Protein Toxins, J. E. Alouf and J. H. Freer eds. (1991) Academic Press). The A domain possesses a potent cytotoxic activity. The B domain binds an external cell surface receptor before being internalized. Typically, the cytotoxic A domain must be escorted to the cytoplasm by a translocation domain. Often the A and B domains are separate polypeptides or protomers, which are associated by a protein-protein interaction or a di-sulfide bond. However, the toxin can be a single polypeptide which is proteolytically processed within the cell into two domains as in the case for Pseudomonas exotoxin A. In summary binary toxins typically have three important domains, a cytotoxic A domain, a receptor binding B domain and a translocation domain. The A and B domain are often associated by protein-protein interacting domains.

The receptor binding domains of the present invention are useful for delivering any protein, toxin, enzyme, transcription factor, nucleic acid, chemical or any other factor into target insects having a receptor recognized by the receptor binding domain of the binary toxins described in this patent. Similarly, since binary toxins have translocation domains which penetrate phospholipid bilayer membranes and escort cytotoxins across those membranes, such translocation domains may be useful in escorting any protein, toxin, enzyme, transcription factor, nucleic acid, chemical or any other factor across a phospholipid bilayer such as the plasma membrane or a vesicle membrane. The translocation domain may itself perforate membranes, thus having toxic or insecticidal properties. Further, all binary toxins have cytotoxic domains; such a
cytotoxic domain may be useful as a lethal protein, either alone or when delivered into any target cell(s) by any means.

Finally, since binary toxins comprised of two polypeptides often form a complex, it is likely that there are protein-protein interacting regions within the components of the binary toxins of the invention. These protein-protein interacting domains may be useful in forming associations between any combination of toxins, enzymes, transcription factors, nucleic acids, antibodies, cell binding moieties, or any other chemicals, factors, proteins or protein domains.

Toxins, enzymes, transcription factors, antibodies, cell binding moieties or other protein domains can be fused to pesticidal or auxiliary proteins by producing in frame genetic fusions which, when translated by ribosomes, would produce a fusion protein with the combined attributes of the VIP and the other component used in the fusion. Furthermore, if the protein domain fused to the VIP has an affinity for another protein, nucleic acid, carbohydrate, lipid, or other chemical or factor, then a three-component complex can be formed. This complex will have the attributes of all of its components. A similar rationale can be used for producing four or more component complexes. These complexes are useful as insecticidal toxins, pharmaceuticals, laboratory reagents, and diagnostic reagents, etc. Examples where such complexes are currently used are fusion toxins for potential cancer therapies, reagents in ELISA assays and immunoblot analysis.

One strategy of altering pesticidal or auxiliary proteins is to fuse a 15-amino-acid "S-tag" to the protein without destroying the insect cell binding domain(s), translocation domains or protein-protein interacting domains of the proteins. The S-tag has a high affinity ($K_d = 10^{-9}$ M) for a ribonuclease S-protein, which, when bound to the S-tag, forms an active ribonuclease (See F. M. Richards and H. W. Wyckoff (1971) in "The Enzymes", Vol. IV (Boyer, P.D. ed.). pp. 647-806. Academic Press, New York). The fusion can be made in such a way as to destroy or remove the cytotoxic activity of the pesticidal or auxiliary protein, thereby replacing the VIP cytotoxic activity with a new cytotoxic ribonuclease activity. The final toxin would be comprised of the S-protein, a pesticidal protein and an auxiliary protein, where either the pesticidal protein or the auxiliary protein is produced as translational fusions with the S-tag. Similar strategies can be used to fuse other potential cytotoxins to pesticidal or auxiliary proteins including (but not limited to) ribosome inactivating
proteins, insect hormones, hormone receptors, transcription factors, proteases, phosphatases, *Pseudomonas* exotoxin A, or any other protein or chemical factor that is lethal when delivered into cells. Similarly, proteins can be delivered into cells which are not lethal, but might alter cellular biochemistry or physiology.

The spectrum of toxicity toward different species can be altered by fusing domains to pesticidal or auxiliary proteins which recognize cell surface receptors from other species. Such domains might include (but are not limited to) antibodies, transferrin, hormones, or peptide sequences isolated from phage displayed affinity selectable libraries. Also, peptide sequences which are bound to nutrients, vitamins, hormones, or other chemicals that are transported into cells could be used to alter the spectrum of toxicity. Similarly, any other protein or chemical which binds a cell surface receptor or the membrane and could be internalized might be used to alter the spectrum of activity of VIP1 and VIP2.

The pesticidal proteins of the present invention are those proteins which confer a specific pesticidal property. Such proteins may vary in molecular weight, having component polypeptides at least a molecular weight of 30 kDa or greater, preferably about 50 kDa or greater.

The auxiliary proteins of the invention may vary in molecular weight, having at least a molecular weight of about 15 kDa or greater, preferably about 20 kDa or greater; more preferably, about 30 kDa or greater. The auxiliary proteins themselves may have component polypeptides.

It is possible that the pesticidal protein and the auxiliary protein may be components of a multimeric, pesticidal protein. Such a pesticidal protein which includes the auxiliary proteins as one or more of its component polypeptides may vary in molecular weight, having at least a molecular weight of 50 kDa up to at least 200 kDa, preferably about 100 kDa to 150 kDa.

An auxiliary protein may be used in combination with the pesticidal proteins of the invention to enhance activity or to activate the pesticidal protein. To determine whether the auxiliary protein will affect activity, the pesticidal protein can be expressed alone and in combination with the auxiliary protein and the respective activities compared in feeding assays for pesticidal activity.

It may be beneficial to screen strains for potential pesticidal activity by testing activity of the strain alone and in combination with the auxiliary protein. In some
instances an auxiliary protein in combination with the native proteins of the strains yields pesticidal activity where none is seen in the absence of an auxiliary protein.

The auxiliary protein can be modified, as described above, by various methods known in the art. Therefore, for purposes of the invention, the term "Vegetative Insecticidal Protein" (VIP) encompasses those proteins produced during vegetative growth which alone or in combination can be used for pesticidal activity. This includes pesticidal proteins, auxiliary proteins and those proteins which demonstrate activity only in the presence of the auxiliary protein or the polypeptide components of these proteins.

It is recognized that there are alternative methods available to obtain the nucleotide and amino acid sequences of the present proteins. For example, to obtain the nucleotide sequence encoding the pesticidal protein, cosmid clones, which express the pesticidal protein, can be isolated from a genomic library. From larger active cosmid clones, smaller subclones can be made and tested for activity. In this manner, clones which express an active pesticidal protein can be sequenced to determine the nucleotide sequence of the gene. Then, an amino acid sequence can be deduced for the protein. For general molecular methods, see, for example, Molecular Cloning, A Laboratory Manual, Second Edition, Vols. 1-3, Sambrook et al. (eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989), and the references cited therein.

The present invention also encompasses nucleotide sequences from organisms other than Bacillus, where the nucleotide sequences are isolatable by hybridization with the Bacillus nucleotide sequences of the invention. Proteins encoded by such nucleotide sequences can be tested for pesticidal activity. The invention also encompasses the proteins encoded by the nucleotide sequences. Furthermore, the invention encompasses proteins obtained from organisms other than Bacillus wherein the protein cross-reacts with antibodies raised against the proteins of the invention. Again the isolated proteins can be assayed for pesticidal activity by the methods disclosed herein or others well-known in the art.

Once the nucleotide sequences encoding the pesticidal proteins of the invention have been isolated, they can be manipulated and used to express the protein in a variety of hosts including other organisms, including microorganisms and plants.
The pesticidal genes of the invention can be optimized for enhanced expression in plants. See, for example EP-A 0618976; EP-A 0359472; EP-A 0385962; WO 91/16432; Perlak et al. (1991) Proc. Natl. Acad. Sci. USA 88:3324-3328; and Murray et al. (1989) Nucleic Acids Research 17: 477-498. In this manner, the genes can be synthesized utilizing plant preferred codons. That is the preferred codon for a particular host is the single codon which most frequently encodes that amino acid in that host. The maize preferred codon, for example, for a particular amino acid may be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants is found in Murray et al. (1989), Nucleic Acids Research 17:477-498, the disclosure of which is incorporated herein by reference. Synthetic genes can also be made based on the distribution of codons a particular host uses for a particular amino acid.

In this manner, the nucleotide sequences can be optimized for expression in any plant. It is recognized that all or any part of the gene sequence may be optimized or synthetic. That is, synthetic or partially optimized sequences may also be used.

In like manner, the nucleotide sequences can be optimized for expression in any microorganism. For Bacillus preferred codon usage, see, for example US Patent No. 5,024,837 and Johansen et al. (1988) Gene 65:293-304.

Methodologies for the construction of plant expression cassettes as well as the introduction of foreign DNA into plants are described in the art. Such expression cassettes may include promoters, terminators, enhancers, leader sequences, introns and other regulatory sequences operably linked to the pesticidal protein coding sequence. It is further recognized that promoters or terminators of the VIP genes can be used in expression cassettes.

eds.) Academic Press, Inc. (1989). See also US patent application serial no. 08/008,374 herein incorporated by reference. See also, EP-A 0193259 and EP-A 0451878. It is understood that the method of transformation will depend upon the plant cell to be transformed.

It is further recognized that the components of the expression cassette may be modified to increase expression. For example, truncated sequences, nucleotide substitutions or other modifications may be employed. See, for example Perlak et al. (1991) Proc. Natl. Acad. Sci. USA 88:3324-3328; Murray et al., (1989) Nucleic Acids Research 17:477-498; and WO 91/16432.

Picornavirus leaders, for example, EMCV leader (encephalomyocarditis 5' noncoding region) (Elroy-Stein, O., Fuerst, T.R., and Moss, B. (1989) PNAS USA 86:6126-6130);

Potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al., (1986); MDMV leader (Maize Dwarf Mosaic Virus); Virology, 154:9-20), and

Tobacco mosaic virus leader (TMV), (Gallie, D.R. et al., (1989), Molecular Biology of RNA, pages 237-256; and

For tissue specific expression, the nucleotide sequences of the invention can be operably linked to tissue specific promoters. See, for example, EP-A 0618976, herein incorporated by reference.

Further comprised within the scope of the present invention are transgenic plants, in particular transgenic fertile plants transformed by means of the aforesaid processes and their asexual and/or sexual progeny, which comprise and preferably also express the pesticidal protein according to the invention. Especially preferred are hybrid plants.

The transgenic plant according to the invention may be a dicotyledonous or a monocotyledonous plant. Preferred are monocotyledonous plants of the Graminaceae family involving *Lolium, Zea, Triticum, Triticale, Sorghum, Saccharum, Bromus, Oryzae, Avena, Hordeum, Secale* and *Setaria* plants.

Especially preferred are transgenic maize, wheat, barley, sorghum, rye, oats, turf grasses and rice.

Among the dicotyledonous plants soybean, cotton, tobacco, sugar beet, oilseed rape, and sunflower are especially preferred herein.

The expression 'progeny' is understood to embrace both, "asexually" and "sexually" generated progeny of transgenic plants. This definition is also meant to include all mutants and variants obtainable by means of known processes, such as for example cell fusion or mutant selection and which still exhibit the characteristic properties of the initially transformed parent plant, together with all crossing and fusion products of the transformed plant material.

Another object of the invention concerns the proliferation material of transgenic plants.

The proliferation material of transgenic plants is defined relative to the invention as any plant material that may be propagated sexually or asexually *in vivo* or *in vitro*. Particularly preferred within the scope of the present invention are protoplasts, cells,
calli, tissues, organs, seeds, embryos, pollen, egg cells, zygotes, together with any other propagating material obtained from transgenic plants.

Parts of plants, such as for example flowers, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed by means of the process of the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention.

Before the plant propagation material [fruit, tuber, grains, seed], but especially seed is sold as a commercial product, it is customarily treated with a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal or animal pests.

In order to treat the seed, the protectant coating may be applied to the seeds either by impregnating the tubers or grains with a liquid formulation or by coating them with a combined wet or dry formulation. In addition, in special cases, other methods of application to plants are possible, eg treatment directed at the buds or the fruit.

The plant seed according to the invention comprising a DNA molecule comprising a nucleotide sequence encoding a pesticidal protein according to the invention may be treated with a seed protectant coating comprising a seed treatment compound, such as, for example, captan, carboxin, thiram (TMTD®), methalaxyl (Apron®) and pirimiphos-methyl (Actellic®) and others that are commonly used in seed treatment. Preferred within the scope of the invention are seed protectant coatings comprising an entomocidal composition according to the invention alone or in combination with one of the a seed protectant coating customarily used in seed treatment.

It is thus a further object of the present invention to provide plant propagation material for cultivated plants, but especially plant seed that is treated with a seed protectant coating as defined hereinbefore.

It is recognized that the genes encoding the pesticidal proteins can be used to transform insect pathogenic organisms. Such organisms include Baculoviruses, fungi, protozoa, bacteria and nematodes.

The *Bacillus* strains of the invention may be used for protecting agricultural crops and products from pests. Alternatively, a gene encoding the pesticide may be
introduced via a suitable vector into a microbial host, and said host applied to the environment or plants or animals. Microorganism hosts may be selected which are known to occupy the "phytosphere" (phyllode, phylloplane, rhizosphere, and/or rhizoplan) of one or more crops of interest. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the polypeptide pesticide, and, desirably, provide for improved protection of the pesticide from environmental degradation and inactivation.

Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., *Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., *Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as *Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylanum, Agrobacteria, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium meliloti, Alcaligenes entrophus, Clavibacter xyli and Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurantii, Saccharomyces rosei, S. pretoniensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and Aureobasidium pullulans. Of particular interest are the pigmented microorganisms.

A number of ways are available for introducing a gene expressing the pesticidal protein into the microorganism host under conditions which allow for stable maintenance and expression of the gene. For example, expression cassettes can be constructed which include the DNA constructs of interest operably linked with the transcriptional and translational regulatory signals for expression of the DNA constructs, and a DNA sequence homologous with a sequence in the host organism, whereby integration will occur, and/or a replication system which is functional in the host, whereby integration or stable maintenance will occur.

Transcriptional and translational regulatory signals include but are not limited to promoter, transcriptional initiation start site, operators, activators, enhancers, other regulatory elements, ribosomal binding sites, an initiation codon, termination signals,
and the like. See, for example, US Patent 5,039,523; US Patent No. 4,853,331; EPO 0480762A2; Sambrook et al. supra; Molecular Cloning, a Laboratory Manual, Maniatis et al. (eds) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982); Advanced Bacterial Genetics, Davis et al. (eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1980); and the references cited therein.

Suitable host cells, where the pesticide-containing cells will be treated to prolong the activity of the toxin in the cell when the then treated cell is applied to the environment of the target pest(s), may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxin is unstable or the level of application sufficiently low as to avoid any possibility of toxicity to a mammalian host. As hosts, of particular interest will be the prokaryotes and the lower eukaryotes, such as fungi. Illustrative prokaryotes, both Gram-negative and -positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus; Bacillaceae; Rhizobiceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymonomas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such a Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasiudium, Sporobolomyces, and the like.

Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the protein gene into the host, availability of expression systems, efficiency of expression, stability of the protein in the host, and the presence of auxiliary genetic capabilities. Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; leaf affinity; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like.

Host organisms of particular interest include yeast, such as Rhodotorula sp., Aureobasidium sp., Saccharomyces sp., and Sporobolomyces sp.; phylloplane
organisms such as *Pseudomonas sp.*, *Erwinia sp.* and *Flavobacterium sp.*; or such other organisms as *Escherichia*, *Lactobacillus sp.*, *Bacillus sp.*, and the like. Specific organisms include *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*, *Saccharomyces cerevisiae*, *Bacillus thuringiensis*, *Escherichia coli*, *Bacillus subtilis*, and the like.

VIP genes can be introduced into micro-organisms that multiply on plants (epiphytes) to deliver VIP proteins to potential target pests. Epiphytes can be gram-positive or gram-negative bacteria for example.

Root colonizing bacteria, for example, can be isolated from the plant of interest by methods known in the art. Specifically, a *Bacillus cereus* strain which colonizes roots could be isolated from roots of a plant (for example see J. Handelsman, S. Raffel, E. Mester, L. Wunderlich and C. Grau, *Appl. Environ. Microbiol.* 56:713-718, (1990)). VIP1 and/or VIP2 and/or VIP3 could be introduced into a root colonizing *Bacillus cereus* by standard methods known in the art.

Specifically, VIP1 and/or VIP2 derived from *Bacillus cereus* strain AB78 can be introduced into a root colonizing *Bacillus cereus* by means of conjugation using standard methods (J. Gonzalez, B. Brown and B. Carlton, *Proc. Natl. Acad. Sci.* 79:6951-6955, (1982)).

Also, VIP1 and/or VIP2 and/or VIP3 or other VIPs of the invention can be introduced into the root colonizing *Bacillus* by means of electro-transformation. Specifically, VIPs can be cloned into a shuttle vector, for example, pHT3101 (D. Lereclus *et al.*, *FEMS Microbiol. Letts.* 60:211-218 (1989)) as described in Example 10. The shuttle vector pHT3101 containing the coding sequence for the particular VIP can then be transformed into the root colonizing *Bacillus* by means of electroporation (D. Lereclus *et al.* 1989, *FEMS Microbiol. Letts.* 60:211-218).

Expression systems can be designed so that VIP proteins are secreted outside the cytoplasm of gram negative bacteria, *E. coli*, for example. Advantages of having VIP proteins secreted are (1) it avoids potential toxic effects of VIP proteins expressed within the cytoplasm and (2) it can increase the level of VIP protein expressed and (3) can aid in efficient purification of VIP protein.

VIP proteins can be made to be secreted in *E. coli*, for example, by fusing an appropriate *E. coli* signal peptide to the amino-terminal end of the VIP signal peptide or replacing the VIP signal peptide with the *E. coli* signal peptide. Signal peptides
recognized by *E. coli* can be found in proteins already known to be secreted in *E. coli*, for example the OmpA protein (J. Ghrayeb, H. Kimura, M. Takahara, Y. Masui and M. Inouye, EMBO J., 3:2437-2442 (1984)). OmpA is a major protein of the *E. coli* outer membrane and thus its signal peptide is thought to be efficient in the translocation process. Also, the OmpA signal peptide does not need to be modified before processing as may be the case for other signal peptides, for example lipoprotein signal peptide (G. Duffaud, P. March and M. Inouye, Methods in Enzymology, 153:492 (1987)).

Specifically, unique BamHI restriction sites can be introduced at the amino-terminal and carboxy-terminal ends of the VIP coding sequences using standard methods known in the art. These BamHI fragments can be cloned, in frame, into the vector pLN-III-ompA1, A2 or A3 (J. Ghrayeb, H. Kimura, M. Takahara, H. Hsiung, Y. Masui and M. Inouye, EMBO J., 3:2437-2442 (1984)) thereby creating ompA:VIP fusion gene which is secreted into the periplasmic space. The other restriction sites in the polylinker of pLN-III-ompA can be eliminated by standard methods known in the art so that the VIP amino-terminal amino acid coding sequence is directly after the ompA signal peptide cleavage site. Thus, the secreted VIP sequence in *E. coli* would then be identical to the native VIP sequence.

When the VIP native signal peptide is not needed for proper folding of the mature protein, such signal sequences can be removed and replaced with the ompA signal sequence. Unique BamHI restriction sites can be introduced at the amino-termini of the proprotein coding sequences directly after the signal peptide coding sequences of VIP and at the carboxy-termini of VIP coding sequence. These BamHI fragments can then be cloned into the pLN-III-ompA vectors as described above.

General methods for employing the strains of the invention in pesticide control or in engineering other organisms as pesticidal agents are known in the art. See, for example US Patent No. 5,039,523 and EP 0480762A2.

VIPs can be fermented in a bacterial host and the resulting bacteria processed and used as a microbial spray in the same manner that *Bacillus thuringiensis* strains have been used as insecticidal sprays. In the case of a VIP(s) which is secreted from *Bacillus*, the secretion signal is removed or mutated using procedures known in the art. Such mutations and/or deletions prevent secretion of the VIP protein(s) into the growth medium during the fermentation process. The VIPs are retained within the cell
and the cells are then processed to yield the encapsulated VIPs. Any suitable microorganism can be used for this purpose. *Psuedomonas* has been used to express *Bacillus thuringiensis* endotoxins as encapsulated proteins and the resulting cells processed and sprayed as an insecticide. (H. Gaertner et al. 1993, In Advanced Engineered Pesticides, L. Kim ed.)

Various strains of *Bacillus thuringiensis* are used in this manner. Such *Bt* strains produce endotoxin protein(s) as well as VIPs. Alternatively, such strains can produce only VIPs. A sporulation deficient strain of *Bacillus subtilis* has been shown to produce high levels of the CryIII A endotoxin from *Bacillus thuringiensis* (Agassie, H. and Lereclus, D., "Expression in *Bacillus subtilis* of the *Bacillus thuringiensis* CryIII A toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a *spoOA* mutant", *J. Bacteriol.*, 176:4734-4741 (1994)). A similar *spoOA* mutant can be prepared in *Bacillus thuringiensis* and used to produce encapsulated VIPs which are not secreted into the medium but are retained within the cell.

To have VIPs maintained within the *Bacillus* cell the signal peptide can be disarmed so that it no longer functions as a secretion signal. Specifically, the putative signal peptide for VIP1 encompasses the first 31 amino acids of the protein with the putative consensus cleavage site, Ala-X-Ala, at the C-terminal portion of this sequence (G. von Heijne, *J. Mol. Biol.* 184:99-105 (1989)) and the putative signal peptide for VIP2 encompasses the first 40 amino acids of the protein with the putative cleavage site after Ala40. The cleavage sites in either VIP1 or VIP2 can be mutated with methods known in the art to replace the cleavage site consensus sequence with alternative amino acids that are not recognized by the signal peptidases.

Alternatively, the signal peptides of VIP1, VIP2 and/or other VIPs of the invention can be eliminated from the sequence thereby making them unrecognizable as secretion proteins in *Bacillus*. Specifically, a methionine start site can be engineered in front of the proprotein sequence in VIP1, starting at Asp32, or the proprotein sequence in VIP2, starting at Glu41 using methods known in the art.

VIP genes can be introduced into micro-organisms that multiply on plants (epiphytes) to deliver VIP proteins to potential target pests. Epiphytes can be gram-positive or gram-negative bacteria for example.

The *Bacillus* strains of the invention or the microorganisms which have been genetically altered to contain the pesticidal gene and protein may be used for
protecting agricultural crops and products from pests. In one aspect of the invention, whole, i.e., unlysed, cells of a toxin (pesticide)-producing organism are treated with reagents that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s).

Alternatively, the pesticides are produced by introducing a heterologous gene into a cellular host. Expression of the heterologous gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. These cells are then treated under conditions that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s). The resulting product retains the toxicity of the toxin. These naturally encapsulated pesticides may then be formulated in accordance with conventional techniques for application to the environment hosting a target pest, e.g., soil, water, and foliage of plants. See, for example EPA 0192319, and the references cited therein.

The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds. These compounds can be both fertilizers or micronutrient donors or other preparations that influence plant growth. They can also be selective herbicides, insecticides, fungicides, bactericides, nematicides, mollusicides or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers.

Preferred methods of applying an active ingredient of the present invention or an agrochemical composition of the present invention which contains at least one of the insect-specific proteins produced by the bacterial strains of the present invention are leaf application, seed coating and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest.

The present invention thus further provides an entomocidal composition comprising as an active ingredient at least one of the novel insect-specific proteins
according to the invention and/or a recombinant microorganism containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, but especially a recombinant *Bacillus* *spp* strain, such as *Bacillus cereus* or *Bacillus thuringiensis*, containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, or a derivative or mutant thereof, together with an agricultural adjuvant such as a carrier, diluent, surfactant or application-promoting adjuvant. The composition may also contain a further biologically active compound. The said compound can be both a fertilizer or micronutrient donor or other preparations that influence plant growth. It can also be a selective herbicide, insecticide, fungicide, bactericide, nematicide, molluscide or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers.

The composition may comprise from 0.1 to 99% by weight of the active ingredient, from 1 to 99.9% by weight of a solid or liquid adjuvant, and from 0 to 25% by weight of a surfactant. The active ingredient comprising at least one of the novel insect-specific proteins according to the invention or a recombinant microorganism containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, but especially a recombinant *Bacillus* *spp* strain, such as *Bacillus cereus* or *Bacillus thuringiensis* strain containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, or a derivative or mutant thereof, or the composition containing the said active ingredient, may be administered to the plants or crops to be protected together with certain other insecticides or chemicals (1993 Crop Protection Chemicals Reference, Chemical and Pharmaceutical Press, Canada) without loss of potency. It is compatible with most other commonly used agricultural spray materials but should not be used in extremely alkaline spray solutions. It may be administered as a dust, a suspension, a wettable powder or in any other material form suitable for agricultural application.
The invention further provides methods for controlling or inhibiting insect pests by applying an active ingredient comprising at least one of the novel insect-specific proteins according to the invention or a recombinant microorganism containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form or a composition comprising the said active ingredient to (a) an environment in which the insect pest may occur, (b) a plant or plant part in order to protect said plant or plant part from damage caused by an insect pest, or (c) seed in order to protect a plant which develops from said seed from damage caused by an insect pest.

A preferred method of application in the area of plant protection is application to the foliage of the plants (folic application), with the number of applications and the rate of application depending on the plant to be protected and the risk of infestation by the pest in question. However, the active ingredient may also penetrate the plants through the roots (systemic action) if the locus of the plants is impregnated with a liquid formulation or if the active ingredient is incorporated in solid form into the locus of the plants, for example into the soil, e.g. in granular form (soil application). In paddy rice crops, such granules may be applied in metered amounts to the flooded rice field.

The compositions according to the invention are also suitable for protecting plant propagating material, e.g. seed, such as fruit, tubers or grains, or plant cuttings, from insect pests. The propagation material can be treated with the formulation before planting: seed, for example, can be dressed before being sown. The active ingredient of the invention can also be applied to grains (coating), either by impregnating the grains with a liquid formulation or by coating them with a solid formulation. The formulation can also be applied to the planting site when the propagating material is being planted, for example to the seed furrow during sowing. The invention relates also to those methods of treating plant propagation material and to the plant propagation material thus treated.

The compositions according to the invention comprising as an active ingredient a recombinant microorganism containing at least one of the novel toxin genes in recombinant form, but especially a recombinant Bacillus spp. strain, such as Bacillus cereus or Bacillus thuringiensis strain containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, or a derivative or mutant thereof may be applied in any method.
known for treatment of seed or soil with bacterial strains. For example, see US Patent No.4,863,866. The strains are effective for biocontrol even if the microorganism is not living. Preferred is, however, the application of the living microorganism.

Target crops to be protected within the scope of the present invention comprise, e.g., the following species of plants:

cereals (wheat, barley, rye, oats, rice, sorghum and related crops), beet (sugar beet and fodder beet), forage grasses (orchardgrass, fescue, and the like), drupes, pomes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries), leguminous plants (beans, lentils, peas, soybeans), oil plants (rape, mustard, poppy, olives, sunflowers, coconuts, castor oil plants, cocoa beans, groundnuts), cucumber plants (cucumber, marrows, melons) fiber plants (cotton, flax, hemp, jute), citrus fruit (oranges, lemons, grapefruit, mandarins), vegetables (spinach, lettuce, asparagus, cabbages and other Brassicae, onions, tomatoes, potatoes, paprika), lauraceae (avocados, carrots, cinnamon, camphor), deciduous trees and conifers (e.g. linden-trees, yew-trees, oak-trees, alders, poplars, birch-trees, firs, larches, pines), or plants such as maize, tobacco, nuts, coffee, sugar cane, tea, vines, hops, bananas and natural rubber plants, as well as ornamentals (including composites).

A recombinant Bacillus spp strain, such as Bacillus cereus or Bacillus thuringiensis strain, containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form is normally applied in the form of entomocidal compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with further biologically active compounds. These compounds may be both fertilizers or micronutrient donors or other preparations that influence plant growth. They may also be selective herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation.

The active ingredient according to the invention may be used in unmodified form or together with any suitable agriculturally acceptable carrier. Such carriers are adjuvants conventionally employed in the art of agricultural formulation, and are therefore formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders,
dusts, granulates, and also encapsulations, for example, in polymer substances. Like the nature of the compositions, the methods of application, such as spraying, atomizing, dusting, scattering or pouring, are chosen in accordance with the intended objective and the prevailing circumstances. Advantageous rates of application are normally from about 50 g to about 5 kg of active ingredient (a.i.) per hectare ("ha", approximately 2.471 acres), preferably from about 100 g to about 2kg a.i./ha. Important rates of application are about 200 g to about 1kg a.i./ha and 200g to 500g a.i./ha.

For seed dressing advantageous application rates are 0.5 g to 1000 g a.i. per 100 kg seed, preferably 3 g to 100 g a.i. per 100 kg seed or 10 g to 50 g a.i. per 100 kg seed.

Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers. The formulations, i.e. the entomocidal compositions, preparations or mixtures containing the recombinant Bacillus spp strain, such as Bacillus cereus or Bacillus thuringiensis strain containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form as an active ingredient or combinations thereof with other active ingredients, and, where appropriate, a solid or liquid adjuvant, are prepared in known manner, e.g., by homogeneously mixing and/or grinding the active ingredients with extenders, e.g., solvents, solid carriers, and in some cases surface-active compounds (surfactants).

Suitable solvents are: aromatic hydrocarbons, preferably the fractions containing 8 to 12 carbon atoms, e.g. xylene mixtures or substituted naphthalenes, phthalates such as dibutyl phthalate or diocetyl phthalate, aliphatic hydrocarbons such as cyclohexane or paraffins, alcohols and glycols and their ethers and esters, such as ethanol, ethylene glycol monomethyl or monoethyl ether, ketones such as cyclohexanone, strongly polar solvents such as N-methyl-2-pyrrolidone, dimethylsulfoxide or dimethylformamide, as well as vegetable oils or epoxidised vegetable oils such as epoxidised coconut oil or soybean oil; or water.

The solid carriers used, e.g., for dusts and dispersible powders, are normally natural mineral fillers such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order to improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive
carriers are porous types, for example pumice, broken brick, sepiolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, e.g. especially dolomite or pulverized plant residues.

Depending on the nature of the active ingredients to be formulated, suitable surface-active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as comprising mixtures of surfactants. Suitable anionic surfactants can be both water-soluble soaps and water-soluble synthetic surface-active compounds. Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C₁₀ - C₂₂), e.g. the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained, e.g. from coconut oil or tallow oil. Further suitable surfactants are also the fatty acid methyltaurin salts as well as modified and unmodified phospholipids.

More frequently, however, so-called synthetic surfactants are used, especially fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates. The fatty sulfonates or sulfates are usually in the forms of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts and generally contain a C₉ - C₂₂ alkyl radical which also includes the alkyl moiety of acyl radicals, e.g. the sodium or calcium salt of lignosulfonic acid, of dodecylsulfate, or of a mixture of fatty alcohol sulfates obtained from natural fatty acids. These compounds also comprise the salts of sulfuric acid esters and sulfonic acids of fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and one fatty acid radical containing about 8 to 22 carbon atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, or of a naphthalenesulfonic acid/formaldehyde condensation product. Also suitable are corresponding phosphates, e.g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 moles of ethylene oxide.

Non-ionic surfactant are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, or saturated or unsaturated fatty acids and alkylphenols, said derivatives containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the
(aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alklyphenols.

Further suitable non-ionic surfactants are the water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit. Representative examples of non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol. Fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate, are also suitable non-ionic surfactants.

Cationic surfactants are preferably quaternary ammonium salts which contain, as N-substituent, at least one C₆-C₂₂ alkyl radical and, as further substituents, lower unsubstituted or halogenated alkyl, benzyl or hydroxy-lower alkyl radicals. The salts are preferably in the form of halides, methylsulfates or ethylsulfates, e.g., stearyltrimethylammonium chloride or benzyldi-(2-chloroethyl)ethylammonium bromide.

The surfactants customarily employed in the art of formulation are described, e.g., in "McCUTCHEON's Detergents and Emulsifiers Annual", MC Publishing Corp. Ridgewood, N.J., 1979; Dr. Helmut Stache, "Tensid Taschenbuch" (Handbook of Surfactants), Carl HANSEr Verlag, Munich/Vienna.

Another particularly preferred characteristic of an entomocidal composition of the present invention is the persistence of the active ingredient when applied to plants and soil. Possible causes for loss of activity include inactivation by ultra-violet light, heat, leaf exudates and pH. For example, at high pH, particularly in the presence of reductant, δ-endotoxin crystals are solubilized and thus become more accessible to proteolytic inactivation. High leaf pH might also be important, particularly where the leaf surface can be in the range of pH 8-10. Formulation of an entomocidal composition of the present invention can address these problems by either including additives to help prevent loss of the active ingredient or encapsulating the material in such a way that the active ingredient is protected from inactivation. Encapsulation
can be accomplished chemically (McGuire and Shasha, J Econ Entomol 85: 1425-1433, 1992) or biologically (Barnes and Cummings, 1986; EP-A 0 192 319). Chemical encapsulation involves a process in which the active ingredient is coated with a polymer while biological encapsulation involves the expression of the δ-endotoxin genes in a microbe. For biological encapsulation, the intact microbe containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form is used as the active ingredient in the formulation. The addition of UV protectants might effectively reduce irradiation damage. Inactivation due to heat could also be controlled by including an appropriate additive.

Preferred within the present application are formulations comprising living microorganisms as active ingredient either in form of the vegetative cell or more preferable in form of spores, if available. Suitable formulations may consist, for example, of polymer gels which are crosslinked with polyvalent cations and comprise these microorganisms. This is described, for example, by D.R. Fravel et al. in Phytopathology, Vol. 75, No. 7, 774-777, 1985 for alginate as the polymer material. It is also known from this publication that carrier materials can be co-used. These formulations are as a rule prepared by mixing solutions of naturally occurring or synthetic gel-forming polymers, for example alginates, and aqueous salt solutions of polyvalent metal ions such that individual droplets form, it being possible for the microorganisms to be suspended in one of the two or in both reaction solutions. Gel formation starts with the mixing in drop form. Subsequent drying of these gel particles is possible. This process is called ionotropic gelling. Depending on the degree of drying, compact and hard particles of polymers which are structurally crosslinked via polyvalent cations and comprise the microorganisms and a carrier present predominantly uniformly distributed are formed. The size of the particles can be up to 5 mm.

Compositions based on partly crosslinked polysaccharides which, in addition to a microorganism, for example, can also comprise finely divided silicic acid as the carrier material, crosslinking taking place, for example, via Ca++ ions, are described in EP-A1-0 097 571. The compositions have a water activity of not more than 0.3. W.J. Cornick et al. describe in a review article [New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases, pages 345-372, Alan R.
Liss, Inc. (1990)] various formulation systems, granules with vermiculite as the carrier and compact alginate beads prepared by the ionotropic gelling process being mentioned. Such compositions are also disclosed by D.R. Fravel in Pesticide Formulations and Application Systems: 11th Volume, ASTM STP 1112 American Society for Testing and Materials, Philadelphia, 1992, pages 173 to 179 and can be used to formulate the recombinant microorganisms according to the invention.

The entomocidal compositions of the invention usually contain from about 0.1 to about 99%, preferably about 0.1 to about 95%, and most preferably from about 3 to about 90% of the active ingredient, from about 1 to about 99.9%, preferably from about 1 to about 99%, and most preferably from about 5 to about 95% of a solid or liquid adjuvant, and from about 0 to about 25%, preferably about 0.1 to about 25%, and most preferably from about 0.1 to about 20% of a surfactant.

In a preferred embodiment of the invention the entomocidal compositions usually contain 0.1 to 99%, preferably 0.1 to 95%, of a recombinant Bacillus spp strain, such as Bacillus cereus or Bacillus thuringiensis strain containing at least one DNA molecule comprising a nucleotide sequence encoding the novel insect-specific proteins in recombinant form, or combination thereof with other active ingredients, 1 to 99.9% of a solid or liquid adjuvant, and 0 to 25%, preferably 0.1 to 20%, of a surfactant.

Whereas commercial products are preferably formulated as concentrates, the end user will normally employ dilute formulations of substantially lower concentration. The entomocidal compositions may also contain further ingredients, such as stabilizers, antifoams, viscosity regulators, binders, tackifiers as well as fertilizers or other active ingredients in order to obtain special effects.

In one embodiment of the invention a Bacillus cereus microorganism has been isolated which is capable of killing Diabrotica virgifera virgifera, and Diabrotica longicornis barberi. The novel B. cereus strain AB78 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, IL 61604, USA and given Accession No. NRRL B-21058.

A fraction protein has been substantially purified from the B. cereus strain. This purification of the protein has been verified by SDS-PAGE and biological activity. The
protein has a molecular weight of about 60 to about 100 kDa, particularly about 70 to about 90 kDa, more particularly about 80 kDa, hereinafter VIP.

Amino-terminal sequencing has revealed the N-terminal amino-acid sequence to be:

\[\text{NH}_2\text{-Lys-Arg-Glu-Ile-Asp-Glu-Asp-Thr-Asp-Thr-Asx-Gly-Asp-Ser-Ile-Pro-} \]

(SEQ ID NO:8) where Asx represents either Asp or Asn. The entire amino acid sequence is given in SEQ ID NO:7. The DNA sequence which encodes the amino acid sequence of SEQ ID NO:7 is disclosed in SEQ ID NO:6.

An oligonucleotide probe for the region of the gene encoding amino acids 3-9 of the NH\(_2\)-terminus has been generated. The probe was synthesized based on the codon usage of a Bacillus thuringiensis (Bt) δ-endotoxin gene. The nucleotide sequence of the oligonucleotide probe used for Southern hybridizations was as follows:

\[5'\text{-GAA ATT GAT CAA GAT ACN GAT -3'} \]
(SEQ ID NO:9)

where N represents any base.

In addition, the DNA probe for the Bc AB78 VIP1 gene described herein, permits the screening of any Bacillus strain or other organisms to determine whether the VIP1 gene (or related gene) is naturally present or whether a particular transformed organism includes the VIP1 gene.

The invention now being generally described, the same will be better understood by reference to the following detailed examples that are provided for the purpose of illustration and are not to be considered limiting of the invention unless so specified.

A standard nomenclature has been developed based on the sequence identity of the proteins encompassed by the present invention. The gene and protein names for the detailed examples which follow and their relationship to the names used in the parent application [US application serial no 314594/08] are shown below.
<table>
<thead>
<tr>
<th>Gene / Protein Name under Standard Nomenclature</th>
<th>Gene / Protein Name in Parent</th>
<th>Description of Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP1A(a)</td>
<td>VIP1</td>
<td>VIP1 from strain AB78 as disclosed in SEQ ID NO:5.</td>
</tr>
<tr>
<td>VIP2A(a)</td>
<td>VIP2</td>
<td>VIP2 from strain AB78 as disclosed in SEQ ID NO:2.</td>
</tr>
<tr>
<td>VIP1A(b)</td>
<td>VIP1 homolog</td>
<td>VIP1 from Bacillus thuringiensis var. tenebrionis as disclosed in SEQ ID NO:21.</td>
</tr>
<tr>
<td>VIP2A(b)</td>
<td>VIP2 homolog</td>
<td>VIP2 from Bacillus thuringiensis var. tenebrionis as disclosed in SEQ ID NO:20.</td>
</tr>
<tr>
<td>VIP3A(a)</td>
<td>--</td>
<td>VIP from strain AB88 as disclosed in SEQ ID NO:28 of the present application</td>
</tr>
<tr>
<td>VIP3A(b)</td>
<td>--</td>
<td>VIP from strain AB424 as disclosed in SEQ ID NO:31 of the present application</td>
</tr>
</tbody>
</table>
EXPERIMENTAL

Formulation Examples

The active ingredient used in the following formulation examples are *Bacillus cereus* strain AB78 having Accession No. NRRL B-21058; *Bacillus thuringiensis* strains having Accession Nos. NRRL B-21060, NRRL B-21224, NRRL B-21225, NRRL B-21226, NRRL B-21227, and NRRL B-21439; and *Bacillus spp* strains having Accession Nos NRRL B-21228, NRRL B-21229, and NRRL B-21230. All the mentioned strains are natural isolates comprising the insect-specific proteins according to the invention.

Alternatively, the isolated insect-specific proteins are used as the active ingredient alone or in combination with the above-mentioned *Bacillus* strains.

A1. Wettability powders

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis spores</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>sodium lignosulfonate</td>
<td>5%</td>
<td>5%</td>
<td>--</td>
</tr>
<tr>
<td>sodium laurylsulfate</td>
<td>3%</td>
<td>--</td>
<td>5%</td>
</tr>
<tr>
<td>sodium diisobutylnapthalenesulfonate</td>
<td>--</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>octylphenol polyethylene glycol ether</td>
<td>--</td>
<td>2%</td>
<td>--</td>
</tr>
<tr>
<td>(7-8 moles of ethylene oxide)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>highly dispersed silicid acid</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>kaolin</td>
<td>62%</td>
<td>27%</td>
<td>--</td>
</tr>
</tbody>
</table>

The spores are thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettability powders which can be diluted with water to give suspensions of the desired concentrations.

A2. Emulsifiable concentrate

Bacillus thuringiensis spores 10%
octylphenol polyethylene glycol ether (4-5 moles ethylene oxide) 3%
calcium dodecylbenzensulfonate 3%
castor oil polyglycol ether (36 moles of ethylene oxide) 4%
cyclohexanone 30%
xylene mixture 50%

Emulsions of any required concentration can be obtained from this concentrate by dilution with water.

A3. Ducts

\[\begin{array}{ll}
\text{a)} & \text{b)} \\
\text{Bacillus thuringiensis spores} & 5\% & 8\% \\
talcum & 95\% & -- \\
kaolin & -- & 92\% \\
\end{array}\]

Ready for use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

A4. Extruder Granulate

\[\begin{array}{l}
\text{Bacillus thuringiensis spores} \\
sodium lignosulfonate \\
carboxymethylcellulose \\
kaolin \\
\end{array}\]

10\% 2\% 1\% 87\%

The active ingredient or combination is mixed and ground with the adjuvants and the mixture is subsequently moistened with water. The mixture is extruded, granulated and the dried in a stream of air.

A5. Coated Granule

\[\begin{array}{l}
\text{Bacillus thuringiensis spores} \\
\text{polyethylene glycol (mol wt 200)} \\
kaolin \\
\end{array}\]

3\% 3\% 94\%
The active ingredient or combination is uniformly applied in a mixer to the kaolin moistened with polyethylene glycol. Non-dusty coated granulates are obtained in this manner.

A6. **Suspension Concentrate**

Bacillus thuringiensis spores 40%
ethylene glycol 10%
nonylphenol polyethylene glycol ether (15 moles of ethylene oxide) 6%
sodium lignosulfonate 10%
carboxymethylcellulose 1%
37% aqueous formaldehyde solution 0.2%
silicone oil in the form of a 75% aqueous solution 0.8%
water 32%

The active ingredient or combination is intimately mixed with the adjuvants giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

EXAMPLE 1. AB78 ISOLATION AND CHARACTERIZATION

Bacillus cereus strain AB78 was isolated as a plate contaminant in the laboratory on T3 media (per liter: 3 g tryptone, 2 g tryptose, 1.5 g yeast extract, 0.05 M sodium phosphate (pH 6.8), and 0.005 g MnCl₂; Travers, R.S. 1983). During log phase growth, AB78 gave significant activity against western corn rootworm. Antibiotic activity against gram-positive *Bacillus spp.* was also demonstrated (Table 12).
TABLE 12

Antibiotic activity of AB78 culture supernatant

<table>
<thead>
<tr>
<th>Bacteria tested</th>
<th>AB78</th>
<th>Streptomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>B. megaterium</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>B. mycoides</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>B. cereus CB</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>B. cereus 11950</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>B. cereus 14579</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>B. cereus AB78</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Bt var. israelensis</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Bt var. tenenbrionis</td>
<td>0.9</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Morphological characteristics of AB78 are as follows:
Vegetative rods straight, 3.1-5.0 mm long and 0.5-2.0 mm wide. Cells with rounded ends, single in short chains. Single subterminal, cylindrical-oval, endospore formed per cell. No parasporal crystal formed. Colonies opaque, erose, lobate and flat. No pigments produced. Cells motile. Flagella present.

Growth characteristics of AB78 are as follows:
Facultative anaerobe with optimum growth temperature of 21-30°C. Will grow at 15, 20, 25, 30 and 37°C. Will not grow above 40°C. Grows in 5-7% NaCl.

Table 13 provides the biochemical profile of AB78.

TABLE 13

Biochemical characteristics of *B. cereus* strain AB78.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid from L-arabinose</td>
<td>Methylene blue reoxidized</td>
</tr>
<tr>
<td>Gas from L-arabinose</td>
<td>Nitrate reduced</td>
</tr>
<tr>
<td>Acid from D-xylose</td>
<td>NO₃ reduced to NO₂</td>
</tr>
<tr>
<td>Gas from D-xylose</td>
<td>VP</td>
</tr>
<tr>
<td>Acid from D-glucose</td>
<td>H₂O₂ decomposed</td>
</tr>
<tr>
<td>Gas from D-glucose</td>
<td>Indole</td>
</tr>
<tr>
<td>Acid from lactose</td>
<td>Tyrosine decomposed</td>
</tr>
<tr>
<td>Gas from lactose</td>
<td>Dihydroxiacetone</td>
</tr>
<tr>
<td>Acid from sucrose</td>
<td>Litmus milk acid</td>
</tr>
<tr>
<td>Gas from sucrose</td>
<td>Litmus milk coagulated</td>
</tr>
<tr>
<td>Acid from D-mannitol</td>
<td>Litmus milk alkaline</td>
</tr>
<tr>
<td>Gas from D-mannitol</td>
<td>Litmus milk peptonized</td>
</tr>
<tr>
<td>Proprionate utilization</td>
<td>Litmus milk reduced</td>
</tr>
<tr>
<td>Citrate utilization</td>
<td>Casein hydrolyzed</td>
</tr>
<tr>
<td>Hippurate hydrolysis</td>
<td>Starch hydrolyzed</td>
</tr>
<tr>
<td>Methylene blue reduced</td>
<td>Gelatin liquidified</td>
</tr>
<tr>
<td>Lecithinase produced</td>
<td>w</td>
</tr>
</tbody>
</table>

w= weak reaction

EXAMPLE 2. BACTERIAL CULTURE

A subculture of Bc strain AB78 was used to inoculate the following medium, known as TB broth:

- Tryptone: 12 g/l
- Yeast Extract: 24 g/l
- Glycerol: 4 ml/l
- KH₂PO₄: 2.1 g/l
- K₂HPO₄: 14.7 g/l
- pH 7.4
The potassium phosphate was added to the autoclaved broth after cooling. Flasks were incubated at 30°C on a rotary shaker at 250 rpm for 24 h-36 h, which represents an early to mid-log growth phase.

The above procedure can be readily scaled up to large fermentors by procedures well known in the art.

During vegetative growth, usually 24-36 h. after starting the culture, which represents an early to mid-log growth phase, AB78 bacteria were centrifuged from the culture supernatant. The culture supernatant containing the active protein was used in bioassays.

EXAMPLE 3. INSECT BIOASSAYS

B. cereus strain AB78 was tested against various insects as described below.

Western, Northern and Southern corn rootworm, *Diabrotica virgifera virgifera*, *D. longicornis barberi* and *D. undecempunctata howardi*, respectively: dilutions were made of AB78 culture supernatant grown 24-36 h., mixed with molten artificial diet (Marrone *et al.* (1985) *J. of Economic Entomology* 78:290-293) and allowed to solidify. Solidified diet was cut and placed in dishes. Neonate larvae were placed on the diet and held at 30 C. Mortality was recorded after 6 days.

E. coli clone bioassay: *E. coli* cells were grown overnight in broth containing 100 µg/ml ampicillin at 37°C. Ten ml culture was sonicated 3X for 20 sec each. 500 µl of sonicated culture was added to molten western corn rootworm diet.

Colorado potato beetle, *Leptinotarsa decemlineata*: dilutions in Triton X-100 (to give final concentration of 0.1% TX-100) were made of AB78 culture supernatant grown 24-36 h. Five cm² potato leaf pieces were dipped into these dilutions, air dried, and placed on moistened filter paper in plastic dishes. Neonate larvae were placed on the leaf pieces and held at 30°C. Mortality was recorded after 3-5 days.

Yellow mealworm, *Tenebrio molitor*. dilutions were made of AB78 culture supernatant grown 24-36 h., mixed with molten artificial diet (Bioserv #F9240) and allowed to solidify. Solidified diet was cut and placed in plastic dishes. Neonate larvae were placed on the diet and held at 30°C. Mortality was recorded after 6-8 days.
European corn borer, black cutworm, tobacco budworm, tobacco hornworm and beet armyworm; *Ostrinia nubilalis, Agrotis ipsilon, Heliotis virescens, Manduca sexta* and *Spodoptera exigua*, respectively: dilutions, in TX-100 (to give final concentration of 0.1% TX-100), were made of AB78 culture supernatant grown 24-36 hrs. 100 µl was pipetted onto the surface of 18 cm² of solidified artificial diet (Bioserv #F9240) and allowed to air dry. Neonate larvae were then placed onto the surface of the diet and held at 30°C. Mortality was recorded after 3-6 days.

Northern house mosquito, *Culex pipiens*: dilutions were made of AB78 culture supernatant grown 24-36 h. 100 µl was pipetted into 10 ml water in a 30 ml plastic cup. Third instar larvae were added to the water and held at room temperature. Mortality was recorded after 24-48 hours. The spectrum of entomocidal activity of AB78 is given in Table 14.

TABLE 14

Activity of AB78 culture supernatant against various insect species

<table>
<thead>
<tr>
<th>Insect species</th>
<th>Order</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western corn rootworm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Diabrotica virgifera virgifera)</td>
<td>Col</td>
<td>+++</td>
</tr>
<tr>
<td>Northern corn rootworm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Diabrotica longicornis barberi)</td>
<td>Col</td>
<td>+++</td>
</tr>
<tr>
<td>Southern corn rootworm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Diabrotica undecimpunctata howardi)</td>
<td>Col</td>
<td>-</td>
</tr>
<tr>
<td>Colorado potato beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Leptinotarsa decemlineata)</td>
<td>Col</td>
<td>-</td>
</tr>
<tr>
<td>Yellow mealworm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tenebrio molitor)</td>
<td>Col</td>
<td>-</td>
</tr>
</tbody>
</table>
European corn borer
(Ostrinia nubilalis) Lep -
Tobacco budworm
(Heliothis virescens) Lep -
Tobacco hornworm
(Manduca sexta) Lep -
Beet armyworm
(Spodoptera exigua) Lep -
Black cutworm
(Agrotis ipsilon) Lep -
Northern house mosquito
(Culex pipiens) Dip -

The newly discovered B. cereus strain AB78 showed a significantly different spectrum of insecticidal activity as compared to known coleopteran active δ-endotoxins from Bt. In particular, AB78 showed more selective activity against beetles than known coleopteran-active Bt strains in that it was specifically active against Diabrotica spp. More specifically, it was most active against D. virgifera virgifera and D. longicornis barberi but not D. undecimpunctata howardi.

A number of Bacillus strains were bioassayed for activity during vegetative growth (Table 15) against western corn rootworm. The results demonstrate that AB78 is unique in that activity against western corn rootworm is not a general phenomenon.
TABLE 15
Activity of culture supernatants from various *Bacillus* spp. against western corn rootworm

<table>
<thead>
<tr>
<th>Bacillus strain</th>
<th>Percent WCRW mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. cereus AB78 (Bat.1)</td>
<td>100</td>
</tr>
<tr>
<td>B. cereus AB78 (Bat.2)</td>
<td>100</td>
</tr>
<tr>
<td>B. cereus (Carolina Bio.)</td>
<td>12</td>
</tr>
<tr>
<td>B. cereus ATCC 11950</td>
<td>12</td>
</tr>
<tr>
<td>B. cereus ATCC 14579</td>
<td>8</td>
</tr>
<tr>
<td>B. mycoides (Carolina Bio.)</td>
<td>30</td>
</tr>
<tr>
<td>B. popilliae</td>
<td>28</td>
</tr>
<tr>
<td>B. thuringiensis HD135</td>
<td>41</td>
</tr>
<tr>
<td>B. thuringiensis HD191</td>
<td>9</td>
</tr>
<tr>
<td>B. thuringiensis GC91</td>
<td>4</td>
</tr>
<tr>
<td>B. thuringiensis isrealensis</td>
<td>24</td>
</tr>
<tr>
<td>Water Control</td>
<td>4</td>
</tr>
</tbody>
</table>

Specific activity of AB78 against western corn rootworm is provided in Table 16.
TABLE 16

Activity of AB78 culture supernatant against neonate western corn rootworm

<table>
<thead>
<tr>
<th>Culture supernatant concentration (µ/ml)</th>
<th>Percent WCRW mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The LC50 was calculated to be 6.2 µl of culture supernatant per ml of western corn rootworm diet.

The cell pellet was also bioassayed and had no activity against WCRW. Thus, the presence of activity only in the supernatant indicates that this VIP is an exotoxin.

EXAMPLE 4. ISOLATION AND PURIFICATION OF CORN ROOTWORM ACTIVE PROTEINS FROM AB78.

Culture media free of cells and debris was made to 70% saturation by the addition of solid ammonium sulfate (472 g/L). Dissolution was at room temperature followed by cooling in an ice bath and centrifugation at 10,000 X g for thirty minutes to pellet the precipitated proteins. The supernatant was discarded and the pellet was dissolved in 1/10 the original volume of 20 mM TRIS-HCl at pH 7.5. The dissolved pellet was desalted either by dialysis in 20 mM TRIS-HCl pH 7.5, or passing through a desalting column.

The desalted material was titrated to pH 3.5 using 20 mM sodium citrate pH 2.5. Following a thirty minute room temperature incubation the solution was centrifuged at
3000 X g for ten minutes. The supernatant at this stage contained the greatest amount of active protein.

Following neutralization of the pH to 7.0 the supernatant was applied to a Mono-Q, anion exchange, column equilibrated with 20 mM TRIS pH 7.5 at a flow rate of 300 mL/min. The column was developed with a stepwise and linear gradient employing 400 mM NaCl in 20 mM TRIS pH 7.5.

Bioassay of the column fractions and SDS-PAGE analysis were used to confirm the active fractions. SDS-PAGE analysis identified the biologically active protein as having components of a molecular weight in the range of about 80 kDa and 50 kDa.

EXAMPLE 5. SEQUENCE ANALYSIS OF THE CORN ROOTWORM ACTIVE PROTEIN

The 80 kDa component isolated by SDS-PAGE was transferred to PVDF membrane and was subjected to amino-terminal sequencing as performed by repetitive Edman cycles on an ABI 470 pulsed-liquid sequencer. Transfer was carried out in 10 mM CAPS buffer with 10% methanol pH 11.0 as follows:

Incubation of the gel following electrophoresis was done in transfer buffer for five minutes. ProBlott PVDF membrane was wetted with 100% MeOH briefly then equilibrated in transfer buffer. The sandwich was arranged between foam sponges and filter paper squares with the configuration of cathode-gel-membrane-anode.

Transfer was performed at 70 V constant voltage for 1 hour.

Following transfer, the membrane was rinsed with water and stained for two minutes with 0.25% Coomassie Blue R-250 in 50% MeOH.

Destaining was done with several rinses with 50% MeOH 40% water 10% acetic acid.

Following destaining the membrane was air dried prior to excision of the bands for sequence analysis. A BlottCartridge and appropriate cycles were utilized to achieve maximum efficiency and yield. Data analysis was performed using model 610 Sequence Analysis software for identifying and quantifying the PTH-amino acid derivatives for each sequential cycle.

The N-terminal sequence was determined to be:

NH2-Lys-Arg-Glu-Ile-Asp-Glu-Asp-Thr-Asp-Thr-Asx-Gly-Asp-Ser-Ile-Pro-
(SEQ ID NO:8) where Asx represents Asp or Asn. The complete amino acid sequence for the 80 kDa component is disclosed in SEQ ID NO:7. The DNA sequence which encodes SEQ ID NO:7 is disclosed in SEQ ID NO:6.

EXAMPLE 6. CONSTRUCTION OF DNA PROBE

An oligonucleotide probe for the region of the gene encoding amino acids 3-9 of the N-terminal sequence (Example 5) was generated. The probe was synthesized based on the codon usage of a Bacillus thuringiensis (Bt) δ-endotoxin gene. The nucleotide sequence

5'- GAA ATT GAT CAA GAT ACN GAT -3' (SEQ ID NO:9)

was used as a probe in Southern hybridizations. The oligonucleotide was synthesized using standard procedures and equipment.

EXAMPLE 7. ISOELECTRIC POINT DETERMINATION OF THE CORN ROOTWORM ACTIVE PROTEIN

Purified protein from step 5 of the purification process was analyzed on a 3-9 pI isoelectric focusing gel using the Phastgel electrophoresis system (Pharmacia). Standard operating procedures for the unit were followed for both the separation and silver staining development procedures. The pI was approximated at about 4.9.

EXAMPLE 8. PCR DATA ON AB78

PCR analysis (See, for example US patent application serial no. 08/008,006; and, Carozzi et al. (1991) Appl. Environ. Microbiol. 57(11):3057-3061, herein incorporated by reference,) was used to verify that the B. cereus strain AB78 did not contain any insecticidal crystal protein genes of B. thuringiensis or B. sphaericus (Table 17).
TABLE 17

Bacillus insecticidal crystal protein gene primers tested by PCR against AB78 DNA.

<table>
<thead>
<tr>
<th>Primers Tested</th>
<th>Product Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sets specific for CryIIIa</td>
<td>Negative</td>
</tr>
<tr>
<td>CryIIIB</td>
<td>Negative</td>
</tr>
<tr>
<td>2 sets specific for CryIa</td>
<td>Negative</td>
</tr>
<tr>
<td>CryI(a)</td>
<td>Negative</td>
</tr>
<tr>
<td>CryI(b) specific</td>
<td>Negative</td>
</tr>
<tr>
<td>CryIb</td>
<td>Negative</td>
</tr>
<tr>
<td>CryIc specific</td>
<td>Negative</td>
</tr>
<tr>
<td>CryIe specific</td>
<td>Negative</td>
</tr>
<tr>
<td>2 sets specific for B. sphaericus</td>
<td>Negative</td>
</tr>
<tr>
<td>2 sets specific for CryIV</td>
<td>Negative</td>
</tr>
<tr>
<td>Bacillus control (PI-PLC)</td>
<td>Positive</td>
</tr>
</tbody>
</table>

EXAMPLE 9. COSMID CLONING OF TOTAL DNA FROM *B. CEREUS* STRAIN AB78

The VIP1A(a) gene was cloned from total DNA prepared from strain AB78 as follows:

Isolation of AB78 DNA was as follows:

1. Grow bacteria in 10 ml L-broth overnight. (Use 50 ml sterile centrifuge tube)
2. Add 25 ml of fresh L-broth and ampicillin (30 µg/ml).
3. Grow cells 2-6 h. at 30°C with shaking.
4. Spin cells in a 50 ml polypropylene orange cap tube in IEC benchtop clinical centrifuge at 3/4 speed.
5. Resuspend cell pellet in 10 ml TES (TES = 50 mM TRIS pH 8.0, 100 mM EDTA, 15 mM NaCl).
6. Add 30 mg lysozyme and incubate 2 hrs at 37°C.
7. Add 200 μl 20% SDS and 400 μl Proteinase K stock (20 mg/ml). Incubate at 37°C.
8. Add 200 μl fresh Proteinase K. Incubate 1 hr. at 55°C. Add 5 ml TES to make 15 ml final volume.
9. Phenol extract twice (10 ml phenol, spin at room temperature at 3/4 speed in an IEC benchtop clinical centrifuge). Transfer supernatant (upper phase) to a clean tube using a wide bore pipette.
11. Precipitate DNA with an equal volume of cold isopropanol; Centrifuge to pellet DNA.
12. Resuspend pellet in 5 ml TE.
13. Precipitate DNA with 0.5 ml 3M NaOAc pH 5.2 and 11 ml 95% ethanol. Place at -20°C for 2 h.
14. "Hook" DNA from tube with a plastic loop, transfer to a microfuge tube, spin, pipette off excess ethanol, dry in vacuo.
15. Resuspend in 0.5 ml TE. Incubate 90 min. at 65°C to help get DNA back into solution.

Cosmid Cloning of AB78

All procedures, unless indicated otherwise, were performed according to Stratagene Protocol, Supercos 1 Instruction Manual, Cat. No. 251301.

Generally, the steps were as follows:

A. Sau 3A partial digestion of the AB78 DNA.
B. Preparation of vector DNA
C. Ligation and packaging of DNA
D. Tittering the cosmid library

1. Start a culture of HB101 cells by placing 50 ml of an overnight culture in 5 mls of TB with 0.2% maltose. Incubate 3.5 hrs. at 37°C.
2. Spin out cells and resuspend in 0.5 ml 10 mM MgSO4.
3. Add together:
 100 l cells
 100 l diluted packaging mixture
 100 l 10 mM MgSO4
30 µTB
4. Adsorb at room temperature for 30 minutes with no shaking.
5. Add 1 ml TB and mix gently. Incubate 30 minutes at 37°C.

At least 400 cosmid clones were selected at random and screened for activity against western corn rootworm as described in Example 3. DNA from 5 active clones and 5 non-active clones were used in Southern hybridizations. Results demonstrated that hybridization using the above described oligonucleotide probe correlated with western corn rootworm activity (Table 18).

Cosmid clones P3-12 and P5-4 have been deposited with the Agricultural Research Service Patent Culture Collection (NRRL) and given Accession Nos. NRRL B-21061 and NRRL B-21059 respectively.

TABLE 18
Activity of AB78 cosmid clones against western corn rootworm.

<table>
<thead>
<tr>
<th>Clone</th>
<th>Mean percent mortality (N=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Clones which hybridize with probe</td>
<td></td>
</tr>
<tr>
<td>P1-73</td>
<td>47</td>
</tr>
<tr>
<td>P1-83</td>
<td>64</td>
</tr>
<tr>
<td>P2-2</td>
<td>69</td>
</tr>
<tr>
<td>P3-12</td>
<td>85</td>
</tr>
<tr>
<td>P5-4</td>
<td>97</td>
</tr>
<tr>
<td>Clones which do not hybridize with probe</td>
<td></td>
</tr>
<tr>
<td>P1-2</td>
<td>5</td>
</tr>
<tr>
<td>P3-8</td>
<td>4</td>
</tr>
</tbody>
</table>
EXAMPLE 10. IDENTIFICATION OF A 6 KB REGION ACTIVE AGAINST
WESTERN CORN ROOTWORM.

DNA from P3-12 was partially digested with restriction enzyme Sau 3A, and
ligated into the E. coli vector pUC19 and transformed into E. coli. A DNA probe
specific for the 80 kDa VIP1A(a) protein was synthesized by PCR amplification of a
portion of P3-12 DNA. Oligonucleotides MK113 and MK117, which hybridize to
portions of VIP1A(a), were synthesized using the partial amino acid sequence of the
80 kDa protein. Plasmid subclones were identified by colony hybridization to the
PCR-generated probe, and tested for activity against western corn rootworm. One
such clone, PL2, hybridized to the PCR-generated fragment, and was active against
western corn rootworm in the assay previously described.

A 6 kb Cla I restriction fragment from pl2 was cloned into the Sma I site of the E.
coli-Bacillus shuttle vector pHt 3101 (Lereclus, D. et al., FEMS Microbiology Letters
60:211-218 (1989)) to yield pCIB6201. This construct confers anti-western corn
rootworm activity upon both Bacillus and E.coli strains, in either orientation. pCIB6022
contains this same 6 kb Cla I fragment in Bluescript SK(+) (Stratagene), produces
equivalent VIP1A(a) protein (by western blot), and is also active against western corn
rootworm.

The nucleotide sequence of pCIB6022 was determined by the dideoxy
(1977), using PRISM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kits
and PRISM Sequenase® Terminator Double-Stranded DNA Sequencing Kit and
analyzed on an AB1 373 automatic sequencer. The sequence is given in SEQ ID
NO:1. The 6 kb fragment encodes both VIP1A(a) and VIP2A(a), as indicated by the
open reading frames described in SEQ ID NO:1. The sequence encoding VIP2A(a) is
further disclosed in SEQ ID NO:4. The relationship between VIP1A(a) and VIP2A(a)
within the 6 kb fragment found in pCIB6022 is depicted in Table 19. pCIB6022 was
EXAMPLE 11. FUNCTIONAL DISSECTION OF THE VIP1A(a) DNA REGION.

To confirm that the VIP1A(a) open reading frame (ORF) is necessary for insecticidal activity a translational frameshift mutation was created in the gene. The restriction enzyme Bgl II recognizes a unique site located 857 bp into the coding region of VIP1A(a). pCIB6201 was digested with Bgl II, and the single-stranded ends filled-in with DNA polymerase (Klenow fragment) and dNTPS. The plasmid was religated and transformed into E. coli. The resulting plasmid, pCIB6203, contains a four nucleotide insertion in the coding region of VIP1A(a). pCIB6203 does not confer WCRW insecticidal activity, confirming that VIP1A(a) is an essential component of western corn rootworm activity.

To further define the region necessary to encode VIP1A(a), subclones of the VIP1A(a) and VIP2A(a) (auxiliary protein) region were constructed and tested for their ability to complement the mutation in pCIB6203. pCIB6023 contains the 3.7kb Xba I-EcoRV fragment in pBluescript SK(+) (Stratagene). Western blot analysis indicates that pCIB6023 produces VIP1A(a) protein of equal size and quantity as clones PL2 and pCIB6022. pCIB6023 contains the entire gene encoding the 80 kD protein. pCIB6023 was deposited with the Agricultural Research Service, Patent Culture Collection, (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given the Accession No. NRRL B-21223N. pCIB6206 contains the 4.3 kb Xba I-Cla I fragment from pCIB6022 in pBluescript SK(+) (Stratagene). pCIB6206 was also deposited with the Agricultural Research Service, Patent Culture Collection, (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given the Accession No. NRRL B-21321.

pCIB6023, pCIB6026, and pCIB6203 do not produce detectable western corn rootworm activity when tested individually. However, a mixture of cells containing pCIB6023 (VIP1A(a)-mutated, plus VIP2A(a)) and cells containing pCIB6023 (only
VIP1A(a)) shows high activity against western corn rootworm. Similarly, a mixture of cells containing pCIB6206 and cells containing pCIB6203 shows high activity against western corn rootworm.

To further define the limits of VIP2A(a), we constructed pCIB6024, which contains the entirety of VIP2A(a), but lacks most of the VIP1A(a) coding region. pCIB6024 was constructed by gel purifying the 2.2 kb Cla I-Sca I restriction fragment from pCIB6022, filling in the single-stranded ends with DNA polymerase (Klenow fragment) and dNTPs, and ligating this fragment into pBluescript SK(+) vector (Stratagene) digested with the enzyme Eco RV. Cells containing pCIB6024 exhibit no activity against western corn rootworm. However, a mixture of cells containing pCIB6024 and cells containing pCIB6023 shows high activity against western corn rootworm. (See Table 19).

Thus, pCIB6023 and pCIB6206 must produce a functional VIP1A(a) gene product, while pCIB6203 and pCIB6024 must produce a functional VIP2A(a) gene product. These results suggest a requirement for a gene product(s) from the VIP2A(a) region, in combination with VIP1A(a), to confer maximal western corn rootworm activity. (See Table 19.)
Table 19
Characterization of pCIB6022

<table>
<thead>
<tr>
<th></th>
<th>Activity vs. WCRW</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCIB6022</td>
<td>+++</td>
</tr>
<tr>
<td>pCIB6023</td>
<td>-</td>
</tr>
<tr>
<td>pCIB6023</td>
<td>-</td>
</tr>
<tr>
<td>pCIB6026</td>
<td>-</td>
</tr>
<tr>
<td>pCIB6024</td>
<td>-</td>
</tr>
</tbody>
</table>

Functional Complementation of VIP

<table>
<thead>
<tr>
<th></th>
<th>pCIB6023</th>
<th>+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCIB6023</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>pCIB6023</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>pCIB6026</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>pCIB6024</td>
<td>+++</td>
<td></td>
</tr>
</tbody>
</table>

Boxed regions represent the extent of VIP1A(a) and VIP2A(a). White box represents the portion of VIP1 encoding the 80 kDa peptide observed in Bacillus. Dark box represents the N-terminal 'propeptide' of VIP1A(a) predicted by DNA sequence analysis. Stippled box represents the VIP2A(a) coding region. Large 'X' represents the location of the frameshift mutation introduced into VIP1A(a). Arrows represent constructs transcribed by the beta-galactosidase
EXAMPLE 12. AB78 ANTIBODY PRODUCTION

Antibody production was initiated in 2 Lewis rats to allow for both the possibility of moving to production of hybridoma cell lines and also to produce enough serum for limited screening of genomic DNA library. Another factor was the very limited amount of antigen available and the fact that it could only be produced to purity by PAGE and subsequent electrotransfer to nitrocellulose.

Due to the limited availability of antigen on nitrocellulose, the nitrocellulose was emulsified in DMSO and injected into the hind footpads of the animals to elicit B-cell production in the popliteal lymph nodes just upstream. A strong reacting serum was produced as judged by western blot analysis with the first production bleed. Several subsequent injections and bleeds produced enough serum to accomplish all of the screening required.

Hybridoma production with one of the rats was then initiated. The popliteal lymph node was excised, macerated, and the resulting cells fused with mouse myeloma P3x63Ag8.653. Subsequent cell screening was accomplished as described below. Four initial wells were selected which gave the highest emulsified antigen reaction to be moved to limited dilution cloning. An additional 10 wells were chosen for expansion and cryopreservation.

Procedure to Emulsify AB78 on nitrocellulose in DMSO for ELISA screening:

After electrotransfer of AB78 samples run on PAGE to nitrocellulose, the reversible strain Ponceau S is used to visualize all protein transferred. The band corresponding to AB78 toxin, previously identified and N-terminal sequenced, was identified and excised from nitrocellulose. Each band is approximately 1 mm x 5 mm in size to minimize the amount of nitrocellulose emulsified. A single band is placed in a microfuge tube with 250 μl of DMSO and macerated using a plastic pestle (Kontes, Vineland, NJ). To aid in emulsification, the DMSO mixture is heated for 2-3 minutes at 37 C-45 C. Some further maceration might be necessary following heating; however, all of the nitrocellulose should be emulsified. Once the AB78 sample is emulsified, it is placed on ice. In preparation for microtiter plate coating with the emulsified antigen, the sample must be diluted in borate buffered saline as follows: 1:5, 1:10, 1:15, 1:20, 1:30, 1:50, 1:100, and 0. The coating antigen must be prepared fresh immediately prior to use.

ELISA protocol:
1. Coat with AB78/DMSO in BBS. Incubate overnight at 4°C.
2. Wash plate 3X with 1X ELISA wash buffer.
3. Block (1% BSA & 0.05% Tween 20 in PBS) for 30 minutes at Room Temperature.
4. Wash plate 3X with 1X ELISA wash buffer.
5. Add rat serum. Incubate 1.5 hours at 37°C.
6. Wash plate 3X with 1X ELISA wash buffer.
7. Add goat anti-rat at a concentration of 2 μg/ml in ELISA diluent. Incubate 1 hr. at 37°C.
8. Wash plate 3X with 1X ELISA wash buffer.
9. Add rabbit anti-goat alkaline phosphatase at 2 μg/ml in ELISA diluent. Incubate 1 hr. at 37°C.
10. Wash 3X with 1X ELISA wash buffer.
11. Add Substrate. Incubate 30 minutes at room temperature.
12. Stop with 3N NaOH after 30 minutes.

Preparation of VIP2A(a) Antisera
A partially purified AB78 culture supernatant was separated by discontinuous SDS PAGE (Novex) following manufacturer’s instructions. Separated proteins were electrophoresed to nitrocellulose (S&S #21640) as described by Towbin et al., (1979). The nitrocellulose was stained with Ponceau S and the VIP2A(a) band identified. The VIP2A(a) band was excised and emulsified in DMSO immediately prior to injection. A rabbit was initially immunized with emulsified VIP2A(a) mixed approximately 1:1 with Freund’s Complete adjuvant by intramuscular injection at four different sites. Subsequent immunizations occurred at four week intervals and were identical to the first, except for the use of Freund’s Incomplete adjuvant. The first serum harvested following immunization reacted with VIP2A(a) protein. Western blot analysis of AB78 culture supernatant using this antisera identifies predominately full length VIP2A(a) protein.
EXAMPLE 13. ACTIVATION OF INSECTICIDAL ACTIVITY OF NON-ACTIVE BT STRAINS WITH AB78 VIP CLONES.

Adding pCIB6203 together with a 24 h culture (early to mid-log phase) supernatant from Bt strain GC91 produces 100% mortality in *Diabrotica virgifera virgifera*. Neither pCIB6203 nor GC91 is active on *Diabrotica virgifera virgifera* by itself. Data are shown below:

<table>
<thead>
<tr>
<th>Test material</th>
<th>Percent Diabrotica mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCIB6203</td>
<td>0</td>
</tr>
<tr>
<td>GC91</td>
<td>16</td>
</tr>
<tr>
<td>pCIB6203 + GC91</td>
<td>100</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
</tr>
</tbody>
</table>

EXAMPLE 14. ISOLATION AND BIOLOGICAL ACTIVITY OF *B. CEREUS* AB81.

A second *B. cereus* strain, designated AB81, was isolated from grain bin dust samples by standard methodologies. A subculture of AB81 was grown and prepared for bioassay as described in Example 2. Biological activity was evaluated as described in Example 3. The results are as follows:

<table>
<thead>
<tr>
<th>Insect species</th>
<th>Percent mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostrinia nubilalis</td>
<td>0</td>
</tr>
<tr>
<td>Agrotis ipsilon</td>
<td>0</td>
</tr>
<tr>
<td>Diabrotica virgifera virgifera</td>
<td>55</td>
</tr>
</tbody>
</table>
EXAMPLE 15. ISOLATION AND BIOLOGICAL ACTIVITY OF
B. THURINGIENSIS AB6.

A B. thuringiensis strain, designated AB6, was isolated from grain bin dust samples by standard methods known in the art. A subculture of AB6 was grown and prepared for bioassay as described in Example 2. Half of the sample was autoclaved 15 minutes to test for the presence of β-exotoxin.

Biological activity was evaluated as described in Example 3. The results are as follows:

<table>
<thead>
<tr>
<th>Insect species</th>
<th>Percent Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostrinia nubilalis</td>
<td>0</td>
</tr>
<tr>
<td>Agrotis ipsilon</td>
<td>100</td>
</tr>
<tr>
<td>Agrotis ipsilon (autoclaved sample)</td>
<td>0</td>
</tr>
<tr>
<td>Diabrotica virgifera virgifera</td>
<td>0</td>
</tr>
</tbody>
</table>

The reduction of insecticidal activity of the culture supernatant to insignificant levels by autoclaving indicates that the active principle is not β-exotoxin.

Strain AB6 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given Accession No. NRRL B-21060.

EXAMPLE 16. ISOLATION AND BIOLOGICAL CHARACTERIZATION OF
B. THURINGIENSIS AB88.

A Bt strain, designated AB88, was isolated from grain bin dust samples by standard methodologies. A subculture of AB88 was grown and prepared for bioassay as described in Example 2. Half of the sample was autoclaved 15 minutes to test for the presence of β-exotoxin. Biological activity was evaluated against a number of insect species as described in Example 3. The results are as follows:
<table>
<thead>
<tr>
<th>Insect species tested</th>
<th>Order</th>
<th>Percent mortality of culture supernatant</th>
<th>Non-autoclaved</th>
<th>Autoclaved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrotis ipsilon</td>
<td>Lepidoptera</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ostrinia nubilalis</td>
<td>Lepidoptera</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Spodoptera frugiperda</td>
<td>Lepidoptera</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Helicoverpa zea</td>
<td>Lepidoptera</td>
<td>100</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Heliothis virescens</td>
<td>Lepidoptera</td>
<td>100</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Leptinotarsa decemlineata</td>
<td>Coleoptera</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diabrotica virgifera</td>
<td>Coleoptera</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

The reduction of insecticidal activity of the culture supernatant to insignificant levels by autoclaving indicates that the active principle is not β-exotoxin.

Delta-endotoxin crystals were purified from strain AB88 by standard methodologies. No activity from pure crystals was observed when bioassayed against Agrotis ipsilon.

EXAMPLE 17. PURIFICATION OF VIPS FROM STRAIN AB88:

Bacterial liquid culture was grown overnight [for 12h] at 30°C in TB media. Cells were centrifuged at 5000 x g for 20 minutes and the supernatant retained. Proteins present in the supernatant were precipitated with ammonium sulfate (70% saturation).
centrifuged [at 5000 x g for 15 minutes] and the pellet retained. The pellet was resuspended in the original volume of 20 mM Tris pH 7.5 and dialyzed overnight against the same buffer at 4°C. AB88 dialysate was more turbid than comparable material from AB78. The dialysate was titrated to pH 4.5 using 20 mM sodium citrate (pH 2.5) and, after 30 min incubation at room temperature, the solution was centrifuged at 3000 x g for 10 min. The protein pellet was redissolved in 20 mM Bis-Tris-Propane pH 9.0.

AB88 proteins have been separated by several different methods following clarification including isoelectric focusing (Rotofor, BioRad, Hercules, CA), precipitation at pH 4.5, ion-exchange chromatography, size exclusion chromatography and ultrafiltration.

Proteins were separated on a Poros HQ/N anion exchange column (PerSeptive Biosystems, Cambridge, MA) using a linear gradient from 0 to 500 mM NaCl in 20 mM Bis-Tris-Propane pH 9.0 at a flow rate of 4 ml/min. The insecticidal protein eluted at 250 mM NaCl.

European corn borer (ECB)-active protein remained in the pellet obtained by pH 4.5 precipitation of dialysate. When preparative IEF was done on the dialysate using pH 3-10 ampholytes, ECB insecticidal activity was found in all fractions with pH of 7 or greater. SDS-PAGE analysis of these fractions showed protein bands of MW ~60 kDa and ~80 kDa. The 60 kDa and 80 kDa bands were separated by anion exchange HPLC on a Poros-Q column (PerSeptive Biosystems, Cambridge, MA). N-terminal sequence was obtained from two fractions containing proteins of slightly differing MW, but both of approximately 60 kDa in size. The sequences obtained were similar to each other and to some δ-endotoxins.

anion exchange fraction 23 (smaller): xEPFVSxxxQxxx (SEQ ID NO:10)
anion exchange fraction 28 (larger): xEYENVEPFVSAx (SEQ ID NO:11)

When the ECB-active pH 4.5 pellet was further separated by anion exchange on a Poros-Q column, activity was found only in fractions containing a major band of ~60 kDa.

Black cutworm-active protein also remained in the pellet when AB88 dialysate was brought down to pH 4.5. In preparative IEF using pH 3-10 ampholytes, activity was not found in the ECB-active IEF fractions; instead, it was highest in a fraction of pH 4.5-5.0. Its major components have molecular weights of ~35 and ~80 kDa.
The pH 4.5 pellet was separated by anion exchange HPLC to yield fractions containing only the 35 kDa material and fractions containing both 35 kDa and 80 kDa bands.

EXAMPLE 18. CHARACTERIZATION OF AB88 VIP.

Fractions containing the various lepidopteran active vegetative proteins were generated as described in Example 17. Fractions with insecticidal acitivity were separated in 8 to 16% SDS-polyacrylamide gels and transferred to PVDF membranes [LeGendre et al, (1989) in: A Practical Guide to Protein and Peptide Purification for Microsequencing, ed Matsudaria PT (Academic Press Inc, New York)]. Biological analysis of fractions demonstrated that different VIPs were responsible for the different lepidopteran species activity.

The *Agrotis ipsilon* activity is due to an 80 kDa and/or a 35 kDa protein, either delivered singly or in combination. These proteins are not related to any δ-endotoxins from Bt as evidenced by the lack of sequence homology of known Bt δ-endotoxin sequences. The vip3A(a) insecticidal protein from strain AB88 is present mostly (at least 75% of the total) in supernatants of AB88 cultures.

Also, these proteins are not found in the AB88 δ-endotoxin crystal. N-terminal sequences of the major δ-endotoxin proteins were compared with the N-terminal sequences of the 80 kDa and 35 kDa VIP and revealed no sequence homology. The N-terminal sequence of the vip3A(a) insecticidal protein posses a number of positively charged residues (from Asn2 to Asn7) followed by a hydrophobic core region (from Thr8 to Ile34). Unlike most of the known secretion proteins, the vip3A(a) insecticidal protein from strain AB88 is not N-terminally processed during export.

A summary of the results follows:
<table>
<thead>
<tr>
<th>Agrotis VIP N-terminal sequences</th>
<th>N-terminal sequence of major δ-endotoxin proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 kDa</td>
<td>MDNNPNINE (SEQ ID NO:14)</td>
</tr>
<tr>
<td>80 kDa</td>
<td>MDNNPNINE (SEQ ID NO:15)</td>
</tr>
<tr>
<td>MNKNTKLPTRALP (SEQ ID NO:12)</td>
<td>60 kDa</td>
</tr>
<tr>
<td></td>
<td>MNVLNSGRTTI (SEQ ID NO:16)</td>
</tr>
<tr>
<td>35 kDa</td>
<td>ALSENTGKDGGYIVP (SEQ ID NO:13)</td>
</tr>
</tbody>
</table>

The *Ostrinia nubilalis* activity is due to a 60 kDa VIP and the *Spodoptera frugiperda* activity is due to a VIP of unknown size.

Bacillus thuringiensis strain AB88 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA and given the Accession No. NRRL B-21225.

EXAMPLE 18A. ISOLATION AND BIOLOGICAL ACTIVITY OF B. THURINGIENSIS AB424

A *B. thuringiensis* strain, designated AB424, was isolated from a moss covered pine cone sample by standard methods known in the art. A subculture of AB424 was grown and prepared for bioassay as described in Example 2.

Biological activity was evaluated as described in Example 3. The results are as follows:
Strain AB424 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given Accession No. NRRL B-21439.

EXAMPLE 18B. CLONING OF THE VIP3A(a) AND VIP3A(b) GENES WHICH ENCODE PROTEINS ACTIVE AGAINST BLACK CUTWORM.

Total DNA from isolates AB88 and AB424 was isolated [Ausubel et al (1988), in: Current Protocols in Molecular Biology (John Wiley & Sons, NY)] and digested with the restriction enzymes XbaI [library of 4.0 to 5.0 Kb size-fractionated XbaI fragments of B thuringiensis AB88 DNA] and EcoRI [library of 4.5 to 6.0 Kb size-fractionated EcoRI fragments B thuringiensis AB424 DNA] respectively, ligated into pBluescript vector previously linearized with the same enzymes and dephosphorylated, and transformed into E. coli DH5α strain. Recombinant clones were blotted onto nitrocellulose filters which were subsequently probed with a 32P labeled 33-bases long oligonucleotide corresponding to the 11-N terminal amino acids of the 80 kDa protein active against Agrotis ipsilon (black cutworm). Hybridization was carried out at 42°C in 2 x SSC/0.1% SDS (1 x SSC = 0.15 m NaCl/0.015 M sodium citrate, pH 7.4) for 5 min and twice at 50°C in 1 x SSC/0.1 SDS for 10 min. Four out of 400 recombinant clones were positive. Insect bioassays of the positive recombinants exhibited toxicity to black cutworm larvae comparable to that of AB88 or AB424 supernatants.
Plasmid pCIB7104 contains a 4.5 Kb XbaI fragment of AB88 DNA. Subclones were constructed to define the coding region of the insecticidal protein.

E. coli pCIB7105 was constructed by cloning the 3.5 Kb XbaI-Accl fragment of pCIB7104 into pBluescript.

Plasmid pCIB7106 contained a 5.0 Kb EcoRI fragment of AB424 DNA. This fragment was further digested with _HinclI_ to render a 2.8 kb _EcoRI-HinclI_ insert (pCIB7107), which still encoded a functional insecticidal protein.

The nucleotide sequence of pCIB7104, a positive recombinant clone from AB88, and of pCIB7107, a positive recombinant clone from AB424, was determined by the dideoxy termination method of Sanger _et al._, _Proc. Natl. Acad. Sci._ USA, 74: 5463-5467 (1977), using PRISM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kits and PRISM Sequenase® Terminator Double-Stranded DNA Sequencing Kit and analysed on an ABI 373 automatic sequencer.

The clone pCIB7104 contains the VIP3A(a) gene whose coding region is disclosed in SEQ ID NO:28 and the encoded protein sequence is disclosed in SEQ ID NO:29. A synthetic version of the coding region designed to be highly expressed in maize is given in SEQ ID NO:30. Any number of synthetic genes can be designed based on the amino acid sequence given in SEQ ID NO:29.

The clone pCIB7107 contains the VIP3A(b) gene whose coding region is disclosed in SEQ ID NO:31 and the encoded protein is disclosed in SEQ ID NO:32. Both pCIB7104 and pCIB7107 have been deposited with the Agricultural Research Service Patent Culture Collection (NRRL) and given Accession Nos. NRRL B-21422 and B-21423, respectively.

The VIP3A(a) gene contains an open reading frame (ORF) that extends from nucleotide 732 to 3105. This ORF encodes a peptide of 791 amino acids corresponding to a molecular mass of 88,500 daltons. A Shine-Dalgarno (SD) sequence is located 6 bases before the first methionine and its sequence identifies a strong SD for _Bacillus_.

The VIP3A(b) gene is 98% identical to VIP3A(a).

When blots of total DNA isolated from AB88 _B. thuringiensis_ cells were probed with a 33-base fragment that spans the N-terminal region of the VIP3A-insecticidal protein, single bands could be observed in different restriction digests. This result was
confirmed by using larger probes spanning the coding region of the gene. A search of the GenBank data base revealed no homology to known proteins.

EXAMPLE 18C. _EXPRESSION OF THE VIP3A INSECTICIDAL PROTEINS_

The time course for expression of the VIP3A(a) insecticidal protein was analyzed by western blot. Samples from _Bacillus thuringiensis_ Ab88 cultures were taken throughout Ist growth curve and sporulation. The VIP3A(a) insecticidal protein can be detected in the supernatants of AB88 cultures during logarithmic phase, as early as 15 h after initiating the culture. It reached its maximum level during early stages of stationary phase and remained at high levels during and after sporulation. Similar results were obtained when supernatants of AB424 _Bacillus cereus_ cultures were used. The levels of VIP3A(a) insecticidal protein reflected the expression of the VIP3A(a) gene as determined by Northern blot. The initiation of the sporulation was determined by direct microscopic observations and by analyzing the presence of δ-endotoxins in cell pellets. Cry-1 type prtoeins could be detected late in the stationary phase, during and after sporulation.

EXAMPLE 18D. _IDENTIFICATION OF NOVEL VIP3-LIKE GENES BY HYBRIDIZATION_

To identify _Bacillus_ containing genes related to the VIP3A(a) from isolate AB88, a collection of _Bacillus_ isolates was screened by hybridization. Cultures of 463 _Bacillus_ strains were grown in microtiter wells until sporulation. A 96-pin colony stampel was used to transfer the cultures to 150 mm plates containing L-agar. Inoculated plates were kept at 30°C for 10 hours, then at 4°C overnight. Colonies were blotted onto nylon filters and probed with a 1.2Kb _HindIII_ VIP3A(a) derived fragment. Hybridization was performed overnight at 62°C using hybridization conditions of Maniatis _et al._ Molecular Cloning: A Laboratory Manual (1982). Filters were washed with 2xSSC/0.1% SDS at 62°C and exposed to X-ray film.

Of the 463 _Bacillus_ strains screened, 60 contain VIP3-like genes that could detected by hybridization. Further characterization of some of them (AB6 and AB426)
showed that their supernatants contain a BCW insecticidal protein similar to the Vip3 protein that are active against black cutworm.

EXAMPLE 18E. CHARACTERIZATION OF A B. thuringiensis STRAIN M2194 CONTAINING A CRYPTIC VIP3-LIKE GENE

A *B. thuringiensis* strain, designated M2194, was shown to contain VIP3-like gene(s) by colony hybridization as described in Example 18C. The M2194 VIP3 like gene is considered cryptic since no expression can be detected throughout the bacterial growth phases either by immunoblot analysis using polyclonal antibodies raised against the VIP3A(a) protein isolated from AB88 or by bioassay as described in Example 3. Antiserum against purified VIP3A(a) insecticidal protein was produced in rabbits. Nicrocellulose-bound protein (50 µg) was dissolved in DMSO and emulsified with Freund's complete adjuvant (Difco). Two rabbits were given subcutaneous injections each month for three months. They were bled 10 days after the second and third injection and the serum was recovered from the blood sample [Harlow et al (1988) in Antibodies: A Laboratory Manual (Cold Spring Harbor Lab Press, Plainview, NY)].

The M2194 VIP3-like gene was cloned into pKS by following the protocol described in Example 9, which created pCIB7108. *E. coli* containing pCIB7108 which comprises the M2194 VIP3 gene were active against black cutworm demonstrating that the gene encodes a functional protein with insecticidal activity. The plasmid pCIB7108 has been deposited with the Agricultural Research Service Patent Culture Collection (NRRL) and given Accession No. NRRL B-21438.

EXAMPLE 18F. INSECTICIDAL ACITIVITY OF VIP3A PROTEINS

The activity spectrum of VIP3A insecticidal proteins was qualitatively determined in insect bioassays in which recombinant *E. coli* carrying the VIP*A* genes were fed to larvae. In these assays, cells carrying the VIP3A(a) and VIP3A(b) genes were insecticidal to *Agrotis ipsilon*, *Spodoptera frugiperda*, *Spodoptera exigua*, *Heliothis virescens* and *Helicoverpa zea*. Under the same experimental conditions, bacterial extracts containing VIP3A proteins did not show any activity against *Ostrinia nubilalis*.
Effect of VIP*A insecticidal proteins on Agrotis ipsilon larvae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>(% Mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB medium</td>
<td>5</td>
</tr>
<tr>
<td>AB88 Supernatant</td>
<td>100</td>
</tr>
<tr>
<td>Ab424 Supernatant</td>
<td>100</td>
</tr>
<tr>
<td>Buffer</td>
<td>7</td>
</tr>
<tr>
<td>E. coli pKS</td>
<td>10</td>
</tr>
<tr>
<td>E. coli pCIB7104 (AB88)</td>
<td>100</td>
</tr>
<tr>
<td>E. coli pCIB7105 (AB88)</td>
<td>100</td>
</tr>
<tr>
<td>E. coli pCIB7106 (AB424)</td>
<td>100</td>
</tr>
<tr>
<td>E. coli pCIB7107 (AB424)</td>
<td>100</td>
</tr>
</tbody>
</table>

Effect of VIP3A insecticidal proteins on lepidopteran insect larvae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insect</th>
<th>(% Mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli pKS</td>
<td>BCW</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>FAW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BAW</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TBW</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>CEW</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>ECB</td>
<td>5</td>
</tr>
</tbody>
</table>

E. coli pCIB7105:

<table>
<thead>
<tr>
<th>Insect</th>
<th>(% Mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCW</td>
<td>100</td>
</tr>
<tr>
<td>FAW</td>
<td>100</td>
</tr>
<tr>
<td>BAW</td>
<td>100</td>
</tr>
<tr>
<td>TBW</td>
<td>100</td>
</tr>
<tr>
<td>CEW</td>
<td>50</td>
</tr>
<tr>
<td>ECB</td>
<td>10</td>
</tr>
</tbody>
</table>

E. coli pCIB7107:

<table>
<thead>
<tr>
<th>Insect</th>
<th>(% Mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCW</td>
<td>100</td>
</tr>
<tr>
<td>FAW</td>
<td>100</td>
</tr>
<tr>
<td>BAW</td>
<td>100</td>
</tr>
<tr>
<td>TBW</td>
<td>100</td>
</tr>
<tr>
<td>CEW</td>
<td>50</td>
</tr>
<tr>
<td>ECB</td>
<td>10</td>
</tr>
</tbody>
</table>

BCW = Black Cut Worm; FAW = Fall Army Worm; BAW = Beet Army Worm; TBW = Tobacco Bud Worm; CEW = Corn Ear Worm; ECB = European Corn Borer
EXAMPLE 19. ISOLATION AND BIOLOGICAL ACTIVITY OF OTHER
BACILLUS SP.

Other Bacillus species have been isolated which produce proteins with
disinfecticidal activity during vegetative growth. These strains were isolated from
environmental samples by standard methodologies. Isolates were prepared for
bioassay and assayed as described in Examples 2 and 3 respectively. Isolates which
produced insecticidal proteins during vegetative growth with activity against Agrotis
ipsilon in the bioassay are tabulated below. No correlation was observed between the
presence of a δ-endotoxin crystal and vegetative insecticidal protein production.

<table>
<thead>
<tr>
<th>Bacillus isolate</th>
<th>Presence of δ-endotoxin crystal</th>
<th>Percent mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB6</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>AB53</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>AB88</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>AB195</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>AB211</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>AB217</td>
<td>-</td>
<td>83</td>
</tr>
<tr>
<td>AB272</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>AB279</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>AB289</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>AB292</td>
<td>+</td>
<td>80</td>
</tr>
<tr>
<td>AB294</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>AB300</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>AB359</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Isolates AB289, AB294 and AB359 have been deposited in the Agricultural
Research Service, Patent Culture Collection (NRRL), Northern Regional Research
Center, 1815 North University Street, Peoria II 61604, USA and given the Accession
Numbers NRRL B-21227, NRRL B-21229, and NRRL B-21226 respectively.

Bacillus isolates which produce insecticidal proteins during vegetative growth with
activity against Diabrotica virgifera virgifera are tabulated below.
<table>
<thead>
<tr>
<th>Bacillus isolate</th>
<th>Presence of δ-endotoxin crystal</th>
<th>Percent mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB52</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>AB59</td>
<td>-</td>
<td>71</td>
</tr>
<tr>
<td>AB68</td>
<td>+</td>
<td>60</td>
</tr>
<tr>
<td>AB78</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>AB122</td>
<td>-</td>
<td>57</td>
</tr>
<tr>
<td>AB218</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>AB256</td>
<td>-</td>
<td>64</td>
</tr>
</tbody>
</table>

Isolates AB59 and AB256 have been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria Illinois 61604, USA, and given the Accession Numbers NRRL B-21228 and NRRL B-21230, respectively.

EXAMPLE 20. IDENTIFICATION OF NOVEL VIP1/VIP2 LIKE GENES BY HYBRIDIZATION

To identify strains containing genes related to those found in the VIP1A(a)/VIP2A(a) region of AB78, a collection of Bacillus strains was screened by hybridization. Independent cultures of 463 Bacillus strains were grown in wells of 96 well microtiter dishes (five plates total) until the cultures sporulated. Of the strains tested, 288 were categorized as *Bacillus thuringiensis*, and 175 were categorized as other Bacillus species based on the presence or absence of δ-endotoxin crystals. For each microtiter dish, a 96-pin colony stamper was used to transfer approximately 10 μl of spore culture to two 150 mm plates containing L-agar. Inoculated plates were grown 4-8 hours at 30 °C, then chilled to 4 °C. Colonies were transferred to nylon filters, and the cells lysed by standard methods known in the art. The filters were hybridized to a DNA probe generated from DNA fragments containing both VIP1A(a) and VIP2A(a) DNA sequences. Hybridization was performed overnight at 65 °C using the hybridization conditions of Church and Gilbert (Church, G.M., and W. Gilbert,
PNAS, 81:1991-1995 (1984). Filters were washed with 2x SSC containing 0.1% SDS at 65 °C and exposed to X-Ray film.

Of the 463 Bacillus strains screened, 55 strains were identified that hybridized to the VIP1A(a)/VIP2A(a) probe. DNA was isolated from 22 of these strains, and analyzed using a Southern blot with VIP1A(a)/VIP2A(a) DNA as probes. These strains were grouped into 8 classes based on their Southern blot pattern. Each class differed in Southern blot pattern from AB78. One class had a pattern identical to that of the VIP1A(a)/VIP2A(a) homologs from Bacillus thuringiensis var tenebrionis (see below). Each of the 22 strains was tested for activity against western corn rootworm (WCRW). Three strains, AB433, AB434, and AB435 were found to be active on WCRW. Western blot analysis using VIP2A(a) antisera revealed that strains AB6, AB433, AB434, AB435, AB444, and AB445 produce a protein(s) of equivalent size to VIP2A(a).

Notable among the strains identified was Bacillus thuringiensis strain AB6, (NRRL B-21060) which produced a VIP active against black cutworm (Agrotis ipsilon) as described in Example 15. Western blot analysis with polyclonal antisera to VIP2A(a) and polyclonal antisera to VIP1A(a) suggests that AB6 produces proteins similar to VIP2A(a) and VIP1A(a). Thus, AB6 may contain VIPs similar to VIP1A(a) and VIP2A(a), but with a different spectrum of insecticidal activity.

EXAMPLE 21. CLONING OF A VIP1A(a)/VIP2A(a) HOMOLOG FROM Bacillus thuringiensis var. tenebrionis.

Several previously characterized Bacillus strains were tested for presence of DNA similar to VIP1A(a)/VIP2A(a) by Southern blot analysis. DNA from Bacillus strains AB78, AB88, GC91, HD-1 and ATCC 10876 was analyzed for presence of VIP1A(a)/VIP2A(a) like sequences. DNA from Bt strains GC91 and HD-1, and the Bc strain ATCC 10876 did not hybridize to VIP2A(a)/VIP1A(a) DNA, indicating they lack DNA sequences similar to VIP1A(a)/VIP2A(a) genes. Similarly, DNA from the insecticidal strain AB88 (Example 16) did not hybridize to VIP1A(a)/VIP2A(a) DNA region, suggesting that the VIP activity produced by this strain does not result from VIP1A(a)/VIP2A(a) homologs. In contrast, Bacillus thuringiensis var. tenebrionis (Btt)
contained sequences that hybridized to the VIP1A(a)/VIP2A(a) region. Further analysis confirmed that Btt contains VIP1A(a)/VIP2A(a) like sequences.

To characterize the Btt homologs of VIP2A(a) and VIP1A(a), the genes encoding these proteins were cloned. Southern blot analysis identified a 9.5 kb Eco RI restriction fragment likely to contain the coding regions for the homologs. Genomic DNA was digested with Eco RI, and DNA fragments of approximately 9.5 kb in length were gel-purified. This DNA was ligated into pBluescript SK(+) digested with Eco RI, and transformed into E. coli to generate a plasmid library. Approximately 10,000 colonies were screened by colony hybridization for the presence of VIP2A(a) homologous sequences. Twenty eight positive colonies were identified. All twenty eight clones are identical, and contain VIP1A(a)/VIP2A(a) homologs. Clone pCIB7100 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria Illinois 61604, USA, and given the Accession Number B-21322. Several subclones were constructed from pCIB7100. A 3.8 kb Xba I fragment from pCIB7100 was cloned into pBluescript SK(+) to yield pCIB7101. A 1.8 kb Hind III fragment and a 1.4 kb Hind III fragment from pCIB7100 were cloned into pBluescript SK(+) to yield pCIB7102 and pCIB7103, respectively. Subclones pCIB7101, pCIB7102 and pCIB7103 have been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria Illinois 61604, USA, and given the Accession Numbers B-21323, B-21324 and B-21325 respectively.

The DNA sequence of the region of pCIB7100 containing the VIP2A(a)/VIP1A(a) homologs was determined by the dideoxy chain termination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74:5463-5467). Reactions were performed using PRISM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kits and PRISM Sequenase® Terminator Double-Stranded DNA Sequencing Kits, and analyzed on an ABI model 373 automated sequencer. Custom oligonucleotides were used as primers to determine the DNA sequence in certain regions. The DNA sequence of this region is shown in SEQ ID NO:19.

The 4 kb region shown in SEQ ID NO:19 contains two open readings frames (ORFs), which encode proteins with a high degree of similarity to VIP1A(a) and VIP2A(a) proteins from strain AB78. The amino acid sequence of the VIP2A(a)
homolog, designated as VIP2A(b) using the standardized nomenclature, is found at
SEQ ID NO:20 and the amino acid sequence of the VIP1A(a) homolog, designated as
VIP1A(b) using the standardized nomenclature, is disclosed at SEQ ID NO:21. The
VIP2A(b) protein exhibits 91% amino acid identity to VIP2A(a) from AB78. An
alignment of the amino acid sequences of the two VIP2 proteins is provided in Table
20. The VIP1A(b) protein exhibits 77% amino acid identity to VIP1A(a) from AB78.
An alignment of these two VIP1 proteins is provided in Table 21. The alignment
shown in Table 21 discloses the similarity between VIP1A(b) and VIP1A(a) from
AB78. This alignment reveals that the amino terminal regions of the two VIP1
proteins share higher amino acid identity in the amino-terminal region than in the
carboxy terminal region. In fact, the amino terminal two thirds (up to aa 618 of the
VIP1A(b) sequence shown in Table 21) of the two proteins exhibit 91% identity, while
the carboxy-terminal third (from aa 619-833 of VIP1A(b)) exhibit only 35% identity.

Western blot analysis indicated that Bacillus thuringiensis var. tenebrionis (Btt)
produces both VIP1A(a) like and VIP2A(a) like proteins. However, these proteins do
not appear to have activity against western corn rootworm. Bioassay for activity
against western corn rootworm was performed using either a 24 h culture supernatant
from Btt or E. coli clone pCIB7100 (which contains the entire region of the
VIP1A(a)/VIP2A(a) homologs). No activity against western corn rootworm was
detected in either case.

Given the similarity between the VIP2 proteins from Btt and AB78, the ability of
VIP2A(b) from Btt to substitute for VIP2A(a) from AB78 was tested. Cells containing
pCIB6206 (which produces AB78 VIP1A(a) but not VIP2A(a) protein) were mixed with
Btt culture supernatant, and tested for activity against western corn rootworm. While
neither Btt culture supernatant nor cells containing pCIB6206 had activity on WCRW,
the mixture of Btt and pCIB6206 gave high activity against WCRW. Furthermore,
additional bioassay showed that the Btt clone pCIB7100, which contains the Btt
VIP1A(b)/VIP2A(b) genes in E. coli, also confers activity against WCRW when mixed
with pCIB6206. Thus, the VIP2A(b) protein produced by Btt is functionally equivalent
to the VIP2A(a) protein produced by AB78.

Thus, the ability to identify new strains with insecticidal activity by using VIP DNA
as hybridization probes has been demonstrated. Furthermore, Bacillus strains that
contain VIP1A(a)/VIP2A(a) like sequences, produce VIP1A(a)/VIP2A(a) like protein,
yet demonstrate toxicity toward different insect pests. Similar methods can identify many more members of the VIP1/VIP2 family. Furthermore, use of similar methods can identify homologs of other varieties of VIPs (for example, the VIPs from AB88).

TABLE 20

Alignment of VIP2 Amino Acid Sequences from *Bacillus thuringiensis* var. *tenebrionis* (VIP2A(b)) vs. AB78 (VIP2A(a))

<table>
<thead>
<tr>
<th></th>
<th>Btt</th>
<th>AB78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MQMQMGKLIVSVKTSLLQYTVVTLLSTVSTTLSVLNNVVKVQADQVLNINSQSK 50 SEQ ID NO:20</td>
<td>MRMQMGKLIVSVKTSLLQYTVVTLLSTVSTTLSVLNNVVKVQADQVLNINSQSK 50 SEQ ID NO:2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>YTNLQNLKIPDNEADFKEDGKAEWKEFGEEDVPPATEKGMNNFDLN 100</td>
<td>YTNLQNLKIPDNEADFKEDGKAEWKEFGEEDVPPATEKGMNNFDLN 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>KNDIKKNTYKEITFSAGCSDEIKDLEEIKDIFKGNLSSSIETYQQVIP 150</td>
<td>KNDIKKNTYKEITFSAGCSDEIKDLEEIKDIFKGNLSSSIETYQQVIP 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>ATIGFNKSLTEGNTINSAMQAOFQEQLGKOMGFDSYLSTHLTAQQVSSK 200</td>
<td>ATIGFNKSLTEGNTINSAMQAOFQEQLGKOMGFDSYLSTHLTAQQVSSK 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>KRVILVTVPSGKTSTPTKAGVILNNNEYMLIDNGYVHLVDKVSQVQV 250</td>
<td>KRVILVTVPSGKTSTPTKAGVILNNNEYMLIDNGYVHLVDKVSQVQV 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>KGECLQVEGTLLKSLDFKNDINAEAHSWGMYEDWAKNLTASQREALD 300</td>
<td>KGECLQVEGTLLKSLDFKNDINAEAHSWGMYEDWAKNLTASQREALD 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 21
Alignment of VIP1 Amino Acid Sequences from *Bacillus thuringiensis* var. *tenebrionis* (VIP1A(b)) vs. AB78 (VIP1A(a))

<table>
<thead>
<tr>
<th></th>
<th>Btt</th>
<th>SEQ ID NO:21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MKNMEKKKLAVTWCRMLAPFMFLNNVNAVNAKSMIQISTQENQQKEMD</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ab78</th>
<th>SEQ ID NO:5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MKNMEKKKLAVTWCRMLAPFMFLNNVNAVNAKSMIQISTQENQQKEMD</td>
<td>50</td>
</tr>
</tbody>
</table>

51 RKGLLGYFYGKDFNLSLTMFAPTRDNTLMYDQQTANALLDKKKQEEYQISR 100

51 RKGLLGYFYGKDFNLSLTMFAPTRDSTLYDQQTANKLDDKKKQEEYQISR 100

101 WIGLIIQKETGDFTNLSDQAEIIIEIDGIISNGKEQSVHLEKEKLV 150

101 WIGLIIIQKETGDFTNLSDQAEIIIEINGKISNGKEQSVHLEKEKLV 150

151 PIKEYQSDTKFNSKDFKEKLFKIDSQNSQVQ...LRNPEFNNKE 197
151 PIKIEYQSDTKFNIDSKTKEKLFKIDSQNPQQVQQQDELRNPENKKE

198 SQELAKASKNLFKQMKEIDTEDTDGDSDIPDDWEENYQTQNKAV

201 SQEFLAKPSKINFLFTQMKREIEDTDGDSDIPDDWEENYQTQNRKV

248 KWDDSLASKGKTVQFVNSPLDSDHTVQDFTYQDAARDLLSNKETFNP

251 KWDDSLASKGKTVQFVNSPLDSDHTVQDFTYQDAARDLLSNKETFNP

298 VAAPSVNVMKSLPNLNVHSNVHSSNTWNSYTNGASIEAGGGP

301 VAAPSVNVMKSLPNLNVHSNVHSSNTWNSYTNGASVEAGGGP

348 LGLSFQVSVTQHSETVQENGTGTSQNTSFNTASAGYVLNANAVRNVT

351 KGIEFGSVVNSQHSETVQENGTGTSQNTSFNTASAGYVLNANAVRNVT

398 GAIDVKTTPSTVNLNNNTATITAKSNSTALRISPDSYEPGIIAGNIAI

401 GAIDVKTTPSFTVNLNDTTATITAKSNSTALNISPGyIPKQGNGIAI

448 SMDFNSHPITLNNKQVQNLINKMPILLETQTDGVYKIDHTGNYTGG

451 SMDFNSHPITLNNKQVQNLINKMPILLETQTDGVYKIDHTGNYTGG

498 EWNGVTQIKAKTASIIVDDGKQVAEKVAAKIDGYGPEDKTPPIITKLDT

501 EWNGVIQIKAKTASIIVDDGERVAAKIDYENPEDKTPSLITKDHAL

548 KLSYPDIEKETNGLVLDDKFIYESSVMTYLDENTAKEVKKQINDTTKFT

551 KLSYPDIEKIEGGLYKKNKFIYESSVMTYLDENTAKEVTKQINDTTKFT
EXAMPLE 22. FUSION OF VIP PROTEINS TO MAKE A SINGLE POLYPEPTIDE

VIP proteins may occur in nature as single polypeptides, or as two or more interacting polypeptides. When an active VIP is comprised of two or more interacting protein chains, these protein chains can be produced as a single polypeptide chain from a gene resulting from the fusion of the two (or more) VIP coding regions. The genes encoding the two chains are fused by merging the coding regions of the genes to produce a single open reading frame encoding both VIP polypeptides. The composite polypeptides can be fused to produce the smaller polypeptide as the NH₂ terminus of the fusion protein, or they can be fused to produce the larger of the
polypeptides as the NH₂ terminus of the fusion protein. A linker region can optionally be used between the two polypeptide domains. Such linkers are known in the art. This linker can optionally be designed to contain protease cleavage sites such that once the single fused polypeptide is ingested by the target insect it is cleaved in the linker region to liberate the two polypeptide components of the active VIP molecule.

VIP1A(a) and VIP2A(a) from *B. cereus* strain AB78 are fused to make a single polypeptide by fusing their coding regions. The resulting DNA comprises a sequence given in SEQ ID NO:22 with the encoded protein given in SEQ ID NO:23. In like manner, other fusion proteins may be produced.

The fusion of the genes encoding VIP1A(a) and VIP2A(a) is accomplished using standard techniques of molecular biology. The nucleotides deleted between the VIP1A(a) and VIP2A(a) coding regions are deleted using known mutagenesis techniques or, alternatively, the coding regions are fused using PCR techniques.

The fused VIP polypeptides can be expressed in other organisms using a synthetic gene, or partially synthetic gene, optimized for expression in the alternative host. For instance, to express the fused VIP polypeptide from above in maize, one makes a synthetic gene using the maize preferred codons for each amino acid, see for example EP-A 0618976, herein incorporated by reference. Synthetic DNA sequences created according to these methods are disclosed in SEQ ID NO:17 (maize optimized version of the 100 kDa VIP1A(a) coding sequence), SEQ ID NO:18 (maize optimized version of the 80 kDa VIP1A(a) coding sequence) and SEQ ID NO:24 (maize optimized version of the VIP2A(a) coding sequence).

Synthetic VIP1 and VIP2 genes optimized for expression in maize can be fused using PCR techniques, or the synthetic genes can be designed to be fused at a common restriction site. Alternatively, the synthetic fusion gene can be designed to encode a single polypeptide comprised of both VIP1 and VIP2 domains.

Addition of a peptide linker between the VIP1 and VIP2 domains of the fusion protein can be accomplished by PCR mutagenesis, use of a synthetic DNA linker encoding the linker peptide, or other methods known in the art.

The fused VIP polypeptides can be comprised of one or more binding domains. If more than one binding domain is used in the fusion, multiple target pests are controlled using such a fusion. The other binding domains can be obtained by using all or part of other VIPs; *Bacillus thuringiensis* endotoxins, or parts thereof; or other
proteins capable of binding to the target pest or appropriate binding domains derived from such binding proteins.

One example of a fusion construction comprising a maize optimized DNA sequence encoding a single polypeptide chain fusion having VIP2A(a) at the N-terminal end and VIP1A(a) at the C-terminal end is provided by pCIB5531. A DNA sequence encoding a linker with the peptide sequence PSTPPTSPSTPPTPS (SEQ ID NO:47) has been inserted between the two coding regions. The sequence encoding this linker and relevant cloning sites is 5'-CCC GGG CCT TCT ACT CCC CCA ACT CCC TCT CCT AGC ACG CCT CCG ACA CCT AGC GAT ATC GGA TC C-3' (SEQ ID NO:48). Oligonucleotides were synthesized to represent both the upper and lower strands and cloned into a pUC vector following hybridization and phosphorylation using standard procedures. The stop codon in VIP2A(a) was removed using PCR and replaced by the BglII restriction site with a Smal site. A translation fusion was made by ligating the Bam HI/PstI fragment of the VIP2A(a) gene from pCIB5522 (see Example 24), a PCR fragment containing the PstI-end fragment of the VIP2A(a) gene (identical to that used to construct pCIB5522), a synthetic linker having ends that would ligate with a blunt site at the 5' end and with BamHI at the 3' end and the modified synthetic VIP1A(a) gene from pCIB5526 described below (See SEQ ID NO:35). The fusion was obtained by a four way ligation that resulted in a plasmid containing the VIP2A(a) gene without a translation stop codon, with a linker and the VIP1A(a) coding region without the Bacillus secretion signal. The DNA sequence for this construction is disclosed in SEQ ID NO:49, which encodes the fusion protein disclosed in SEQ ID NO:50. A single polypeptide fusion where VIP1A(a) is at the N-terminal end and VIP2A(a) is at the C-terminal end can be made in a similar fashion. Furthermore, either one or both genes can be linked in a translation fusion with or without a linker at either the 5' or the 3' end to other molecules like toxin encoding genes or reporter genes.

EXAMPLE 23. TARGETING OF VIP2 TO PLANT ORGANELLES

Various mechanisms for targeting gene products are known to exist in plants and the sequences controlling the functioning of these mechanisms have been characterized in some detail. For example, the targeting of gene products to the
chloroplast is controlled by a signal sequence found at the amino-terminal end of various proteins. This signal is cleaved during chloroplast import, yielding the mature protein (e.g. Comai et al. J. Biol. Chem. 263: 15104-15109 (1988)). These signal sequences can be fused to heterologous gene products such as VIP2 to effect the import of those products into the chloroplast (van den Broeck et al. Nature 313: 358-363 (1985)). DNA encoding for appropriate signal sequences can be isolated from the 5' end of the cDNAs encoding the RUBISCO protein, the CAB protein, the EPSP synthase enzyme, the GS2 protein and many other proteins which are known to be chloroplast localized.

Other gene products are localized to other organelles such as the mitochondrion and the peroxisome (e.g. Unger et al. Plant Molec. Biol. 13: 411-418 (1989)). The cDNAs encoding these products can also be manipulated to effect the targeting of heterologous gene products such as VIP2 to these organelles. Examples of such sequences are the nuclear-encoded ATPases and specific aspartate amino transferase isoforms for mitochondria. Similarly, targeting to cellular protein bodies has been described by Rogers et al. (Proc. Natl. Acad. Sci. USA 82: 6512-6516 (1985)).

By the fusion of the appropriate targeting sequences described above to coding sequences of interest such as VIP2 it is possible to direct the transgene product to any organelle or cell compartment. For chloroplast targeting, for example, the chloroplast signal sequence from the RUBISCO gene, the CAB gene, the EPSP synthase gene, or the GS2 gene is fused in frame to the amino-terminal ATG of the transgene. The signal sequence selected should include the known cleavage site and the fusion constructed should take into account any amino acids after the cleavage site which are required for cleavage. In some cases this requirement may be fulfilled by the addition of a small number of amino acids between the cleavage site and the start codon ATG, or alternatively replacement of some amino acids within the coding sequence. Fusions constructed for chloroplast import can be tested for efficacy of chloroplast uptake by in vitro translation of in vitro transcribed constructions followed by in vitro chloroplast uptake using techniques described by (Bartlett et al. In: Edelmann et al. (Eds.) Methods in Chloroplast Molecular Biology, Elsevier. pp 1081-1091 (1982); Wasmann et al. Mol. Gen. Genet. 205: 446-453 (1986)). These
construction techniques are well known in the art and are equally applicable to mitochondria and peroxisomes.

The above described mechanisms for cellular targeting can be utilized not only in conjunction with their cognate promoters, but also in conjunction with heterologous promoters so as to effect a specific cell targeting goal under the transcriptional regulation of a promoter which has an expression pattern different to that of the promoter from which the targeting signal derives.

A DNA sequence encoding a secretion signal is present in the native Bacillus VIP2 gene. This signal is not present in the mature protein which has the N-terminal sequence of LKTIDKVEDF (amino acid residues 57 to 66 of SEQ ID NO:2). It is possible to engineer VIP2 to be secreted out of the plant cell or to be targeted to subcellular organelles such as the endoplasmic reticulum, vacuole, mitochondria or plastids including chloroplasts. Hybrid proteins made by fusion of a secretion signal peptide to a marker gene have been successfully targeted into the secretion pathway. (Itirriaga G. et al., The Plant Cell, 1: 381-390 (1989), Denecke et al., The Plant Cell, 2:51-59 (1990). Amino-terminal sequences have been identified that are responsible for targeting to the ER, the apoplast, and extracellular secretion from aleurone cells (Koehler & Ho, Plant Cell 2: 769-783 (1990)).

The presence of additional signals are required for the protein to be retained in the endoplasmic reticulum or the vacuole. The peptide sequence KDEL/HDEL at the carboxy-terminal of a protein is required for its retention in the endoplasmic reticulum (reviewed by Pelham, Annual Review Cell Biol., 5:1-23 (1989). The signals for retention of proteins in the vacuole have also been characterized. Vacuolar targeting signals may be present either at the amino-terminal portion, (Holwerda et al., The Plant Cell, 4:307-318 (1992), Nakamura et al., Plant Physiol., 101:1-5 (1993)), carboxy-terminal portion, or in the internal sequence of the targeted protein. (Tague et al., The Plant Cell, 4:307-318 (1992), Saalbach et al., The Plant Cell, 3:695-708 (1991)). Additionally, amino-terminal sequences in conjunction with carboxy-terminal sequences are responsible for vacuolar targeting of gene products (Shinshi et al., Plant Molec. Biol. 14: 357-368 (1990)). Similarly, proteins may be targeted to the mitochondria or plastids using specific carboxy terminal signal peptide fusions (Heijne et al., Eur. J. Biochem., 180:535-545 (1989), Archer and Keegstra, Plant Molecular Biology, 23:1105-1115 (1993)).
In order to target VIP2, either for secretion or to the various subcellular organelles, a maize optimized DNA sequence encoding a known signal peptide(s) may be designed to be at the 5' or the 3' end of the gene as required. To secrete VIP2 out of the cell, a DNA sequence encoding the eukaryotic secretion signal peptide MGWSWIFLFLSSGAAGVHCL (SEQ ID NO:25) from PCT application No. IB95/00497 or any other described in the literature (Itirriaga et al., The Plant Cell, 1:381-390 (1989), Denecke, et al., The Plant Cell, 2:51-59 (1990)) may be added to the 5' end of either the complete VIP2 gene sequence or to the sequence truncated to encode the mature protein or the gene truncated to nucleotide 286 or encoding a protein to start at amino acid residue 94 (methionine). To target VIP2 to be retained in the endoplasmic reticulum, a DNA sequence encoding the ER signal peptide KDEL/HDEL, in addition to the secretion signal, can be added to the 3' end of the gene. For vacuolar targeting a DNA sequence encoding the signal peptide SSSSFADSNPRVTDRAAST (SEQ ID NO:3; Holwerda et al., The Plant Cell, 4:307-318 (1992)) can be designed to be adjacent to the secretion signal or a sequence encoding a carboxyl signal peptide as described by Dombrowski et al., The Plant Cell, 5:587-596 (1993) or a functional variation may be inserted at the 3' end of the gene. Similarly, VIP2 can be designed to be targeted to either the mitochondria or the plastids, including the chloroplasts, by inserting sequences in the VIP2 sequence described that would encode the required targeting signals. The bacterial secretion signal present in VIP2 may be retained or removed from the final construction.

One example of a construction which incorporates a eukaryotic secretion signal fused to a coding sequence for a VIP is provided by pCIB5528. Oligonucleotides corresponding to both the upper and lower strand of sequences encoding the secretion signal peptide of SEQ ID NO:25 was synthesized and has the sequence 5'-GGATCCACC ATG GGC TGG AGC TGG ATC TTC CTG TTC CTG AGC GGC GCC GGC GGC GTG CAC TGC CTGCAG-3' (SEQ ID NO:41). When hybridized, the 5' end of the secretion signal resembled “sticky-ends” corresponding to restriction sites BamHI and PstI. The oligonucleotide was hybridized and phosphorylated and ligated into pCIB5527 (construction described in Example 23A) which had been digested with BamHI/ PstI using standard procedures. The resulting maize optimized coding sequence is disclosed in SEQ ID NO:42 which encodes the protein disclosed
in SEQ ID NO:43. This encoded protein comprises the eukaryotic secretion signal in place of the *Bacillus* secretion signal.

One example of a construction which incorporates a vacuolar targeting signal fused to a coding sequence for a VIP is provided by pCIB5533. Oligonucleotides corresponding to both the upper and lower strand of sequences encoding the vacuolar targeting peptide of SEQ ID NO:3 was synthesized and has the sequence 5'-CCG CCG GCG TGC ACT GCC TCA GCA GCA GCA GCT TCG CCG ACA GCA ACC CCA TCC GCG TGA CCG ACC GCG CCG CCA GCA CCC TGC AG-3' (SEQ ID NO:44). When hybridized, the 5' end of the vacuolar targeting signal resembled "sticky-ends" corresponding to restriction sites SacI and PstI. The oligonucleotide was hybridized and phosphorylated and ligated into pCIB5528 (construction described above) which had been digested with SacI / PstI using standard procedures. The resulting maize optimized coding sequence is disclosed in SEQ ID NO:45 which encodes the protein disclosed in SEQ ID NO:46. This encoded protein comprises the vacuolar targeting peptide in addition to the eukaryotic secretion signal.

The VIP1 gene can also be designed to be secreted or targeted to subcellular organelles by similar procedures.

EXAMPLE 23A. REMOVAL OF BACILLUS SECRETION SIGNAL FROM VIP1A(a) AND VIP2A(a)

VIP1A(a) and VIP2A(a) are secreted during the growth of strain AB78. The nature of peptide sequences that act as secretion signals has been described in the literature (Simonen and Palva, Microbiological reviews, pg. 109-137 (1993)). Following the information in the above publication, the putative secretion signal was identified in both genes. In VIP1A(a) this signal is composed of amino acids 1-33 (See SEQ ID NO:5). Processing of the secretion signal probably occurs after the serine at amino acid 33. The secretion signal in VIP2A(a) was identified as amino acids 1-49 (See SEQ ID NO:2). N-terminal peptide analysis of the secreted mature VIP2A(a) protein revealed the N-terminal sequence LKITDVKVEDFKEDK. This sequence is found beginning at amino acid 57 in SEQ ID NO:2. The genes encoding these proteins have been modified by removal of the *Bacillus* secretion signals.

A maize optimized VIP1A(a) coding region was constructed which had the sequences encoding the first 33 amino acids, i.e., the secretion signal, removed from its 5' end. This modification was obtained by PCR using an forward primer that
contained the sequence 5'-GGA TCC ACC ATG AAG ACC AAC CAG ATC AGC-3' (SEQ ID NO:33), which hybridizes with the maize optimized gene (SEQ ID NO:26) at nucleotide position 100, and added a BamHI restriction site and a eukaryotic translation start site consensus including a start codon. The reverse primer that contained the sequence 5'-AAG CTT CAG CTC CTT G-3' (SEQ ID NO:34) hybridizes on the complementary strand at nucelotide position 507. A 527 bp amplification product was obtained containing the restriction sites BamHI at the 5' end and HindIII site at the 3' end. The amplification product was cloned into a T- vector (described in Example 24, below) and sequenced to ensure the correct DNA sequence. The BamHI / HindIII fragment was then obtained by restriction digest and used to replace the BamHI/HindIII fragment of the maize optimized VIP1A(a) gene cloned in the root-preferred promoter cassette. The construct obtained was designated pCIB5526. The maize optimized coding region for VIP1A(a) with the Bacillus secretion signal removed is disclosed as SEQ ID NO:35 and the encoded protein is disclosed as SEQ ID NO:36.

The gene encoding the processed form of VIP2A(a), i.e., a coding region with the secretion signal removed, was constructed by a procedure similar to that described for that used to construct the processed form of VIP1A(a), above. The modification was obtained by PCR using the forward primer 5'-GGA TCC ACC ATG CTG CAG AAC CTG AAG ATC AC -3' (SEQ ID NO:37). This primer hybridizes at nucleotide position 150 of the maize optimized VIP2A(a) gene (SEQ ID NO:27). A silent mutation has been inserted at nucleotide position 15 of this primer to obtain a PstI restriction site. The reverse primer has the sequence 5'-AAG CTT CCA CTC CTT CTC-3' (SEQ ID NO:38). A 259 bp product was obtained with HindIII restriction site at the 3' end. The amplification product was cloned into a T- vector, sequenced and ligated to a BamHI /HindIII digested root-preferred promoter cassette containing the maize optimized VIP2A(a). The construct obtained was designated pCIB5527. The maize optimized coding region for VIP2A(a) with the Bacillus secretion signal removed is disclosed as SEQ ID NO:39 and the encoded protein is disclosed as SEQ ID NO:40.
EXAMPLE 24. CONSTRUCTION AND CLONING OF THE VIP1A(a) AND VIP2A(a) MAIZE OPTIMIZED GENES

Design: The maize optimized genes were designed by reverse translation of the native VIP1A(a) and VIP2A(a) protein sequences using codons that are used most often in maize (Murray et al., *Nucleic Acid Research*, 17:477-498 (1989)). To facilitate cloning, the DNA sequence was further modified to incorporate unique restriction sites at intervals of every 200-360 nucleotides. VIP1A(a) was designed to be cloned in 11 such fragments and VIP2A(a) was cloned in 5 fragments. Following cloning of the individual fragments, adjacent fragments were joined using the restriction sites common to both fragments, to obtain the complete gene. To clone each fragment, oligonucleotides (50-85 nucleotides) were designed to represent both the upper and the lower strand of the DNA. The upper oligo of the first oligo pair was designed to have a 15 bp single stranded region at the 3' end which was homologous to a similar single stranded region of the lower strand of the next oligo pair to direct the orientation and sequence of the various oligo pairs within a given fragment. The oligos are also designed such that when the all the oligos representing a fragment are hybridized, the ends have single stranded regions corresponding to the particular restriction site to be formed. The structure of each oligomer was examined for stable secondary structures such as hairpin loops using the Oligo program from NBI Inc. Whenever necessary, nucleotides were changed to decrease the stability of the secondary structure without changing the amino acid sequence of the protein. A plant ribosomal binding site consensus sequence, TAAACAATG (Joshi et al., *Nucleic Acid Res.*, 15:6643-6653 (1987)) or eukaryotic ribosomal binding site consensus sequence CCACCATG (Kozak, *Nucleic Acid Research*, 12:857-872 (1984)) was inserted at the translational start codon of the gene.

Cloning: Oligos were synthesized by IDT Inc., and were supplied as lyophilized powders. They were resuspended at a concentration of 200 μM. To 30 μl of each oligo formamide was added a final concentration of 25-50% and the sample was boiled for two minutes before separation on a premade 10% polyacryamide / urea gel obtained from Novex. After electrophoresis, the oligo was detected by UV shadowing by placing the gel on a TLC plate containing a fluorescent indicator and exposing it to UV light. The region containing DNA of the correct size was excised and extracted.
from the polyacrylamide by an overnight incubation of the minced gel fragment in a
buffer containing 0.4 M LiCl, 0.1 mM EDTA. The DNA was separated from the gel
residue by centrifugation through a Millipore UFMC filter. The extracted DNA was
ethanol precipitated by the addition of 2 volumes of absolute alcohol. After
centrifugation, the precipitate was resuspended in \(\text{dH}_2\text{O} \) at a concentration of 2.5 \(\mu \text{M} \). Fragments were cloned either by hybridization of the oligos and ligation with the
appropriate vector or by amplification of the hybridized fragment using an equimolar
mixture of all the oligos for a particular fragment as a template and end-specific PCR
primers.

Cloning by hybridization and ligation: Homologous double stranded oligo pairs
were obtained by mixing 5 \(\mu \text{l} \) of the upper and of the lower oligo for each oligo pair
with buffer containing 1X polynucleotide kinase (PNK) buffer (70 mM Tris-\(\text{HCl} \) (pH
7.6), 10 mM \text{MgCl}_2, 5 mM dithiothreitol (DTT)), 50 mM \text{KCl}, and 5 % formamide in a
final volume of 50 \(\mu \text{l} \). The oligos were boiled for 10 minutes and slow cooled to 37\(^\circ \text{C} \)
or room temperature. 10 \(\mu \text{l} \) was removed for analysis on a 4% agarose in a TAE
buffer system (Metaphore®; FMC). Each hybridized oligo pair was kinased by
the addition of ATP at a final concentration of 1 mM, BSA at a final concentration of 100
\(\mu \text{g} \) per ml and 200 units of polynucleotide kinase and 1 \(\mu \text{l} \) of 10X PNK buffer in a
volume of 10 \(\mu \text{l} \). Following hybridization and phosphorylation, the reaction was
incubated at 37\(^\circ \text{C} \) for 2 hours to overnight. 10 \(\mu \text{l} \) of each of the oligo pairs for a
particular fragment, were mixed in a final volume of 50 \(\mu \text{l} \). The oligo pairs were
hybridized by heating at 80\(^\circ \text{C} \) for 10 minutes and slow cooling to 37\(^\circ \text{C} \). 2 \(\mu \text{l} \) of oligos
was mixed with about 100 ng of an appropriate vector and ligated using a buffer
containing 50 mM Tris-\(\text{HCl} \) (pH 7.8), 10 mM \text{MgCl}_2, 10 mM DTT, 1 mM ATP. The
reaction was incubated at room temp. for 2 hours to overnight and transferred into
DH5\(\alpha \) strain of *E.coli*, plated on L- plates containing ampicillin at a concentration of
100 \(\mu \text{g/ml} \) using standard procedures. Positive clones were further characterized and
confirmed by PCR miniscreen desribed in detail in EP-A 0618976 using the universal
primers "Reverse" and M13 "-20 " as primers. Positive clones were identified by
digestion of DNA with appropriate enzymes followed by sequencing. Recombinants
that had the expected DNA sequence were then selected for further work.
PCR Amplification and cloning into T-vector:

PCR amplification was carried out by using a mixture of all the oligomers that represented the upper and the lower strand of a particular fragment (final concentration 5 mM each) as template, specific end primers for the particular fragment (final concentration 2 μM) 200 μM of each dATP, dTTP, dCTP and dGTP, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.01% gelatin and 5 units of Taq polymerase in a final reaction volume of 50 μl. The amplification reaction was carried out in a Perkin Elmer thermocycler 9600 by incubation at 95°C for 1 min (1 cycle), followed by 20 cycles of 95°C for 45 sec., 50°C for 45 sec., 72°C for 30 sec. Finally the reaction was incubated for 5 min at 72°C before analyzing the product. 10 μl of the reaction was analyzed on a 2.5% Nusieve (FMC) agarose gel in a TAE buffer system. The correct size fragment was gel purified and used for cloning into a PCR cloning vector or T-vector. T-vector construction was as described by Marchuk et al., Nucleic Acid Research, 19:1154 (1991). pBluescriptsk+ (Stratagene®, Ca.) was used as the parent vector. Transformation and identification of the correct clone was carried out as described above.

Fragments 1, 3, 4, 5, 6, 8, and 9 of VIP1A(a) and fragments 2 and 4 of VIP2A(a) were obtained by cloning of PCR amplification products; whereas, fragments 2, 7, 10 and 11 of VIP1A(a) and fragments 1, 3, and 5 of VIP2A(a) were obtained by hybridization/ligation.

Once fragments with the desired sequence were obtained, the complete gene was assembled by cloning together adjacent fragments. The complete gene was resequenced and tested for activity against WCRW before moving it into plant expression vectors containing the root preferred promoter (disclosed in U.S. patent application serial no. 08/017,209, herein incorporated by reference) and the rice actin promoter.

One such plant expression vector is pCIB5521. The maize optimized VIP1A(a) coding region (SEQ ID NO:26) was cloned in a plant expression vector containing the root preferred promoter at the 5' of the gene with the PEP Carboxylase intron #9 followed by the 35S terminator at the 3' end. The plasmid also contains sequences for ampicillin resistance from the plasmid pUC19. Another plant expression vector is pCIB5522, which contains the maize optimized VIP2A(a) coding region (SEQ ID
NO:27) fused to the root preferred promoter at the 5' of the gene with the PEP Carboxylase intron #9 followed by the 35S terminator at the 3' end.

EXAMPLE 25. NAD AFFINITY CHROMATOGRAPHY

A purification strategy was used based on the affinity of VIP2 for the substrate NAD. The supernatant from the pH 3.5 sodium citrate buffer treatment described in Example 4 was dialyzed in 20 mM TRIS pH 7.5 overnight. The neutralized supernatant was added to an equal volume of washed NAD agarose and incubated with gentle rocking at 4° C overnight. The resin and protein solution were added to a 10 ml disposable polypropylene column and the protein solution allowed to flow out. The column was washed with 5 column volumes of 20 mM TRIS pH 7.5 then washed with 2.5 column volumes of 20 mM TRIS pH 7.5, 100 mM NaCl, followed by 2.5 column volumes of 20 mM TRIS 7.5. The VIP proteins were eluted in 20 mM TRIS pH 7.5 supplemented with 5 mM NAD. Approximately 3 column volumes of the effluent were collected and concentrated in a Centricon -10. Yield is typically about 7-15 μg of protein per ml of resin.

When the purified proteins were analyzed by SDS-PAGE followed by silver staining, two polypeptides were visible, one with Mr of approximately 80,000 and one with Mr of approximately 45,000. N-terminal sequencing revealed that the Mr 80,000 protein corresponded to a proteolytically processed form of VIP1A(a) and the Mr 45,000 form corresponded to a proteolytically processed form of VIP2A(a). The co-purification of VIP1A(a) with VIP2A(a) indicates that the two proteins probably form a complex and have protein-protein interacting regions. VIP1A(a) and VIP2A(a) proteins purified in this manner were biologically active against western corn rootworm.

EXAMPLE 26. EXPRESSION OF MAIZE OPTIMIZED VIP1A(a) AND VIP2A(a)

E. coli strains containing different plasmids comprising VIP genes were assayed for expression of VIPs. *E. coli* strains harboring the individual plasmids were grown overnight in L-broth and expressed protein was extracted from the culture as described in Example 3, above. Protein expression was assayed by Western Blot analysis using antibodies developed using standard methods known in the art, similar
to those described in Example 12, above. Also, insecticidal activity of the expressed proteins were tested against Western corn rootworm according to the method in Example 3, above. The results of the *E. coli* expression assays are described below.

Expression of VIPs in *E. coli*

<table>
<thead>
<tr>
<th>Extract of E. coli Strain Harboring Indicated Plasmid</th>
<th>Assay No. 1</th>
<th>Assay No. 2</th>
<th>Protein Detected</th>
<th>% Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>pCIB5521 (maize optimized VIP1A(a))</td>
<td>47</td>
<td>27</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB5522 (maize optimized VIP2A(a))</td>
<td>7</td>
<td>7</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB6024 (native VIP2A(a))</td>
<td>13</td>
<td>13</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB6206 (native VIP1A(a))</td>
<td>27</td>
<td>40</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5521 + pCIB5522</td>
<td>87</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5521 + pCIB6024</td>
<td>93</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5522 + pCIB6206</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB6024 + pCIB6206</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The DNA from these plasmids was used to transiently express the VIPs in a maize protoplast expression system. Protoplasts were isolated from maize 2717 Line 6 suspension cultures by digestion of the cell walls using Cellulase RS and Macerase R10 in appropriate buffer. Protoplasts were recovered by sieving and centrifugation. Protoplasts were transformed by a standard direct gene transfer method using approximately 75 g plasmid DNA and PEG-40. Treated protoplasts were incubated overnight in the dark at room temperature. Analysis of VIP expression was
accomplished on protoplast explants by Western blot analysis and insecticidal activity against Western corn rootworm as described above for the expression in *E. coli*. The results of the maize protoplast expression assays are described below.

Expression of VIPs in Plant Protoplasts

<table>
<thead>
<tr>
<th>Extract Tested</th>
<th>Assay No. 1</th>
<th>Assay No. 2</th>
<th>Protein Detected</th>
<th>% Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DNA control</td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>pCIB5521 (p) (maize optimized VIP1A(a))</td>
<td>20 (0)</td>
<td>30</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB5522 (p) (maize optimized VIP2A(a))</td>
<td>20 (0)</td>
<td>20</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5521 (p) + pCIB5522 (p) combined</td>
<td>87 (82)</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5521 (p) + pCIB5522 (e) combined</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5522 (p) + pCIB5521 (e) combined</td>
<td>53 (36)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5521 (p) + pCIB6024 (e) combined</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracts pCIB5522 (p) + pCIB6206 (e) combined</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCIB6024(e) (native VIP2A(a))</td>
<td>0</td>
<td>-</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB6206(e) (native VIP1A(a))</td>
<td>20</td>
<td>-</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>pCIB5521 + pCIB 5522 (plasmids delivered by cotransformation)</td>
<td>100</td>
<td>100</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

(p) = extract of protoplast culture transformed with indicated plasmid
(e) = extract of *E. coli* strain harboring indicated plasmid

The expression data obtained with both *E. coli* and maize protoplasts show that the maize optimized VIP1A(a) and VIP2A(a) genes make the same protein as the native VIP1A(a) and VIP2A(a) genes, respectively, and that the proteins encoded by the maize optimized genes are functionally equivalent to the proteins encoded by the native genes.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The following deposits have been made at Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA:
<table>
<thead>
<tr>
<th>Strain designation</th>
<th>Deposition Number</th>
<th>Deposition Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. E. coli PL2</td>
<td>NRRL B-21221</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>2. E. coli PL2</td>
<td>NRRL B-21221N</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>3. E. coli pCIB6022</td>
<td>NRRL B-21222</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>4. E. coli pCIB6023</td>
<td>NRRL B-21223</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>5. E. coli pCIB6023</td>
<td>NRRL B-21223N</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>6. Bacillus thuringiensis</td>
<td>NRRL B-21224</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>HD73-78VIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Bacillus thuringiensis</td>
<td>NRRL B-21225</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>AB88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Bacillus thuringiensis</td>
<td>NRRL B-21226</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>AB359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Bacillus thuringiensis</td>
<td>NRRL B-21227</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>AB289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Bacillus sp. AB59</td>
<td>NRRL B-21228</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>11. Bacillus sp. AB294</td>
<td>NRRL B-21229</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>12. Bacillus sp. AB256</td>
<td>NRRL B-21230</td>
<td>March 09, 1994</td>
</tr>
<tr>
<td>13. E. coli P5-4</td>
<td>NRRL B-21059</td>
<td>March 18, 1993</td>
</tr>
<tr>
<td>14. E. coli P3-12</td>
<td>NRRL B-21061</td>
<td>March 18, 1993</td>
</tr>
<tr>
<td>15. Bacillus cereus AB78</td>
<td>NRRL B-21058</td>
<td>March 18, 1993</td>
</tr>
<tr>
<td>16. Bacillus thuringiensis</td>
<td>NRRL B-21060</td>
<td>March 18, 1993</td>
</tr>
<tr>
<td>AB6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. E. coli pCIB6202</td>
<td>NRRL B-21321</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>18. E. coli pCIB7100</td>
<td>NRRL B-21322</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>19. E. coli pCIB7101</td>
<td>NRRL B-21323</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>20. E. coli pCIB7102</td>
<td>NRRL B-21324</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>21. E. coli pCIB7103</td>
<td>NRRL B-21325</td>
<td>September 02, 1994</td>
</tr>
<tr>
<td>22. E. coli pCIB7104</td>
<td>NRRL B-21422</td>
<td>March 24, 1995</td>
</tr>
<tr>
<td>23. E. coli pCIB7107</td>
<td>NRRL B-21423</td>
<td>March 24, 1995</td>
</tr>
<tr>
<td>24. E. coli pCIB7108</td>
<td>NRRL B-21438</td>
<td>May 05, 1995</td>
</tr>
<tr>
<td>25. Bacillus thuringiensis</td>
<td>NRRL B-21439</td>
<td>May 05, 1995</td>
</tr>
<tr>
<td>AB424</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
SEQUENCE LISTING

(1) GENERAL INFORMATION:

 (A) NAME: CIBA-GEIGY AG
 (B) STREET: Klybeckstr. 141
 (C) CITY: Basel
 (E) COUNTRY: Switzerland
 (F) POSTAL CODE (ZIP): 4002
 (G) TELEPHONE: +41 61 69 11 11
 (H) TELEFAX: + 41 61 696 79 76
 (I) TELEX: 962 991

(ii) TITLE OF INVENTION: Novel Pesticidal Proteins and Strains

(iii) NUMBER OF SEQUENCES: 52

(iv) COMPUTER READABLE FORM:

 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30B

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 6049 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

 (A) ORGANISM: Bacillus cereus
 (B) STRAIN: AB78
 (C) INDIVIDUAL ISOLATE: NRRL B-21058

(ix) FEATURE:

 (A) NAME/KEY: CDS
 (B) LOCATION: 1082..2467
 (D) OTHER INFORMATION: /product= "VIP2A(a)"

(ix) FEATURE:

 (A) NAME/KEY: misc_feature
 (B) LOCATION: 2475..5126
 (D) OTHER INFORMATION: /note= "Coding sequence for the 100
 kd VIP1A(a) protein. This coding sequence is repeated in SEQ ID
 NO:4 and translated separately."
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: l:

```
ATCGATAACAA TGTTTGTTTA CTTAGAGCGG TAGTCTCTGT AATTTGTTTA ATGCTATAATT
               60
CTTTACTTTG ATACATTTTTA ATAGCCATTCT CAACTTATTAC AGTATGTTTT TGTGCTCTTC
               120
CTCCTTTTTT TCCAGAGCCT CTAGCTGGCT TTAATGCTTTT TTTGGTACGT TGCCTAATAA
               180
TATCCTTTTC TAATTCTGCA ATACCTGGCCA TCAATCGAAA GAAGATTTTC CCCATAGCAT
               240
TAGAGGIATAC AAGTTGGCTA TGAATAGAAA TAAAATCTAC ACCTAGCTCT TGGAAATTTT
               300
CACCTAAACTC AATTAGGGCT TTTGTAGAGC GAGAAATTCG ATCAAGTTTG ATACAAACTA
               360
TCTTATGGCC TTATGCIAAT ACTTTTAGGCA ACTCTTGGAC TTGAGGGGCG TCCTTTTTTA
               420
TTCTGTTAT TTTCTCTCGA TATAGCCTTT TCAACACCATA TTTGTTGCAA GCACTTATTT
               480
GCATATCGAG ATTTTCTCTC TTGSTGCIGA CAGGAGCATA ACCAAAAATC AAATTGTTTT
               540
CACCCTCTAT CTAAATATAT CTAATATAAT AGCCACAAAA ACCCTATTTA ATTAAAATAA
               600
GGAACAAAAAT TTTGCGATAT GAGTTTTGGT ACTCAATAGT GATGAGTTTT TAACGCCTTT
               660
GTTAAAAAG AACAGTGGC CATAACGCGT CGTTTTGCGG ATGCATAATAA AAATATCTGT
               720
TTGATTACAT CTAACCCTGT ATATCTTACAG CCCAGTTTTPA TTTGTACTTC AACTGACTGA
               780
ATAATGAAAA AACATGAGGG TTTCTAAAAA TTTATATATT TTCAATACAG GATGCTCTAT
               840
CTTTAGGTTA TAGTTAAAAAT ATTAGAAAAA AACAAGCGGA GGAGTGAAA AAAAGCATCT
               900
TCTCTTAATTT TTTACACGGT CTTTAATAG AAGGGGGGAG ATTAGATAAA AAATATGAAT
              960
ATCAACTCAT AATTGTTTGG TCCTCACAATA ACTTATATAA CTITTATATA CAACAACAAA
             1020
ACAGACTAAA TCCAGATTGT ATATTCAATT TCACTTGGTTC CTTTTAATAA TAATTTCATA
             1080
A ATG AAA AGA ATG GAG GGA AAG TTG TTT ATG GTG TCA AAA AAA TTA
Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu
               1126
1  5  10  15
```

```
CAG GTA GTT ACT AAA ACT GTA TTG CTT AGT ACA GTT TTC TCT ATA TCT
  Gln Val Val Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser
               1174
  20  25  30
TAA TTG AAT AAT GAA GTG GTA AAA CTT GAA CAA TTA AAT ATA AAT TCT
  Leu Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser
               1222
  35  40  45
CAG AGT AAA TAT ACT AAC TTG CAA AAT CAA AAA ATC ACT GAC AAG GTA
  Gln Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val
               1270
  50  55  60
GAG GAT TTG AAA GAA GAT AAG GAA AAA CGG AAA GAA TGG GGG AAA GAA
               1318
```
Glu Asp Phe Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu
65 70 75

AAA GAA AAA GAG TGG AAA CTA ACT GCT ACT GAA AAA GGA AAA ATG AAT
Lys Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn
80 85 90 95

AAT TTT TTA GAT AAT AAA AAT GAT ATA AAG ACA AAT TAT AAA GAA ATT
Asn Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile
100 105 110

ACT TTT TCT ATG GCA GGC TCA TTT GAA GAT GAA ATA AAA GAT TTA AAA
Thr Phe Ser Met Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys
115 120 125

GAA ATT GAT AAG ATG TTT GAT AAA ACC AAT CTA TCA AAT TCT ATT ATC
Glu Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile
130 135 140

ACC TAT AAA AAT GTG GAA CCG ACA ACA ATT GGA TTT AAT AAA TCT TTA
Thr Tyr Lys Asn Val Pro Thr Thr Ile Gly Phe Asp Lys Ser Leu
145 150 155

ACA GAA GGT AAT AGG ATT AAT TCT GAT GCA ATG GCA CAG TTT AAA GAA
Thr Gly Asn Thr Ala Gin Ser Asp Ala Met Ala Gin Phe Lys Glu
160 165 170 175

CAA TTT TTA GAT AGG GAT ATT AAG TTT GAT ATT TAT CTA GAT AGC CAT
Gln Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His
180 185 190

TTA ACT GCT CAA CAA GTT TCC ACT AAT AAA GAA AGA GAT ATT TTG AAG GTT
Leu Thr Ala Gin Gin Val Ser Ser Lys Lys Arg Val Ile Leu Lys Val
195 200 205

AGC GTT CCG AGT GGG AAA GGT TCT ACT ACT CCA ACA AAA GCA GGT GTC
Thr Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val
210 215 220

ATT TTA AAT AAT AGT GAA TAC AAA ATG CTC ATT GAT AAT GGG TAT ATG
Ile Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met
225 230 235

GTC CAT GTA GAT AAG GTA TCA AAA GTG GTG AAA AAA GGG GTG GAG TGC
Val His Val Asp Lys Val Ser Lys Val Val Lys Gly Val Gly Cys
240 245 250 255

TTA CAA ATT GAA GGG ACT TTA AAA AAG AGT CTT GAC TTT AAA AAT GAT
Leu Gin Ile Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp
260 265 270

ATA AAT GCT GAA GCQ CAT AGG TGG GGT ATG AAG AAT TAT GAA GAG TGG
Ile Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp
275 280 285
GCT AAA GAT TTA ACC GAT TCG CAA AGG GAA GCT TTA GAT GGG TAT GCT
Ala Lys Asp Leu Thr Asp Ser Gin Arg Glu Ala Leu Asp Gly Tyr Ala
290 295 300

AGG CAA GAT TAT AAA GAA ATC AAT AAT TAT TTA AGA AAT CAA GGC GGA
Arg Gin Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly
305 310 315

AGT GGA AAT GAA AAA CTA GAT GCT CAA ATA AAA AAT ATT TCT GAT GCT
Ser Gly Asn Glu Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala
320 325 330 335

TTA GGG AAG AAA CCA ATA CCG GAA AAT ATT ACT GTG TAT AGA TGG TGT
Leu Gly Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys
340 345 350

GSC ATG CCG GAA TTT GGT TAT CAA ATT AGT GAT CCG TTA CCT TCT TTA
Gly Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu
355 360 365

AAA GAT TTT GAA GAA CAA TTT TTA AAT ACA ATC AAA GAA GAC AAA GGA
Lys Asp Phe Glu Glu Glu Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly
370 375 380

TAT ATG AGT ACA AGC TTA TCG AGT GAA CGT CTT GCA GCT TTT GGA TCT
Tyr Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser
385 390 395

AGA AAA ATT ATA TTA CGA TTA CAA GTT CGG AAA GGA AGT ACG GGT GCG
Arg Lys Ile Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala
400 405 410 415

TAT TTA AGT GCC ATT GCT TTA GAA AAA GAG ATC CTA CTT
Tyr Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Lys Ile Leu Leu
420 425 430

GAT AAA GAT AGT AAA TAT CAT ATT GAT AAA GTA ACA GAG GTA ATT ATT
Asp Lys Asp Ser Lys Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile
435 440 445

AAA GGT GTT AAG CGA TAT GGA GTG GAT GCA ACA TTA TTA ACA ACT
Lys Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn
450 455 460

TAAGGAGAGT AAAATATAGA AGAAAAAGTT AGCAAGAGTT GTAAGTGATG CGTATTAGC
2527

TCCCTATACCC TTGAATGGAA ATGGGAATGCA TGTTAACCACA AGACAAAAAA CAAATCAAT
2587

TTCCACAAACA CAGAAAAATC AACAGAAAAA GATGGCAGCAGA AAGAGATACG TTTGGATTACA
2647

TTTCAAACGG AAAAGATTTA GTAATCTCTG ATGATCCAA CGAGACTGAT ATAGATCTCT
2707

TATTTTATAGT CAACAAACAG CAAATTAAC ACTTAGATAA AAAAAAAGAG AATATCATGAC
2767

TATTTTGTAG AGTTGTTTGA TTCAAGGATT AAAGAGGCGGA GATTTCATTA TTAACCTTAC
2827
(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 462 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

```plaintext
Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu Gln
   1   5     10     15
Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu
  20  25   30
Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln
  35  40   45
Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu
  50  55   60
Asp Phe Lys Glu Asp Lys Glu Lys Ala Glu Trp Gly Lys Glu Lys
  65  70   75   80
Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn
  85  90   95
Phe Leu Asp Asn Lys Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr
 100 105  110
Phe Ser Met Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Gln
 115 120  125
Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr
 130 135  140
Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr
 145 150  155  160
Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln
 165 170   175
Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu
 180 185   190
Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr
 195 200   205
Val Pro Ser Gly Lys Gly Ser Thr Pro Thr Lys Ala Gly Val Ile
 210 215  220
Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val
 225 230  235  240
```
His Val Asp Lys Val Ser Lys Val Val Lys Lys Gly Val Glu Cys Leu
245 250 255
Gln Ile Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp Ile
260 265 270
Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala
275 280 285
Lys Asp Leu Thr Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg
290 295 300
Gln Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser
305 310 315 320
Gly Asn Glu Lys Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala Leu
325 330 335
Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly
340 345 350
Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys
355 360 365
Asp Phe Glu Glu Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr
370 375 380
Met Ser Thr Ser Leu Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg
385 390 395 400
Lys Ile Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr
405 410 415
Leu Ser Ala Ile Gly Phe Ala Ser Glu Lys Glu Ile Leu Leu Asp
420 425 430
Lys Asp Ser Lys Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile Lys
435 440 445
Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn
450 455 460

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:
(A) NAME/KEY: Peptide
(B) LOCATION: 1..20
(D) OTHER INFORMATION: /note= "Signal peptide for vacuolar
targetting"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ser Ser Ser Ser Phe Ala Asp Ser Asn Pro Ile Arg Val Thr Asp Arg
1 5 10 15
Ala Ala Ser Thr
20

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2655 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-ENSE: NO

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus cereus
(B) STRAIN: AB78
(C) INDIVIDUAL ISOLATE: NRRL B-21058

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..2652
(D) OTHER INFORMATION: /product= "100 kDa protein VIP1A(a)"
/note= "This sequence is identical to the portion of SEQ ID NO:1
between and including nucleotide 2475 to 5126."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATG AAA AAT ATG AAG AAA AAG TTA GCA AGT GTT GTA ACG TGT ACG TTA
Met Lys Asn Met lys Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu
465 470 475

TTA GCT CCT ATG TTT TGT AAT GGA AAT GTG AAT GCT GTT TAC GCA GAC
Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp
480 485 490

AGC AAA ACA AAT CAA ATT TCT ACA ACA CAG AAA AAT CAA CAG AAA GAG
Ser lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu
495 500 505 510
ATG GAC CGA AAA GGA TTA CTT GGG TAT TAT TTC AAA GGA AAA GAT TTT
Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe
515 520 525

AGT AAT CTT ACT ATG TTT GCA CGA ACA CGT GAT AGT ACT CTT ATT TAT
Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr
530 535 540

GATCAAACAACAATTAATATAGAAAATAACAAACAAAGAT
Asp Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Gln Gln Glu Tyr
545 550 555

CAG TCT ATT CGT TGG ATT GGT TTG ATT CAG AGT AAA GAA ACG GGA GAT
Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp
560 565 570

TTC ACA TTT AAC TTA TCT GAG GAT GAA CAG GCA ATT ATA GAA ATC AAT
Phe Thr Phe Asn Leu Ser Glu Asp Gln Ala Ile Ile Glu Ile Asn
575 580 585 590

GGG AAA ATT ATT TCT AAT AAA GGG AAA AAG CAA GTT GTC CAT TTA
Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu
595 600 605

GAA AAA GGA AAA TTA GTT CCA ATC AAA ATA GAG TAT CAA TCA GAT ACA
Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Glu Ser Asp Thr
610 615 620

AAA TTT AAT ATT GAC AGT AAA ACA TTT AAA GAA CTT AAA TTA TTT AAA
Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys
625 630 635

ATA GAT AGT CAA AAC CAA CCC CAG CAA GTC CAG CAA GAT GAA CTG AGA
Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Glu Gln Asp Glu Leu Arg
640 645 650

AAT CCT GAA TTT AAC AAG AAA GGA TCA CAG GAA TTC TTA GGG AAA CCA
Asn Pro Glu Phe Asn Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro
655 660 665 670

TCG AAA ATA AAT CTT TTC ACT CAA AAA ATG AAG GAA TAT GAT GAA
Ser Lys Ile Asn Leu Phe Thr Gln Lys Met Lys Arg Glu Ile Asp Glu
675 680 685

GAC ACG GAT ACG GAT GGG GAC TCT ATT CCT GAC TTT TGG GAA GAA AAT
Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn
690 695 700

GGG TAT ACG ATT CAA AAT AGA ATC GCT GTA AAG TGG GAC GAT TCT CTA
Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu
705 710 715

GCA AGT AAA GGG TAT ACG AAA TTT GTT TCA AAT CCA CTA GAA AGT CAC
Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His
720 725 730
ACG GTT GGT GAT CCT TAT ACA GAT TAT GAA AAG GCA GCA AGA GAT CTA
Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Ala Ala Arg Asp Leu
735 740 745 750

GAT TTTG GCA AAG GAA ACG TTT AAC CCA TTG GTA GCT GCT TTT
Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe
755 760 765

CCA AGT GTG AAT GTT AGT ATG GAA AAG GTG ATA TTA TCA CCA AAT GAA
Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu
770 775 780

AAT TTA TCC AAT AGT GTA GAG TCT CAT TCA TCC ACG AAT TGG TCT TAT
Asn Leu Ser Asn Ser Val Glu Ser His Ser Thr Asn Trp Ser Tyr
785 790 795

ACA AAT ACA GAA GGT CTT GCT TCT GAA GCG GGG ATT GGA CCA AAA GGT
Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly
800 805 810

ATT TCG TTC GGT AGT GTA AAC TAT CAA CAC TCT GAA ACA GGT GCA
Ile Ser Phe Gly Thr Pro Val Tyr Asn Tyr Glu His Ser Glu Thr Val Ala
815 820 825 830

CAA GAA TGG GCA TCT ACA GGA AAT ACT TCG CAA TCT AAT ACG GCT
Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala
835 840 845

TCA GCG GGA TAT TTA AAT GCA AAT GTT CGA TAT AAC AAT GTA GGA ACT
Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr
850 855 860

GGT GCC ATC TAC GAT GTA AAA CCT ACA ACA AGT TTT GTA TTA AAT AAC
Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asn
865 870 875

GAT ACT ATC GCA ACT ATT ACG GCG AAA TCT AAT TCT ACA GCC TTA AAT
Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn
880 885 890

ATA TCT CCT GGA AAT TAC CCG AAA AAA GGA CAA AAT GGA ATC GCA
Ile Ser Pro Gly Ser Tyr Pro Lys Gly Glu Asp Gly Ile Ala
895 900 905 910

ATA ACA TCA ATG GAT TTT AAT TCC CAT CCG ATT ACA TTA AAT AAA
Ile Thr Ser Met Asp Asp Asn Ser His Pro Ile Thr Leu Asn Lys
915 920 925

AAA CAA GTT GAT ATT CAG CTA AAT AAA CCT ATG ATG TTT GAA ACA
Lys Gln Val Asp Leu Leu Asn Asn Pro Met Met Leu Glu Thr
930 935 940

AAC CAA ACA GAT GTT TAT AAG ATA AAA GAT ACA CAT GGA AAT ATA
Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile
1488
945 GTA ACT GGC GGA TGG AAT GTG TGC ATA CAA CAA ATC AAG GCT AAA Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys 960 965 970

950 ACA GGC TCT ATT ATT GTG GAT GAT GGG GAA CGT GTA GCA GAA AAA CGT Thr Ala Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg 975 980 985 990

955 GTA GGC GCA AAA GAT TAT GAA AAT CCA GAA GAT AAA ACA CGG TCT TTA Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu 995 1000 1005

960 ACT TTA AAA GAT GCC CCT AAG GCT TCA CAT CAA GAT GAA ATA AAA GAA Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu 1025 1030 1035

965 ATA GAG GGA TTA TTA TAT TAT AAA AAC AAA CGG ATA TAC GAA TGG ACC Ile Glu Gly Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser 1050 1055 1060

970 GTT ATG ACT TAC TTA GAT GAA AAT ACA GCA AAA GAA GTG ACC AAA CAA Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Glu 1075 1080 1085

975 TTA AAT GAT ACC ACT GGG AAA TTT AAA GAT GTA AGT CAT TTA TAT GAT Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp 1075 1080 1085

980 GAA AAA CTG ACT CCA AAA ATG AAT GTT ACA ATC AAA TTG TCT ATA CTT Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile CTT 1075 1080 1085

985 TAT GAT AAT GCT GAG TCT AAT GAT AAC TCA ATT GGT AAA TGG ACA AAC Tyr Asp Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Thr Thr Asn 1090 1095 1100

990 ACA AAT ATT GTC TCA GGT GAA AAT AAG GAA AAA AAA CAA TAT TCT TCT Thr Asn Ile Val Ser Gly Gly Asn Gly Lys Lys Glu Tyr Ser Ser 1100 1105 1110

995 AAT AAT CGG GAT GCT AAT TTT ACA TTA AAT ACA GAT GCT CAA GAA AAA Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Glu Glu Lys 1120 1125 1130

1000 TTA AAT AAA AAT CGT GAC TAT TAT ATA AGT TTA TAT ATG AAG TCA GAA Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu 1130 1135 1140 1145 1150

1005 AAA AAT ACA CAA TGT GAG ATT ACT ATA GAT GGG GAG ATT TAT CGG AAT Lys Asn Thr Glu Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile 1150 1155 1160 1165

1010 ACT ACA AAA ACA GTG AAT GTG AAT AAA GAC AAT TAC AAA AGA TTA GAT 2160
Thr Thr Lys Thr Val Asn Val Val Lys Asp Asn Tyr Lys Arg Leu Asp
1170 1175 1180

ATT ATA GCT CAT AAT ATA AAA AGT AAT CCA ATT TCT TCA CTT CAT ATT
Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile
1185 1190 1195

AAA ACG AAT GAT GAA ATA ACT TTA TTT TGG GAT GAT ATT TCT ATA ACA
Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr
1200 1205 1210

GAT GTA GCA TCA ATA AAA CGG GAA AAT TTA ACA GAT TCA GAA ATT AAA
Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys
1215 1220 1225 1230

CAG ATT TAT AGT AGG TAT GGT ATT AAG TTA GAA GAT GGA ATC CTT ATT
Gln Ile Tyr Ser Arg Tyr Glu Ile Lys Leu Glu Asp Gly Ile Leu Ile
1235 1240 1245

GAT AAA AAA GGT GGG ATT CAT TAT GGT GAA TTT ATT AAT GAA GCT AGT
Asp Lys Gly Ile Gly His Tyr Gly Glu Phe Asn Ala Ser
1250 1255 1260

TTT ATT GAA CCA TTG CAA AAT TAT GTG ACC AAA TAT GAA GTT ACT
Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Glu Val Thr
1265 1270 1275

TAT AGT GAG TTA GGA CCA AAC GTG AGT GAC ACA CTT GAA AGT GAT
Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu Ser Asp
1280 1285 1290

AAA ATT TAC AAG GAT GGG ACA ATT AAA TTT GAT TTT ACC AAA TAT AGT
Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser
1295 1300 1305 1310

AAA ATT GAA CAT GGA TTA TTT TAT GAC AGT GGA TTA AAT TGG GAC TTT
Lys Asn Glu Glu Leu Phe Tyr Asp Gly Leu Asn Trp Asp Asp Phe
1315 1320 1325

AAA ATT AAT GCT ATT ACT TAT GAT GGT AAA GAG ATT TGT TTT CAT
Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His
1330 1335 1340

AGA TAT AAT AAA TAG
Arg Tyr Asn Lys
1345

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 884 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Lys Asn Met Lys Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu
 1 5 10 15
Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp
 20 25 30
Ser Lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu
 35 40 45
Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe
 50 55 60
Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr
 65 70 75 80
Asp Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Lys Gln Gln Glu Tyr
 85 90 95
Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Gly Thr Gly Asp
 100 105 110
Phe Thr Phe Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu Ile Asn
 115 120 125
Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu
 130 135 140
Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr
 145 150 155 160
Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys
 165 170 175
Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg
 180 185 190
Asn Pro Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro
 195 200 205
Ser Lys Ile Asn Leu Phe Thr Gln Met Lys Arg Glu Ile Asp Glu
 210 215 220
Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn
 225 230 235 240
Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu
 245 250 255
Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His
 260 265 270
Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu 275 280 285
Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe 290 295 300
Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu 305 310 315 320
Asn Leu Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr 325 330 335
Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly 340 345 350
Ile Ser Phe Gly Val Ser Val Asn Tyr Glu His Ser Glu Thr Val Ala 355 360 365
Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala 370 375 380
Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Val Gly Thr 385 390 395 400
Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asn 405 410 415
Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn 420 425 430 435 440 445
Ile Ser Pro Gly Glu Ser Tyr Pro Lys Gly Glu Asn Gly Ile Ala 435 440 445
Ile Thr Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys 450 455 460
Lys Gln Val Asp Leu Leu Asn Asn Lys Pro Met Met Leu Glu Thr 465 470 475 480
Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile 485 490 495
Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys 500 505 510
Thr Ala Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg 515 520 525 530 535 540
Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu 545 550 555 560
Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Gln
565 570 575
Leu Asn Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp
580 585 590
Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu
595 600 605
Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn
610 615 620
Thr Asn Ile Val Ser Gly Gly Asn Gly Lys Gln Tyr Ser Ser
625 630 635
Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys
640 645 650
Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu
655 660 665
Lys Asn Thr Glu Cys Glu Ile Thr Ile Asp Glu Gly Glu Ile Tyr Pro Ile
670 675 680
Thr Thr Lys Thr Val Asn Val Asn Tyr Lys Arg Leu Asp
685 690 695
Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile
700 705 710
Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr
715 720 725
Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys
730 735 740
Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile
745 750 755
Asp Lys Lys Gly Gly Ile His Tyr Gly Glu Phe Ile Asn Glu Ala Ser
760 765 770
Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Glu Val Thr
775 780 785
Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu Ser Asp
790 795 800
Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser
805 810 815
Lys Asn Glu Gln Gly Leu Phe Tyr Ser Gly Leu Asn Trp Asp Phe
820 825 830
835 840 845
850 855 860
Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His 865 870 875 880
Arg Tyr Asn Lys

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2004 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus cereus
(B) STRAIN: AB78
(C) INDIVIDUAL ISOLATE: NRRL B-21058

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..2001
(D) OTHER INFORMATION: /product= "80 kDa protein VIP1A(a)"

/note="This sequence is identical to that found in SEQ ID NO:1 between and including nucleotide positions 3126 and 5126"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATG AAA AGG GAA ATT GAT GAA GAC ACG GAT ACG GAT GGG GAC TCT ATT
Met lys Arg Glu Ile Asp Glu Thr Asp Thr Asp Gly Asp Ser Ile 885 890 895 900

CCT GAC CTT TGG GAA GAA AAT GGG TAT ACG ATT CAA AAT AGA ATC GCT
Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Gln Asn Arg Ile Ala 905 910 915

CTA AAG TGG GAC TCT CTA GCA AGT AAA GGG TAT ACG AAA TTT GTT
Val Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val 920 925 930

TCA AAT CCA CTA GAA AGT CAC ACA GTT GAT CCT TAT ACA GAT TAT
Ser Asn Pro Leu Glu Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr 935 940 945

GAA AAG GCA GCA AGA GAT CTA GAT TTG TCA AAT GCA AAG GAA ACG TTT
Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe 950 955 960
(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 667 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile
1 5 10 15
Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Gln Asn Arg Ile Ala
Val Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val
35
30

Ser Asn Pro Leu Glu Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr
50
55
60

Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe
65
70
75
80

Asn Pro Leu Val Ala Ala Phe Pro Ser Val Asn Val Ser Met Glu Lys
85
90
95

Val Ile Leu Ser Pro Asn Glu Leu Ser Asn Ser Val Glu Ser His
100
105
110

Ser Ser Thr Asn Trp Ser Tyr Thr Thr Tyr Glu Gly Ala Ser Val Glu
115
120
125

Ala Gly Ile Gly Pro Lys Gly Ile Ser Phe Gly Val Ser Val Asn Tyr
130
135
140

Gln His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr Gly Asn
145
150
155
160

Thr Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val
165
170
175

Arg Tyr Asn Asn Val Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro Thr
180
185
190

Thr Ser Phe Val Leu Asn Asp Thr Ile Ala Thr Ala Lys
195
200
205

Ser Asn Ser Thr Ala Leu Asn Ile Ser Pro Gly Glu Ser Tyr Pro Lys
210
215
220

Lys Gly Gln Asn Gly Ile Ala Ile Thr Ser Met Asp Asp Asp Asn Ser
225
230
235
240

His Pro Ile Thr Leu Asn Lys Gly Val Asp Asn Leu Leu Asn Asn
245
250
255

Lys Pro Met Met Leu Glu Thr Asn Gln Thr Asp Gly Val Tyr Lys Ile
260
265
270

Lys Asp Thr His Gly Asn Ile Val Thr Gly Gly Trp Asn Gly Val
275
280
285

Ile Gln Gln Ile Lys Thr Ala Ser Ile Ile Val Asp Gly
290
295
300

Glu Arg Val Ala Glu Lys Arg Val Ala Ala Lys Asp Tyr Glu Asn Pro
305
310
315
320
Glu Asp Lys Thr Pro Ser Leu Thr Leu Lys Asp Ala Leu Lys Leu Ser 325 330 335

Tyr Pro Asp Glu Ile Lys Glu Ile Glu Gly Leu Leu Tyr Tyr Lys Asn 340 345 350

Lys Pro Ile Tyr Glu Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr 355 360 365

Ala Lys Glu Val Thr Lys Gln Leu Asn Thr Thr Gly Lys Phe Lys 370 375 380

Asp Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val 385 390 395 400

Thr Ile Lys Leu Ser Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp Asn 405 410 415

Ser Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Asn 420 425 430

Gly Lys Lys Gln Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu 435 440 445

Asn Thr Asp Ala Gln Glu Lys Leu Asn Asn Arg Asp Tyr Tyr Ile 450 455 460

Ser Leu Tyr Met Lys Ser Glu Lys Thr Gln Cys Glu Ile Thr Ile 465 470 475 480

Asp Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys 485 490 495

Asp Asn Tyr Lys Arg Leu Asp Ile Ala His Asn Ile Lys Ser Asn 500 505 510

Pro Ile Ser Ser Leu His Ile Lys Thr Asn Asp Glu Ile Thr Leu Phe 515 520 525

Trp Asp Asp Ile Ser Ile Thr Asp Val Ala Ser Ile Lys Pro Glu Asn 530 535 540

Leu Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys 545 550 555 560

Leu Glu Asp Gly Ile Leu Ile Asp Lys Gly Gly Ile His Tyr Gly 565 570 575

Glu Phe Ile Asn Glu Ala Ser Phe Asn Ile Glu Pro Leu Pro Asn Tyr 580 585 590

Val Thr Lys Tyr Glu Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn Val 595 600 605
(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 16 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus cereus
(B) STRAIN: AB78
(C) INDIVIDUAL ISOLATE: NRRL B-21058

(ix) FEATURE:
(A) NAME/KEY: Peptide
(B) LOCATION: 1..16
(D) OTHER INFORMATION: /note= "N-terminal sequence of protein purified from strain AB78"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asx Gly Asp Ser Ile Pro
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 1..21
 (D) OTHER INFORMATION: /note= "Oligonucleotide probe based on amino acids 3 to 9 of SEQ ID NO:8, using codon usage of Bacillus thuringiensis"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
GAAATTGATC AAGATACNGA T
21

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Bacillus thuringiensis
 (B) STRAIN: AB88

(ix) FEATURE:
 (A) NAME/KEY: Peptide
 (B) LOCATION: 1..14
 (D) OTHER INFORMATION: /note= "N-terminal amino acid sequence of protein known as anion exchange fraction 23 (smaller)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
Xaa Glu Pro Phe Val Ser Ala Xaa Xaa Xaa Gln Xaa Xaa Xaa Xaa
1 5 10

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: N-terminal
(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Bacillus thuringiensis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Xaa Glu Tyr Glu Asn Val Glu Pro Phe Val Ser Ala Xaa
1 5 10

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: N-terminal

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Bacillus thuringiensis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Asn Lys Asn Asn Thr Lys Leu Pro Thr Arg Ala Leu Pro
1 5 10

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Bacillus thuringiensis
 (B) STRAIN: AB88

(ix) FEATURE:
 (A) NAME/KEY: Peptide
 (B) LOCATION: 1..15
 (D) OTHER INFORMATION: /note= "N-terminal amino acid sequence of 35 kDa VIP active against Agrotis ipsilon"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala Leu Ser Glu Asn Thr Gly Lys Asp Gly Gly Tyr Ile Val Pro
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: N-terminal

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus thuringiensis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Asn Asn Pro Asn Ile Asn Glu
1 5

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(ix) FEATURE:
(A) NAME/KEY: Peptide
(B) LOCATION: 1..9
(D) OTHER INFORMATION: /note="N-terminal sequence of 80 kDa delta-endotoxin"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Asn Asn Pro Asn Ile Asn Glu
1 5

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus thuringiensis

(ix) FEATURE:
(A) NAME/KEY: Peptide
(B) LOCATION: 1..11
(D) OTHER INFORMATION: /note= "N-terminal sequence from 60 kDa delta-endotoxin"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Asn Val Leu Asn Ser Gly Arg Thr Thr Ile
1 5
10

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2655 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 1..2652
(D) OTHER INFORMATION: /note= "Maize optimized DNA sequence for 100 kd VIP1A(a) protein from AB78"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATGAAGAACA TGAAGAAGAA GCTGGCCAGC GTGGTGACCT GACCCTGCT GGCCCCCATG 60
TTCTGAAAC CGAACGTGAA CGCGTGATAC GCGACAGCA AGACCAACCA GATCAGCACC 120
ACCCAGAAGA ACCAGCAGAA GGAGATGGAC CGCAAGGGCC TGCTGGGCTA CTACTTCAG 180
GGCAAGGACT TCAGCAACCT GACCATGTTC GCCCCCAGGC GTGACAGCAC CCTGATCTAC 240
GACCAGCAGA CCGCAACAA GCTGCTGAGAC AAGAACAGAC AGGAGTACCACA GAGCATCCGC 300
TGGATCAGGC TGATCCAGAG CAAAGAGACC GGCAGCTTTA CCCCCACTTC CAGCCAGCAC 360
GAGCAGGCGA TCATCCAGAT CAACCGCCAAG ATCACCAAGCA ACAAGGGCAA GGAGAACGAG 420
GTGGTGACCC TGGAGAAAGGG CAAGCTGTGG CCCATTCAAGA TGAGATACCA GAGCGACACC 480
AAGTTCACCA TCAGCACCAAA GACCTCTCAAG GAGCTGAAGC TTCTTCAAGAT CGACAGCCAG 540
AACCAGCCCC AGCAGGTTCA CGACAGCAGAT CGCCCAACAC CGAGTCTCAA CAAAGAGGAG 600
AGCCAGGAGT TCCTGGCACA GCCACAGCAG ATCAACCTGT TCACCCAGCA GATGAAGGCC 660
GAGATCGACG AGGACACCGA CACCAGGCGC GAGACATCCCA CGGACCTGAG GGAGGAGAAC 720
GGCTACACCA TCAGAAGCGG CAGCTGCGGTG AAGTGGGAGC ACAAAGCTGG TAGCAAGGGC 780
TACCAACTGT CGTAGCGCAAA CCCCTGAGAG ACAGCCAGCG TGGCGAGGCC CTACCACCGC 840
TACAGGAGGG CGGCCGCCGA CCTGGAACCG AGCAACGCGCA AGGAGACCTT CAACCCCTCTG 900
GTGGCCGCCT TCACCCAGGT GAGATCGGAC ATGGAGAAGAG TGATCCTTGA CCACAGAGAG 960
AACCTGAGCA ACAGCGTGGA GAGCCACTCG AGGAGCAACT GGAAGTACAC CAACACCGAG 1020
GGAGCCACGCG TGGGAGCCGG CATCGCTCCC AAGGCCATCA GCTTGCGCGT GAGGGTGAAAC 1080
TACCCAGCAGA GGGAGACCGT GGGCGAAGCG TGGCGACACCA GCAGGGCCAA CACAGCGCAG 1140
TTCAACAGCC CAAGCGCCGG CTACCTGGAAC GCCAAGCTGC GCTACACAGA CTGGCGGCCAC 1200
GGGCCATCTCT AGCAAGTGAAGA GCCCAACCAG AGCTTCTGTC TGAACAACCGA CACCATCGCC 1260
ACCATCACCC CCAAGTCGAA TCCCCAGGCC CTGAAACATCA GCCCGGGCGA GAGCTACCCC 1320
AGAAGGGCCG AGAAAGCCAT GGCATCCACC AGCATGGGAG ACTTCAACCAG CACCCCATC 1380
ACCCTGAAACA AGAACAGCGGT GGAACACTCG CTGAACACCA AAAGCCATGAT GCTGGAGACC 1440
AACCAGACCG AGGCGCTCTA AAAGATCAAG GACACCACAG CCAACATCTG GACCGCGGSC 1500
GAGTGGAGC GGCGTATCCA CGAGATCAAG GCCAAGACC CCAGCATCAT GTGGACAGGAC 1560
GGCGGACCTG TGCGCGAGAA GCGCGTGGGCC GCCAAGGACT AGCAGAACC CGAGGAGCAAG 1620
ACCACCAAGGC TGACCGCTGG AGACCGCTTGT AAGCTGAGCT ACCCGAGGCA GAATCAAGGAG 1680
ATCGAGGGCC TGCTGTACTA CAAGAACAGG CCCATCTACG AGGACAGGCT GTGAACCTAT 1740
CTAGACAGGA ACACCAGGCA GGAGGTTGACC AAGCAGCTGA AGCAGACCAC CGGCAAGTTC 1800
AAGGAGGTGA GCCACCTGTA CGACGTAAGG CTGAACCCCA AGATGAACGT GACCATCAAG 1860
CTGAGCATCC TGTAAGAGAGC CGCCGAGAGC AAGGACAAACA GCATGGGCAA GTGGACCAAC 1920
ACCAACATCG TGAGGCGGCG CAAACAGGCG AAGAGAGCAGT ACAGCGAGGAA CAACCCCGAC 1980
GCCAACCCTGA CCTGTGACCA CGACGCCCCG GAGAAGGCTGA ACAAGAAGCCG CAAGGAGCAC 2040
ATCAAGGCTGT ACAAGAAGAGG CAAGAAAGAAC ACCAAGGTGC GGAGACCAATG CGAGGCGGAG 2100
ATATACCCCA TGACCAACCA GACGGTGAAAC GTGAACAAGG ACAACTACAA GCGGCTGAC 2160
ATCATGCCCCCC ACAACATCAA GAGCAACCCC TTCAGCATCAA TCGACATCAA GACCAACGAC 2220
GAGATCACCC TGGTCTGGGA CGAAGATATCG ATTACGAGCG TGCCAGCAT CAGGCGCGAG 2280
AACCTGACCG AGACGGAGAT CAAGCAGATA TACAGTGCT ACGGCATCAA GCTGGAGGAC 2340
GSGATCCCTGA TGCAAGAAGAA GGGGGCAGTC CACTACGGCG AGTTGATCAA CGGAGCGGAG 2400
TTCAACATCG AGCCCCCTGCA GAATCTAATG ACCAACATCG AGGGTGACTAA CAGCAAGCAG 2460
CTGGGGCCCA AGGTGACGGA CACCCGGAG AGGGAGAAGA TTTCAAGGAA CGCGACTGTC 2520
AAGTTGACTG TCAACAAGTAG CAGAAGAGAC GAGGAGGCCC TGTTCTACGA CAGCGGGCTG 2580
AACTGGGACT TCAAGATCAA CGCCATCACC TACGACGGCA AGGAGATGAA CGTGGTCAC 2640
CGCTACAACA AGTAG 2655

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2004 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 1..2004
(D) OTHER INFORMATION: /note= "Maize optimized DNA sequence for VIP1A(a) 80 kd protein from AB78"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
ATGAAGCGCG AGATGACAGA GGACACCCGAC ACCGACGCGC AGACGATCCC CGACCTGTTG 60
GAGGAGAACG GCTACACCAT CCCAGACCGC ATCCGCGTGAG AGTTGGAGCA CAGCCTGGCT 120
AGCAAGGGGCT ACCACCAAGTT CGTGAGCACA CCCCCTGGAA GCACAGCCTG GGCGACCCCA 180
TACACGGACT AGAGAAAGGC CGCCCGGCGAC CTGGACCTGA GCAAAGCCAA GGAGACCTTC 240
AACCCCCCTGG TGCCGCCCTTT CCCAGCGTGA AACGTGAGCA TGGAGAAAGT GATCTCTGAGC 300
CCAACGAGA ACCTGACGAA CAGCGTGGAG AGCCATCGGA GCACCAACTG GAGCTACACC 360
AACACCAGGG GCCGCAACGT GGAGGCGGCG ATCCGCTCCCA AGGGCATCAG CTTGGCGCTG 420
AGCTGGAACACT AGCAGCAACG CGAGGCGAGT GGGCCAGAGT GGGCGACACG CACGGCCAAAC 480
ACCAGCCAGT TCAACACCGC GCAGCGCGGG TACCTTGAGAC CCAAGCTGGC CTACACAAAC 540
GTGGGCGACGG GCACGGATCTA CAGACTGAAAG CCCACCCACCA GCTCTGGCTG TACAAACCGAC 600
ACCATCGCCA CCATCACCAG CAAAGTGAAAT TTCACGGGC CCAGAACCTG CCGCCGCGAG 660
AGCTACCCCA AGAACGGGCA GAAGCAGCTTC GCAGTGAGGA CCGAACACCAC GTTGTCCTGTG 720
CACCACCTCA CCTGAAACAA CAGAGCGGGT GACAACCTGC TGAACACCAAA GCGGATGATTG 780
CTGGAGACCA ACCAGCGAGA CGCGTCTGAC AAGATCAAGG ACCACCAGGS CAGCATCTGTG 840
ACGCGCGCAG AGTGGAACGG CGTGATCCAG CAGATCAAGG CCAAGACGCC CAGCATCATC 900
GTCGACGGAG GGCGCGCGGT GGCGAAGAGG CGCGTGCGCG CACAGACGACG CAGGACCCCC 960
GAGGACCAAGA CCCCGCGCCT GACCGCTGAAG CACCGCGCTGA AGCTGACGTA CCGCGAACAG 1020
ATCAAGGGAG TCGAGGGGCT GCTGTAAGCT AAGAACAAGG CCATCTGAGA GACGAGCTGTG 1080
ATGACCTATGC TAGCAGGAAAG CACCGGCAAG GAGATGGACCA AGCAGCTGAA CGAACCCACC 1140
GGCAAAGTCCA AGGAGCTGAG CCCAGCCTGAC GACGTGAGAC TGACCCCCAA GATGACGCTG 1200
ACCATCAAGC TGAGCATCCT GTAGCAAGAC GCCGAGAGCA ACGACAACAG CATCGGCGAG 1260
TGGACCAACCA CCAACATCGT GAGCGCGGCG ACCAAACGGCA AAGAGCAGTA CAGCACCCAG 1320
AACCCGAGCG CCAACCTGAC CCTGAACACC GACGGCCAGG AAGAGCTGAA CAAAGACGSC 1380
GACTACTACA TCAGCGCTGA CAGTGAGAGC GAGAAGAACG CCGATGGCGA GATCACCACG 1440
GACGGCGAGA TATACCCCATT CACCACCAAG ACCGTTGAGCG TGAACAAGGA CAACTACAAG 1500
CGGCTGGACA TCATCGCCCA CCAACATCAAG AGCAACCCCA TCACGAGCCCT GCACATCAAG 1560
ACCAAGCGAC AGATACCGCT GTCTGGGAC GACATATCGA TTACGACGCT GCAGCGCATC 1620
AAGCCCCAGA ACCTGACCGA CACCGAGATC AAGCAGATAT ACAGTGCGTA CGGCGTCAAG 1680
CTGAGAGGACG CCACTCTGAT CGAACAAGAG GCGGGCATCC ACTACGGCAG GTTCTCATTAC 1740
GAGGCCAGCT TCAACATCGA GCCCCTGCA G AACTACGTGA CCAAGTACGA GGTCACCTAC
1800
AGCAGCGAGC TGGGGCCCAA C G TGAGCGAC ACCCTGGAGA GCCACAAGAT TTACAAGGAC
1860
GGCACCATCA AGTTCGACTT CACCAAATAC AGCAAGAAACG AGCAAGGGCCT G T TCTACGAC
1920
AGCGGCGCTGA ACTGGGACTT CAAAGATCAAC GCCATCAACCT ACGACGGGCAA GGAGCATGAC
1980
GTGTCCACC GCTACAACAA GTAG
2004

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4074 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..1386
(D) OTHER INFORMATION: /product= "VIP2A(b) from Btt"

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1394..3895
(D) OTHER INFORMATION: /product= "VIP1A(b) from Btt"

(ix) FEATURE:
(A) NAME/KEY: misc feature
(B) LOCATION: 1..4074
(D) OTHER INFORMATION: /note= "Cloned DNA sequence from Btt which contains the genes for both VIP1A(b) and VIP2A(b)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATG CAA AGA ATG GAG GGA AAG TTG TTT GTG GTG TCA AAA ACA TTA CAA
Met Gln Arg Met Glu Gly Lys Leu Phe Val Val Ser Lys Thr Leu Gln
670 675 680

GTA GTT ACT AGA ACT GTA TTG CTT AGT ACA GTT TAC TCT ATA ACT TTA
Val Val Thr Arg Thr Val Leu Leu Ser Thr Val Tyr Ser Ile Thr Leu
685 690 695

TTA AAT AAT GTA GTG ATA AAA GCT GAC CAA TTA AAT ATA AAT TCT CAA
Leu Asn Asn Val Val Ile Lys Ala Asp Gln Leu Asn Ile Asn Ser Gln
700 705 710 715

AGT AAA TAT ACT AAC TTG CAA AAT CTA AAA ATC CCT GAT AAT GCA GAG
Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Pro Asp Asn Ala Glu
192
GAT TTT AAA GAA GAT AAG GGG AAA GCG AAA GAA TGG GGG AAA GAG AAA
Asp Phe Lys Glu Asp Lys Gly Lys Ala Lys Glu Trp Gly Lys Glu Lys
730

GGG GAA GAG TGG AGG CCT CCT GCT ACT GAG AAA GGA GAA ATG AAT AAT
Gly Glu Glu Trp Arg Pro Pro Ala Thr Glu Lys Gly Glu Met Asn Asn
775

TTT TTA GAT AAT AAA AAT GAT ATA AAG ACC AAT TAT AAA GAA ATT ACT
Phe Leu Asp Asn Lys Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr
765

TTT TCT ATG GCA GGT TCA TGT GAA GAT GAA ATA AAA GAT TTA GAA GAA
Phe Ser Met Ala Gly Ser Cys Glu Asp Glu Ile Lys Asp Leu Glu Glu
790

ATT GAT AAG ATC TTT GAT AAA GCC AAT CTC TCG AGT TCT ATT ATC ACC
Ile Asp Lys Ile Phe Asp Lys Ala Asn Leu Ser Ser Ser Ile Thr
805

TAT AAA AAT GTG GAA CCA GCA ACA ATT GGA TTT AAT AAA TCT TTA ACA
Tyr Lys Asn Val Glu Pro Ala Thr Ile Gly Phe Asn Lys Ser Leu Thr
815

GAA GGT AAT ACG ATT AAT TCT GAT GCA ATG GCA CAG TTT AAA GAA CAA
Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln
830

TTT TTA GGT AAG GAT ATG AAG TTT GAT AGT TAT CTA GAT ACT CAT TTA
Phe Leu Gly Lys Asp Met Lys Phe Asp Ser Tyr Leu Asp Thr His Leu
845

ACT GCT CAA CAA GTT TCC AGT AAA AAA AGA GTT ATT TTG AAG GTT ACG
Thr Ala Gln Gln Val Ser Ser Lys Arg Val Ile Leu Lys Val Thr
860

GTT CCG AGT GGG AAA GGT TCT ACT ACT CCA ACA AAA GCA GGT GTC ATT
Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Thr Pro Thr Val Ile
880

TTA AAC AAT ATG TAC AAA ATG CTC ATT GAT AAT GGG TAT GTG GTC
Leu Asn Asn Asn Gly Tyr Lys Met Leu Ile Asp Asn Gly Tyr Val Leu
895

CAT GTA GAT AAG GTA TCA AAA GTA AAA AAA GGG ATG GAG TGC TTA
His Val Asp Lys Val Ser Lys Val Val Lys Gly Met Glu Cys Leu
910

CAA GGT GAA GGG ACT TTA AAA AAG AGT CTC GAC TTT AAA AAT GAT ATA
Gln Val Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp Ile
925

AAT GCT GAA GCG CAT AGC TGG GGG ATG AAA ATT TAT GAA GAC TGG GCT
864
Asn Ala Glu Ala His Ser Trp Gly Met Lys Ile Tyr Glu Asp Trp Ala 940 945 950 955
AAA AAT TTA ACC GCT TCG CAA AGG GAA GCT TTA GAT GGG TAT GCT AGG 912
Lys Asn Leu Thr Ala Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg 960 965 970
CAA GAT TAT AAA GAA ATC AAT AAT TAT TTG CGC AAT CAA GCC GGG AGT 960
Gln Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser 975 980 985
GGA AAT GAA AAG CTG GAT GCC CAA TTA AAA AAT ATT TCT GAT GCT TTA 1008
Gly Asn Glu Lys Leu Asp Ala Gln Leu Lys Asn Ile Ser Asp Ala Leu 990 995 1000
GGG AAG AAA CCC ATA CCA GAA AAT ATT ACC GTG TAT AGA TGG TGT GGC 1056
Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly 1005 1010 1015
ATG CGG GAA TTT GGT TAT CAA ATT AGT GAT CGG TTA CTC TCT TTA AAA 1104
Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys 1020 1025 1030 1035
GAT TTT GAA GAA CAA TTT TTA AAT ACA ATT AAA GAA GAC AAA GGG TAT 1152
Asp Phe Glu Glu Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr 1040 1045 1050
ATG AGT ACA AGC TTA TCG AGT GAA CGT CCT GCA GCT TTT GGA TCT AGA 1200
Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg 1055 1060 1065
AAA ATT ATA TTA CGC TTA CAA GTT CGG AAA GGA AGT ACG GGG GCG TAT 1248
Lys Ile Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr 1070 1075 1080
TTA AGT GCC ATT GGT GGA TTT GCA AGT GAA AAA GAG ATC CTA CTT GAT 1296
Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Lys Glu Ile Leu Leu Asp 1085 1090 1095
AAA GAT AGT AAA TAT CAT ATT GAT AAA GCA ACA GAG GTA ATC ATT AAA 1344
Lys Asp Ser Lys Tyr His Ile Asp Lys Ala Thr Glu Val Ile Ile Lys 1100 1105 1110 1115
GGT GTT AAG CGA TAT GTA GTG GAT GCA ACA TTA TTA ACA AAT 1386
Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn 1120 1125
TAAGGAG ATG AAA AAT ATG AAG AAA AAG TTA GCA AGT GTT GTA ACC TGT 1435
Met Lys Asn Met Lys Lys Lys Leu Ala Ser Val Val Thr Cys 1 5 10
ATG TTA TCA CCT ATG TTT TTG AAT GGA AAT GTG AAT GCT GTT AAC 1483
Met Leu Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Asn 15 20 25 30
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCG GAT AGT AAA ATA AAT CAG ATT TCT ACA ACG CAG GAA AAC CAA CAG</td>
<td>1531</td>
<td></td>
</tr>
<tr>
<td>Ala Asp Ser Lys Ile Asn Gln Ile Ser Thr Thr Gln Glu Asn Gln Gln</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>AAA GAG ATG GAC CGA AAG GGA TTA TTA GGA TAT TAT TTC AAA GGA AAA</td>
<td>1579</td>
<td></td>
</tr>
<tr>
<td>Lys Glu Met Asp Arg Lys Gly Leu Leu Gly Tyr Phe Lys Gly Lys</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>GAT TTT AAT AAT CTT ACT ATG TTT GCA CGG ACA CGT GAT AAT ACC CTT</td>
<td>1627</td>
<td></td>
</tr>
<tr>
<td>Asp Phe Asn Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Asn Thr Leu</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>ATG TAT GAC CAA CCA ACA CGG AAT GCA TTA TTA GAT AAA AAA CAA CAA</td>
<td>1675</td>
<td></td>
</tr>
<tr>
<td>Met Tyr Asp Gln Gln Thr Ala Asn Ala Leu Leu Asp Lys Lys Gln Gln</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>GAA TAT CAG TCC ATT CGT TGG ATT GGT TTG ATT CAG CGT AAA GAA ACG</td>
<td>1723</td>
<td></td>
</tr>
<tr>
<td>Glu Tyr Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Arg Lys Glu Thr</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>GGC GAT TTC ACA TTT AAC TTA TCA AAG GAT GAA CAG GCA ATT ATA GAA</td>
<td>1771</td>
<td></td>
</tr>
<tr>
<td>Gly Asp Phe Thr Phe Asn Leu Ser Lys Asp Glu Gln Ala Ile Ile Glu</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>ATC GAT GGG AAA ATC ATT TCT AAT AAA GGG AAA GAA AAG CAA GTT GTC</td>
<td>1819</td>
<td></td>
</tr>
<tr>
<td>Ile Asp Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Gln Val Val</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>CAT TTA GAA AAA GAA AAA TTA GTT CCA ATC AAA ATA GAG TAT CAA TCA</td>
<td>1867</td>
<td></td>
</tr>
<tr>
<td>His Leu Glu Lys Glu Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>GAT ACG AAA TTT AAT ATT GAT AGT AAA ACA TTT AAA GAA CTT AAA TTA</td>
<td>1915</td>
<td></td>
</tr>
<tr>
<td>Asp Thr Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu</td>
<td>160</td>
<td>165</td>
</tr>
<tr>
<td>TTT AAA ATA GAT AGT CAA AAC CAA TCT CAA CAA GTT CAA CTG AAG AAC</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>Phe Lys Ile Asp Ser Gln Asn Gln Ser Gln Gln Val Gln Leu Arg Asn</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>CCT GAA TTT AAC AAA GAA TCA CAG GAA TTT TTA GCA AAA GCA TCA</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Pro Glu Phe Asn Lys Glu Ser Gln Glu Phe Leu Ala Lys Ala Ser</td>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>AAA ACA AAC CTT TTT AAG CAA AAA ATG AAA AGA GAT ATT GAT GAA GAT</td>
<td>2059</td>
<td></td>
</tr>
<tr>
<td>Lys Thr Asn Leu Phe Lys Glu Lys Met Lys Arg Asp Ile Asp Glu Asp</td>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td>ACG GAT ACA GAT GGA GAC TCC ATT CCT GAT TTT TTC GAA AAT GGG</td>
<td>2107</td>
<td></td>
</tr>
<tr>
<td>Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn Gly</td>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td>TAC ACG ATT CAA AAT AAA GTT GCT GTC AAA TGG GAT GAT TCG CTA GCA</td>
<td>2155</td>
<td></td>
</tr>
<tr>
<td>Tyr Thr Ile Gln Asn Lys Val Ala Val Lys Trp Asp Asp Ser Leu Ala</td>
<td>240</td>
<td>245</td>
</tr>
</tbody>
</table>
CAA ACA GAT GGT GTT TAT AAA ATA AGA GAT ACA CAT GGA AAT ATT GTA
Gln Thr Asp Gly Val Tyr Lys Ile Arg Asp Thr His Gly Asn Ile Val
480 485 490 2875

ACT GGT GGA TGG AAT GGT GTA ACA CAA CAA ATT AAA GCA AAA ACA
Thr Gly Gly Glu Trp Asn Gly Val Thr Gin Gin Ile Lys Ala Lys Thr
495 500 505 510 2923

GCG TCT ATT ATT GTG GAT GAC GGG AAA CAG GTA GCA GAA AAA CGT GTG
Ala Ser Ile Ile Val Asp Asp Gly Lys Gin Val Ala Glu Lys Arg Val
515 520 525 2971

GCG GCA AAA GAT TAT GTG CAT CCA GAA GAT AAA ACA CCA CCT TTA ACT
Ala Ala Lys Asp Tyr Gly His Pro Glu Asp Lys Thr Pro Pro Leu Thr
530 535 540 3019

TTA AAA GAT ACC CTG AAG CTT TCA TAC CCA GAT GAA ATA AAA GAA ACT
Leu Lys Asp Thr Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu Thr
545 550 555 3067

AAT GGA TTG TTG TAC TAT GAT GAC AAA CCA ATC TAT GAA TCG AGT GTC
Asn Gly Leu Leu Tyr Tyr Asp Asp Lys Pro Ile Tyr Glu Ser Ser Val
560 565 570 3115

ATG ACT TAT CTG GAT GAA AAT ACG GCA AAA GAA GTC AAA AAA AAA CAA ATA
Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Lys Gin Ile
575 580 585 590 3163

AAT GAT ACA ACC GGA AAA TTT AAG GAT GTA AAT CAC TTA TAT GAT GCA
Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Asn His Leu Tyr Asp Val
595 600 605 3211

AAA CTG ACT CCA AAA ATG AAT TTT ACG ATT AAA ATG GCT TCC TTG TAT
Lys Leu Thr Pro Lys Met Asn Phe Thr Ile Lys Met Ala Ser Leu Tyr
610 615 620 3259

GAT GGG GCT GAA AAT AAT CAT AAC TCT TTA GGA ACC TGG TAT TTA ACA
Asp Gly Ala Glu Asn Asn His Asn Ser Leu Gly Thr Trp Tyr Leu Thr
625 630 635 3307

TAT AAT GTT GCT GGT GGA AAT ACT GGG AAG AGA CAA TAT CGT TCA GCT
Tyr Asn Val Ala Gly Gly Asn Thr Gly Lys Arg Gin Thr Arg Ser Ala
640 645 650 3355

CAT TCT TGT GCA CAT GTA GCT CTA TCT TCA GAA GCG AAA AAG AAA CTA
His Ser Cys Ala His Val Ala Leu Ser Ser Glu Ala Lys Lys Leu
655 660 665 670 3403

AAT CAA AAT GCG AAT TAC TAT CCT AGC TAT ATG TAT AAG GCT GAT TCT
Asn Gin Asn Ala Asn Tyr Tyr Leu Ser Met Tyr Met Lys Ala Asp Ser
675 680 685 3451

ACT ACG GAA CCT ACA ATA GAA GTA GCT GGG GAA AAA TCT GCA ATA ACA
3499
Thr Thr Glu Pro Thr Ile Glu Val Ala Gly Glu Lys Ser Ala Ile Thr
690 695 700
AGT AAA AAA GTA AAA TTA AAT AAT CAA AAT TAT CAA AGA GTT GAT ATT
Ser Lys Lys Val Lys Leu Asn Asn Gln Tyr Gln Arg Val Asp Ile
705 710 715
TTA GTG AAA AAT TCT GAA AGA AAT CCA ATG GAT AAA ATA TAT ATA AGA
Leu Val Lys Asn Ser Glu Arg Asn Pro Met Asp Lys Ile Tyr Ile Arg
720 725 730
GGA AAT GGC AGC ACA AAT GTT TAT GGG GAT GTT ACT ATC CCA GAG
Gly Asn Gly Thr Thr Asn Val Tyr Gly Asp Val Thr Ile Pro Glu
735 740 745 750
GTA TCA GCT ATA AAT CCG GCT AGT CTA TCA GAT GAA GAA ATT CAA GAA
Val Ser Ala Ile Asn Pro Ala Ser Leu Ser Asp Glu Ile Gln Glu
755 760 765
ATA TTT AAA GAC TCA ACT ATT GAA TAT GGA AAT CCT AGT TTC GTT GCT
Ile Phe Lys Asp Ser Thr Ile Glu Tyr Gly Asn Pro Ser Phe Val Ala
770 775 780
GAT GTA ACA TTT AAA AAT ATA AAA CCT TTA CAA AAT TAT GTA AAG
Asp Ala Val Thr Phe Lys Asn Ile Lys Pro Leu Gln Asn Tyr Val Lys
785 790 795
GAA TAT GAA ATA TAT CAT AAA TCT CAT CGA TAT GAA AAG AAA ACG GTC
Glu Tyr Glu Ile Tyr His Lys Ser His Arg Tyr Glu Lys Thr Val
800 805 810
TTT GAT ATC ATG GGT GTT CAT TAT GAG TAT AGT ATA GCT AGG GAA CAA
Phe Asp Ile Met Gly Val His Tyr Glu Ser Ile Ala Arg Glu Gln
815 820 825 830
AAG AAA GCC GTA TAATTTAAA AATAAAACTC GTTAGAGTTT ATTTAGCAGT
Lys Lys Ala Ala
835

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 462 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
<td>5</td>
<td>Arg</td>
</tr>
<tr>
<td>2</td>
<td>Val</td>
<td>10</td>
<td>Glu</td>
</tr>
<tr>
<td>3</td>
<td>Val</td>
<td>15</td>
<td>Gly</td>
</tr>
<tr>
<td>4</td>
<td>Lys</td>
<td>20</td>
<td>Leu</td>
</tr>
<tr>
<td>5</td>
<td>Phe</td>
<td>25</td>
<td>Val</td>
</tr>
<tr>
<td>6</td>
<td>Ser</td>
<td>30</td>
<td>Thr</td>
</tr>
<tr>
<td>7</td>
<td>Lys</td>
<td>35</td>
<td>Leu</td>
</tr>
<tr>
<td>8</td>
<td>Thr</td>
<td>40</td>
<td>Ser</td>
</tr>
<tr>
<td>9</td>
<td>Arg</td>
<td>45</td>
<td>Val</td>
</tr>
<tr>
<td>10</td>
<td>Val</td>
<td>50</td>
<td>Asn</td>
</tr>
<tr>
<td>11</td>
<td>Leu</td>
<td>55</td>
<td>Val</td>
</tr>
<tr>
<td>12</td>
<td>Ser</td>
<td>60</td>
<td>Ile</td>
</tr>
<tr>
<td>13</td>
<td>Tyr</td>
<td>65</td>
<td>Ser</td>
</tr>
<tr>
<td>14</td>
<td>Thr</td>
<td>70</td>
<td>Asn</td>
</tr>
<tr>
<td>15</td>
<td>Asn</td>
<td>75</td>
<td>Leu</td>
</tr>
<tr>
<td>16</td>
<td>Pro</td>
<td>80</td>
<td>Lys</td>
</tr>
<tr>
<td>17</td>
<td>Asp</td>
<td>85</td>
<td>Ala</td>
</tr>
<tr>
<td>18</td>
<td>Asp</td>
<td>90</td>
<td>Glu</td>
</tr>
<tr>
<td>19</td>
<td>Ala</td>
<td>95</td>
<td>Glu</td>
</tr>
<tr>
<td>20</td>
<td>Gly</td>
<td>100</td>
<td>Pro</td>
</tr>
<tr>
<td>21</td>
<td>Thr</td>
<td>105</td>
<td>Ala</td>
</tr>
<tr>
<td>22</td>
<td>Glu</td>
<td>110</td>
<td>Thr</td>
</tr>
<tr>
<td>23</td>
<td>Leu</td>
<td>115</td>
<td>Tyr</td>
</tr>
<tr>
<td>24</td>
<td>Asp</td>
<td>120</td>
<td>Lys</td>
</tr>
<tr>
<td>25</td>
<td>Asn</td>
<td>125</td>
<td>Asp</td>
</tr>
<tr>
<td>26</td>
<td>Lys</td>
<td>130</td>
<td>Ile</td>
</tr>
<tr>
<td>27</td>
<td>Ile</td>
<td>135</td>
<td>Phe</td>
</tr>
<tr>
<td>28</td>
<td>Asp</td>
<td>140</td>
<td>Lys</td>
</tr>
<tr>
<td>29</td>
<td>Ala</td>
<td>145</td>
<td>Asn</td>
</tr>
<tr>
<td>30</td>
<td>Ser</td>
<td>150</td>
<td>Ser</td>
</tr>
<tr>
<td>31</td>
<td>Ser</td>
<td>155</td>
<td>Thr</td>
</tr>
<tr>
<td>32</td>
<td>Tyr</td>
<td>160</td>
<td>Lys</td>
</tr>
<tr>
<td>33</td>
<td>Arg</td>
<td>165</td>
<td>Val</td>
</tr>
<tr>
<td>34</td>
<td>Ala</td>
<td>170</td>
<td>Ser</td>
</tr>
<tr>
<td>35</td>
<td>Lys</td>
<td>175</td>
<td>Met</td>
</tr>
<tr>
<td>36</td>
<td>Ala</td>
<td>180</td>
<td>Ala</td>
</tr>
<tr>
<td>37</td>
<td>Glu</td>
<td>185</td>
<td>Gln</td>
</tr>
<tr>
<td>38</td>
<td>Gly</td>
<td>190</td>
<td>Phe</td>
</tr>
<tr>
<td>39</td>
<td>Thr</td>
<td>195</td>
<td>Lys</td>
</tr>
<tr>
<td>40</td>
<td>Val</td>
<td>200</td>
<td>Arg</td>
</tr>
<tr>
<td>41</td>
<td>Ser</td>
<td>205</td>
<td>Val</td>
</tr>
<tr>
<td>42</td>
<td>Ser</td>
<td>210</td>
<td>Lys</td>
</tr>
<tr>
<td>43</td>
<td>Gly</td>
<td>215</td>
<td>Thr</td>
</tr>
<tr>
<td>44</td>
<td>Ser</td>
<td>220</td>
<td>Pro</td>
</tr>
<tr>
<td>45</td>
<td>Thr</td>
<td>225</td>
<td>Thr</td>
</tr>
<tr>
<td>46</td>
<td>Lys</td>
<td>230</td>
<td>Lys</td>
</tr>
<tr>
<td>47</td>
<td>Ser</td>
<td>235</td>
<td>Met</td>
</tr>
<tr>
<td>48</td>
<td>Lys</td>
<td>240</td>
<td>Leu</td>
</tr>
<tr>
<td>49</td>
<td>Val</td>
<td>245</td>
<td>Asp</td>
</tr>
<tr>
<td>50</td>
<td>Lys</td>
<td>250</td>
<td>Gly</td>
</tr>
<tr>
<td>51</td>
<td>Val</td>
<td>255</td>
<td>Tyr</td>
</tr>
<tr>
<td>52</td>
<td>Val</td>
<td>260</td>
<td>Met</td>
</tr>
<tr>
<td>53</td>
<td>Lys</td>
<td>265</td>
<td>Leu</td>
</tr>
<tr>
<td>54</td>
<td>Gly</td>
<td>270</td>
<td>Phe</td>
</tr>
<tr>
<td>55</td>
<td>Thr</td>
<td>275</td>
<td>Asp</td>
</tr>
<tr>
<td>56</td>
<td>Leu</td>
<td>280</td>
<td>Trp</td>
</tr>
<tr>
<td>57</td>
<td>Ala</td>
<td>285</td>
<td>Glu</td>
</tr>
</tbody>
</table>
(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 834 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Lys Asn Met Lys Lys Lys Leu Ala Ser Val Val Thr Cys Met Leu
1 5 10 15

Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Asn Ala Asp
20 25 30

Ser Lys Ile Asn Gln Ile Ser Thr Thr Gln Glu Asn Gln Gln Lys Glu
35 40 45

Lys Asn Leu Thr Ala Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg
290 295 300

Gln Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser
305 310 315 320

Gly Asn Glu Lys Leu Asp Ala Gln Leu Lys Asn Ile Ser Asp Ala Leu
325 330 335

Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly
340 345 350

Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys
355 360 365

Asp Phe Glu Glu Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr
370 375 380

Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg
385 390 395 400

Lys Ile Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr
405 410 415

Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Lys Glu Ile Leu Leu Asp
420 425 430

Lys Asp Ser Lys Tyr His Ile Asp Lys Ala Thr Glu Val Ile Ile Lys
435 440 445

Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn
450 455 460
<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe</td>
<td>50</td>
</tr>
<tr>
<td>Asn Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Asn Thr Leu Met Tyr</td>
<td>65</td>
</tr>
<tr>
<td>Asp Gln Gln Thr Ala Asn Ala Leu Leu Asp Lys Lys Gln Gln Glu Tyr</td>
<td>85</td>
</tr>
<tr>
<td>Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Arg Lys Glu Thr Gly Asp</td>
<td>100</td>
</tr>
<tr>
<td>Phe Thr Phe Asn Leu Ser Lys Asp Glu Gln Ala Ile Ile Glu Ile Asp</td>
<td>115</td>
</tr>
<tr>
<td>Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu</td>
<td>130</td>
</tr>
<tr>
<td>Glu Lys Glu Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr</td>
<td>145</td>
</tr>
<tr>
<td>Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Iys Leu Phe Lys</td>
<td>160</td>
</tr>
<tr>
<td>Ile Asp Ser Gln Asn Gln Ser Gln Gln Val Gln Leu Arg Asn Pro Glu</td>
<td>175</td>
</tr>
<tr>
<td>Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Ala Ser Lys Thr</td>
<td>190</td>
</tr>
<tr>
<td>Asn Leu Phe Lys Gln Lys Met Lys Arg Asp Ile Asp Glu Asp Thr Asp</td>
<td>205</td>
</tr>
<tr>
<td>Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr</td>
<td>220</td>
</tr>
<tr>
<td>Ile Gln Asn Lys Val Ala Val Lys Trp Asp Ser Leu Ala Ser Lys</td>
<td>235</td>
</tr>
<tr>
<td>Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Asp Ser His Thr Val Gly</td>
<td>250</td>
</tr>
<tr>
<td>Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Ser</td>
<td>265</td>
</tr>
<tr>
<td>Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro Ser Val</td>
<td>280</td>
</tr>
<tr>
<td>Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu Ser</td>
<td>300</td>
</tr>
<tr>
<td>Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn Thr</td>
<td>315</td>
</tr>
<tr>
<td>Glu Gly Ala Ser Ile Glu Ala Gly Gly Gly Pro Leu Gly Leu Ser Phe</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>340</td>
<td>Gly Val Ser Val Thr Tyr Gln His Ser Glu Thr Val Ala Gln Glu Trp</td>
</tr>
<tr>
<td>350</td>
<td>Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala Gly</td>
</tr>
<tr>
<td>370</td>
<td>Tyr Leu Asn Ala Asn Val Arg Tyr Asn Val Gly Thr Gly Ala Ile</td>
</tr>
<tr>
<td>385</td>
<td>Tyr Asp Val Lys Pro Thr Ser Phe Val Leu Asn Asn Thr Ile</td>
</tr>
<tr>
<td>405</td>
<td>Ala Thr Ile Thr Ala Lys Ser Asn Ser Ser Thr Ala Leu Arg Ile Ser Pro</td>
</tr>
<tr>
<td>420</td>
<td>Gly Asp Ser Tyr Pro Glu Ile Gly Glu Ala Ile Ala Ile Thr Ser</td>
</tr>
<tr>
<td>435</td>
<td>Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys Gln Gln Val</td>
</tr>
<tr>
<td>450</td>
<td>Asn Gln Leu Ile Asn Lys Pro Ile Met Leu Glu Thr Asp Gln Thr</td>
</tr>
<tr>
<td>465</td>
<td>Asp Gly Val Tyr Lys Ile Arg Asp Thr His Gly Asn Ile Val Thr Gly</td>
</tr>
<tr>
<td>485</td>
<td>Gly Glu Trp Asn Gly Val Thr Gln Gln Ile Lys Ala Lys Thr Ala Ser</td>
</tr>
<tr>
<td>500</td>
<td>Ile Ile Val Asp Asp Gly Lys Gln Val Ala Glu Lys Arg Val Ala Ala</td>
</tr>
<tr>
<td>515</td>
<td>Lys Asp Tyr Gly His Pro Glu Asp Lys Thr Pro Pro Leu Thr Leu Lys</td>
</tr>
<tr>
<td>530</td>
<td>Asp Thr Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu Thr Asn Gly</td>
</tr>
<tr>
<td>545</td>
<td>Leu Leu Tyr Tyr Asp Lys Pro Ile Tyr Glu Ser Ser Val Met Thr</td>
</tr>
<tr>
<td>550</td>
<td>Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Lys Gln Ile Asn Asp</td>
</tr>
<tr>
<td>565</td>
<td>Thr Thr Gly Lys Phe Lys Asp Val Asn His Leu Tyr Asp Val Lys Leu</td>
</tr>
<tr>
<td>580</td>
<td>Thr Pro Lys Met Asn Phe Thr Ile Lys Met Ala Ser Leu Tyr Asp Gly</td>
</tr>
<tr>
<td>600</td>
<td>Ala Glu Asn Asn His Asn Ser Leu Gly Thr Trp Tyr Leu Thr Tyr Asn</td>
</tr>
<tr>
<td>610</td>
<td></td>
</tr>
</tbody>
</table>
Val Ala Gly Gly Asn Thr Gly Lys Arg Gln Tyr Arg Ser Ala His Ser 645 650 655
Cys Ala His Val Ala Leu Ser Ser Glu Ala Lys Lys Leu Asn Gln 660 665 670
Asn Ala Asn Tyr Tyr Leu Ser Met Tyr Met Lys Ala Asp Ser Thr Thr 675 680 685
Glu Pro Thr Ile Glu Val Ala Gly Lys Ser Ala Ile Thr Ser Lys 690 695 700
Lys Val Lys Leu Asn Asn Gln Asn Tyr Gln Arg Val Asp Ile Leu Val 705 710 715 720
Lys Asn Ser Glu Arg Asn Pro Met Asp Lys Ile Tyr Ile Arg Gly Asn 725 730 735
Gly Thr Thr Asn Val Tyr Gly Asp Val Thr Ile Pro Glu Val Ser 740 745 750
Ala Ile Asn Pro Ala Ser Leu Ser Asp Glu Glu Ile Gin Glu Ile Phe 755 760 765
Lys Asp Ser Thr Ile Glu Tyr Gly Asn Pro Ser Phe Val Ala Asp Ala 770 775 780
Val Thr Phe Lys Asn Ile Lys Pro Leu Gln Asn Tyr Val Lys Glu Tyr 785 790 795 800
Glu Ile Tyr His Lys Ser His Arg Tyr Glu Lys Thr Val Phe Asp 805 810 815
Ile Met Gly Val His Tyr Glu Tyr Ser Ile Ala Arg Glu Gin Lys Lys 820 825 830
Ala Ala

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4041 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..4038
(D) OTHER INFORMATION: /product= "VIP1A(a)/VIP2A(a) fusion"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ATG AAA AGA ATG GAG GGA AAG TTG TTT ATG GTG TCA AAA AAA TTA CAA 835
Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu Gln 840 845 850
GTA GTT ACT AAA ACT GTA TTG CTT AGT ACA GTT TCT TCT ATA TCT TTA 96
Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu 855 860 865
TTA AAT AAT GAA GTG ATA AAA GCT GAA CAA TTA AAT ATA AAT TCT CAA 144
Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln 870 875 880
AGT AAA TAT ACT AAC TTG CAA AAT CTA AAA ACT GAC AAG GTA GAG 192
Ser Lys Tyr Thr Asn Leu Gln Asn Ile Thr Asp Lys Val Glu 885 890 895
GAT TTT AAA GAA GAT AAG GAA AAA GCG AAA GAA TGG GGG AAA GAA AAA 240
Asp Phe Lys Glu Asp Lys Lys Ala Lys Glu Trp Gly Lys Glu Lys 900 905 910
GAA AAA GAG TGG AAA CTA ACT GCT ACT GAA AAA GAA AAA ATG AAT AAT 288
Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Met Asn Asn 915 920 925 930
TTT TTA GAT AAT AAA AAT GAT ATA AAG ACA AAT TAT AAA GAA ATT ACT 336
Phe Leu Asp Asn Lys Asp Lys Thr Tyr Lys Asp Tyr Lys Glu Ile Thr 935 940 945
TTT TCT ATG GCA GGC TCA TTT GAA GAT GAA ATA AAA GAT TTA AAA GAA 384
Phe Ser Met Ala Gly Ser Phe Glu Asp Ile Lys Asp Leu Lys Glu 950 955 960
ATT GAT AAG ATG TTT GAT AAA ACC AAT CTA TCA AAT TCT ATT ATC ACC 432
Ile Asp Lys Met Phe Asp Thr Asn Leu Ser Asn Ser Ile Ile Thr 965 970 975
TAT AAA AAT GTG GAA CCG ACA ACA ATT GGA TTT AAT AAA TCT TTA ACA 480
Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr 980 985 990
GAA GGT AAT ACG ATT AAT TCT GAT GCA ATG GCA CAG TTT AAA GAA CAA 528
Glu Gly Asn Thr Ile Ser Asp Ala Met Ala Gln Phe Lys Glu Gln 995 1000 1005 1010
TTT TTA GAT AGG GAT ATT TTT GAT ATT TAT CTA GAT ACG CAT TTA 576
Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu 1015 1020 1025
ACT GCT CAA CAA GTT TCC AGT AAA GAA AGA GTT ATT TTG AAG GTT ACG 624
Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr
<table>
<thead>
<tr>
<th>1030</th>
<th>1035</th>
<th>1040</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT CCG AGT GGG AAA GGT TCT ACT ACT CCA ACA AAA GCA GGT GTC ATT Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>TTA AAT AAT AGT GAA TAC AAA ATG CTC ATT GAT AAT GGG TAT ATG GTC Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>CAT GTA GAT AAG GTA TCA AAA GTG GTG AAA AAA GGG GTG GAG TGC TTA His Val Asp Lys Val Ser Lys Val Val Lys Gly Val Glu Cys Leu</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td>CAA ATT GAA GGG ACT TTA AAA AAG AGT CTT GAC TTT AAA AAT GAT ATA Gln Ile Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asp Asp Ile</td>
<td>816</td>
<td></td>
</tr>
<tr>
<td>AAT GCT GAA GCG CAT AGC TGG GGT ATG AAG AAT TAT GAA GAG TGG GCT Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>AAA GAT TTA ACC GAT TCG CAA AGG GAA GCT TTA GAT GGG TAT GCT AGG Lys Asp Leu Thr Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg</td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>CAA GAT TAT AAA GAA ATC AAT AAT TAT TTA AGA AAT CAA GGC GGA AGT Gln Asp Tyr Lys Glu Ile Asn Asp Tyr Leu Arg Asn Glu Gly Gly Ser</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>GGA AAT GAA AAA CTA GAT GCT CAA ATA AAA AAT ATT TCT GAT GCT TTA Gly Asn Glu Lys Leu Asp Ala Glu Ile Lys Asn Ile Ser Asp Ala Leu</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>GGG AAG AAA CCA ATA CCG GAA AAT ATT ACT GTG TAT AGA TGG TGT GGC Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly</td>
<td>1056</td>
<td></td>
</tr>
<tr>
<td>ATG CCG GAA TTT GGT TAT CAA ATT AGT GAT CCG TTA CCT TCT TTA AAA Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys</td>
<td>1104</td>
<td></td>
</tr>
<tr>
<td>GAT TTT GAA GCA TTT TTA AAT ACA ATC AAA GAA GAC AAA GCA TAT Asp Phe Glu Glu Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr</td>
<td>1152</td>
<td></td>
</tr>
<tr>
<td>ATG AGT ACA AGC TTA TCG AGT GAA GGT CTT GCA GCT TTT GGA TCT AGA Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>AAA ATT ATA TTA CGA TTA CAA GGT CCG AAA GGA AGT ACG GGT GCG TAT Lys Ile Ile Leu Arg Leu Glu Val Pro Lys Gly Ser Thr Gly Ala Tyr</td>
<td>1248</td>
<td></td>
</tr>
<tr>
<td>TTA AGT GCC ATT GGT GGA TTT GCA AGT GAA AAA GAG ATC CTA CTT GAT</td>
<td>1296</td>
<td></td>
</tr>
</tbody>
</table>
Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Glu Ile Leu Leu Asp 1255 1260 1265
AAA GAT AGT AAA TAT CAT ATT GAT AAA GTA ACA GAG GTA ATT ATT AAA 1344
Lys Asp Ser Lys Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile Lys 1270 1275 1280
GAT GTT AAG CGA TAT GTA GTG GAT GCA ACA TTA TTA ACA AAT ATG AAA 1392
Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn Met Lys 1285 1290 1295
AAT ATG AAG AAA AAG TTA GCA AGT GTT GTA ACG TGT ACG TTA TTA GCT 1440
Asn Met Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu Leu Ala 1300 1305 1310
CCT ATG TTT TTT AAT GGA AAT GTG AAT GCT GTT TAC GCA GAC AGC AAA 1488
Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp Ser Lys 1315 1320 1325 1330
ACA AAT CAA ATT TCT ACA ACA CAG AAA AAT CAA CAG AAA GAG ATG GAC 1536
Thr Asn Glu Ile Ser Thr Thr Thr Thr Glu Asn Glu Glu Lys Glu Met Asp 1335 1340 1345
CGA AAA GGA TTA CTT GGT TAT TAT TAC AAA GGA AAA TAT TTT ATG AAT 1584
Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Ser Asn 1350 1355 1360
CCT ACT ATG TTT GCA CCG ACA CGT GAT AGT ACT CCT ATT TAT GAA 1632
Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr Asp Gln 1365 1370 1375
CAA ACA GCA AAT AAA CTA TTA GAT AAA AAA CAA CAA GAA TAT CAG TCT 1680
Gln Thr Ala Asn Lys Leu Leu Asp Lys Lys Glu Gly Tyr Gln Ser 1380 1385 1390
ATT CGT TGG ATT GGT TGT ATT CAG AGT AAA GAA ACG GGA GAT TCC ACA 1728
Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp Phe Thr 1395 1400 1405 1410
TTT AAC TTA TCT GAG GAT GAA CAG GCA ATT ATA GAA AAT GGG AAA 1776
Phe Asn Leu Ser Asp Glu Glu Ala Ile Ile Glu Asn Gly Lys 1415 1420 1425
ATT ATT TCT AAT AAA GGG AAA GAA AAG CAA GTT GTC CAT TTA GAA AAA 1824
Ile Ile Ser Asn Lys Gly Lys Glu Lys Glu Val Val His Leu Glu Lys 1430 1435 1440
GGA AAA TTA GTT CCA ATC AAA ATA GAG TAT CAA TCA GAT ACA AAA TTT 1872
Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr Lys Phe 1445 1450 1455
AAT ATT GAC AGT AAA ACA TTT AAA GAA CTT AAA TTA TTT AAA ATA GAT 1920
Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys Ile Asp 1460 1465 1470
AGT CAA AAC CAA CCC CAG CAA GAT GAA CTG AGA AAT CCT
Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg Asn Pro
1475 1480 1485 1490

GAA TTT AAC AAG AAA GAA TCA CAG GAA TTC TTA GCG AAA CCA TCG AAA
Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro Ser Lys
1495 1500 1505

ATA AAT CTT TTC ACT CAA AAA ATG AAA AGG GAA ATT GAT GAA GAC ACG
Ile Asn Leu Phe Thr Gln Lys Met Lys Arg Glu Ile Asp Glu Asp Thr
1510 1515 1520

GAT ACG GAT GGG GAC TCT ATT CCT GAC CTT TGG GAA GAA AAT GGG TAT
Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Asn Gly Tyr
1525 1530 1535

ACG ATT CAA AAT AGA ATC GCT GTA AAG TGG GAC GAT TCT CTA GCA AGT
Thr Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu Ala Ser
1540 1545 1550

AAA GGG TAT ACG AAA TTT GTT TCA AAT CCA GTA GAA AGT CAC ACA GTT
Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His Thr Val
1555 1560 1565 1570

GTT GAT CCT TAT ACA GAT TAT GAA AAG GCA GCA AGA GAT CTA GAT TGG
Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu
1575 1580 1585

TCA AAT GCA AAG GAA ACG TTT AAC CCA TTG GTA GCT GCT TTT CCA AGT
Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro Ser
1590 1595 1600

GTG AAT GTT AGT ATG GAA AAG GTG ATA TTA TCA CCA AAT GAA AAT TTA
Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu
1605 1610 1615

TCC AAT AGT GTA GAG TCT CAT TCA TGC AAT TGC TCT TAT ACA AAT
Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn
1620 1625 1630

ACA GAA GGT GCT TCT GTT GAA GCG GGG ATT GGA CCA AAA GGT ATT TCG
Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly Ile Ser
1635 1640 1645 1650

TTC GGA GTT AGC GTA AAC TAT CAA CAC TCT GAA ACA GTT GCA CAA GAA
Phe Gly Val Ser Val Tyr Gln His Ser Glu Thr Val Ala Gln Glu
1655 1660 1665

TGG GGA ACA TCT ACA GGA AAT ACT TGG CAA TTC AAT ACG GCT TCA GCG
Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala
1670 1675 1680

GGA TAT TTA AAT GCA AAT GTT CGA TAT AAC AAT GTA GGA ACT GGT GCC
Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr Gly Ala
1685 1690 1695
<table>
<thead>
<tr>
<th>1910</th>
<th>1915</th>
<th>1920</th>
<th>3312</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT</td>
<td>GCT</td>
<td>GAG</td>
<td>TCT</td>
</tr>
<tr>
<td>Asn</td>
<td>Ala</td>
<td>Glu</td>
<td>Ser</td>
</tr>
<tr>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td></td>
</tr>
<tr>
<td>ATT</td>
<td>GTT</td>
<td>TCA</td>
<td>GCT</td>
</tr>
<tr>
<td>Ile</td>
<td>Val</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>1940</td>
<td>1945</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>CCG</td>
<td>GAT</td>
<td>GCT</td>
<td>ATT</td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>1955</td>
<td>1960</td>
<td>1965</td>
<td>1970</td>
</tr>
<tr>
<td>AAA</td>
<td>AAT</td>
<td>CGT</td>
<td>TAT</td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Arg</td>
<td>Asp</td>
</tr>
<tr>
<td>1975</td>
<td>1980</td>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>ACA</td>
<td>CAA</td>
<td>TGT</td>
<td>GAG</td>
</tr>
<tr>
<td>Thr</td>
<td>Gln</td>
<td>Cys</td>
<td>Glu</td>
</tr>
<tr>
<td>1990</td>
<td>1995</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>ACA</td>
<td>GTG</td>
<td>AAT</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Val</td>
<td>Asn</td>
</tr>
<tr>
<td>2005</td>
<td>2010</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>GCT</td>
<td>CAT</td>
<td>AAT</td>
<td>AAA</td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Asn</td>
<td>Ile</td>
</tr>
<tr>
<td>2020</td>
<td>2025</td>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>AAT</td>
<td>GAT</td>
<td>GAA</td>
<td>ATA</td>
</tr>
<tr>
<td>Asn</td>
<td>Glu</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>2035</td>
<td>2040</td>
<td>2045</td>
<td>2050</td>
</tr>
<tr>
<td>GCA</td>
<td>TCA</td>
<td>AAA</td>
<td>CCG</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Ile</td>
<td>Pro</td>
</tr>
<tr>
<td>2055</td>
<td>2060</td>
<td>2065</td>
<td></td>
</tr>
<tr>
<td>TAT</td>
<td>AGT</td>
<td>AGG</td>
<td>TAT</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ser</td>
<td>Arg</td>
<td>Tyr</td>
</tr>
<tr>
<td>2070</td>
<td>2075</td>
<td>2080</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>GGT</td>
<td>ATT</td>
<td>CAT</td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>His</td>
<td>Tyr</td>
</tr>
<tr>
<td>2085</td>
<td>2090</td>
<td>2095</td>
<td></td>
</tr>
<tr>
<td>ATT</td>
<td>GAA</td>
<td>CCA</td>
<td>TTG</td>
</tr>
<tr>
<td>Ile</td>
<td>Glu</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>2100</td>
<td>2105</td>
<td>2110</td>
<td></td>
</tr>
<tr>
<td>AGT</td>
<td>GAG</td>
<td>GTA</td>
<td>CTT</td>
</tr>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>2115</td>
<td>2120</td>
<td>2125</td>
<td>2130</td>
</tr>
<tr>
<td>TAC</td>
<td>AAG</td>
<td>GAT</td>
<td>GGG</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>2135</td>
<td>2140</td>
<td>2145</td>
<td>2150</td>
</tr>
</tbody>
</table>
(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1346 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu Gln
 1 5 10
Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu
 20 25 30
Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln
 35 40 45
Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu
 50 55 60
Asp Phe Lys Glu Asp Lys Glu Lys Glu Trp Gly Lys Glu Lys
 65 70 75 80
Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn
 85 90 95
Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr
 100 105 110
Phe Ser Met Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu
 115 120 125
Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr
 130 135 140
Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr
145 150 155 160
Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln 165 170 175
Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu 180 185 190
Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr 195 200 205
Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile 210 215 220
Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val 225 230 235 240
His Val Asp Lys Val Ser Lys Val Val Lys Lys Gly Val Glu Cys Leu 245 250 255
Gln Ile Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp Ile 260 265 270
Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala 275 280 285
Lys Asp Leu Thr Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg 290 295 300
Gln Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser 305 310 315 320
Gly Asn Glu Lys Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala Leu 325 330 335
Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly 340 345 350
Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys 355 360 365
Asp Phe Glu Glu Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr 370 375 380
Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg 385 390 395 400
Lys Ile Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr 405 410 415
Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Lys Glu Ile Leu Leu Asp 420 425 430
Lys Asp Ser Lys Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile Lys 435 440 445
Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn Met Lys
 450 455 460

Asn Met Lys Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu Leu Ala
 465 470 475 480

Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp Ser Lys
 485 490 495

Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu Met Asp
 500 505 510

Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Ser Asn
 515 520 525

Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr Asp Gln
 530 535 540

Gln Thr Ala Asn Lys Leu Leu Asp Lys Gln Gln Glu Tyr Gln Ser
 545 550 555 560

Ile Arg Trp Ile Gly Leu Ile Gln Ser Gln Thr Gln Asp Phe Thr
 565 570 575

Phe Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu Ile Asn Gly Lys
 580 585 590

Ile Ile Ser Asn Lys Gly Lys Gln Val Val His Leu Glu Lys
 595 600 605

Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr Lys Phe
 610 615 620

Asn Ile Asp Ser Lys Thr Phe Lys Leu Lys Leu Phe Lys Ile Asp
 625 630 635 640

Ser Gln Asn Gln Pro Glu Gln Glu Gln Val Gln Glu Asp Leu Arg Asn Pro
 645 650 655

Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro Ser Lys
 660 665 670

Ile Asn Leu Phe Thr Gln Lys Met Lys Arg Glu Ile Asp Glu Asp Thr
 675 680 685

Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn Gly Tyr
 690 695 700

Thr Ile Gin Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu Ala Ser
 705 710 715 720

Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His Thr Val
 725 730 735
<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu</td>
</tr>
<tr>
<td>740</td>
</tr>
<tr>
<td>Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro Ser</td>
</tr>
<tr>
<td>755</td>
</tr>
<tr>
<td>Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu</td>
</tr>
<tr>
<td>770</td>
</tr>
<tr>
<td>Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn</td>
</tr>
<tr>
<td>785</td>
</tr>
<tr>
<td>Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly Ile Ser</td>
</tr>
<tr>
<td>805</td>
</tr>
<tr>
<td>Phe Gly Val Ser Val Asn Tyr Gln His Ser Glu Thr Val Ala Gln Glu</td>
</tr>
<tr>
<td>820</td>
</tr>
<tr>
<td>Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala</td>
</tr>
<tr>
<td>835</td>
</tr>
<tr>
<td>Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr Gly Ala</td>
</tr>
<tr>
<td>850</td>
</tr>
<tr>
<td>Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asn Asp Thr</td>
</tr>
<tr>
<td>865</td>
</tr>
<tr>
<td>Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn Ile Ser</td>
</tr>
<tr>
<td>885</td>
</tr>
<tr>
<td>Pro Gly Glu Ser Tyr Pro Lys Lys Gly Gln Asn Gly Ile Ala Ile Thr</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys Lys Gln</td>
</tr>
<tr>
<td>915</td>
</tr>
<tr>
<td>Val Asp Asn Leu Leu Asn Lys Pro Met Met Leu Glu Thr Asn Gln</td>
</tr>
<tr>
<td>930</td>
</tr>
<tr>
<td>Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile Val Thr</td>
</tr>
<tr>
<td>945</td>
</tr>
<tr>
<td>Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys Thr Ala</td>
</tr>
<tr>
<td>965</td>
</tr>
<tr>
<td>Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg Val Ala</td>
</tr>
<tr>
<td>980</td>
</tr>
<tr>
<td>Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu Thr Leu</td>
</tr>
<tr>
<td>995</td>
</tr>
<tr>
<td>Lys Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu Ile Glu</td>
</tr>
<tr>
<td>1010</td>
</tr>
<tr>
<td>Gly Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser Val Met</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>74</td>
</tr>
<tr>
<td>75</td>
</tr>
</tbody>
</table>
Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His Arg Tyr
1330 1335 1340
Asn Lys
1345

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1399 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 1..1386
 (D) OTHER INFORMATION: /note= "Maize optimized DNA sequence for VIP2A(a) protein from AB78"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATGAAGCGCA TGGAGGGCAA GCTGTTCATG GTGAGCAAGA AGCTCCAGGT GTTGACCAAG 60
ACGCTGCTGC TGAGCACCCTG GTCAGCTATC AGCTGCTTGA ACAACAGGGT GATCAAGGCC 120
GACGAGCTGA ACATCAACAG CCAAGGCAAG TACACCAACC TCCAGAACCT GAAAGATCAC 180
GACAGGGTTGA AGGACTTCAA GGAGGCAAG GAGAGGCAAG AGGAGTGGGG CAAAGGAAAG 240
GAGAAGGGCT CCAACTTCAA CCGCCACCGAG AAGGSGCAAG TGAACAACCTT CCTGGACAAC 300
AAGAAGGGACA TCAAGACCAA CTTAAGAGGC ATCTACCTTCA GCAATGGCGCG GAGCTTGGAG 360
GACGAGACCA AGGACCTGAA GGAGATGCAC CAGGATGTTGC ACAAGAAGGA CCTGAGCAAC 420
AGCATCATCA CTCACAAGAA CTTGGAGCCC ACCACCATCG GCTTCAACAA GAGGCTGACC 480
GAGGGCCAACA CCACTAAGGC CGACGCGATG GACCCAGTTCA AGGACAGGTT CCTGGAGCCG 540
GACATCAAGT TGCGAGCTTA CTCGAGCCAC CACCTGAGCG CCCAGCGAGT GAGCGCGAG 600
GAGGGCCGTA TCCTGAGGAT GACGCTCCCC AGCGGCAAAG GCACGCACAC CCCACACAA 660
GCCGCGGCTGGA TCCTGAGGTA CAGCCGCTACAG GAGATGCTGA TCGACAACCG CATCATGGTG 720
CAGCTGACAA AGGTTGACCAA GGTGGAGTAA AAGGCGGTTGG AGTGCGCTCCA GATCGAGGCG 780
ACCCCTAGACA AGATCTCTAGA CTCGAAAGAC CAGATGACAGG CCGCCGGCA CAGCTGGGGG 840
ATGAAGAACT ACGAGGAGTG GGCAGAGGAC CTGACCGACA GCCAGCGCGA GGCCTTGAC 900
GGCTACGCC GGGAGACTA CAAGGAGATC AAAAACTACC TGGGCAACCA GGCAGCGACG 960
GGCAACGAGA AGCCTGAGCC CCAAGATCAAG AACATCAGCG AGGCCCTGAG CAAGAAGCCC 1020
ATCCCCGAGA ACATCACCGT GTACGCGCTG TGCGGCAATGC CGAGGGTGG CTACCAGATC 1080
AGCGACCCCC TGCCCATGCT GAAGGACTTC GAGGAGCAGT TCTGAGACAC CATCAAGGAG 1140
GACAAGGGAT ACATGACGAC CAGCCTGACG AAGCAGAGCC TGGCCGCTTT GGCAGAGGC 1200
AAGATCATCC TGCGCTGCA GGTGCGCAAG GGCACGACCG GGGCTAAGCT GACCCGCTAC 1260
GGCGGCTTTCG CCAAGCGAAG GAGATCTCTG CTGGACAAGG AGCGAAAGTA CCACATGAC 1320
AAGGTTGACCG AGGTGATCAT CAAGGCGCTG AAGCGCTACG TGTTGGAAGGC CACCCCTGCTG 1380
ACCAACTAGA TCTGAGCTC 1399

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 19 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:
 (A) NAME/KEY: Peptide
 (B) LOCATION: 1..19
 (D) OTHER INFORMATION: /note= "Secretion signal peptide to secrete VIP2 out of a cell"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly Val
 1 5 10 15

His Cys Leu

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2655 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 1..2655
 (D) OTHER INFORMATION: /note= "maize optimized DNA sequence encoding VIP1A(a)"

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ATGAAGAACA TGAAGAAGAA GCTGCGCAGG GTGGTGACCT GCACCCCTGC GGCCCCCATG 60
TTCTCTGAAG GCACCTGGA A CGCCCTTACT GCCGACAGCA AGACCAACCA GATCAAGCACC 120
ACCCCGAAGA ACCCGAAGAA GGAGATGGAC CGAAAGGCCC TGCTGGGCTA CTACCTTCAAG 180
GGCGAGGGACT TCAGGAACCT GACCATGTTTC GGCCCGACGC GTGACACGAC CCTGATCTAC 240
GACCAATGAC CGGCGAACAAT GCTGCTGGAC AGAAGACGAGC AGGAGTACCA GACCATCCGC 300
TGATCTGCCC TGATCCAGAG CAAGAGAGAC CGGCGACTTC CACTTCAACCT GACGGAGGAC 360
GAGCAGGCGA TCATCGAGAT CAACGGCAAG ATCATCAGCA ACAAGGGCAA GAGAGACGAGC 420
GTGCGCCACC TGAGAAGGG CAGACTGTTG CACCATCAAGA TCGATATCCA GACCGAGACC 480
AAGGTTAACA TGCAAGCAAA AACCTTCAAG GACCTGAAAG TTTTCAAGAT CGACAGCCAG 540
AACCCGCCC AGACGCTGCA CGGCAAGCGG CTGCGCAACC CGAGTTTCAA CAAAGAAGGAG 600
AGCCAGGAGT TCCTGGCCCA GCCGACCAAG ATCAACCTGT TCACCCAGCA GATGAAGGCG 660
GAGATCGACG AAGCACCGCA ACACGGAGGC GACAGCATCC CGACCTGGTG GAGGAGAAC 720
GGCTACACCA TCCAGAAGG CATTGGCGTG AAGTGGGACG ACAGCGTGCC TAGCAAGGSC 780
TACACCAAGT TGCTGAGCAA CCCCCCTGGAG AGCCACACCG TGGGGGACCC TATACACCGAC 840
TACGAGAACG CCGCCCGCGA CCTGGAACTG AGCAAGACGA AGGAGACCTT CAACCCCTTG 900
GTGGCGCGCT TCCCGACGTT GAAGCTGAGC ATGGAGAAGG TGATCTGAG CCACAAAGGAG 960
AACCTGAGCA AGACCTGCGA GAGCCACTCG AGCAAAACTG GAGATCTACAC CAACACCGAG 1020
GGGGCCAGCG TGAGGCGCGG CATCGGTCCCA AAGGGCATCA GCTTGGGCGT GACCGTGAAAC 1080
TACCGACACA CCGAACCGTG GGGCCAGAG TGGGGCACC ACGCCGGCAA CACCGCGCAG 1140
TTAACCAGCG CCGGCGCGCG TACCTGCAAC GCCAACGTGCG GCTACAACCA CGTGCGCGCACC 1200
GCGCGCATCT ACGAGCTGAA GCCGACCCACC AGCTTGGCGT CGAACAAGGA CACCATCGGCC 1260
ACCATCACC GCAAGTGCAA TTCCACCCGC CTGAACATCGA GCCCCGCGGA GAGCTACCCC 1320
AAAGAAGGGCC AGAAAGCGCAT GGCCATCACG ACCTGAAGGAC TCTCAACAGG GCCCCCCATC 1380
ACCCCTGAACA AGAAAGCAAGG AGGACACCTG CTGAAAGCTGA AGCCCAATCTG GCTGGAGACC 1440
AACCAAGACGG CGGCGCTCTA CAAGATCAAG GACACCACAG CCAAATCTCT GACGCGCGCC 1500
GATGAGAAAG GGGTGATCCA CGAGATCAAG CCGAGAAGCG CCAAGCATAT CGTGGACGAC 1560
GGGGAGGGCG TGCCGGGAAA GGGGAGGGCC GGGAGGACTG ACGAAAGACC CGAGGACAAG 1620
ACCCCGAGCC TGCCCTGAAA GGAGCGGCTG AAAGTGAGCTG ACCCGGGAGA GATCAAGGAG 1680
ATCGAGGGCT TGCTTGATCTA CAAGAACAAA CCGATCTACG AGACGCAGGT GATGACCTAT 1740
CTAGACAGGA AAGCCCCAAA GGGAGTGGAC AGGAGCTGAG AGCACACACC CGGCAAAGTTT 1800
AAGGACGCTG AAGCCACCTGTA GCACGCTGAG CTGACCCCCA AGATGAAGCT GACCAATCAAG 1860
CTGACGCATCC TGTACGCAAA CGCCGAGGCA AAGGAGAACA GCATCGGCAA GTGGGCAACC 1920
ACCAACATCG TGAGGCGCGG AAACACGCCC AAGAGCAGGT AGACAGCAAGA CAAACCGGAC 1980
GCCAACCTGA CCCCAGAACG CCGACGGCGG GAGAGGCTGA ACGAGAAGCG CAACTACCTT 2040
ATCACCCCTGT ACATGAAAGG CGAAAGAAGA ACCAGAGTGGC AGATCAGCCT AGACGGCGAG 2100
ATATACCCCA TCACCAACAA GACCTGAGAC GTGAAAGAAG ACACTACAA CCGGCTGGAC 2160
ATCAGCGCCC ACAACACAAA GAGCAACCCC ATCAGCGCCC TGCACCATCA GACCAACGAC 2220
GAGATCACC CGCTCTGGGA CGCATAATCG ATTACCGAGC TGCCGGGACAT CAGCCCGGAG 2280
AACCTGACCG AGAGGGAGAT CAAGACAGATA TACAGTCGCT AGGGCGACAA GCTGGAGGAC 2340
GGGATTCCTGA TGCAAGAAGAA AGCCGCGATC CACTAGCGGC AGTTCATCAA CGAGGCGACG 2400
TTCAACCATCG AGCCCCCTGCA GAACCTAGTG ACCAACGTGC AGGTGACCTA CAGCAGCGAG 2460
CTGGGGCCCC AGCAGACGGA CAACCTGGAG AGCCGCAAGA TTTCAAGGGA CGGCCACACC 2520
AAGTTGCGAT TCACCAAGTA CAGCAGAACG GAGCGGGGCTG TGCTTCAGCA CAGCGGCTGT 2580
AACTGGGACT TCGAGATCAA CGCCATGACC TACGCAGCCG AGAGATGAAA CTGTTTCCAC 2640
CGCTACAACA AGTAG 2655

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1389 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 1..1389
(D) OTHER INFORMATION: /note= "maize optimized DNA sequence encoding VIP2A(a)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGAACGGCA TGGAGGGCAA GCTGTTCATG GTGAGCAAGA AGCTCCAGGT GGTGACCAAC

ACCGTGCTGC TGGACCGGTG TGTCAAGATG ACAAGCTGTA ACAAGGAGGT GATCAAGGCC

GACGAGCTGA ACATCAACGA CCAAGGAACA TACACCAACC TACGAGAACG TGGATCACCC

GAGAAGGGGG AGGACTTTCA GAGAGGGAAG GAGAAGGCAAAG AGGAGGAGGG CAGAGGAAGG

GAGGAGGATG GGAAGGTTTC GCAGCCGAGA AAGGAGCAAG TGGCAACTCT CTTGAGCAAC

AAGAAGCGCA TCAAAGCACG CTAAGAGGAG ATCAACCTTCA GCATAGCCGG GAGCGGAGAG

GAGGAGATCA AGGACCTGAA GAGAGATCGA AAGATGTTCG ACAAGACCAA CCTGAGCAAC

AGCATCATCA CTTACAAGAA GTGAGGACCC ACCACATCG GCCTCAACAA GAGGCTGACC

GAGGGCGACA CCATCAACAG CGAGCCCTAG GCCGAGTTCA AGGAGCGATT CTTGAGGCCG

GACATAGGTA TGAGACCTGA CCTGCGACCC CACCTGTACG CCCAGCGAGT GAGCAGCAAG

GAGGCGGTGA TCTGGAAGTG GACGCGCCCC AGGGCGAGG GCAGCGACAC CCCCACCAAG

GCCGGCGTGTA TCCTGAACAA CAGCGAGTAC AAGATGCTGA TCGAGAAGCG CTACATGATG

CAGTGGACGA AGGTGACCAA GGTATGAAGG AAGGCCGTGG AGTGCCTCCA GATCGAGGCG

ACCTAGAGA AGATCTCAGA CTTCAGAAGA GACATCAACG CGAGGCCGCA CAGCTGAGGC

ATGAGAAGCT ACAGGAGATTG GGGACAGGAC CTGAGCGGCA GCCAGCGCGA GGGCGCAGGC

GCTACGCC GCGAGCAGTC AAGAGATAGC AACAACTACC TGCGAACCA GGGCGCGAGC

GCGAAGCAGA AGCTGGACGC CCAAGATCA AACATCGACG AGGCCCTGGG GAGAAGGCCC

ATCCCCGAGA ACATCAAGCT GATCGCCTTG TCAGGCATGC CGAGTTCGAG ATACAGATAC

AGCGACCGGG TGCCAGCCCT GAGGACTGTC GAGGACGAGT TCCTGAACACG CATCAAGGAG

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140
GACAAGGGCT ACATGACGC CACGCTGAGC AGCGGACGCGC TGCGGCGCCTT CGGCAGCOCG
AAGATCATCC TCGGCTGCA GGTTGGAAG GGCAGGACTG GTGGCTACCT GAGGCCCAC
GGCAGGTCCCG CACCGGAAAG GAGATCCTTG CTGGATAAGG ACACAGAAAGTA CCACATGAC
AAGGTGACCG AGGTGATCAT CAAGGGCGTG AAGGGCTACG TGTCCTGGACGC CACCCCTGCTG
ACCAACTAG

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2378 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 9..2375
 (D) OTHER INFORMATION: /note= "Native DNA sequence encoding VIP3A(a) protein from AB88 as contained in pCIB7104"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

AGATGACG ATG AAC AAG AAT AAT ACT AAA TTA AGC ACA AGA GCC TTA CCA
Met Asn Lys Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro
1 5 10

AGT TTT ATT GAT TAT TTT AAT GGC ATT TAT GGA TTT GCC ACT GGT ATC
Ser Phe Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile
15 20 25

AAA GAC ATT ATG AAC ATG ATT TTT AAA ACG GAT ACA GGT GAT CTA
Lys Asp Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu
35 40 45

ACC CTA GAC GAA ATT TTA AAG AAT CAG CAG TTA CTA AAT GAT ATT TCT
Thr Leu Asp Glu Ile Leu Lys Asn Glu Gln Leu Leu Leu Asn Asp Ile Ser
50 55 60

GAT AAA TTG GAT GGG GTG AAT GGA AGC TTA AAT GAT CTT ATC GCA CAG
Gly Lys Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln
65 70 75

GGA AAC TTA AAT ACA GAA TTA TCT AAG GAA ATA TTA AAA ATT GCA AAT
Gly Asn Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn
80 85 90
GAA CAA AAT CAA GTT TTA AAT GAT GTT AAT AAC AAA CTC GAT GCG ATA
Glu Gln Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile
95 100 105 110

AAT ACG ATG CTT CGG GTA TAT CTA CCT AAA ATT ACC TCT ATG TTG AGT
Asn Thr Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser
115 120 125

GAT GTA ATG AAA CAA AAT TAT GCG CTA AGT CTG CAA ATA GAA TAC TTA
Asp Val Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu
130 135 140

AGT AAA CAA TTG CAA GAG ATT TCT GAT AAG TTG GAT ATT ATT AAT GTA
Ser Lys Gln Leu Gln Ile Ser Asp Lys Leu Asp Ile Ile Asn Val
145 150 155

AAT GTA CTG ATT AAC TCT ACA CTG ACT GAA ATT ACA CCT GCG TAT CAA
Asn Val Leu Ile Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln
160 165 170

AGG ATT AAA TAT GTG AAC GAA AAA TTG GAG GTA ACT TTT GCT ACA
Arg Ile Lys Val Tyr Asl Glu Lys Phe Glu Leu Thr Phe Ala Thr
175 180 185 190

GAA ACT AGT TCA AAA GTA AAA AAG GAT GCC TCT CCA GAT ATT CTG
Glu Thr Ser Ser Lys Val Lys Asp Gly Ser Pro Ala Asp Ile Leu
195 200 205

GAT GAG TTA ACT GAG TTA ACT GAA CTA GCG AAA AGT GTA ACA AAA AAT
Asp Glu Leu Thr Gln Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn
210 215 220

GAT GTG GAT GGT TTT GAA TTT TAC CTT ATT ACA TCC CAC GAT GTA ATG
Asp Val Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met
225 230 235

GTA GGA AAT ATT TTA TCC GGG CCA CTG CCA GCT TTA AAA ACT GCA TCG GAA
Val Gly Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu
240 245 250

TTA ATT ACT AAA GAA ATT GTG AAA ACA AGT GCC AGT GAG GTC GAA AAT
Leu Ile Thr Lys Glu Val Lys Thr Ser Gly Ser Glu Val Gly Asn
255 260 265 270

GTT TAT AAC TTC TTA ATT GTA TTA ACA CCT CTG CAA GCC CAA GCT TTT
Val Tyr Asp Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Gln Ala Phe
275 280 285

CTT ACT TTA ACA TGC CGA AAA TTA TTA GGC TTA GCA GAT ATT GAT
Leu Thr Leu Thr Thr Cys Arg Lys Lys Leu Gly Leu Ala Asp Ile Asp
290 295 300

TAT ACT TCT ATT ATG AAT GAA CAT TTA AAT AAG GAA AAA GAG GAA TTT
Tyr Thr Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys Glu Phe
338 386 434 482 530 578 626 674 722 770 818 866 914 962
AGA GTA AAC ATC CTC CCT ACA CTT TCT AAT ACT TTT TCT AAT CCT AAT
Arg Val Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn
320 325 330

TAT GCA AAA GTT AAA GGA AGT GAT GAA GAT GCA AAG ATG ATT GTG GAA
Tyr Ala Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu
335 340 345 350

GCT AAA CCA GGA CAT GCA TTG ATT GGG TTT GAA ATT AGT AAT GAT TCA
Ala Lys Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser
355 360 365

ATT ACA GTA TTA AAA GTA TAT GAG GCT AAG CTA AAA CAA AAT TAT CAA
Ile Thr Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln
370 375 380

GTC GAT AAG GAT TCC TTA TCG GAA GTT ATT TAT GGT GAT ATG GAT AAA
Val Asp Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys
385 390 395

TTA TTG TGC CCA GAT CAA TCT GAA CAA ATC TAT TAT ACA AAT AAC ATG
Leu Leu Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile
400 405 410

GTA TTG CCA AAT GAA TAT GTA ATT ACT AAA ATT GAT TTC ACT AAA AAA
Val Phe Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys
415 420 425 430

ATG AAA ACT TTA AGA TAT GAG GTA ACA GCG AAT TTT TAT GAT TCT TCT
Met Lys Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser
435 440 445

ACA GGA GAA ATT GAC TTA AAT AAG AAA AAA GTA GAA TCA AGT GAA GCG
Thr Gly Glu Ile Asp Leu Asn Lys Lys Val Glu Ser Ser Glu Ala
450 455 460

GAG TAT AGA AGC TTA AGT GCT AAT GAT GAT GGG GGT TAT ATT CGG TTA
Glu Tyr Arg Thr Leu Ser Ala Asn Asp Gly Val Tyr Met Pro Leu
465 470 475

GCT GTC ATG AGT GAA ACA TTT TIG ACT COG ATT AAT GGG TTT GGC CTC
Gly Val Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu
480 485 490

CAA GCT GAT GAA ATT TCA AGA TTA ATT ACT TTA ACA TGT AAA TCA TAT
Gln Ala Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr
495 500 505 510

TTA AGA GAA CTA CTT GTA GCA ACA GAC TTA AGC AAT AAA GAA ACT AAA
Leu Arg Glu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys
515 520 525

TTG ATC GTC CCG CCA AGT GGT TTT ATT AGC AAT ATT GTA GAG AAC GGG
1634
Leu Ile Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly
530 535 540

TCC ATA GAA GAG GAC AAT TTA GAG CCG TGG AAA GCA AAT AAT AAG AAT
Ser Ile Glu Glu Asp Asn Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn
545 550 555

GGG TAT GTA GAT CAT ACA GGC GGA GTG AAT GGA ACT AAA GCT TTA TAT
Ala Tyr Val Asp His Thr Gly Val Asn Gly Thr Lys Ala Leu Tyr
560 565 570

GGG CAA ACT GAG TAT GGA TCA ATT GAT CAA TTT ATT GGA GAT AAG TTA AAA
Val His Lys Asp Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys
575 580 585 590

CCG AAA ACT GAG TTT GTA ATC CAA TAT ACT GTT AAG GGA AAA CCT TCT TGT
Pro Lys Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser
595 600 605

ATT CAT TTA AAA GAT GAA AAT ACT GGA TAT ATT CAT TAT GAA GAT ACA
Ile His Leu Lys Asp Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr
610 615 620

AAT AAT TTA GAA GAT TAT CAA ACT ATT AAT AAA CCT TTT ACT ACA
Asn Asn Asn Leu Glu Asp Tyr Gln Thr Asn Lys Arg Phe Thr Thr
625 630 635

GGG ACT GAT TTA AAG GGA GTG TAT TTA ATT TTA AAA AGT CAA AAT GGA
Gly Thr Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly
640 645 650

GAT GAA GCT TGG GGA GAT AAC TTT ATT ATT TTG GAA ATT AGT CCT TCT
Asp Glu Ala Trp Gly Asp Phe Ile Leu Glu Ile Ser Pro Ser
655 660 665 670

GAA AAG TTA ATT CCA GAA TTA ATT AAT ACA AAT AAT TGG AGC ACT
Glu Lys Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Asn Trp Thr Ser
675 680 685

ACG GGA TCA ACT AAT ATT AGC GGT AAT ACA CTC ACT CTT TAT CAG GGA
Thr Gly Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly
690 695 700

GGG CGA GGG ATT CTA AAA CAA AAC CTT CAA CAA GAT AGT TTT CTA ACT
Gly Arg Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Phe Ser Thr
705 710 715

TAT AGA GTG TAT TTT TCT GTG TCC GGA GAT GCT AAT GTA AGG ATT AGA
Tyr Arg Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg
720 725 730

AAT TCT AGG GAA GTG TTA TTT GAA AAA AGA TAT AGT AGC GGT GCT AAA
Asn Ser Arg Glu Val Leu Phe Gly Lys Arg Tyr Met Ser Gly Ala Lys
735 740 745 750
GAT GTT TCT GAA ATG TTC ACT ACA AAA TTT GAG AAA GAT AAC TTT TAT
Asp Val Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr
755

ATA GAG CTT TCT CAA GGG AAT AAT TTA TAT GGT GGT CCT ATT GCA CAT
Ile Glu Leu Ser Gln Gly Asn Leu Tyr Gly Gly Pro Ile Val His
770

TTT TAC GAT GTC TCT ATT AAG TAA
Phe Tyr Asp Val Ser Ile Lys
785

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 789 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Met Asn Lys Asn Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro Ser Phe
1 5 10 15

Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
20 25 30

Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu
35 40 45

Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Asp Ile Ser Gly Lys
50 55 60

Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
65 70 75 80

Leu Asn Thr Glu Leu Ser Iys Glu Ile Leu Lys Ile Ala Asn Glu Gln
85 90 95

Asn Gln Val Leu Asn Asp Val Asn Lys Leu Asp Ala Ile Asn Thr
100 105 110

Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val
115 120 125

Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys
130 135 140

Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val
145 150 155 160

Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
165 170 175

Ser Ser Lys Val Lys Lys Asp Gly Ser Pro Ala Asp Ile Leu Asp Glu
180 185 190

Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
200 205 210 215 220

Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
225 230 235 240 245

Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
245 250 255

Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
260 265 270

Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Gln Ala Phe Leu Thr
275 280 285

Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
290 295 300

Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Glu Phe Arg Val
305 310 315 320

Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
325 330 335

Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
340 345 350

Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
355 360 365

Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Glu Val Asp
370 375 380

Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
385 390 395 400

Cys Pro Asp Glu Ser Glu Gln Ile Tyr Thr Thr Asn Asn Ile Val Phe
405 410 415

Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
420 425 430

Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
435 440 445

Glu Ile Asp Leu Asn Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr
450 455 460
Arg Thr Leu Ser Ala Asn Asp Asp Gly Val Tyr Met Pro Leu Gly Val
465 470 475 480
Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
485 490 495
Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg
500 505 510
Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
515 520 525
Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Ser Ile
530 535 540
Glu Glu Asp Asn Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn Ala Tyr
545 550 555 560
Val Asp His Thr Gly Val Asn Gly Thr Lys Ala Leu Tyr Val His
565 570 575
Lys Asp Gly Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys
580 585 590
Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His
595 600 605
Leu Lys Asp Glu Asn Thr Gly Tyr Ile Ser His Tyr Glu Asp Thr Asn Asn
610 615 620
Asn Leu Glu Asp Tyr Gln Thr Ile Asn Lys Arg Phe Thr Thr Gly Thr
625 630 635 640
Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu
645 650 655
Ala Trp Gly Asp Phe Ile Ile Leu Glu Ile Ser Pro Ser Glu Lys
660 665 670
Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Trp Thr Ser Thr Gly
675 680 685
Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Arg
690 695 700
Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg
705 710 715 720
Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg Asn Ser
725 730 735
Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val
740 745 750
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr Ile Glu</td>
<td>755</td>
<td>760</td>
</tr>
<tr>
<td>Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Ile Val His Phe Tyr</td>
<td>770</td>
<td>775</td>
</tr>
<tr>
<td>Asp Val Ser Ile Lys</td>
<td>785</td>
<td></td>
</tr>
</tbody>
</table>

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2403 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 11..2389
 (D) OTHER INFORMATION: /note= "maize optimized DNA sequence encoding VIP3A(a)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GGATCCACCA ATGAACATGA ACAAGAACAA CACCAAGCTG AGCACCAGCG CCCTGCGAG</td>
<td>60</td>
</tr>
<tr>
<td>CTTCATGAC TACTCTCAAG GCATCTACGG CTTCGGACCC GGCATCAAGG ACATCATGAA</td>
<td>120</td>
</tr>
<tr>
<td>CATGACCTTC AAGACCGACA CGGCAGGCGA CCTGACCCCTG GACGAGATCC TGAAGAACCA</td>
<td>180</td>
</tr>
<tr>
<td>GCAGCTGCTG AAAGGACTCA GGGCGAATCT GGACGGCGTG AACGGCAGCC TGAACGACCT</td>
<td>240</td>
</tr>
<tr>
<td>GATGCCGCCAG GCAACCTGTA ACAAGAGCTG GACCAAGGAG ATCCTTAAAGA TGCCCAAAGA</td>
<td>300</td>
</tr>
<tr>
<td>GCAGAACCAG GTGCTGAAGG AGTGGAACAA CAAGCTGGAC GCCATCAAAC CAATGCCTGG</td>
<td>360</td>
</tr>
<tr>
<td>GATGIACTTG CGGAAGATCA CCAGCATCTG GACGACGCTG ATGAAGCAGA ACTACGACCT</td>
<td>420</td>
</tr>
<tr>
<td>GAGCCTGAG ATGAGATCC TGACCAAAGC GCTGCAAGAG ATGCAGACAGA AGCTGGACAT</td>
<td>480</td>
</tr>
<tr>
<td>CATCAACGTG AACGCTCTGA CTAACAGCAG CCTGACCGAG ATCACCCCGG CCTACCGAGG</td>
<td>540</td>
</tr>
<tr>
<td>CATCAAGTAC GTCAGCAGA AGTGGAAAGA GCTGACCTTC GCAGAGCAGA CGGAGGACAA</td>
<td>600</td>
</tr>
<tr>
<td>GGTTGAAAGG GACGGCAGCC GGCGGACAT CCTGGACGAG CTGACCGACG TACCCGAGCT</td>
<td>660</td>
</tr>
<tr>
<td>GGCCAAAGAG GTGACAAAGA AGCACTGGGA CGGCTTCCGAG TCTTACCTGA ACACCTTCCA</td>
<td>720</td>
</tr>
</tbody>
</table>
CGACCTGATG GTGGGCAACA ACCCTGTCGG CGCGACGCC CTGAAGACCG CGACCGAGCT
GATCACCAGG GAGAACAGTA AGGACACCGG CAGGAGGCTG GGCAAGCTTG ACAACTTCT
GATGCTGGTG AGCAGCCTGCC AGGCCAGGCC CTTCCTGACC CTGACCACCT GTCCGAAGCT
GCTGGGCCTG GCCGACATCG ACTACAACAG CATCAGTAAAC GAGCACTGTA ACAAGGCAGA
GGAGGAGTTC CGGCTGAACA TCTGGCCGAC CTCGAGCCAC ACCTTCGCAA ACCCGGACTA
CGCCAGGATG AGGGCCAGCC ACGAGGACC CGAGATGATC GTGGAGCTTA AGGGCGGCAA
CGGTTTGATC GCCTTGAGA TACGAAACGA CAGCATCACC GTGCTGAAAG TGGAGGAGGC
CAAGCCTGAG GAGAATCACC AGGGGACCAA GCCGAGCTTG AGCGGAGTGA TCTACGCGGA
CATGGACAG CAGCTGTTGC CGGCCAAGAG CGAGCAAATC TACTACACCA ACAACACTGT
GTTCGGGAAAC GAGTAACGTA TACCAAAAGT GACACTTCAC AAGAAGATGA AGAACCCTGC
CTAGGAGGGT ACCGCAACTT TCTACGCAAG CAGAGCCGCC GAGATCGGCC TGAACAGAA
GAGGTTGGAG AGCAGGACGG CGAGATCCGG CACCCCTGAC GCAGAAGCAG AGCGGCTCTA
CATGCCACTG GGGCTGATCA GGGAGACTTC CCTGACCCCC ATCAACGGCT TTGGCTTCA
GGCCGACGAG AACACGGCCT TGATCACCTT GACCTGTAAG AGCTAACCTGC GCGAGCGCT
GCTAGCCACC GACCTGAGCA ACAAGGAGAC CAAGCTGATC GTGCCACCGA GCGCGCTCAT
CAGCAACATC GTGGAGGAGC GCAGCATTGA GGAGCACAAA CTGGAGCGGT GGAAGGCCAA
CAACAAGAAC GCTCAGTGG ACCACACCGG CGCGGTAAG GCGAAGACCG CACCAGTACG
GCAAGGAAC GCGGCCATCA GCCAGTCTAT CGCGGACAGG CTGAGGCGGA AGACAGAGTA
CGTGATCCAG TACACGGTGA AGGGCAAGGC ATCGATTAC CTGAGGAGCG AGAACCAGG
CTACATCCAC TACGAGNCA CCAACAACAA CCGAGGAGAC TACACACCCA TGAGCAAGCG
CTTCACACC GGGACCCGAC TGAAGGGGCT GTACTGATAC CTGAAAGGCC AGAACAGGCA
CGAGGCTTGG GGGCACAATT TCTCAGTCTC CGAGATCACG CGCGCGAGA AGCTGCTTGA
CCGGAGGCTG ATCAACACCA ACACTGGAC CAGCAGCAGC AGCACAACAC TGAGCGCAAA
CAACCTGACC CTGTACAGGG GCGGGCGCGG CATCTGGAAG CAGAAGCTGC AGCTGAGCAC
CTTCAGCACC TACGCGGATT ACTTCAGGTT GAGCGCGGAC GCCAAGTGC GCATGGCGAA
CAGCAGCGAG GTGCTGGTGAG AGAAGGGTGA CAGTGAGGCG GCCAGAGGCG TGAGCGGAAT
GTTCACCCAC AAGTTTGAGA AGGACAACTT CTACATCGAG CTGAGCGGAG CAAACAAACT
GTACGCGGGCCGATCGTGCACTTCTAGAGCTGAGCCATCAGCTTAACGTAGAGCTCAGA

TCT

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2612 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 118..2484
(D) OTHER INFORMATION: /note= "Native DNA sequence encoding VIP3A(b) from AB424"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

ATTGAATTTGATAAAAAGTTATGAGGTTTAAAAATACGTATAATACATAAAGAATTAA

GAATATAAGTATTACAGAAAATAAGTTACAAAAATACGATGAAAAGGAAAGATGAC

ATG AAC AAG AAT ACT AAA TTA AGC ACA AGA GCC TTA CCA AGT TTT
Met Asn Lys Asn Thr Iys Leu Ser Thr Arg Ala Leu Pro Ser Phe
790

ATT GAT TAT TTC AAT GCC ATT TAT GGA TTT GCC ACT GGT ATC AAA GAC
Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
810

ATT ATG AAC ATG ATT TTT AAA ACG GAT ACA GGT GAT GAT CTA ACC CTA
Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Asp Leu Thr Leu
825

GAC GAA ATT TTA AAG AAT CAG CAG CTA CTA AAT GAT ATT TCT GGT AAA
Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Asp Ile Ser Gly Lys
840

TTG GAT GGG GTG AAT GGA AGC TTA AAT GAT CTT ATC GCA CAG GGA AAC
Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
855

TTA AAT ACA GAA TTA TCT AAG GAA ATA TTA AAA ATT GCA AAT GAA CAA
Leu Asn Thr Glu Leu Ser Iys Glu Ile Leu Lys Ile Ala Asn Glu Gln
870

AAT CAA GTT TTA AAT GAT GTT AAT AAC AAA CTC GAT GCC ATA AAT ACG

453
Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr
890 895 900

ATG CTT CGG GTA TAT CTA CCT AAA ATT ACC TCT ATG TTG AGT GAT GTA
Met Leu Arg Val Tyr Leu Pro lys Ile Thr Ser Met Leu Ser Asp Val
905 910 915

ATG AAA CAA AAT TAT GCG CTA AGT CTG CAA ATA GAA GAT TAC TTA AGT AAA
Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys
920 925 930

CAA TTG CAA GAG ATT TCT GAT AAG TTG GAT ATT ATT AAT GTA AAT GTA
Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Asn Val Asn Val
935 940 945

CTT ATT AAC TCT ACA ACT GAA ATT ACA CCT GCG TAT CAA AGG ATT
Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
950 955 960 965

AAA TAT GTG AAC GAA AAA TTT GAG GAA TTA ACT TTT GCT ACA GAA ACT
Lys Tyr Val Asn Gly Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
970 975 980

AGT TCA AAA GTA AAA AAG GAT GGC TCT CCT GCA GAT ATT CGT GAT GAG
Ser Ser Lys Val Ile Ser Asp Gly Ser Pro Ala Asp Ile Arg Asp Glu
985 990 995

TTA ACT GAG TTA ACT GAA CTA GCG AAA AGT GTA ACA AAA AAT GAT GTG
Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
1000 1005 1010

GAT GGT TTT GAA TTT TAC CTT AAT ACA TTC CAC GAT GTA ATG GTA GGA
Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
1015 1020 1025

AAT TAA TCT GGG CST TCA GCT TTA AAA ACT GCA TCG GAA TTA ATT
Asn Asn Leu Phe Gly Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
1030 1035 1040 1045

ACT AAA GAA AAT GTG AAA ACA AGT GGC AGT GAG GTC CGA AAT GTT TAT
Thr Lys Glu Asn Leu Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
1050 1055 1060

AAC TTC CTA ATT GTA TTA ACA GCT CTG CAA GCA AAA GCT TTT CTT ACT
Asn Phe Leu Ile Val Leu Thr Ala Leu Glu Ala Lys Ala Phe Leu Thr
1065 1070 1075

TTA ACA CCA TGC CGA AAA TTA TTA GGC TTA GCA GAT ATT GAT TAT ACT
Leu Thr Pro Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
1080 1085 1090

TCT ATT ATG GAA CAT TTA AAT AAG GAA AAA GAG GAA TTG AGA GTA
Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Phe Arg Val
1095 1100 1105
AAC ATM CTC CCT ACA CTT TCT AAT ACT TTT TCT AAT CCT AAT TAT GCA
Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
1110 1115 1120 1125
AAA GTT AAA GGA AGT GAT GAA GAT GCA AAG ATG ATT GTG GAA GCT AAA
Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
1130 1135 1140
CCA GGA CAT GCA TTG ATT GGG TTT GAA ATT AGT AAT GAT TCA ATT ACA
Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
1145 1150 1155
GTA TTA AAA GTA TAT GAG GCT AAG CTA AAA CAA AAT TAT CAA GTC GAT
Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Glu Val Asp
1160 1165 1170
AAG GAT TCC TTA TCG GAA GTT ATT TAT GGC GAT ATG GAT AAA TTA TTG
Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
1175 1180 1185
TGC CCA GAT CAA TCT GGA CAA ATC TAT TAT ACA AAT AAC ATA GTA TTT
Cys Pro Asp Gln Ser Gly Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe
1190 1195 1200 1205
CCA AAT GAA TAT GTA ATT ACT AAA ATT GAT TCC ACT AAA AAA ATG AAA
Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
1210 1215 1220
ACT TTA AGA TAT GAG GTA ACA GCG AAT TTT TAT GAT TCT TCT ACA GGA
Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
1225 1230 1235
GAA ATT GAC TTA AAT AAG AAA AAA GTA GAA TCA AGT GAA GCC GAG GAT
Glu Ile Asp Leu Asn Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr
1240 1245 1250
AGA ACG TTA AGT GCT AAT GAT GAT GGG GTG TAT ATG CCG TTA GGT GTG
Arg Thr Leu Ser Ala Asn Asp Gly Val Tyr Met Pro Leu Gly Val
1255 1260 1265
ATC GAT GAA ACA TTT TTG ACT CGG ATT AAT GGG TTG GCC CTC CAA GCT
Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
1270 1275 1280 1285
GAT GAA AAT TCA AGA TTA ATT ACT TTA ACA TGT AAA TCA TAT TTA AGA
Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg
1290 1295 1300
GAA CTA CTG CTA GCA ACA GAC TTA AGC AAT AAA GAA ACT AAA TTG ATC
Glu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
1305 1310 1315
GTC CCG CCA AGT GGT TTT ATT AGC AAT ATT GTA GAG AAC GGG TCC ATA
Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Ser Ile
1320 1325 1330
(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 789 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Asn Lys Asn Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro Ser Phe 1 5 10 15
Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30
Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45
Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Asp Ile Ser Gly Lys 50 55 60
Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80
Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95
Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110
Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125
Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140
Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160
Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
165 170 175
Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
180 185 190
Ser Ser Lys Val Lys Asp Gly Ser Pro Ala Asp Ile Arg Asp Glu
195 200 205
Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
210 215 220
Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
225 230 235 240
Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
245 250 255
Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
260 265 270
Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr
275 280 285
Leu Thr Pro Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
290 295 300
Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Glu Phe Arg Val
305 310 315 320
Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
325 330 335
Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Gln Ala Lys
340 345 350
Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
355 360 365
Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp
370 375 380
Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
385 390 395 400
Cys Pro Asp Gln Ser Gly Gln Ile Tyr Thr Asn Asn Ile Val Phe
405 410 415
Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
420 425 430
Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
435 440 445
| Glu Ile Asp Leu Asn Lys Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr |
|---|---|---|---|---|---|---|---|
| 450 | 455 | 460 |
| Arg Thr Leu Ser Ala Asn Asp Asp Gly Val Tyr Met Pro Leu Gly Val |
| 465 | 470 | 475 | 480 |
| Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala |
| 485 | 490 | 495 |
| Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg |
| 500 | 505 | 510 |
| Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile |
| 515 | 520 | 525 |
| Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Ser Ile |
| 530 | 535 | 540 |
| Glu Glu Asp Asn Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn Ala Tyr |
| 545 | 550 | 555 | 560 |
| Val Asp His Thr Gly Gly Val Asn Gly Thr Lys Ala Leu Tyr Val His |
| 565 | 570 | 575 |
| Lys Asp Gly Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys |
| 580 | 585 | 590 |
| Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His |
| 595 | 600 | 605 |
| Leu Lys Asp Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn |
| 610 | 615 | 620 |
| Asn Leu Glu Asp Tyr Gln Thr Ile Asn Lys Arg Phe Thr Thr Gly Thr |
| 625 | 630 | 635 | 640 |
| Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu |
| 645 | 650 | 655 |
| Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ile Ser Pro Ser Glu Lys |
| 660 | 665 | 670 |
| Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Trp Thr Ser Thr Gly |
| 675 | 680 | 685 |
| Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Arg |
| 690 | 695 | 700 |
| Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg |
| 705 | 710 | 715 | 720 |
| Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg Asn Ser |
| 725 | 730 | 735 |
| Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val |
Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr Ile Glu
Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Ile Val His Phe Tyr
Asp Val Ser Ile Lys

(2) INFORMATION FOR SEQ ID NO:33:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "forward primer used to make
 pCIB5526"

 (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GGATCCACCA TGAAGACCAA CCAGATCAGC

(2) INFORMATION FOR SEQ ID NO:34:

 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "reverse primer used to make
 pCIB5526"

 (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

AAGCTTCAGC TCCT

(2) INFORMATION FOR SEQ ID NO:35:
(i) **SEQUENCE CHARACTERISTICS:**
 (A) LENGTH: 2576 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) **MOLECULE TYPE:** other nucleic acid
 (A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) **HYPOTHETICAL:** NO

(ix) **FEATURE:**
 (A) NAME/KEY: CDS
 (B) LOCATION: 9..2564
 (D) OTHER INFORMATION: /note= "Maize optimized sequence encoding VPIIA(a) with the Bacillus secretion signal removed as contained in pCIB5526"

(xi) **SEQUENCE DESCRIPTION: SEQ ID NO:35:**

<table>
<thead>
<tr>
<th>GATCCACC ATG AAG ACC AAC CAG ATC AGC ACC ACC CAG AAG AAC CAG CAG</th>
<th>Met Lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>AAG GAG ATG GAC CGC AAG GGC CTG CTG GGC TAC TAC TTC AAG GGC AAG</td>
<td>Lys Glu Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys</td>
</tr>
<tr>
<td>840</td>
<td>845</td>
</tr>
<tr>
<td>GAC TTC AGC AAC CTG ACC ATG TTC GCC CCC ACG CGT GAC ACC ACC CTG</td>
<td>Asp Phe Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu</td>
</tr>
<tr>
<td>855</td>
<td>860</td>
</tr>
<tr>
<td>Ile Tyr Asp Glu Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Gln Gln</td>
<td>194</td>
</tr>
<tr>
<td>870</td>
<td>875</td>
</tr>
<tr>
<td>Glu Tac CAG AGC ATC CGC TGG ATC GGC CTG ATC CAG AGC AAG GAG ACC</td>
<td>Glu Tyr Glu Ser Ile Arg Trp Ile Gly Leu Ile Glu Ser Lys Glu Thr</td>
</tr>
<tr>
<td>885</td>
<td>890</td>
</tr>
<tr>
<td>GGC TTC ACC TAC TAC TTC AAG CTG AGC GAG GAC GAG CAG GCC ATC ATC GAG</td>
<td>Gly Asp Phe Thr Phe Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu</td>
</tr>
<tr>
<td>900</td>
<td>905</td>
</tr>
<tr>
<td>ATC AAG GGC AAG ATC ATC AGC AAC AAG GGC AAG GAG CAG GTG GTG</td>
<td>Ile Asn Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val</td>
</tr>
<tr>
<td>920</td>
<td>925</td>
</tr>
<tr>
<td>CAC CGT GAG AAG GGC AAG CTG GTG CCC ATC AAG ATC GAG TAC CAG AGC</td>
<td>His Leu Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser</td>
</tr>
<tr>
<td>935</td>
<td>940</td>
</tr>
<tr>
<td>GAC ACC AAG TTC AAC ATC GAC AGC AAG ACC TTC AAG GAG CTG AAG CTT</td>
<td>434</td>
</tr>
</tbody>
</table>
Asp Thr Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu
950 955 960
TTC AAG ATC GAC AGC CAG AAC CAG CCC CAG GTG CAG CAG GAC GAG
Phe Lys Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu
965 970 975
CTG CGC AAC CCC GAG TTC AAC AAG AAG GAG AGC GAG GAC GAG TTC CTG GCC
Leu Arg Asn Pro Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala
980 985 990 995
AAG CCC AGC AAC ATG CTG TTC ACC CAG CAG ATG AAC CGC GAG ATC
Lys Pro Ser Lys Ile Asn Leu Phe Thr Glu Gln Met Lys Arg Glu Ile
1000 1005 1010
GAC GAG GAC ACC GAC ACC GAC ACC GAC ATC CCC GAC CTG TGG GAG
Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu
1015 1020 1025
GAG AAC GGC TAC ACC ATC CAG AAC CGC ATC GCC GTG AAG TGG GAC GAC
Glu Asn Gly Tyr Thr Ile Asn Arg Ile Ala Val Lys Trp Asp Asp
1030 1035 1040
AGC CTG GCT AGC AAG GGC TAC ACC AAG TTC GTG AGC ACC CCC CTG GAG
Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu
1045 1050 1055
AGC CAC ACC GTG GGC GAC CCC TAC ACC GAC TAC GAG AAG GCC GCC CCC
Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg
1060 1065 1070 1075
GAC CTG GCT AGC AAC GCC AAG GAG ACC TTC AAC CCC CTG GTG GCC
Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala
1080 1085 1090
GCC TTC CCC AGC GTG AAC GTG AGC ATG GAG AAG GTG ATC CTG AGC CCC
 Ala Phe Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro
1095 1100 1105
AAC GAG AAC CTG AGC AAC AGC GTG GAG AGC CAC TGG AGC ACC AAC TGG
Asn Glu Asn Leu Ser Asn Ser Val Glu Ser His Ser Thr Asn Trp
1110 1115 1120
AGC TAC ACC AAC ACC GAG GCC AGC GTG GAG GCC CAC GGC CAC CTG GCC
Ser Tyr Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro
1125 1130 1135
AAG GCC ATG AGC TTC GGC GTG AGC GTG AAC TAC CAG CAC AGC GAG ACC
Lys Gly Ile Ser Phe Gly Val Ser Val Asn Tyr Gln His Ser Glu Thr
1140 1145 1150 1155
GTG GCC CAG GAG TGG GCC ACC AGC ACC GCC AAC ACC AGC CAG TTG AAC
Val Ala Glu Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Glu Phe Asn
1160 1165 1170
ACC GCC AGC GCC GCC TAC CTG AAC GCC AAC GTG CGC TAC AAC AAC GTG
Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val
1175 1180 1185

GGC ACC GCC GCC ATC TAC GAC GTG AAG CCC ACC ACC AGC TTC GTG CTG
Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu
1190 1195 1200

AAC AAC GAC ACC ATC GCC ACC ATC ACC GCC AAG TCG AAT TCC ACC GCC
Asn Asn Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala
1205 1210 1215

CTG AAC ATC AGC CCC GCC GAG AGC TAC CCC AAG AAG GCC CAG AAC GCC
Leu Asn Ile Ser Pro Gly Ser Tyr Pro Lys Lys Gly Asn Gly
1220 1225 1230 1235

ATC GCC ATC ACC AGC ATG GAC GAC TTC AAC AGC CAC CCC ATC ACC CTG
Ile Ala Ile Thr Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu
1240 1245 1250

AAC AAG AAG CAG GTG GAC AAC CTG CTG AAC AAG CCC ATG ATG CTG
Asn Lys Lys Gln Val Asp Asn Leu Leu Asn Asn Lys Pro Met Met Leu
1255 1260 1265

GAG ACC AAC CAG ACC GCC GTC TAC AAG ATC AAG GAC ACC CAC GCC
Glu Thr Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly
1270 1275 1280

AAC ATC GTG ACG GCC GCC GAG TGG AAC GCC GTG ATC CAG CAG ATC AAG
Asn Ile Val Thr Gly Gly Trp Asn Gly Val Ile Gln Gln Ile Lys
1285 1290 1295

GCC AAG ACC GCC AGC ATC ATC GTC GAC GCC GAG CGC GTG GCC GAG
Ala Lys Thr Ala Ser Ile Ile Val Asp Gly Arg Val Ala Glu
1300 1305 1310 1315

AAG CGC GTG GCC GCC AAG GCC TAC GAC AAG CCC GAG GAC AAG ACC CCC
Lys Arg Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro
1320 1325 1330

AGC CTG ACC CTG AAG GAC GCC CTG AAG CTG AGC TAC CCC GAC GAG ATC
Ser Leu Thr Leu Lys Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile
1335 1340 1345

AAG GAG ATC GAG GCC TTC CTG TAC TAC AAG AAG CCC ATC TAC GAG
Lys Glu Ile Glu Gly Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu
1350 1355 1360

AGC AGC GTG ATG ACC TAT CTA GAC GAG AAC ACC GCC AAG GAG GTG ACC
Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr
1365 1370 1375

AAG CAG CTG AAC GAC ACC GCC AAG TTC AAG GAC GTG AGC CAC CTG
Lys Gln Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu
1380 1385 1390 1395
TAC GAC GTG AAG CTG ACC CCC AAG ATG AAC GTG ACC ATC AAG CTG AGC
Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser
1400 1405 1410

ATC CTG TAC GAC AAC GCC GAG AGC AAC GAC AAC AGC ATC GCC AAG TGG
Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly lys Trp
1415 1420 1425

ACC AAC ACC ATC GTG AGC GGC GCC AAC ACC GCC AAG AAG GAG CAG TAC
Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Gly Lys Lys Gln Tyr
1430 1435 1440

AGC AGC AAC ACC CCC GAC GCC GGC AAC CTG ACC CTG AAC ACC GAC GCC CAG
Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln
1445 1450 1455

GAG AAG CTG AAC AAG AAC CGC GAC TAC TAC ATC AGC ATG TAC ATG AGG
Glu Lys Leu Asn Lys Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys
1460 1465 1470 1475

AGC GAG AAG AAC ACC CAG TGC GAG ATC ACC ATC GAC GCC GAG ATA TAC
Ser Glu Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr
1480 1485 1490

CCC ATC ACC ACC AAC GTG AAC GTG AAC AAG GCC AAC TAC AAC CGC
Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg
1495 1500 1505

CTG GAC ATC ATC GCC CAC AAC ATC AAG AGC AAC CCC ATC AGC AGC CTG
Leu Asp Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu
1510 1515 1520

CAC ATC AAC ACC AAC GAC GAG ATC CTG TGC TGC GAC GAT ATG TCG
His Ile Lys Thr Asn Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser
1525 1530 1535

ATT ACC GAC TGC GCC AGC ATC AAG CCC GAG AAC CTG ACC AGC AGC GAG
Ile Thr Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu
1540 1545 1550 1555

ATC AAG CAG ATA TAC AGT CGC TAC GCC ATC AAG CTG GAG GCC ATC
Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Gly Asp Gly Ile
1560 1565 1570

CTG ATC GAC AAG AAA GCC GCC ATC CAC TAC GCC ATC AAG CTG GAG
Leu Ile Asp Lys Gly Gly Ile His Tyr Gly Gly Phe Ile Asn Glu
1575 1580 1585

GCC AGC TAC AAC ATC GAG CCC CTG CAG AAC ATC GTG ACC AAG TAC GAG
 Ala Ser Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Glu
1590 1595 1600

GTG ACC TAC AGC AGC GAG CTG GCC CCC AAC GTG AGC GCC ACC CTG GAG
Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu
AGC GAC AAG ATT TAC AAG GAC GCC ACC ATC AAG TTC GAC TTC ACC AAG
Ser Asp Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys
1620 1625 1630 1635

TAC AGC AAG AAC GAG CAG GGC CTG TTC TAC AGC GCC CTG AAC TGG
Tyr Ser Lys Asn Glu Gln Gly Leu Phe Tyr Asp Ser Gly Leu Asn Trp
1640 1645 1650

GAC TTC AAG ATC AAC GCC ATC ACC TAC GAC GCC AAC GAG ATG AAC GTG
Asp Phe Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val
1655 1660 1665

TTC CAC CGC TAC AAC AAG TAGATCTGAG CT
Phe His Arg Tyr Asn Lys
1670

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 852 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu
1 5 10 15

Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe
20 25 30

Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr
35 40 45

Asp Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Lys Gln Gln Glu Tyr
50 55 60

Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp
65 70 75 80

Phe Thr Phe Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu Ile Asn
85 90 95

Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu
100 105 110

Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr
115 120 125

Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys
Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg
130 135 140

Asn Pro Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro
145 150 155 160

Ser Lys Ile Asn Leu Phe Thr Gln Gln Met Lys Arg Glu Ile Asp Glu
165 170 175

Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn
180 185 190

Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu
195 200 205

Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His
210 215 220

Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu
225 230 235 240

Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe
245 250 255

Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu
260 265 270

Asn Leu Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr
275 280 285 290

Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly
295 300 305 310 315 320

Ile Ser Phe Gly Val Ser Asn Tyr Gln His Ser Glu Thr Val Ala
325 330 335

Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala
340 345 350

Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr
355 360 365

Gly Ala Ile Tyr Asp Val Lys Pro Thr Ser Phe Val Leu Asn Asn
370 375 380

Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Ser Thr Ala Leu Asn
385 390 395 400

Ile Ser Pro Gly Glu Ser Tyr Pro Lys Gly Glu Asn Gly Ile Ala
405 410 415

Ile Thr Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys
420 425 430
Lys Gln Val Asp Asn Leu Leu Asn Asn Lys Pro Met Met Leu Glu Thr
435 440 445

Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile
450 455 460

Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys
465 470 475 480

Thr Ala Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg
485 490 495

Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu
500 505 510

Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu
515 520 525

Ile Glu Gly Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser
530 535 540

Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Gln
545 550 555 560

Leu Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp
565 570 575

Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu
580 585 590

Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn
595 600 605

Thr Asn Ile Val Ser Gly Gly Asn Gly Lys Lys Gln Tyr Ser Ser
610 615 620

Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys
625 630 635 640

Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu
645 650 655

Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile
660 665 670

Thr Thr Lys Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg Leu Asp
675 680 685

Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile
690 695 700

Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr
705 710 715 720
Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys
 725 730 735
Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile
 740 745 750
Asp Lys Lys Gly Gly Ile His Tyr Gly Glu Phe Ile Asn Glu Ala Ser
 755 760 765
Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Glu Val Thr
 770 775 780
Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu Ser Asp
 785 790 795 800
Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser
 805 810 815
Lys Asn Glu Gin Gly Leu Phe Tyr Asp Ser Gly Leu Asn Trp Asp Phe
 820 825 830
Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His
 835 840 845
Arg Tyr Asn Lys
 850

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "forward primer used to make pCIB5527"

(iii) HYPOTHETICAL: NO

(xvi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
GGATCCACCA TGCTGCAAGA CCTGAAGATC AC

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "reverse primer used to make pCIB5527"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AAGCTCCAC TCTTTC 18

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1241 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 9..1238
 (D) OTHER INFORMATION: /note= "Maize optimized DNA sequence encoding VIP2A(a) with the Bacillus secretion signal removed as contained in pCIB5527"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GATCCACC ATG CTG CAG AAC CTG AAG ATC ACC GAC AAG GTG GAG GAC TTC
 Met Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu Asp Phe
 855 860

AAG GAG GAC AAG GAG AAG GCC AAG GAG TGG GCC AAG GAG AAG GAG AAG Lys Glu Asp Lys Glu Ala Lys Glu Trp Gly Lys Glu Lys Glu Lys
 870 875 880

GAG TGG AAG CTT ACC GCC ACC GAG AAG GCC AAG ATG AAC AAC TTC CTG
 Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn Phe Leu
 885 890 895

GAC AAC AAG AAC GAC ATC AAG ACC AAC TAC AAG GAG ATC ACC TTC AGC
 Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr Phe Ser
 900 905 910

ATA GCC GGC AGC TTC GAG GAC GAG ATC AAG GAC CTG AAG GAG ATC GAC
242
Ile Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu Ile Asp
915 920 925 930
AAG ATG TTC GAC AAG ACC AAC CTG AGC AAC AGC ATC ATC ACC TAC AAG
Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr Tyr Lys
935 940 945
AAC GTG GAG CCC ACC ACC ATC GCC TTC AAG AGC CTG ACC GAG GCC
Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr Glu Gly
950 955 960
AAC ACC ATC AAC AGC GCC ACC ATC ACC GAG GCC
Asn Thr Ile Asn Ser Asp Ala Met Ala Gin Phe Lys Glu Gin Phe Leu
965 970 975
GAC CGC GAC ATC AAG TTC GAC AGC AGC TAC CTG GAC ACC CAC CTG ACC GCC
Asp Arg Asp Ile Phe Asp Ser Tyr Leu Asp Thr His Leu Thr Ala
980 985 990
CAG CAG GTG AGC AGG AAG GTG GCC GTG ATG AAG GTG ACC GTC CCC
Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr Val Pro
995 1000 1005 1010
AGC GCC AAG GCC ACC ACC CCC ACC AAG GCC GCC GTG ATC CTG AAC
Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile Leu Asn
1015 1020 1025
AAC AGC GAG TAC AAC ATG CTG ATC GAC AAC GGC TAC ATG GTG CAC GTG
Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val His Val
1030 1035 1040
GAC AAG GTG AGC AAG GTG AAG AAG GCC GTG GAG TGC CTC CAG ATC
Asp Lys Val Ser Val Val Lys Val Lys Gly Val Glu Cys Leu Gin Ile
1045 1050 1055
GAG GCC ACC CTG AAG AAG AGT CTA GAC TTC AAC AAC GAC ATC AAC GCC
Glu Thr Leu Lys Ser Leu Asp Phe Lys Asp Ile Asn Ala
1060 1065 1070
GAG GCC CAC AGC TGG GCC ATG AAG AAC TAC GAG GAG TGG GCC AAG GC
Glu Ala His Ser Trp Met Lys Asn Tyr Glu Trp Ala Lys Asp
1075 1080 1085 1090
CTG ACC GAC AGC CAG CGC GAG GCC CTG GAC GCC TAC GCC CGC CAG GAC
Leu Thr Asp Ser Glu Arg Glu Ala Leu Asp Gly Tyr Ala Arg Glu Asp
1095 1100 1105
TAC AAG GAG ATC AAC AAG CTG CGC AAG AAC ATC AAC CAG GCC GCC ATC AAG GCC
Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gin Gly Gly Ser Gly Asn
1110 1115 1120
GAG AAG CTG GAC GCC CAG ATC AAG AAC ATC AAG CAC GCC CTG GCC AAG
Glu Lys Leu Asp Ala Gin Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys
1125 1130 1135
(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 410 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Met Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu Asp Phe Lys Glu
 1 5 10 15

Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu Lys Glu Trp
 20 25 30

Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn Phe Leu Asp Asn
 35 40 45

Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr Phe Ser Ile Ala
 50 55 60
Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu Ile Asp Lys Met
65 70 75 80

Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr Tyr Lys Asn Val
85 90 95

Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr Glu Gly Asn Thr
100 105 110

Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln Phe Leu Asp Arg
115 120 125

Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu Thr Ala Gln Gln
130 135 140

Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr Val Pro Ser Gly
145 150 155 160

Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile Leu Asn Asn Ser
165 170 175

Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val His Val Asp Lys
180 185 190

Val Ser Lys Val Val Lys Gly Val Glu Cys Leu Gln Ile Glu Gly
195 200 205

Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp Ile Asn Ala Glu Ala
210 215 220

His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala Lys Asp Leu Thr
225 230 235 240

Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg Gln Asp Tyr Lys
245 250 255

Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser Gly Asn Glu Lys
260 265 270

Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys Lys Pro
275 280 285

Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly Met Pro Glu Phe
290 295 300

Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys Asp Phe Glu Glu
305 310 315 320

Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr Met Ser Thr Ser
325 330 335

Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg Lys Ile Ile Leu
340 345 350
Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr Leu Ser Ala Ile 355 360 365
Gly Gly Phe Ala Ser Glu Lys Glu Leu Leu Asp Lys Asp Ser Lys 370 375 380
Tyr His Ile Asp Lys Val Thr Glu Val Ile Lys Gly Val Lys Arg 385 390 395 400
Tyr Val Val Asp Ala Thr Leu Leu Thr Asn 405 410

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 72 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide encoding eukaryotic secretion signal used to construct pCIB5527"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
GGATCCACCA TGCGCTGAG CTGGATCTTC CTGTTCTGTC TGAGCGGCGC CGCGGCGGCG 60
CACTGCCTGC AG 72

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1241 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 9..1238
 (D) OTHER INFORMATION: /note= "Maize optimized DNA sequence encoding VIP2A(a) with the Bacillus secretion signal removed and the eukaryotic secretion signal inserted as
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GATCCACC ATG CTG CAG AAC CTG AAG ATC ACC GAC AAG GTG GAG GAC TTC
 Met Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu Asp Phe
 415 420

AAG GAG GAC AAG GAG AAG GCC AAG GAG TGG GGC AAG GAG AAG GAG GAG
 Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu Lys Glu Lys
 425 430 435 440

GAG TGG AAG CTT ACC GCC ACC GAG AAG GCC AAG ATG AAC AAC TTC CTG
 Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn Phe Leu
 445 450 455

GAC AAC AAG AAC GAC ATC AAG ACC AAC TAC AAG GAG ATC ACC TTC AGC
 Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr Phe Ser
 460 465 470

ATA GCC GGC AGC TTC GAG GAC ATC AAG GAC CTT AAG GAG ATC GAC
 Ile Ala Gly Ser Phe Glu Asp Ile Lys Asp Leu Lys Glu Ile Asp
 475 480 485

AAG ATG TTC GAC AAG ACC AAC CTG AGC AAC AGC ATC ATC ACC TAC AAG
 Lys Met Phe Asp Lys Leu Ser Asn Ser Ile Ile Thr Tyr Lys
 490 495 500

AAC GTG GAG CCC ACC ACC ATC GGC TTC AAC AAG AGC CTG ACC GAG GGC
 Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr Glu Gly
 505 510 515 520

AAC ACC ATC AAC AGC GCC ATG GCC CAG TTC AAG GAG CAG TTC CTG
 Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln Phe Leu
 525 530 535

GAC CGC GAC ATC AAG TTC GAC AGC TAC CTG GAC ACC CAC CTG ACC GCC
 Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu Thr Ala
 540 545 550

CAG CAG GTG AGC AGC AAG GAG CGC GTG ATC CTG AAG GTG ACC GTC CCC
 Gln Gln Val Ser Lys Glu Arg Val Ile Leu Lys Val Thr Val Pro
 555 560 565

AGC GCC AAG GCC AGC ACC CCC ACC AAG GCC GCC GTG ATC CTG AAC
 Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile Leu Asn
 570 575 580

AAC AGC GAG TAC AAG ATG CTG ATC GAC AAC GCC ATG GTG CAC GTG
 Asn Ser Glu Tyr Lys Met Leu Ile Asp Lys Gly Tyr Met Val His Val
 585 590 595 600

GAC AAG GTG AGC AAG GTG GTG AAG AAG GCC GTG GAG TGC CTC CAG ATC
 Asp Lys Val Ser Lys Val Val Lys Gly Val Glu Cys Leu Gln Ile
 626
GAG GCC ACC CTG AAG AAG AGT CTA GAC TTC AAG AAC GAC ATC AAC GCC
Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Lys Asn Asp Ile Asn Ala
620 625 630
GAG GCC CAC AGC TGG GCC ATG AAG AAC TAC GAG GAG TGG GCC AAG GAC
Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala Lys Asp
635 640 645
CTG ACC GAC AGC CAG CGC GAG GCC CTG GAC GCC TAC GCC CGC CAG GAC
Leu Thr Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg Gln Asp
650 655 660
TAC AAG GAG ATC AAC AAC TAC CTG CGC AAC CAG GCC GGC AGC GGC AAC
Tyr Lys Glu Ile Asn Tyr Leu Arg Asn Gln Gly Gly Ser Gly Asn
665 670 675 680
GAG AAG CTG GAC GCC CAG ATC AAG AAC ATC AGC GAC GCC CTG GGC AAG
Glu Lys Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys
685 690 695
AAG CCC ATC CCC GAG AAC ATC ACC GTG TAC CCC TGG TGC GCC ATG CCC
Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly Met Pro
700 705 710
GAG TTC GGC TAC CAG ATC AGC GCC CCC CTG CCC AGC CTG AAG GAC TTC
Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys Asp Phe
715 720 725
GAG GAG CAG TTC CTG AAG ACC ATC AAG AAC GAG AAC GAC TAC ATG AGC
Glu Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr Met Ser
730 735 740
ACC AGC CTG AGC AGC GCC CTG GCC CCC TTC GCC AGC GCC AAG ATC
Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg Lys Ile
745 750 755 760
ATC CTG GCC CTG CAG GTG CCC AAG GCC AGC ACT GTG GCC TAC CTG AGC
Ile Leu Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr Leu Ser
765 770 775
GCC ATC GCC GCC TCC AGC GAG GAG AAG ATC CTG GAT AAG GAC
Ala Ile Gly Gly Phe Ala Ser Glu Lys Glu Leu Leu Asp Lys Asp
780 785 790
AGC AAG TAC CAC ATC GAC AAG GTG ACC GAG GTG ATC ATC AAG GCC GTG
Ser lys Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile Lys Gly Val
795 800 805
AAG CGC TAC GTG GTG GAC GCC ACC CTG CTG ACC AAC TAG
Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn
810 815 820
(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 410 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Met Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu Asp Phe Lys Glu
 1 5 10 15
Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu Lys Glu Trp
 20 25 30
Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn Phe Leu Asp Asn
 35 40 45
Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr Phe Ser Ile Ala
 50 55 60
Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu Ile Asp Lys Met
 65 70 75 80
Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr Tyr Lys Asn Val
 85 90 95
Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr Glu Gly Asn Thr
 100 105 110
Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln Phe Leu Asp Arg
 115 120 125
Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu Thr Ala Gln Gln
 130 135 140
Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr Val Pro Ser Gly
 145 150 155 160
Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile Leu Asn Ser
 165 170
Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val His Val Asp Lys
 180 185 190
Val Ser Lys Val Val Lys Gly Val Glu Cys Leu Gln Ile Glu Gly
 195 200 205
Thr Leu Lys Ser Leu Asp Phe Lys Asn Asp Ile Asn Ala Glu Ala
 210 215 220
His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala Lys Asp Leu Thr
 225 230 235 240
Asp Ser Gln Arg Glu Ala Leu Asp Gly Tyr Ala Arg Gln Asp Tyr Lys
 245 250 255
Glu Ile Asn Asn Tyr Leu Arg Asn Gln Gly Gly Ser Gly Asn Glu Lys
 260 265 270
Leu Asp Ala Gln Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys Lys Pro
 275 280 285
Ile Pro Glu Asn Ile Thr Val Tyr Arg Trp Cys Gly Met Pro Glu Phe
 290 295 300
Gly Tyr Gln Ile Ser Asp Pro Leu Pro Ser Leu Lys Asp Phe Glu Glu
 305 310 315 320
Gln Phe Leu Asn Thr Ile Lys Glu Asp Lys Gly Tyr Met Ser Thr Ser
 325 330 335
Leu Ser Ser Glu Arg Leu Ala Ala Phe Gly Ser Arg Lys Ile Ile Leu
 340 345 350
Arg Leu Gln Val Pro Lys Gly Ser Thr Gly Ala Tyr Leu Ser Ala Ile
 355 360 365
Gly Gly Phe Ala Ser Glu Lys Glu Ile Leu Asp Lys Asp Ser Lys
 370 375 380
Tyr His Ile Asp Lys Val Thr Glu Val Ile Ile Lys Gly Val Lys Arg
 385 390 395 400
Tyr Val Val Asp Ala Thr Leu Leu Thr Asn
 405 410

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 86 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide encoding vacuolar targeting peptide used to construct pCIB5533"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
CCGCGGGCGT GCACTGCTC AGCAGCAGCA GCTTCGCGGA CAGCAACCCC ATCGCGGTGAG
CGCA CGCAGCACC CTGCAG

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1358 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 9..1355
 (D) OTHER INFORMATION: /note= "Maize optimized VIP2A(a) with the Bacillus secretion signal removed and the vacuolar targeting signal inserted as contained in pCIB5533"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GATCCACC ATG GCC TGG AGC TGG ATC TTC CTG CTG CTG AGC GGC GCC Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Ser Gly Ala
 415 420

GCG GCC GTG CAC TGC CTC AGC AGC AGC AGC TTC GCC GAC AGC AAC CCC Ala Gly Val His Cys Leu Ser Ser Ser Ser Phe Ala Asp Ser Asn Pro
 430 435 440

ATC CGC GTG ACC GAC CGC GCC AGC ACC CTG CAG AAC CTG AAG ATC Ile Arg Val Thr Asp Arg Ala Ala Ser Thr Leu Gln Asn Leu Lys Ile
 445 450 455

ACC GAC AAG GTC GAG GAC TTC AAG GAG GAC AAG GAG AAG GCC AAG GAG Thr Asp Lys Val Glu Asp Phe Lys Glu Asp Lys Ala Lys Glu
 460 465 470

TGG GCC AAG GAG AAG GAG AAG GAG TGG AAG CTT ACC GCC ACC GAG AAG Trp Gly Lys Glu Lys Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys
 480 485

GCC AAG ATG AAC AAC TTC CTG GAC AAC AAG AAC GAC ATC AAG ACC AAC Gly Lys Met Asn Asn Phe Leu Asp Asn Asn Asp Ile Lys Thr Asn
 490 495 500

TAC AAG GAG ATC ACC TTC AGC ATC GCC GCC AGC TTC GAG GAC ATC Tyr Lys Glu Ile Thr Phe Ser Ile Ala Gly Ser Phe Glu Asp Glu Ile
 510 515 520

AAG GAC CTG AAG GAG ATC GAC AAG ATG TTC GAC AAG ACC AAC CTG AGC 386
Lys Asp Leu Lys Glu Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser
525
530
535

AAC AGC ATC ATC ACC TAC AAG AAC GTG GAG CCC ACC ACC ATC GGC TTC
Asn Ser Ile Ile Thr Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe
540
545
550

AAC AAG AGC CTG ACC GAG GCC AAC ACC ATC AAG AGC GAC GCC ATG GCC
Asn Lys Ser Leu Thr Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala
555
560
565

CAG TTT AAG GAG CAG TTT CTG GAC CGC GAC ATC AAG TTT GAC AGC TAC
Gln Phe Lys Glu Glu Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr
570
575
580

CTG GAC ACC CAC CTG ACC GCC CAG CTG AGC AGC AAC GAG CGC GTG
Leu Asp Thr His Leu Thr Ala Glu Glu Val Ser Ser Lys Glu Arg Val
585
590
595
600

ATC CTG AAG GTG ACC GTC CCC AGC GCC AAG GCC ACC ACC CCC ACC
Ile Leu Val Thr Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr
605
610
615

AAC GCC GCC GTC ATG CTG AAC AAG AGC GAG TAC AAG ATG CTG ATC GCC
Lys Ala Gly Val Ile Leu Asn Asn Ser Gly Thr Lys Met Leu Ile Asp
620
625
630

AAC GCC TAC ATG GTG CAC CTG GAC AAG GTG AGC AAG GTG GTG AAG AAG
Asn Gly Tyr Met Val Met Asp Lys Val Ser Lys Val Val Lys Lys
635
640
645

GCC GTG GAG TGC CTC CAG ATC GAG GCC ACC CTG AAG AGT CTA GCC
Gly Val Glu Cys Leu Gln Ile Gly Thr Leu Lys Ser Leu Asp
650
655
660

TAC AAG AAC GAC ATC AAC GCC GAG GCC CAC AGC TGG GGC ATG AAG AAC
Phe Lys Asn Asp Ile Ala Glu Ala His Ser Trp Gly Met Lys Asn
665
670
675
680

TAC GAG GAG TGG GCC AAG GAC CTG ACC GAC AGC CAG CGC GAG GCC CTG
Tyr Glu Glu Trp Ala Lys Asp Leu Thr Asp Gln Arg Glu Ala Leu
685
690
695

GAC GCC TAC GCC CGC CAG GCC TAC AAG GAG ATC AAC AAG TAC CTG GCC
Asp Gly Tyr Ala Arg Glu Tyr Lys Glu Ile Asn Asn Tyr Leu Arg
700
705
710

AAC CAG GCC AGC GCC AAC GAG CTG GCC ACC AGC CAG ATC AAG AAC
Asn Glu Gly Gly Ser Gly Asn Glu Leu Asp Ala Glu Ile Lys Asn
715
720
725

ATC AGC GCC CTG GCC AAG AAG CCC ATC CCC GAC AAG ATC ACC GTG
Ile Ser Asp Ala Leu Gly Lys Asp Pro Ile Pro Glu Asn Ile Thr Val
730
735
740
<table>
<thead>
<tr>
<th>TAC</th>
<th>CGC</th>
<th>TGG</th>
<th>TGC</th>
<th>GCC</th>
<th>ATG</th>
<th>CCC</th>
<th>GGC</th>
<th>ATG</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>Arg</td>
<td>Trp</td>
<td>Cys</td>
<td>Gly</td>
<td>Met</td>
<td>Pro</td>
<td>Gly</td>
<td>Tyr</td>
<td>Gln</td>
</tr>
<tr>
<td>745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>750</td>
<td></td>
<td>755</td>
<td></td>
<td>760</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CTG</th>
<th>CCC</th>
<th>AGC</th>
<th>CTG</th>
<th>AAG</th>
<th>GAC</th>
<th>TTC</th>
<th>GGC</th>
<th>TAC</th>
<th>AGC</th>
<th>GAC</th>
<th>CCC</th>
<th>CTG</th>
<th>AAC</th>
<th>ACC</th>
<th>ATC</th>
<th>AAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Leu</td>
<td>Lys</td>
<td>Asp</td>
<td>Phe</td>
<td>Glu</td>
<td>Glu</td>
<td>Phe</td>
<td>Leu</td>
<td>Asn</td>
<td>Thr</td>
<td>Ile</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td>770</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAG</th>
<th>GAC</th>
<th>AAG</th>
<th>GCC</th>
<th>TAC</th>
<th>ATG</th>
<th>AGC</th>
<th>ACC</th>
<th>AGC</th>
<th>CTG</th>
<th>AGC</th>
<th>GAG</th>
<th>GCC</th>
<th>CTG</th>
<th>GGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Lys</td>
<td>Gly</td>
<td>Tyr</td>
<td>Met</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>780</td>
<td>785</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GCC</th>
<th>TTC</th>
<th>GGC</th>
<th>AGC</th>
<th>GCC</th>
<th>AAG</th>
<th>ATC</th>
<th>ATC</th>
<th>CTG</th>
<th>GGC</th>
<th>CTG</th>
<th>CTG</th>
<th>CAG</th>
<th>GTG</th>
<th>CCC</th>
<th>AAG</th>
<th>GGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Ser</td>
<td>Arg</td>
<td>Lys</td>
<td>Ile</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Gln</td>
<td>Val</td>
<td>Pro</td>
<td>Lys</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>795</td>
<td>800</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGC</th>
<th>ACT</th>
<th>GTG</th>
<th>GCC</th>
<th>TAC</th>
<th>CTG</th>
<th>AGC</th>
<th>GCC</th>
<th>ATC</th>
<th>GCC</th>
<th>GGC</th>
<th>TTC</th>
<th>GCC</th>
<th>AGC</th>
<th>GAG</th>
<th>AAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Gly</td>
<td>Ala</td>
<td>Tyr</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Ile</td>
<td>Gly</td>
<td>Gly</td>
<td>Phe</td>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td>810</td>
<td>815</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAG</th>
<th>ATC</th>
<th>CTG</th>
<th>CTG</th>
<th>GAT</th>
<th>AAG</th>
<th>GAC</th>
<th>AGC</th>
<th>AAG</th>
<th>TAC</th>
<th>CAC</th>
<th>ATC</th>
<th>GAC</th>
<th>AAG</th>
<th>GTG</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>Lys</td>
<td>Tyr</td>
<td>His</td>
<td>Ile</td>
<td>Asp</td>
<td>Lys</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>825</td>
<td>830</td>
<td>835</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAG</th>
<th>GTG</th>
<th>ATC</th>
<th>AAG</th>
<th>GGC</th>
<th>GTG</th>
<th>AAG</th>
<th>GCC</th>
<th>TAC</th>
<th>GTG</th>
<th>GTG</th>
<th>GCC</th>
<th>ACC</th>
<th>CTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Ile</td>
<td>Ile</td>
<td>Gly</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Tyr</td>
<td>Val</td>
<td>Asp</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>845</td>
<td>850</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CTG</th>
<th>ACC</th>
<th>AAC</th>
<th>TAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>1358</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 449 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
1 5 10 15

Val His Cys Leu Ser Ser Ser Ser Phe Ala Asp Ser Asn Pro Ile Arg
20 25 30

Val Thr Asp Arg Ala Ala Ser Thr Leu Gln Asn Leu Lys Ile Thr Asp
35 40 45

Lys Val Glu Asp Phe Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly
50 55 60
Lys Glu Lys Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys 65 70 75 80
Met Asn Asn Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys 85 90 95
Glu Ile Thr Phe Ser Ile Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp 100 105 110
Leu Lys Glu Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser 115 120 125
Ile Ile Thr Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys 130 135 140
Ser Leu Thr Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe 145 150 155 160
Lys Glu Gln Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp 165 170 175
Thr His Leu Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu 180 185 190
Lys Val Thr Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala 195 200 205
Gly Val Ile Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly 210 215 220
Tyr Met Val His Val Asp Lys Val Ser Lys Val Val Lys Lys Gly Val 225 230 235 240
Glu Cys Leu Gln Ile Glu Gly Thr Leu Lys Ser Leu Asp Phe Lys 245 250 255
Asn Asp Ile Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu 260 265 270
Glu Trp Ala Lys Asp Leu Thr Asp Ser Gln Arg Glu Ala Leu Asp Gly 275 280 285
Tyr Ala Arg Glu Asp Tyr Lys Glu Ile Asn Asn Tyr Leu Arg Asn Gln 290 295 300
Gly Gly Ser Gly Asn Glu Leu Asp Ala Gln Ile Lys Asn Ile Ser 305 310 315 320
Asp Ala Leu Gly Lys Lys Pro Ile Pro Glu Asn Ile Thr Val Tyr Arg 325 330 335
Trp Cys Gly Met Pro Glu Phe Gly Tyr Gln Ile Ser Asp Pro Leu Pro 340 345 350
Ser Leu Lys Asp Phe Glu Glu Gin Phe Leu Asn Thr Ile Lys Glu Asp 355
Lys Gly Tyr Met Ser Thr Ser Leu Ser Ser Glu Arg Leu Ala Ala Phe 370
Gly Ser Arg Lys Ile Ile Leu Arg Leu Gin Val Pro Lys Gly Ser Thr 385
Gly Ala Tyr Leu Ser Ala Ile Gly Gly Phe Ala Ser Glu Lys Glu Ile 405
Leu Leu Asp Lys Asp Ser Lys Tyr His Ile Asp Lys Val Thr Glu Val 420
Ile Ile Lys Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr 435

Asn

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 16 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
 (A) NAME/KEY: Peptide
 (B) LOCATION: 1..16
 (D) OTHER INFORMATION: /note= "linker peptide for fusion of VIPLA(a) and VIP2A(a) used to construct pCIB5533"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser 1 5 10 15

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 66 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "DNA encoding linker peptide used to construct pCIB5533"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

CCCGGGCCCTT CTACTCCCC AACTCCCTCT CCTAGGACGC CTCCGACACC TAGGATATC 60
GGATCC 66

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4031 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 6..4019
(D) OTHER INFORMATION: /note= "Maize optimized DNA sequence encoding a VIP2A(a) - VIP1A(a) fusion protein as contained in pCIB5531"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GATCC ATG AAG CGC ATG GAG GCC AAG CTG TTC ATG GTG AGC AAG AAG
Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys 450 455 460

CTC CAG GTG GTG ACC AAG ACC GTG CTG AGC ACC GTG TTC AGC ATC
Leu Gln Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile 465 470 475

AGC CTG CTG AAC AAG GAG GTG ATC AAG GCC GAG CAG CTG AAC ATC AAC
Ser Leu Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn 480 485 490 495

AGC CAG AGC AAG TAC ACC AAC CTC CAG AAC CTG AAG ATC ACC GAC AAG
Ser Glu Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys 500 505 510

GTG GAG GAC TTC AAG GAG GAC AAG GAG AAG GCC AAG GAG TGG GCC AAG 239
Val Glu Asp Phe Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys

515 520 525

GAG AAG GAG AAG GAG TGG AAG CTT ACC GCC ACC GAG AAG GGC AAG ATG
Glu Lys Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met
530 535 540

AAC AAC TTC CTG GAC AAC AAG AAC GAC ATC AAG ACC AAC TAC AAG GAG
Asn Asn Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu
545 550 555

ATC ACC TTC AGC ATA GCC GCC AGC TTC GAG GAC GAG ATC AAG GAC CTG
Ile Thr Phe Ser Ile Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu
560 565 570 575

AAC AAG TTC GAC AAG ATG TTC GAC AAG ACC AAC CTG AGC AAC AGC ATC
Lys Gly Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile
580 585 590

ATC ACC TAC AAG ACC TTC GAG CCC ACC ACC ATC GCC TTC AAG AGC
Ile Thr Tyr Lys Asn Val Glu Pro Thr Ile Gly Phe Asn Lys Ser
595 600 605

CTG ACC GAG GCC AAC ACC ATC AAC AGC GAC ATC GCC ATG GCC CAG TTC AAG
Leu Thr Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys
610 615 620

GAG CAG TTC CTG GAC CGC GAC ATC AAG TTC GAC ATC CAG TAC CTG GAC ACC
Glu Gln Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr
625 630 635

CAC CTG ACC GCC CAG CCC CAG AAG AGC AAG GGC GTG GTG ACC ATC CTG AAG
His Leu Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys
640 645 650 655

GGT ACC GCC GCC GAG GCC AGC GCC ACC ACC CCC ACC AAG GCC GGC
Val Thr Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly
660 665 670

GGT ATC CTG AAC AGC GAG TAC AAG ATG CTG ATC GAC AAC GGC TAC
Val Ile Leu Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr
675 680 685

ATG GGT CAC GTC GAG AAG ATG AAG GTG GTG AAG AAG GCC GTG GAG
Met Val His Val Asp Lys Val Ser Lys Val Val Lys Gly Val Glu
690 695 700

TGC CTC CAG ATC GAG GCC ACC CTG AAG AAG AGT CTA GAC TTC AAG AAC
Cys Leu Gln Ile Glu Gly Thr Leu Lys Lys Ser Leu Asp Phe Asp Lys Asn
705 710 715

GAC ATC AAC GCC GAC CCC CAC CGC TGG GCC ATG AAG AAC TAC GAG GAG
Asp Ile Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu
720 725 730 735
1170 1175 1180

TAC GAG AAG GCC GCC CGC GAC CTG GAC CTG AGC AAC GCC AAG GAG ACC
Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr
1185 1190 1195

TTC AAC CCC CTG GTG GCC GCC TTC CCC ACC GTG AAG GTG AGC ATG GAG
Phe Asn Pro Leu Val Ala Ala Phe Pro Ser Val Asn Val Ser Met Glu
1200 1205 1210 1215

AAG GTG ATC CTG AGC CCC AAC GAG AAC CTG AGC AAC AGC GTG GAG AGC
Lys Val Ile Leu Ser Pro Asn Glu Asn Leu Ser Asn Ser Val Glu Ser
1220 1225 1230

CAC TCG AGC ACC AAC TGG AGC TAC ACC ACC AAC ACC GAG GCC GCC AGC GTG
His Ser Ser Thr Asn Trp Ser Tyr Thr Asn Thr Glu Gly Ala Ser Val
1235 1240 1245

GAG GCC GGC ATC GGT CCC AAG GCC ATC AGC TTC GGC GTG AGC GTG AAG
Glu Ala Gly Ile Gly Pro Lys Gly Ile Ser Phe Gly Val Ser Val Asn
1250 1255 1260

TAC CAG CAC AGC GAG ACC GTG GCC GAG TGG GCC AGC ACC AGC ACC GGC
Tyr Gln His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr Gly
1265 1270 1275

AAC ACC AGC CAG TTC AAC ACC GCC AGC GCC GCC TAC CTG AAC GCC AAC
Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn
1280 1285 1290 1295

GTG CGC TAC AAC AAC GTG GCC ACC GCC GCC ATC TAC GAC GTG AAG CCC
Val Arg Tyr Asn Val Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro
1300 1305 1310

ACC ACC AGC TTC GTG CTG AAG AAC AGC ACC ATC GCC ACC ATC ACC ACC GCC
Thr Thr Ser Phe Val Leu Asn Asn Asp Thr Ile Ala Thr Ile Thr Ala
1315 1320 1325

AAG TCG AAT TCC ACC GCC CTG AAC ATC GCC CCC GCC GAG GCC ACC TAC GCC
Lys Ser Asn Ser Thr Ala Leu Asn Ile Ser Pro Gly Glu Ser Tyr Pro
1330 1335 1340

AAG GCC CAG AAC GCC ATC GCC ATC ACC AGC ATG GAC GCC TAC AAG
Lys Gly Gln Asn Gly Ile Ala Ile Thr Ser Met Asp Asp Phe Asn
1345 1350 1355

AGC CAC CCC ATC ACC CTG AAC AAG AAC CAG GTG GAC AAC CTG CTG AAC
Ser His Pro Ile Thr Leu Asn Lys Lys Gln Val Asp Asn Leu Leu Asn
1360 1365 1370 1375

AAC AAG CCC ATG ATG CTG GAC ACC AAC CAG ACC GCC GTC TAC AAG
Asn Lys Pro Met Met Leu Glu Thr Asn Glu Thr Asp Gly Val Tyr Lys
1380 1385 1390

ATC AAG GAC ACC CAC GCC AAG ATC GTG ACG GCC GCC GAG TGG AAC GGC
2879
Ile Lys Asp Thr His Gly Asn Ile Val Thr Gly Gly Glu Trp Asn Gly
1395 1400 1405

GTG ATC CAG CAG ATC AAG GCC AAG ACC GCC AGC ATC ATC GTC GAC GAC
Val Ile Gln Gin Ile Lys Ala Lys Thr Ala Ser Ile Ile Val Asp Asp
1410 1415 1420

GGA GCA GTG GCC GAG AAG CGC GTG GCC GCC GAG GAC TAC GAG AAC
Gly Glu Arg Val Ala Glu Arg Val Ala Ala Lys Asp Tyr Glu Asn
1425 1430 1435

GAG GAC ACC CCC ACC ACC AGC CTG ACC CTG AAG GCC CTG AAG CTG
Pro Glu Asp Lys Thr Pro Ser Leu Thr Leu Lys Ala Leu Lys Leu
1440 1445 1450 1455

AGC TAC CCC GAC GAG ATC AAG GAG ATC GAG GGC TTG CTG TAC TAC AAC
Ser Tyr Pro Asp Glu Ile Lys Glu Ile Glu Gly Leu Tyr Thr Lys
1460 1465 1470

AAC AAG CCC ATC TAC GAC AGC GTG ATG ACC TAT CTA GAC GAG AAC
Asn Lys Pro Ile Tyr Glu Ser Ser Val Met Thr Tyr Leu Asp Glu Asn
1475 1480 1485

ACC GCC AAG GTG ACC AAG CAG CTG AAG GCC ACC GCC AGC TTC
Thr Ala Lys Glu Val Thr Lys Gin Leu Asn Asp Thr Thr Gly Lys Phe
1490 1495 1500

AAG GAC GTG ACC CAC CTG TAC GAC GTG AAG CTG ACC CCC AAG ATG AAC
Lys Asp Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn
1505 1510 1515

TAC ACC ATG AAG ATC ATC TAC GAC ACC ACC ATC CTG GCC GAC AAG ACC
Val Thr Ile Lys Leu Ser Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp
1520 1525 1530 1535

AAG ATC GGC AAG TGG ACC AAC ACC AAC ATC GTG GGC GGC AAC
Asn Ser Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn
1540 1545 1550

AAG ACC AAC AAG CAG TAC AGC AGC AAC AAC CCC GAC GCC AAG CTG ACC
Asn Gly Lys Lys Gin Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr
1555 1560 1565

CTG AAC ACC GCC CAG GAG AAG CTG AAC AAG AAC GCC AGC GAC TAC TAC
Leu Asn Thr Asp Ala Gin Glu Lys Leu Asn Lys Asn Arg Asp Tyr Tyr
1570 1575 1580

AAC ACC TAC TCA AAG AGC GAG AAG AAC ACC AAG CGC GAC TAC ACC
Ile Ser Leu Tyr Met Lys Ser Glu Lys Asn Thr Gin Cys Glu Ile Thr
1585 1590 1595

AAC GGC GAG GAC ACA TAC CCC ATC ACC AAC AAG ACC GTG AAG GTG AAC
Ile Asp Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn
1600 1605 1610 1615
AAG GAC AAC TAC AAG CGC CTG GAC ATC ATC GCC ACC ATC AAG AGC
Lys Asp Asn Tyr lys Arg Leu Asp Ile Ile Ala His Asn Ile Lys Ser
1620 1625 1630 3551

AAC CCC ATC AGC AGC CTG GAC ATC AAG ACC GAC GAG ATC ACC CTG
Asn Pro Ile Ser Ser Leu His Ile Lys Thr Asp Glu Ile Thr Leu
1635 1640 1645 3599

TTC TGG GAC GAC ATA TCG ATT ACC GAC GTC GCC AGC ATC AAG CCC GAG
Phe Trp Asp Asp Ile Ser Ile Thr Asp Val Ala Ser Ile Lys Pro Glu
1650 1655 1660 3647

AAC CTG ACC GAC AGC GAG ATC AAG CAG ATA TAC AGT CGC TAC GGC ATC
Asn Leu Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile
1665 1670 1675 3695

AAG CTG GAG GAC GGC ATC CTG ATC GAC AAG AAA GGC GGC ATC CAC TAC
Lys Leu Glu Asp Gly Ile Leu Ile Asp Lys Gly Gly Ile His Tyr
1680 1685 1690 1695 3743

GCC GAG TTC ATC AAC GAG GCC AGC TTC AAC ATC GAG CCC CTG CAG AAC
Gly Glu Phe Ile Asn Glu Ala Ser Phe Asn Ile Glu Pro Leu Gln Asn
1700 1705 1710 3791

TAC GTG ACC AAG TAC GTG ACC TAC AGC AGC GAG CTG GCC CCC AAC
Tyr Val Thr Lys Tyr Glu Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn
1715 1720 1725 3839

GTG AGC GAC ACC CTG GAG AGC AAG ATT TAC AAG GAC GGC ACC ATC
Val Ser Asp Thr Leu Glu Ser Asp Lys Ile Tyr Lys Asp Gly Thr Ile
1730 1735 1740 3887

AAG TTC GAC TTC ACC AAG TAC AGC AAG AAC GAC GGG CTG TTC TAC
Lys Phe Asp Phe Thr Lys Tyr Ser Lys Asn Glu Gln Gly Leu Phe Tyr
1745 1750 1755 3935

GAC AGC GGC CTG AAC TGG GAC TTC AAG ATC ACC GCC ATC ACC TAC GAC
Asp Ser Gly Leu Asn Trp Asp Phe Lys Ile Asn Ala Ile Thr Tyr Asp
1760 1765 1770 1775 3983

GCC AAG GAG ATG GCC TTC CAC CGC TAC AAG TAGATC TGGAG
Gly Lys Glu Met Asn Val Phe His Arg Tyr Asn Lys
1780 1785 4029

CT
4031

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1338 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Leu Gln
 1 5 10
Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu
 20 25 30
Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln
 35 40 45
Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu
 50 55 60
Asp Phe Lys Glu Asp Lys Ala Lys Glu Trp Gly Lys Glu Lys
 65 70 75
Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn
 85 90 95
Phe Leu Asp Asn Lys Asn Asp Ile Lys Thr Asn Tyr Lys Glu Ile Thr
 100 105 110
Phe Ser Ile Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu
 115 120 125
Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr
 130 135 140
Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr
 145 150 155 160
Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln
 165 170 175
Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu
 180 185 190
Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr
 195 200 205
Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile
 210 215 220
Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val
 225 230 235 240
His Val Asp Lys Val Ser Lys Val Val Lys Gly Val Glu Cys Leu
 245 250 255
Gln Ile Glu Gly Thr Leu Lys Ser Leu Asp Phe Lys Asn Asp Ile
 260 265 270
Asn Ala Glu Ala His Ser Trp Gly Met Lys Asn Tyr Glu Glu Trp Ala

<table>
<thead>
<tr>
<th>275</th>
<th>280</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Leu</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ile</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Asp</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Lys</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ala Ile Ile Glu Ile Asn Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu 580 590
Lys Gln Val Val His Leu Glu Lys Gly Lys Leu Val Pro Ile Lys Ile 595 600 605
Glu Tyr Gln Ser Asp Thr Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys 610 615 620
Glu Leu Lys Leu Phe Lys Ile Asp Ser Gln Asn Gln Pro Gln Gln Val 625 630 635 640
Gln Gln Asp Glu Leu Arg Asn Pro Glu Phe Asn Lys Glu Ser Gln 645 650 655
Glu Phe Leu Ala Lys Pro Ser Lys Ile Asn Leu Phe Thr Gln Gln Met 660 665 670
Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro 675 680 685
Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Gln Asn Arg Ile Ala Val 690 695 700
Lys Trp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser 705 710 715 720
Asn Pro Leu Glu Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu 725 730 735
Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn 740 745 750
Pro Leu Val Ala Ala Phe Pro Ser Val Asn Val Ser Met Glu Lys Val 755 760 765
Ile Leu Ser Pro Asn Glu Asn Leu Ser Asn Ser Val Glu Ser His Ser 770 775 780 785
Ser Thr Asn Trp Ser Tyr Thr Asn Thr Glu Gly Ala Ser Val Glu Ala 790 795 800
Gly Ile Gly Pro Lys Gly Ile Ser Phe Gly Val Ser Val Asn Tyr Gln 805 810 815
His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr 820 825 830
Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg 835 840 845
Tyr Asn Asn Val Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr 850 855 860
Ser Phe Val Leu Asn Asn Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser
865 870 875 880
Asn Ser Thr Ala Leu Asn Ile Ser Pro Gly Glu Ser Tyr Pro Lys Lys
885 890 895
Gly Gln Asn Gly Ile Ala Ile Thr Ser Met Asp Asp Phe Asn Ser His
900 905 910
Pro Ile Thr Leu Asn Lys Lys Gln Val Asn Leu Leu Asn Asn Lys
915 920 925
Pro Met Met Leu Glu Thr Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys
930 935 940
Asp Thr His Gly Asn Ile Val Thr Gly Gly Glu Trp Asn Gly Val Ile
945 950 955 960
Gln Gln Ile Lys Ala Lys Thr Ala Ser Ile Ile Val Asp Asp Gly Glu
965 970 975
Arg Val Ala Glu Lys Arg Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu
980 985 990
Asp Lys Thr Pro Ser Leu Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr
995 1000 1005
Pro Asp Glu Ile Lys Glu Ile Glu Gly Leu Tyr Tyr Lys Asn Lys
1010 1015 1020
Pro Ile Tyr Glu Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr Ala
1025 1030 1035 1040
Lys Glu Val Thr Lys Gln Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp
1045 1050 1055
Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val Thr
1060 1065 1070
Ile Lys Leu Ser Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser
1075 1080 1085
Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Gly
1090 1095 1100
Lys Lys Gln Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn
1105 1110 1115 1120
Thr Asp Ala Gln Gly Lys Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser
1125 1130 1135
Leu Tyr Met Lys Ser Glu Lys Thr Gln Cys Glu Ile Thr Ile Asp
1140 1145 1150
Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys Asp
- 216 -

Asn Tyr Lys Arg Leu Asp Ile Ile Ala His Asn Ile Lys Ser Asn Pro
1155 1160 1165
1170 1175 1180
Ile Ser Ser Leu His Ile Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp
1185 1190 1195 1200
Asp Asp Ile Ser Ile Thr Asp Val Ala Ser Ile Lys Pro Glu Asn Leu
1205 1210 1215
Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu
1220 1225 1230
Glu Asp Gly Ile Leu Ile Asp Lys Gly Gly Ile His Tyr Gly Glu
1235 1240 1245
Phe Ile Asn Glu Ala Ser Phe Asn Ile Glu Pro Leu Gln Asn Tyr Val
1250 1255 1260
Thr Lys Tyr Glu Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser
1265 1270 1275 1280
Asp Thr Leu Glu Ser Asp Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe
1285 1290 1295
Asp Phe Thr Lys Tyr Ser Lys Asn Glu Gln Gly Leu Phe Tyr Asp Ser
1300 1305 1310
Gly Leu Asn Trp Asp Phe Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys
1315 1320 1325
Glu Met Asn Val Phe His Arg Tyr Asn Lys
1330 1335

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2444 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 17..2444
(D) OTHER INFORMATION: /product= "3A(a) synthetic:native fusion"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GGATCCACCA ATGAAC ATG AAC AAG AAC AAC ACC AAG CTG AGC ACC CGC
Met Asn Lys Asn Asn Thr Lys Leu Ser Thr Arg 49
1 5 10

GCC CTG CCG AGC TTC ATC GAC TAC TTC AAC GGC ATC TAC GGC TTC GCC
Ala Leu Pro Ser Phe Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala 97
15 20 25

ACC GGC ATC AAG GAC ATC ATG AAC ATG ATC TTC AAG ACC GAC ACC GGC
Thr Gly Ile Lys Asp Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly 145
30 35 40

GGC GAC CTG ACC CTG GAC GAG ATC CTG AAG AAC CAG CAG CTG CTG AAC
Gly Asp Leu Thr Leu Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn 193
45 50 55

GAC ATC AGC GGC AAG CTG GAC GGC GTG AAC GGC AGC CTG AAG GAC CTG
Asp Ile Ser Gly Lys Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu 241
60 65 70 75

ATC GCC CAG GGC ACC CTG AAG GAG ATC AAG GATC CTT AAG
Ile Ala Gln Gly Asn Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys 289
80 85 90

GAC GCC ATC AAC GAG CAG AAC ATG CTG GC GCT GTG AAG ATC ACC AGC
Gly Ala Ile Asn Thr Met Leu Arg Val Tyr Lys Arg Val Asn Asn Leu 337
110 115 120 125

GAC GCC ATC AAC ACC ATG CTG GCG CTG TAC CTG CGG AAG ATC ACC AGC
Asp Ala Ile Asn Thr Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser 385
140 145 150 155

ATG CTG AGC GAG GTG ATG AAG CAG AAC TAC GCC CTG AGC CTG CAG ATC
Met Leu Ser Asp Val Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile 433
175 180 185

GAG TAC CTG AGC AAG CAG CTG CAG GAG ATC AGC GAC AAG CTG GAC ATC
Glu Tyr Leu Ser Lys Glu Leu Glu Ile Ser Asp Lys Leu Asp Ile 481
210 215 220

ATC AAC GTG AAC GTC CTG ATC AAC AGC ACC CTG ACC GTG ACC ATC ACC AGC
Ile Asn Val Asn Val Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro 529
250 255 260

GCC TAC CAG CTC AAC ATG TAC GTG AAC GAG AAG TCC GAA GAG CTG ACC
Ala Tyr Glu Arg Ile Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr 577
290 295 300

GAC ATC CTG GAC GAG CTG ACC GAC CTG ACC GAG CTG GCC AAG AGC GTG
625
Asp Ile Leu Asp Glu Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val
205 210 215

ACC AAG AAC GAC GTG GAC GGC TTC GAG TTC TAC CAG ACG ACC TTC CAC
Thr Lys Asn Asp Val Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His
220 225 230 235

GAC GTG ATG GTG GCC AAC AAG CTG TTC GCC AGC AGC GCC GTG AAG ACC
Asp Val Met Val Gly Asn Asp Leu Phe Gly Arg Ser Ala Leu Thr
240 245 250

GCC AGC GAG CTG ATC ACC AAG GAG AAC GTG AAG ACC AGC GCC AGC GAG
Ala Ser Glu Leu Ile Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu
255 260 265

GTG GCC AAC GTG TAC AAC TTC CTG ATC GTG CTG ACC GCC CTG CAG GCC
Val Gly Asn Val Tyr Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala
270 275 280

CAG GCC TTC CTG ACC CTG ACC ACC TGT GCC AAG GTG CTG GCC GTG GCC
Gln Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala
285 290 295

GAC ATC GAC TAC ACC AGC ATG AAC GAG CAC TTG AAC AAG GAG AAG
Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys
300 305 310 315

GAG GAG TTC CGC GTG AAC ATC CTG CGC ACC CTG AGC AAC ACC TTC AGC
Glu Glu Phe Arg Val Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser
320 325 330

AAC COG AAC TAC GCC AAG GTG AAG GCC AGC AGC GAC GAG GAC GCC AAG ATG
Asn Pro Asn Tyr Ala Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met
335 340 345

ATC GTG GAG CTT AAG COG GCC CAC CGG TTG ATC GCC TTC GAG ATC AGC
Ile Val Glu Ala Lys Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser
350 355 360

AAC GAC AGC ATC ACC GTG CAG AAC ATG TAC GAG GCC AAG CTG AAG CAG
Asn Asp Ser Ile Thr Val Lys Val Tyr Glu Ala Lys Leu Lys Gln
365 370 375

AAC TAC CAG GTG GAC AAC AGC TTG AGC GAG GTG ATC TAC GCC GAC
Asn Tyr Glu Val Asp Lys Ser Leu Ser Glu Val Ile Tyr Gly Asp
380 385 390 395

ATG GCC AAC ATC GTG TGT CGG GCC AAC AGC GAG CAA ATC TAC ACC
Met Asp Lys Leu Leu Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr
400 405 410

AAC AAC ATC GTG TTC CGC AAC GAG TAC CTG ATC ACC AAG ATC AAG TTC
Asn Asn Ile Val Phe Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe
415 420 425
CAG AAC GGC GAC GAG GCC TGG GCC GAC AAC TTC ATC ATC CTG GAG ATC
Gln Asn Gly Asp Glu Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ile
655 660 665

AGC CCG AGC GAG AAG CTG CTG AGC CCG GAG CTG ATC AAC ACC AAC AAG
Ser Pro Ser Glu Lys Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Asn
670 675 680

TGG ACC AGC GGC AGC ACC AAC ATC AGC GGC AAC ACC CTG ACC CTG
Trp Thr Ser Thr Gly Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu
685 690 695

TAC CAG GCC GGC CGG ATT CTA AAA CAA ACC CTT CAA TTA GAT AGT
Tyr Gln Gly Gly Arg Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser
700 705 710 715

TTT TCA ACT TAT AGA GTG TAT TTT TCT GTG TCC GGA GAT GCT AAT GTA
Phe Ser Thr Tyr Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val
720 725 730

AGG ATT AGA AAT TCT AGG GAA GTG TTA TTT GAA AAA AGA TAT ATG AGC
Arg Ile Arg Asn Ser Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser
735 740 745

GCT GGT AAA GAT GTT TCT GAA ATG TCC ACT ACA AAA TTT GAG AAA GAT
Gly Ala Lys Asp Val Ser Arg Gly Met Phe Thr Thr Lys Phe Glu Lys Asp
750 755 760

AAC TTT TAT ATA GAG CTT TCT CAA GGG AAT AAT TTA TAT GGT GST OCT
Asn Phe Tyr Ile Glu Leu Ser Gln Gly Asn Leu Tyr Gly Gly Pro
765 770 775

ATT GCA CAT TTT TAC GAT GTC TCT ATT AAG NAA GAT CGG GAT CTA ATA
Ile Val His Phe Tyr Asp Val Ser Ile Lys Xaa Asp Arg Asp Leu Ile
780 785 790 795

TAA ACA GTT TTT AAA AGC NAA TTC TGG TAT AAT GTC CTT GAT T
Leu Thr Val Phe Lys Ser Xaa Phe Leu Tyr Asn Val Leu Asp
800 805

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 809 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:52:
Met Asn Lys Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro Ser Phe
1 5 10 15
Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
 20 25 30
Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Asp Leu Thr Leu
 35 40 45
Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Asp Ile Ser Gly Lys
 50 55 60
Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
 65 70 75 80
Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln
 85 90 95
Asn Gln Val Leu Asn Arg Val Asn Asn Leu Asp Ala Ile Asn Thr
 100 105 110
Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val
 115 120 125
Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys
 130 135 140
Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val
 145 150 155 160
Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
 165 170 175
Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
 180 185 190
Ser Ser Lys Val Lys Asp Gly Ser Pro Ala Asp Ile Leu Asp Glu
 195 200 205
Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
 210 215 220
Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
 225 230 235 240
Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
 245 250 255
Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
 260 265 270
Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Gln Ala Phe Leu Thr
 275 280 285
Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
 290 295 300
Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Phe Arg Val
305 310 315 320

Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
325 330 335

Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
340 345 350 355

Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
360 365

Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp
370 375 380 385

Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
390 395 400

Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe
405 410 415

Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
420 425 430

Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
435 440 445

Glu Ile Asp Leu Asn Lys Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr
450 455 460

Arg Thr Leu Ser Ala Asn Asp Gly Val Tyr Met Pro Leu Gly Val
465 470 475 480

Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
485 490 495

Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg
500 505 510

Glu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
515 520 525

Val Pro Pro Ser Gly Phe Ile Ser Asn Val Glu Asn Gly Ser Ile
530 535 540

Glu Glu Asp Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn Ala Tyr
545 550 555 560

Val Asp His Thr Gly Val Asn Gly Thr Lys Ala Leu Tyr Val His
565 570 575

Lys Asp Gly Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys
580 585 590

Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His
Leu Lys Asp Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn
 610 615 620
Asn Leu Glu Asp Tyr Gln Thr Ile Asn Lys Arg Phe Thr Thr Gly Thr
 625 630 635 640
Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu
 645 650 655
Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ile Ser Pro Ser Glu Lys
 660 665 670
Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Asn Trp Thr Ser Thr Gly
 675 680 685
Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Arg
 690 695 700
Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg
 705 710 715 720
Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg Asn Ser
 725 730 735
Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val
 740 745 750
Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr Ile Glu
 755 760 765
Leu Ser Gln Gly Asn Leu Tyr Gly Gly Pro Ile Val His Phe Tyr
 770 775
Asp Val Ser Ile Lys Xaa Asp Arg Asp Leu Ile Leu Thr Val Phe Lys
 785 790 795 800
Ser Xaa Phe Leu Tyr Asn Val Leu Asp
 805
What is claimed is:

1. A substantially purified *Bacillus* strain which produces a pesticidal protein during vegetative growth wherein said *Bacillus* is not *B. sphaericus* SSII-1.

2. A *Bacillus* strain which produces a pesticidal protein during vegetative growth, wherein said *Bacillus* is *Bacillus cereus* having Accession No. NRRL B-21058.

3. A *Bacillus* strain which produces a pesticidal protein during vegetative growth, wherein said *Bacillus* is *Bacillus thuringiensis* having Accession No. NRRL B-21060.

4. A Bacillus strain which produces a pesticidal protein during vegetative growth, wherein said Bacillus is a Bacillus selected from Accession Numbers NRRL B-21224, NRRL B-21225, NRRL B-21226, NRRL B-21227, NRRL B-21228, NRRL B-21229, NRRL B-21230, and NRRL B-21439.

5. An insect-specific protein isolatable during the vegetative growth phase of *Bacillus* spp. and components thereof, wherein said protein is not the mosquitocidal toxin from *B. sphaericus* SSII-1.

6. The insect-specific protein of claim 5 wherein said *Bacillus* is selected from a *Bacillus thuringiensis* and *B. cereus*.

7. The insect-specific protein of claim 5 wherein said protein is toxic to Coleoptera or Lepidoptera.

8. The insect-specific protein of claim 5 wherein the spectrum of insecticidal activity includes an activity against *Agrotis* and/or *Spodoptera* species, but preferably a black cutworm [*Agrotis ipsilon*; BCW] and/or fall armyworm [*Spodoptera frugiperda*] and/or beet armyworm [*Spodoptera exigua*] and/or tobacco budworm and/or corn earworm [*Helicoverpa zea*] activity.

9. The insect-specific protein of claim 5, wherein said *Bacillus* is *Bacillus cereus* having Accession No. NRRL B-21058.

10. The insect-specific protein of claim 5, wherein said *Bacillus* is *Bacillus thuringiensis* having Accession No. NRRL B-21060.
11. The insect-specific protein of claim 5, wherein said Bacillus is a Bacillus selected from Accession Numbers NRRL B-21224, NRRL B-21225, NRRL B-21226, NRRL B-21227, NRRL B-21228, NRRL B-21229, NRRL B-21230, and NRRL B-21439.

12. The insect-specific protein of claim 5 wherein said protein has a molecular weight of about 30 kDa or greater.

13. The insect-specific protein of claim 12 wherein said protein has a molecular weight of about 60 to about 100 kDa.

14. The insect-specific protein of claim 13, wherein said protein has a molecular weight of about 80 kDa.

15. The insect-specific protein of claim 5, wherein said protein comprises a sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:7, including homologues thereof.

16. The insect-specific protein of claim 5, wherein said protein has the sequence selected from the group consisting of SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:29 SEQ ID NO:32 and SEQ ID NO:2 including homologues thereof.

17. The insect-specific protein of claim 8, wherein said protein has the sequence selected from the group consisting of SEQ ID NO:29 and SEQ ID NO:32 including homologues thereof.

18. An insect-specific protein according to any one of claims 5 to 15, wherein the sequences representing the secretion signal have been removed or inactivated.

19. An auxiliary protein which enhances the insect-specific activity of an insect-specific protein.

20. The auxiliary protein of claim 19 wherein said auxiliary protein has a molecular weight of about 50 kDa.

21. The auxiliary protein of claim 19 wherein said auxiliary protein is from Bacillus cereus.

22. The auxiliary protein of any one of claims 19 to 21 wherein both the said auxiliary protein as well as said insect-specific protein is from strain AB78.
23. An auxiliary protein according to any one claims 19 to 22, wherein the sequences representing the secretion signal have been removed or inactivated.

24. A multimeric pesticidal protein, which comprises more than one polypeptide chain and wherein at least one of the said polypeptide chains represents an insect-specific protein of any one of claims 5 to 18 and at least one of the said polypeptide chains represents an auxiliary protein according to any one of claims 19 to 23, which activates or enhances the pesticidal activity of the said insect-specific protein.

25. The multimeric pesticidal protein according to claim 24 having a molecular weight of about 50 kDa to about 200 kDa.

26. The multimeric pesticidal protein of claim 25 comprising an insect-specific protein of any one of claims 5 to 18 and an auxiliary protein according to any one of claims 19 to 23, which activates or enhances the pesticidal activity of the said insect-specific protein.

27. A fusion protein comprising several protein domains including at least an insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 produced by in frame genetic fusions, which, when translated by ribosomes, produce a fusion protein with at least the combined attributes of the insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 and, optionally, of the other components used in the fusion.

28. A fusion protein according to claim 27, comprising a ribonuclease S-protein, an insect-specific protein of any one of claims 5 to 18 and an auxiliary protein according to any one of claims 19 to 23.

29. A fusion protein according to claim 27 comprising an insect-specific protein according to claim 5 and an auxiliary protein according to claim 19 having either the insect-specific protein or the auxiliary protein at the N-terminal end of the said fusion protein.

30. A fusion protein according to claim 29, comprising an insect-specific protein as given in SEQ ID NO: 5 and an auxiliary protein as given in SEQ ID NO: 2 resulting in the protein given in SEQ ID NO: 23 including homologues thereof.
31. A fusion protein according to claim 29, comprising an insect-specific protein as given in SEQ ID NO: 35 and an auxiliary protein as given in SEQ ID NO: 27 resulting in the protein given in SEQ ID NO: 50 including homologues thereof.

32. A fusion protein according to claim 28 comprising an insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 fused to a signal sequence, which is of heterologous origin with respect to the recipient protein.

33. A fusion protein according to claim 32, wherein the said signal sequence is a secretion signal.

34. A fusion protein according to claim 32, wherein the said signal sequence is a targeting sequence that directs the transgene product to a specific organelle or cell compartment.

35. A fusion protein according to claim 33 wherein the said protein has a sequence as given in SEQ ID NO: 43 including homologues thereof.

36. A fusion protein according to claim 34 wherein the said protein has a sequence as given in SEQ ID NO: 46 including homologues thereof.

37. A DNA molecule comprising a nucleotide sequence which encodes the protein of any one of claims 5-7, 9, 10, 12-15, and 19-22.

38. A DNA molecule comprising a nucleotide sequence which encodes the protein of any one of claims 8, 11, 16-18 and 23 to 36.

39. A DNA molecule comprising a nucleotide sequence which encodes an insect-specific protein isolatable during the vegetative growth phase of Bacillus spp. and components thereof, wherein said protein is not the mosquitocidal toxin from B. sphaericus SSII-1.

40. The DNA molecule of claim 39, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO: 4, or SEQ ID NO: 6 including homologues thereof.

41. The DNA molecule of claim 39, wherein the said molecule comprises a nucleotide sequence as given SEQ ID NO: 19, SEQ ID NO: 28, SEQ ID NO: 31, or SEQ ID NO: 1 including homologues thereof.
42. A DNA molecule comprising a nucleotide sequence which encodes an auxiliary protein which enhances the insect-specific activity of an insect-specific protein.

43. The DNA molecule of claim 42 wherein the said molecule comprises a nucleotide sequence as given SEQ ID NO:19 including homologues thereof.

44. The DNA molecule according to any one of claims 37, 39, 40 or 42 which comprises a nucleotide sequence that has been optimized for expression in a microorganism.

45. The DNA molecule according to claim 37, 39, 40 or 42 which comprises a nucleotide sequence that has been optimized for expression in a plant.

46. The DNA molecule according to any one of claims 38, 41, or 43 which comprises a nucleotide sequence that has been wholly or partially optimized for expression in a microorganism.

47. The DNA molecule according to claim 38, 41 or 43 which comprises a nucleotide sequence that has been optimized for expression in a plant.

48. The DNA molecule of claim 45, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:17 or SEQ ID NO:18 including homologues thereof.

49. The DNA molecule of claim 47, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:27, or SEQ ID NO:30 including homologues thereof.

50. A DNA molecule which comprises a nucleotide sequence encoding a multimeric pesticidal protein, which comprises more than one polypeptide chains and wherein at least one of the said polypeptide chains represents an insect-specific protein of any one of claims 5 to 18 and at least one of the said polypeptide chains represents an auxiliary protein according to any one of claims 19 to 23, which activates or enhances the pesticidal activity of the said insect-specific protein.

51. The DNA molecule of claim 50 comprising a nucleotide sequence encoding an insect-specific protein of any one of claims 5 to 18 and an auxiliary protein according to any one of claims 19 to 23, which activates or enhances the pesticidal activity of the said insect-specific protein.
52. The DNA molecule of claim 51, wherein said molecule comprises a nucleotide sequence as given in SEQ ID NO:1 or SEQ ID NO:19 including homologues thereof.

53. A DNA molecule which encodes a fusion protein comprising several protein domains including at least an insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 produced by in frame genetic fusions, which, when translated by ribosomes, produce a fusion protein with at least the combined attributes of the insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 and, optionally, of the other components used in the fusion.

54. The DNA molecule of claim 53 which encodes a fusion protein comprising an insect-specific protein according to claim 5 and an auxiliary protein according to claim 19 having either the insect-specific protein or the auxiliary protein at the N-terminal end of the said fusion protein.

55. The DNA molecule of claim 53, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:22 including homologues thereof.

56. The DNA molecule of claim 53 which encodes a fusion protein comprising an insect-specific protein of any one of claims 5 to 18 and/or an auxiliary protein according to any one of claims 19 to 23 fused to a signal sequence, which is of heterologous origin respective to the recipient DNA.

57. The DNA molecule of claim 56, wherein the said signal sequence is a secretion signal.

58. The DNA molecule of claim 56, wherein the said signal sequence is a targeting sequence that directs the transgene product to a specific organelle or cell compartment.

59. The DNA molecule according to any one of claims 53 to 58, wherein at least one of its component sequences comprises a nucleotide sequence that has been optimized for expression in a microorganism.

60. The DNA molecule according to any one of claims 53 to 58, wherein at least one of its component sequences comprises a nucleotide sequence that has been optimized for expression in a plant.
61. The DNA molecule of claim 60, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO:42, SEQ ID NO:45, or SEQ ID NO:49 including homologues thereof.

62. The DNA molecule of claim 45, wherein the sequences encoding the secretion signal have been removed from its 5' end.

63. The DNA molecule of claim 62, wherein the said molecule comprises a nucleotide sequence as given in SEQ ID NO: 35 or SEQ ID NO:39 including homologues thereof.

64. A DNA molecule which hybridizes to a DNA molecule according to any one of claims 37-63 under moderately stringent conditions and which molecule has insect-specific activity.

65. The DNA molecule of claim 64, wherein hybridization occurs at 65°C in a buffer comprising 7% SDS and 0.5 M sodium phosphate.

66. An insect specific protein wherein the said protein is encoded by a DNA molecule according to claims 64 or 65.

67. An expression cassette comprising a DNA molecule according to any one of claims 37, 39, 40, 42, 44, 45 or 48 operably linked to plant expression sequences including the transcriptional and translational regulatory signals necessary for expression of the associated DNA constructs in a host organism and optionally further regulatory sequences.

68. An expression cassette comprising a DNA molecule according to any one of claims 38, 41, 43, 46, 47 or 49-65 operably linked to plant expression sequences including the transcriptional and translational regulatory signals necessary for expression of the associated DNA constructs in a host organism and optionally further regulatory sequences.

69. An expression cassette according to claim 67, wherein the said host organism is a plant.

70. An expression cassette according to claim 68, wherein the said host organism is a plant.

71. A vector molecule comprising an expression cassette according to claim 67 or 69.

72. A vector molecule comprising an expression cassette according to claim 68 or 70.
73. An expression cassette according to claims 69 or 70 or a vector molecule according to claims 71 or 73 which is part of the plant genome.

74. A host organism comprising a DNA molecule according to any one of claims 37, 39, 40, 42, 44, 45 or 48, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the genome of the host organism.

75. A host organism comprising a DNA molecule according to any one of claims 38, 41, 43, 46, 47 or 49-65, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the genome of the host organism.

76. A host organism according to claim 74 or 75, selected from the group consisting of plant and insect cells, bacteria, yeast, baculoviruses, protozoa, nematodes and algae.

77. A transgenic plant including parts as well as progeny and seed thereof comprising a DNA molecule according to any one of claims 37, 39, 40, 42, 44, 45 or 48, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the plant genome.

78. A transgenic plant including parts as well as progeny and seed thereof comprising a DNA molecule according to any one of claims 38, 41, 43, 46, 47 or 49-65, an expression cassette comprising the said DNA molecule or a vector molecule comprising the said expression cassette, preferably stably incorporated into the plant genome.

79. A transgenic plant including parts as well as progeny and seed thereof which has been stably transformed with a DNA molecule according to any one of claims 38, 41, 43, 46, 47 or 49-65.

80. A transgenic plant including parts as well as progeny and seed thereof which expresses an insect-specific protein according to any one of claims 5, 7, 9, 10, 12-15, or 19-22.

81. A transgenic plant including parts as well as progeny and seed thereof which expresses an insect-specific protein according to any one of claims 8, 11, 16-18, 23-36 or 66.
82. The transgenic plant according to claim 80 or 81, which further expresses a second distinct insect control principle.

83. The transgenic plant of claim 82, wherein said second insect control principle is a Bt δ-endotoxin.

84. A transgenic plant according to any one of claims 77-83, which is a maize plant.

85. A transgenic plant according to any one of claims 77 to 84, which is a hybrid plant.

86. Plant propagating material of a plant according to any one of claims 77 to 84 treated with a seed protectant coating.

87. A microorganism transformed with an expression cassette according to any one of claims 67 to 70 and/or a vector molecule according to any one of claims 71 or 72, wherein the said microorganism is preferably a microorganism that multiply on plants.

88. The microorganism of claims 87, which is a root colonizing bacterium.

89. An encapsulated insect-specific protein which comprises a microorganism of any one of claims 87 or 88 comprising an insect specific protein according to claims 18 or 23.

90. An entomocidal composition comprising a host organism of any one of claims 74-76 in an insecticidally-effective amount together with a suitable carrier.

91. An entomocidal composition comprising a purified Bacillus strain according to any one of claims 1 to 4 in an insecticidally-effective amount together with a suitable carrier.

92. An entomocidal composition comprising an isolated protein molecule according to any one of claims 5 to 36 and 66, alone or in combination with a host organism of any one of claims 74-76 and/or an encapsulated insect-specific protein according to claim 89 in an insecticidally-effective amount, together with a suitable carrier.

93. A method of obtaining a purified insect-specific protein according to any one of claims 5 to 36 said method comprising applying a solution comprising said insect-specific protein to a NAD column and eluting bound protein.

94. A method for identifying insect activity of an insect-specific protein according to any one of claims 5 to 36, said method comprising:
(a) growing a *Bacillus* strain in a culture;
(b) obtaining supernatant from said culture;
(c) allowing insect larvae to feed on diet with said supernatant; and,
(d) determining mortality.

95. A method for isolating an insect-specific protein according to any one of claims 5 to 36, said method comprising:
(a) growing a *Bacillus* strain in a culture;
(b) obtaining supernatant from said culture; and,
(c) isolating said insect-specific protein from said supernatant.

96. A method for isolating a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein exhibiting the insecticidal activity of the proteins according to any one of claims 5 to 36, said method comprising:
(a) obtaining a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein; and
(b) hybridizing said DNA molecule with DNA obtained from a *Bacillus* species; and
(c) isolating said hybridized DNA.

97. A method of increasing insect target range by using an insect specific protein according to any one of claims 5 to 36 in combination with at least one second insecticidal protein that is different from the insect specific protein according to any one of claims 5 to 36.

98. A method of increasing insect target range wherein an insect specific protein according to any one of claims 5 to 36 is expressed in a plant together with a at least one second insecticidal protein that is different from the insect specific protein according to any one of claims 5 to 36.

99. A method according to claim 97 or 98 wherein the second insecticidal protein is selected from the group consisting of *Bt* δ-endotoxins, protease inhibitors, lectins, α-amylases and peroxidases.

100. A method of protecting plants against damage caused by an insect pest comprising applying to the plant or the growing area of the said plant an entomocidal composition according to any one of claims 90 to 92.
101. A method of protecting plants against damage caused by an insect pest comprising applying to the plant a toxin protein according to any one of claims 5 to 36.

102. A method of protecting plants against damage caused by an insect pest comprising planting a transgenic plant expressing a insect-specific protein according to any one of claims 5 to 36 within an area where the said insect pest may occur.

103. A method of producing a host organism according to claim 74 to 76 comprising transforming the said host organism with a DNA molecule according to any one of claims 67 to 70 and 73 or a vector molecule according to claim 71 and 72.

104. A method of producing a transgenic plant or plant cell according to any one of claims 77 to 85 comprising transforming the said plant and plant cell, respectively, with an expression cassette according to any one of claims 70 or 73 or a vector molecule according to claim 72.

105. A method of producing an entomocidal composition according to any one of claims 90 to 92 comprising mixing a Bacillus strain according to any one of claims 1 to 4 and/or a host organism according to claim 74 to 76 and/or an isolated protein molecule according to any one of claims 5 to 36 and 66, and/or an encapsulated protein according to claim 89 in an insecticidally-effective amount with a suitable carrier.

106. A method of producing transgenic progeny of a transgenic parent plant comprising stably incorporated into the plant genome a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein according to any one of claims 5 to 36 and 66 comprising transforming the said parent plant with an expression cassette according to any one of claims 70 or 73 or a vector molecule according to claim 72, and transferring the pesticidal trait to the progeny of the said transgenic parent plant involving known plant breeding techniques.

107. A oligonucleotide probe capable of specifically hybridizing to a nucleotide sequence encoding an insect-specific protein isolatable during the vegetative growth phase of Bacillus spp. and components thereof, wherein said protein is not the mosquitocidal toxin from B. sphaericus SSII-1, wherein said probe comprises a contiguous portion of the coding sequence for the said insect-specific protein at least 10 nucleotides in length.
108. Use of a oligonucleotide probe for screening of any *Bacillus* strain or other organisms to determine whether the insect-specific protein is naturally present or whether a particular transformed organism includes the said gene.

109. A DNA molecule comprising a nucleotide sequence which encodes the protein of any one of claims 8, 11, 16-18 and 23 to 36 obtainable by a process comprising
(a) obtaining a DNA molecule comprising a nucleotide sequence encoding an insect-specific protein; and
(b) hybridizing said DNA molecule with an oligonucleotide probe according to claim 107 obtained from a DNA molecule comprising a nucleotide sequence as given in SEQ ID NO: 28, SEQ ID NO: 30, or SEQ ID NO: 31; and
(c) isolating said hybridized DNA.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/32, C07K14/32, C07K14/325, C12N15/62, C12Q1/68, C12N15/62, C01N63/00, A01H5/00, C12N1/21, G01N33/00, C07K16/12, C12N15/84, (C12N1/21, C12R1:07:1:19, 1:085, 1:91)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K C12N A01N A01H C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>WO,A,94 21795 (CIBA GEIGY AG ;WARREN GREGORY W (US); KOZIEL MICHAEL G (US); MULLI) September 1994 see the whole document</td>
<td>1-109</td>
</tr>
<tr>
<td>P,X</td>
<td>JOURNAL OF APPLIED TOXICOLOGY 15 (5). 1995. 365-373. ISSN: 0260-437X. TAVABALI A F ET AL 'Semiautomated quantification of cytotoxic damage induced in cultured insect cells exposed to commercial Bacillus thuringiensis biopesticides.' see the whole document</td>
<td>1,5,7,8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish thepublication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

A document member of the same patent family

Date of the actual completion of the international search 16 January 1996

Date of mailing of the international search report 05.03.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer Hix, R
INTERNATIONAL SEARCH REPORT

Category	**Citation of document, with indication, where appropriate, of the relevant passages**	**Relevant to claim No.**
X | CURR MICROBIOL 17 (6). 1988. 347-350. CODEN: CUMIDD ISSN: 0343-8651, SEKAR V 'THE INSECTICIDAL CRYSTAL PROTEIN GENE IS EXPRESSED IN VEGETATIVE CELLS OF BACILLUS - THURINGIENSIS -VAR-TENEBRIONIS.' see the whole document | 1,5-7, 13,14
X | APPL. ENVIRON. MICROBIOL. (1986), 52(4), 650-3 CODEN: AEMIDF;ISSN: 0099-2240, 1986 WALThER, COREY J. ET AL 'Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis' see the whole document | 1,5,6
X | J MOL BIOL 191 (1). 1986. 13-22. CODEN: JMOBAK ISSN: 0022-2836, WARD E S ET AL 'BACILLUS - THURINGIENSIS -VAR-ISRAELENSIS DELTA ENDOTOXIN CLONING AND EXPRESSION OF THE TOXIN IN SPOROGENIC AND ASPOROGENIC STRAINS OF BACILLUS -SUBTILIS.' see the whole document | 1,5,6, 12,37, 39,92
X | BIOTECHNOLOGY, vol. 11, February 1993 pages 194-200, M.G. KOZIEL ET AL. 'Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis' see the whole document | 5,6,37, 39, 67-74, 77,80, 84,85, 102
Y | | 27-29, 32-34, 53,54, 56-58, 62,64, 78,79, 81-83, 86-91, 93,94, 96-101, 103-106

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BIOSCIENCE, BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 56, no. 9, September 1992, pages 1429-1433, H. YOSHISUE 'Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of Bti 130-kDa crystal protein in Escherichia coli.'</td>
<td>5,19, 24-26, 37-39, 42,44, 46,50, 51,64,66</td>
</tr>
<tr>
<td>Y</td>
<td>see the whole document</td>
<td>27-29, 32-34, 53-54, 56-58, 62,64, 78,79, 81-83, 86-91, 93,94, 96-101, 103-106</td>
</tr>
<tr>
<td>X</td>
<td>WO,A,91 16434 (ECOGEN INC) 31 October 1991</td>
<td>1,5-8, 13,14, 37-39, 67,71, 74,76, 92,95</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td>---</td>
</tr>
<tr>
<td>X</td>
<td>WO,A,90 13651 (ICI PLC) 15 November 1990</td>
<td>1,5-8, 13,14, 37-39, 67,71, 74,76, 92,95</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td>---</td>
</tr>
<tr>
<td>X</td>
<td>PLASMID, vol. 16, no. 3, November 1986 page 230 A.S. SHIVAKUMAR ET AL. 'Cloned crystal protein genes express vegetatively in Bacillus subtilis.' see abstract</td>
<td>1,5,6</td>
</tr>
<tr>
<td></td>
<td>see abstract</td>
<td>---</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>P,A</td>
<td>WO,A,95 15383 (UNIV SINGAPORE ; THANABALU THIRUMARAN (SG); PORTER ALAN GEORGE (SG)) 8 June 1995 see the whole document</td>
<td>1-109</td>
</tr>
<tr>
<td>A</td>
<td>JOURNAL OF BACTERIOLOGY, vol. 174, no. 15, August 1992 pages 5051-5056, T. THANABALU ET AL 'Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus SSII-1' see the whole document</td>
<td>1-109</td>
</tr>
<tr>
<td>A</td>
<td>JOURNAL OF BACTERIOLOGY, vol. 175, no. 8, April 1993 pages 2314-2320, T. THANABALU ET AL 'Cytotoxicity and ADP-Ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus SSII-1: possible roles of the 27- and 70-kilodalton peptides.' see the whole document</td>
<td>1-109</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2157297</td>
</tr>
<tr>
<td>WO-A-9116434</td>
<td>31-10-91</td>
<td>AU-B- 647121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 7687391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0528823</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-T- 131537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 617110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 1782388</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR-B- 1000468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-A- 86237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 2501439</td>
</tr>
<tr>
<td>WO-A-9013651</td>
<td>15-11-90</td>
<td>AT-T- 128185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 629349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 5630390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D- 69022590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 4505250</td>
</tr>
<tr>
<td>WO-A-9515383</td>
<td>08-06-95</td>
<td>AU-B- 1114495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 2289049</td>
</tr>
</tbody>
</table>