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NOVELTY DETECTION USING DEEP
LEARNING NEURAL NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority to U.S.
Provisional Patent Application No. 62/831,027, filed Apr. 8,
2019, entitled “LAYERWISE INFORMATION LOSS-
BASED NOVELTY DETECTION,” the content of which is
hereby incorporated by reference herein in its entirety.

BACKGROUND

Field

The disclosed technology generally relates to novelty
detection and more particularly to novelty detection using a
deep learning neural network.

Description of the Related Art

Generally, novelty detection refers to data analysis meth-
ods or processes that include recognizing a difference
between an input, e.g., test data, and previous inputs. The
previous inputs can be, e.g., data used during training a
learning system such as a neural network. Its practical
importance and challenging nature have led researchers to
propose many models and approaches. Novelty detection
methods are particularly valuable when analyzing datasets in
which a relatively large number of examples that can be
categorized or labeled as being “normal” (sometime also
referred to as positive examples or inliers) is available, while
a significantly smaller or insufficient number of examples
that can be categorized or labeled as being “abnormal”
(sometimes also referred to as negative examples or outliers)
is available.

Some novelty detection techniques using deep learning
neural networks have been proposed for various applica-
tions. In some novelty detection methods, an input is pro-
cessed through a deep learning neural network to obtain an
output that describes the input, and a comparison between
the output and the input may be used to determine novelty.
However, there is a need for improved novelty detection
methods using a deep learning neural network.

SUMMARY

In one aspect, a method for detecting novelty using a deep
learning neural network model comprises providing a deep
learning neural network model. The deep learning neural
network model comprises an encoder comprising a plurality
of encoder layers and a decoder comprising a plurality of
decoder layers. The method additionally comprises feeding
a first input into the encoder and successively processing the
first input through the plurality of encoder layers to generate
a first encoded input, wherein successively processing the
first input comprises generating a first intermediate encoded
input from one of the encoder layers prior to generating the
first encoded input. The method additionally comprises
feeding the first encoded input from the encoder into the
decoder and successively processing the first encoded input
through the plurality of decoder layers to generate a first
reconstructed output. The method additionally comprises
feeding the first reconstructed output from the decoder as a
second or subsequent input into the encoder and succes-
sively processing the first reconstructed output through the
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plurality of encoder layers, wherein successively processing
the first reconstructed output comprises generating a second
intermediate encoded input from the one of the encoder
layers. The method further comprises detecting a novelty of
the original input based on a comparison of the first inter-
mediate encoded input and the second intermediate encoded
input.

In another aspect, an electronic apparatus for detecting
novelty of a sensor data using a deep learning neural
network model comprises a deep learning neural network
module comprising an autoencoder, wherein the autoen-
coder comprises an encoder comprising a plurality of
encoder layers and a decoder comprising a plurality of
decoder layers. The encoder is configured to receive from a
test data generating module a first input comprising a sensor
data and to successively process the first input through the
plurality of encoder layers to generate a first encoded input,
wherein successively processing the first input comprises
generating a first intermediate encoded input from one of the
encoder layers prior to generating the first encoded input.
The decoder is configured to receive the first encoded input
from the encoder and to successively process the first
encoded input through the plurality of decoder layers to
generate a first reconstructed output. The encoder is further
configured to receive the first reconstructed output as a
second input and to successively process the first recon-
structed output through the plurality of encoder layers,
wherein successively processing the first reconstructed out-
put comprises generating a second intermediate encoded
input from one of the encoder layers. The deep learning
neural network module is configured to compute a novelty
score of the first input using the first intermediate encoded
input and the second intermediate encoded input. The elec-
tronic apparatus additionally includes a novelty metric out-
put module configured to output the novelty score.

In another aspect, a non-transitory computer-readable
medium has stored thereon executable instruction that when
executed cause a computing device to perform steps for
detecting novelty of a sensor data using a deep learning
neural network model. The steps comprise providing a deep
learning neural network model comprising an autoencoder
on an electronic device. The autoencoder comprises an
encoder comprising a plurality of encoder layers and a
decoder comprising a plurality of decoder layers. The steps
additionally comprise feeding a first input comprising a
sensor data into the encoder and successively processing the
first input through the plurality of encoder layers to generate
a first encoded input, wherein successively processing the
first input comprises generating a first intermediate encoded
input from one of the encoder layers prior to generating the
first encoded input. The steps additionally comprise feeding
the first encoded input into the decoder and successively
processing the first encoded input through the plurality of
decoder layers to generate a first reconstructed output. The
steps additionally comprise feeding the first reconstructed
output as a second input into the encoder and successively
processing the first reconstructed output through the plural-
ity of encoder layers, wherein successively processing the
first reconstructed output comprises generating a second
intermediate encoded input from one of the encoder layers.
The steps additionally comprise computing a novelty score
of the first input using the first intermediate encoded input
and the second intermediate encoded input. The steps further
comprise outputting the novelty score.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of a method for detecting novelty
using a deep learning neural network, according to embodi-
ments.
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FIG. 2 is a schematic illustration of an autoencoder having
a deep learning architecture for detecting novelty, according
to embodiments.

FIG. 3 is a flow chart of a method of processing a first
input, which may be a sensor data, through a plurality of
encoder layers to generate one or more first intermediate
encoded inputs, according to embodiments.

FIG. 4 is a flow chart of a method of processing a first
encoded input, which may be generated by an encoder as
illustrated in FIG. 3, through a plurality of decoder layers to
generate a first reconstructed output, according to embodi-
ments.

FIG. 5 is a flow chart of a method of processing a first
reconstructed output, which may be generated by a decoder
as illustrated in FIG. 4, through the plurality of encoder
layers to generate one or more second intermediate encoded
inputs, according to embodiments.

FIG. 6 A schematically illustrates a method of quantifying
a detected novelty by using one or more pairs of first and
second intermediate encoded inputs, which may be gener-
ated according to methods illustrated in FIGS. 3-5, accord-
ing to embodiments.

FIG. 6B is an example algorithm for implementing the
method illustrated in FIG. 6A, according to embodiments.

FIG. 7A is a simplified conceptual representation of a
distribution of first intermediate encoded inputs and of
second intermediate encoded inputs in a vector space under
a schematic example circumstance.

FIG. 7B is a simplified conceptual representation of a
distribution of first intermediate encoded inputs and second
intermediate encoded inputs in a vector space under a
schematic example circumstance.

FIG. 8 schematically illustrates a method of processing a
first encoded input, which may be generated by an encoder
as illustrated in FIG. 3, through a plurality of decoder layers
to generate one or more intermediate decoded outputs,
according to embodiments.

FIG. 9 illustrates graphs of novelty scores experimentally
obtained using a novelty detection method according to
embodiments in which the number of intermediate encoded
inputs is varied.

FIG. 10 illustrates graphs of distributions of novelty score
experimentally obtained using a novelty detection method
according to embodiments.

FIG. 11 schematically illustrates a functional block dia-
gram of an electronic apparatus incorporating an autoen-
coder module having a deep learning architecture for detect-
ing novelty, according to embodiments.

DETAILED DESCRIPTION

Generally, novelty detection refers to data analysis meth-
ods or processes that include detecting or recognizing a
difference between an input, e.g., data to be tested, and
previous inputs. The previous inputs can be, e.g., data used
during training a learning system such as a neural network.
Novelty detection has gained much research and develop-
ment attention for application in various systems. Novelty
detection can be particularly useful in systems, e.g., mission-
critical systems, in which it may be possible to acquire a
relatively large data set corresponding to a “normal” class
for training a learning system of its behaviors or character-
istics, while a data set corresponding to an “abnormal” class
may be relatively scarce and therefore difficult to train the
learning system of its behaviors or characteristics. In these
modern high-integrity systems, only a limited understanding
of the relationships between the various system components
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may be available for training a neural network model. In
these systems, a relatively small number of example data
sets representing negative instances (e.g., data indicative of
abnormal system behavior) may be available. In addition, a
relatively large number of possible “abnormal” modes may
exist, many of which may not be known a priori, such that
training a neural network of their characteristics may be
impractical. As a result, conventional multi-class classifica-
tion schemes may be unsuitable for these applications. A
solution to such circumstances may be offered by novelty
detection, in which a description of normality is learnt by
constructing a model in which a relatively large number of
example data sets representing positive instances (e.g., data
indicative of normal system behavior) may be relatively
easily collected or available. Previously unseen patterns of
behaviors or characteristics are then tested by comparing
them with a model of normality to detect novelty. A novelty
score, which may or may not be probabilistic, may be
compared to a decision threshold, based on which the test
data may be determined to be “abnormal” if the threshold is
exceeded.

In recent years, novelty detection techniques using deep
learning neural networks have been proposed for various
applications. Some novelty detection methods that use a
deep neural network utilize reconstruction error to detect
novelty, because discriminative learning schemes are not
suitable for highly class-imbalanced data which is common
in various applications as described above. Some unsuper-
vised and semi-supervised learning models can handle such
imbalance by focusing on characterization of normality and
detecting samples out of the normality: e.g., principal com-
ponent analysis (PCA) for linearity and autoencoders for
non-linearity. Variational autoencoders (VAE) have been
used to model normality by identifying a lower dimensional
space that compressively represents principal information of
normal data, and finding data that cannot be effectively
represented in that space by measuring a reconstruction error
in the original space. Some other novelty detection methods
use a generative adversarial network (GAN) to model a
distribution of normal data. Despite having the same general
objective of discovering a proper lower dimension, GAN
uses as a criterion the quality of synthetic data from the low
dimensional space rather than reconstruction quality of
training data. Some methods combine autoencoders with an
adversarial learning scheme, to meet its quality of both
dimension reduction and generation. However, the inventors
have recognized a shortcoming of some of these methods
based on using ordinary reconstruction error, which is that
they do not exploit all the information found along a
projection pathway, e.g., intermediate outputs by interme-
diate layers of deep autoencoders.

As described herein, an intermediate output refers to an
output generated by a hidden layer of a deep neural network
by only partially processing an input therethough, prior to
obtaining an output. When the deep neural network includes
an autoencoder, an intermediate output can be generated by
a hidden layer of an encoder or a decoder of an autoencoder.
As describe herein, an intermediate output that is generated
by a hidden layer of the encoder of the autoencoder may be
referred to as an intermediate encoded input, while an
intermediate output that is generated by a hidden layer of the
decoder of the autoencoder may be referred to herein as an
intermediate decoded output or an intermediate recon-
structed output.

Novelty detection methods can be set up differently based
on the diversity of normal data in a training data set. For a
given labeled data set, in some methods, a small fraction of
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classes is designated as being normal, while in some other
methods, a majority of classes is designated as being normal.
The former approach has been used in one class classifica-
tion context, where evaluation may be performed by orga-
nizing training data into collection of samples belonging to
a small number of normal classes. On the other hand, the
latter approach assumes greater diversity of normal data by
constructing a training data set with samples of a relatively
large number of normal classes: e.g., nine digits with Modi-
fied National Institute of Standards and Technology
(MNIST) database.

As described above, in some novelty detection methods,
an input is processed through an autoencoder of a deep
learning neural network, and a reconstruction error obtained
therefrom is used to determine novelty. However, using a
reconstruction error to determine novelty can be inadequate
for detecting novelty under some circumstances. For
example, various novelty detection methods using a deep
learning autoencoder measure the quality of reconstruction
only in the input space, e.g., by comparing an input with a
reconstructed output. That is, such methods do not fully
utilize intermediate outputs in the hierarchical hidden spaces
by the intermediate layers of the deep learning autoencoder.
Such methods can result in a significant loss of valuable
information, because outputs by the intermediate layers can
yield valuable that maybe lost in the overall reconstructed
output by the autoencoder. It will be appreciated that, even
if two inputs processed through an autoencoder result in the
same reconstructed output, their hidden representations or
intermediate outputs by the intermediate layers may not be
identical. As a result, in these methods, valuable information
from hidden spaces that may be hierarchically identified by
the deep architecture may be lost.

To address these and other shortcomings of novelty
detection using a deep learning autoencoder, embodiments
of novelty detection disclosed herein advantageously
include detecting novelty of a data sample by evaluating its
reconstruction along a projection pathway, or intermediate
encoded or decoded outputs, of the autoencoder. As
described herein, a projection pathway refers to a path
including a sequence of mappings defined by different layers
of the autoencoder. Unlike some novelty detection methods
that compare an input and its reconstructed output to detect
novelty, various methods according to embodiments extend
the space of the comparison into hidden spaces. For
example, pairs of hidden representations of the input and its
reconstruction are obtained, which may be aggregated to
quantify novelty of the input. For example, a pair of hidden
representation may include a first intermediate encoded
input obtained from an intermediate layer of an encoder by
processing an original input through hidden layers of the
encoder up to and including that intermediate layer, and a
second intermediate encoded input obtained from the same
intermediate layer of the encoder by processing a recon-
structed output from the autoencoder though the hidden
layers of the encoder up to and including the same interme-
diate layer.

In addition, embodiments of novelty detection disclosed
herein can evaluate a reconstruction of a hidden represen-
tation of the input. The reconstruction of the hidden repre-
sentation of the input can be, e.g., an intermediate decoded
output that is obtained from processing an input through the
autoencoder up to and including an intermediate layer of a
decoder. Given an input, the hidden representation of recon-
struction of the input that the methods according to embodi-
ments computes can be shown to correspond to reconstruc-
tion of hidden representation of the input. It will be
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appreciated that the latter quantity cannot be computed by
directly evaluating its definition because the decoder of an
autoencoder is learned as a black box rather than composi-
tion of meaningful layer-wise functions. This results in no
correspondence between encoding and decoding layers.
Nevertheless, according to the methods disclosed herein, a
reconstruction of the hidden representation of an input can
be computed by feeding a reconstructed output to the
autoencoder a second time. Thus, the methods according to
embodiments can be interpreted to incorporate reconstruc-
tions of hidden representations, as well as to incorporate
hidden representations of the input reconstruction.
Novelty Detection Using Intermediate Encoded Input from
Hidden Layers

According to various embodiments of novelty detection
methods described herein, an autoencoder is used to detect
novelty by analyzing information not only in an input space
(e.g., an input to be processed through an autoencoder and
an output processed completely through the autoencoder),
but also by analyzing information in hidden spaces along a
projection pathway of the autoencoder. As described above,
analyzing information in hidden spaces includes analyzing
an intermediate output from a hidden layer after processing
an input partially though the autoencoder up to and includ-
ing the hidden layer. The input and its reconstruction are
projected onto the hidden spaces to obtain pairs of hidden
vectors, and thus obtained pairs of hidden vectors are
aggregated to quantify a relative novelty of the input. A
metric that quantifies a difference between the pairs of
hidden vectors is then used to determine whether the original
input is novel. Advantageously, various embodiments
described herein leverage the information generated by an
autoencoder more fully compared to methods that mostly
utilize an initial input and a final output by exploiting
information that can be extracted from hidden spaces to
detect novelty of an input. FIG. 1 is a flow chart of a method
100 for detecting novelty of an input, e.g., a sensor data,
using a deep learning neural network model, according to
embodiments. The method 100 comprises providing 110 a
deep learning neural network model comprising a plurality
of hidden layers. In the illustrate example, the method 100
comprises providing a deep learning neural network model
comprising a plurality of hidden layers. For example, the
deep learning neural network can include an autoencoder.
An autoencoder comprises an encoder (g) and a decoder (1),
each of which can include a plurality of hidden layers. Thus,
a deep learning neural network can include an autoencoder,
which in turn can include an encoder (g) comprising a
plurality of encoder layers g;, g,, . . . 2 and a decoder (f)

comprising a plurality of decoder layers f}, T,, . . . f€. The
number of encoder layers and the number of decoder layers
can be the same or different. The deep neural network can be
provided on an electronic apparatus, e.g., a volatile or a
nonvolatile memory or a storage device of a computing
device. The deep neural network can also be provided on a
non-transitory computer-readable medium, e.g., a nonvola-
tile memory or a storage medium, which may or may not be
part of an electronic apparatus.

Still referring to FIG. 1, the method 100 additionally
comprises feeding 120 a first input, e.g., a test data, into the
encoder and successively processing the first input through
the plurality of encoder layers to generate a first encoded
input. Successively processing the first input comprises
generating a first intermediate encoded input, after partly
processing through the encoder, from one of the encoder
layers prior to generating the first encoded input. The first
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intermediate encoded input may be stored on a non-transi-
tory computer-readable medium, e,g., a nonvolatile memory
or a storage medium. The method additionally comprises
feeding 130 the first encoded input into the decoder and
successively processing the first encoded input through the
plurality of decoder layers to generate a first reconstructed
output. The method additionally comprises feeding 140 the
first reconstructed output as a second input into the encoder
and successively processing the first reconstructed output
through the plurality of encoder layers. Successively pro-
cessing the first reconstructed output comprises generating a
second intermediate encoded input, after partly processing
thorough the encoder, from the one of the encoder layers.
The second intermediate encoded input may be stored on the
non-transitory computer-readable medium. The method fur-
ther comprises detecting 150 a novelty of the first input
using the first intermediate encoded input and the second
intermediate encoded input. For example, the first interme-
diate encoded input and the second intermediate encoded
input stored on the computer-readable medium may be
compared using a microprocessor.

The methods according to embodiments use a deep learn-
ing neural network model comprising an auto-encoder. As
described herein, an autoencoder refers to a neural network
that learns to copy its input to its output. That is, an
autoencoder is configured to learn a representation for a set
of data, e.g., by dimensionality reduction, by training the
neural network to ignore signal “noise.” An autoencoder has
an input layer, an output layer and one or more hidden layers
connecting them. The autoencoder has one or more internal
(hidden) layer that describes a code used to represent the
input, and includes two main parts: an encoder (g) that maps
the input into the code, and a decoder (f) that maps the code
to a reconstruction of the original input. By doing so, the
autoencoder is configured to generate from the reduced
encoding a representation as close as possible to its original
input. The output layer has the same number of nodes
(neurons) as the input layer, and with the purpose of recon-
structing its inputs (minimizing the difference between the
input and the output) instead of predicting the target value Y
given inputs X. Therefore, autoencoders are unsupervised
learning models (do not require labeled inputs to enable
learning). Autoencoders are restricted to reconstruct the
input only approximately, prioritizing the most relevant
aspects or characteristics of the data to be copied.

FIG. 2 schematically illustrates an example of an auto-
encoder (A) 200 having a deep learning architecture for
detecting novelty of an input, e.g., a sensor data, according
to embodiments. The autoencoder 200 includes an encoder
(g) 200A and a decoder (f) 200B. The encoder 200A includes
one or more, e.g., a plurality (1), of hidden encoder layers

(81, 8o» - - - 8)204-1,204-2, .. .204-¢, and the decoder
2008 includes one or more, e.g., a plurality (£), of hidden

decoder layers (f,, f,, . . . f;) 208-1, 208-2, . . . 208-f. In
the illustrated embodiment of the encoder 200A, each
encoder layer has a plurality of neurons, also referred to
herein as nodes or units, and successive encoder layers have
successively decreasing number of neurons. Successively
decreasing number of neurons can successively decrease the
dimensionality of the information processed therethrough.
Similarly, in the illustrated embodiment of the decoder
200B, each decoder layer has a plurality of neurons, and
successive decoder layers have successively increasing
number of neurons. Successively increasing the number of
neurons can successively increase the dimensionality of the
information processed therethrough. However, embodi-
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ments are not so limited and in some other embodiments, the
encoder 200A may be configured such that, while the
number of neurons in the first encoder layer (g,) 204-1 is
greater than the number of neurons in the last encoder layer

(g€) 204-¢, the number of neurons in the intermediate
layers may not always decrease between immediately adja-
cent pairs of encoder layers. For example, there may be at
least one immediately adjacent pair of encoder layers where
the number of neurons increases or remains unchanged from
an encoder layer to the immediately subsequent encoder
layer. Similarly, in some other embodiments, the decoder
200B may be configured such that, while the number of
neurons in the first decoder layer (f;) 208-1 is greater than

the number of neurons in the last decoder layer (f€) 208-¢ ,
the number of neurons in the intermediate layers may not
always increase between immediately adjacent pairs of
encoder layers. For example, there may be at least one
immediately adjacent pair of encoder layers where the
number of neurons decreases or remains unchanged from an
encoder layer to an immediately subsequent decoder layer.

In some configurations, at least some corresponding pairs

(e.g., g, and f}, g, and f}, . . . g€ and f;) of encoder and
decoder layers have the same number of neurons. In some
configurations, at least some corresponding pairs of the
encoder and decoder layers have different numbers of neu-
rons. However, configurations are not so limited, and in
some other configurations, each of the corresponding pairs
of the encoder and decoder layers has the same or different
number of neurons.

Thus configured, the encoder 200A reduces the number of
characteristics or dimensions of its input, e.g., test data,
successively through its layers to generate an encoded input,
while the decoder 200B increases the number of character-
istics or dimensions of its input, e.g., the encoded input,
successively through its layers. In the illustrated example,
the output of the encoder, referred to herein as the encoded
input, serves as the input of the decoder. When arranged as
such, the layers of the decoder 200B inversely maps to the
layers of the encoder 200A. The overall operation performed
by the autoencoder 200 can be expressed as A=fog. Each of
...ogl) 204-1, 204-2, . ..
204-¢ is configured to receive from a previous encoder layer
an intermediate input and reduce the number of character-
istics or the dimensionality thereof by at least one charac-

teristic or dimension to generate an intermediate input for
feeding into the next encoder layer. Conversely, each of the

decoder layers (f;, f5, . . . fz) 208-1, 208-2, . . . 208-€ is
configured to receive from a previous layer an intermediate
reconstructed output and increase the number of character-
istics or dimensionality thereof by at least one characteristic
or dimension to generate an intermediate reconstructed
output for feeding into the next decoder layer. While in the

the encoder layers (g, g,

illustrated example, the number (€) of encoder layers and
the number of decoder layers are equal, examples are not so
limited, and in other examples, they can be different.
According to various embodiments, the autoencoder 200
can be a suitable autoencoder. For example, without limi-
tation, the autoencoder 200 can be a variational autoencoder
(VAE). In contrast to some autoencoders that aim to mini-
mize a distance between an input and a corresponding
decoder output, e.g., a reconstructed output from a decoder
similar to that described above with respect to FIGS. 1 and
2, a VAE additionally imposes a specified distribution on
encoder outputs, e.g., an encoded input from an encoder
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similar to that described above with respect to FIGS. 1 and
2. For instance, a unit Gaussian distribution may be used for
the specified distribution. As a result, an objective function
of VAE includes two terms: (1) a distance between an input
and a decoder output, in a similar manner to other autoen-
coders, and (2) a distance between a distribution of an
encoder output and the specified distribution.

Another example of the autoencoder 200 is an adversarial
autoencoder (AAE). In a similar manner as a VAE, AAE
imposes a specified distribution on encoder outputs. How-
ever, unlike a VAE, AAE adopts “adversarial training”
instead of directly measuring a distance between the distri-
bution of encoder outputs and the specified distribution. For
this purpose, AAE uses a neural network known as a
discriminator, which is trained to classify encoder outputs
and vectors drawn from the specified distribution. As a
result, an AAE has three training goals: (1) a pair of an
encoder and a decoder are trained similar to other autoen-
coders, (2) the discriminator is trained to output 1 for vectors
drawn from the specified distribution and 0 for encoder
outputs, and (3) the encoder is trained to make the discrimi-
nator output 1 for encoder outputs.

Another example of the autoencoder 200 is a conditional
variational autoencoder (CVAE). CVAE is a variant of VAE,
which enables incorporation of auxiliary information asso-
ciated with data samples, e.g., labels. In addition to VAE,
CVAE additionally accepts the associated information, e.g.,
labels, which may be encoded as a vector, as an input of the
encoder or the decoder. This additional input enables inter-
pretation of data samples dependently on their associated
information. By way of illustration, the temperature of a
manufacturing environment may differ depending on the
product being manufactured. In such environment, a product
identification may be used as the associated information. It
will be appreciated that the associated information can be
used as an additional input for any intermediate hidden
layers of the encoder and/or the decoder, as well as for the
input of the encoder and/or the decoder. Moreover, this
technique can be incorporated with AE and other variants of
AE.

Referring back to FIG. 1, prior to feeding 120 a first input
into an encoder, the autoencoder 200 may be trained. Train-
ing objectives of the autoencoder include minimizing a
difference between an input x and a reconstructed output
A(x). The space represented by the hidden layers of the
encoder may be referred to as a latent space. The latent space
provides a more concise representation of the input data than
the input data itself. As described above, the dataset used to
train the autoencoder in novelty detection can be distin-
guished by a relatively large number of examples of the
“normal” condition or positive examples compared to a
relatively small or insufficient number of examples of the
“abnormalities” or negative examples. Novelty detection is
distinguishable from conventional pattern recognition meth-
ods, which typically focus on classification of two or more
classes. In a general setup of multi-class classification, a set
of training examples are provided, where each example may
be a D dimensional vector having a label. From the labelled
dataset, a function may be constructed such that for a given
input, an estimate of one of the multiple labels is obtained.
In contrast, the training data set in novelty detection is
approached within the framework of one-class classification,
in which one class (the specified normal, positive class) has
to be distinguished from all other possibilities. It is usually
assumed that the positive class is very well sampled, while
the other class(es) is/are severely under-sampled. The scar-
city of negative examples can be due to high measurement
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costs, or the low frequency at which abnormal events occur.
For example, because precision manufacturing processes are
designed to be inherently robust against excursions or out-
liers, an occurrence of an “abnormal” behavior may be rare
and/or expensive to generate intentionally. Therefore, it is
difficult to obtain a very well-sampled negative or “abnor-
mal” class. Thus, according to embodiments of novelty
detection methods described herein, where a novelty thresh-
old z(s)=k is defined as a decision boundary such that x is
classified “normal” if z(x)<k, or “novel” otherwise, the data
set used to train the autoencoder may have less than 10%,
less than 5%, less than 1%, less than 0.1%, less than 0.01%
that are “novel.”

In some novelty detection methods, upon training an
autoencoder using normal data samples, a novelty of a test
data sample can be measured and represented by a recon-
struction error E defined in the input space as:

AWV E o ALY

where x, is an element of an input vector and A(x), is a
reconstructed output of the x; processed through an autoen-
coder.

A sample may be determined to be more likely to be novel
as the reconstruction error becomes larger because the
sample is farther from the manifold identified by the auto-
encoder in the input space. However, as described above, the
inventors have discovered that the reconstruction error
obtained from a fully reconstructed output may not fully
exploit information that may be generated by a trained
autoencoder, especially when the architecture is deep, in part
because hierarchical information identified by the deep
architecture may not be utilized. Thus, by performing steps
120, 130, 140 and 150 of the method 100 illustrated in FIG.
1, various novelty detection methods according to embodi-
ments measure a reconstruction-based novelty using infor-
mation obtained not only in an input space, e.g., information
obtained by processing an input completely processing
through an autoencoder, but also using information obtained
from hidden spaces, e.g., information obtained by process-
ing an input partly through the autoencoder, thus by exam-
ining a projection pathway of the autoencoder. In particular,
as described herein, the input and a reconstructed output are
projected onto the hidden spaces to obtain pairs of hidden
vectors from a hidden layer of the autoencoder, and are
aggregated to quantify a novelty of the input.

Alternatively, an intermediate reconstructed output may
be used to quantify a degree of novelty of an input. That is,
an intermediate encoded input and the corresponding inter-
mediate reconstructed output may be compared to quantify
the degree of novelty. To make the comparison a proper
comparison, the autoencoder may be trained, where the
training objective function of the autoencoder may include
a term minimizing a difference between an intermediate
encoded input and an intermediate reconstructed output
involved in the comparison for the novelty quantification.

FIG. 3 is a flow chart of a method of processing a first
input, which may be a sensor data, through a plurality of
encoder layers to generate one or more first intermediate
encoded inputs, according to embodiments. FIG. 3 illus-
trates feeding 120 (FIG. 1) a first input 304, e.g., a sensor
data, into the encoder g and successively processing the first

input 304 through the plurality (€) of encoder layers (g,

2, . .. g€) 204-1, 204-1, . . . 204-€ to generate a first
encoded input 308. One or more intermediate first encoded

inputs 308-1, 308-2, . . . 308f to be used for novelty
detection are generated by processing the first input 304
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partly through the encoder (g) up to and including a corre-
sponding one of the encoder layers 204-1, 204-1, . . .

204-¢ , prior to generating the first encoded input 308 that is
obtained after the first input 304 is processed completely
through the encoder (g). Unlike some novelty detection
techniques in which the first input 304 may be compared
against the first reconstructed output 404 (FIG. 4) to deter-
mine a novelty of the first input 304, e.g., by obtaining a
novelty score, according to embodiments, one or more of the
intermediate first encoded inputs 308-1, 308-2,

308-¢ may be stored in, e.g., a memory or a storage device,
for later use in determining novelty, e.g., by comparing
against corresponding ones of second encoded inputs 508-1,

508-2, . . . 508-€ (FIG. 5). In the illustrated embodiment,
one or more of the first encoded inputs 308-1, 308-2, . . .

308-¢ may be generated from corresponding one or more of

the encoder layers 204-1, 204-1, . . . 204-€ prior to gener-
ating the first encoded input 308. The first input 304 com-
prises a dataset, e.g., a sensor data represented by one or
more vectors, having an initial number (D,) of characteris-
tics or dimensions, where each of the characteristics or
dimensions can correspond to a physical parameter or fea-
ture represented by the dataset. As illustrated, the first input
304 is fed into a first encoder layer (g,) 204-1 to generate a
first intermediate encoded input 308-1 from the g,, which is
compressed relative to the first input 304 by the hidden
neurons, units or nodes of the g, 204-1 to have a first number
(D,) of characteristics or dimensions, where D,<D,. Sub-
sequently, the first intermediate encoded input 308-1 from
the g, 204-1 is fed into a second encoder layer (g,) 204-2 to
generate a first intermediate encoded input 308-2 from the g,
204-2, which is compressed relative to the first intermediate
encoded input 308-1 from the g, 204-1 by the hidden
neurons of the g, 204-2 to have a second number (D,) of
characteristics or dimensions, where D,<D,. That is, as the
first input 304 is processed through hidden successive
encoder layers, the number of characteristics or dimensions
is successively reduced. The characteristics or dimensions
can correspond to different parameters contained in the
sensor data. The process is repeated until a first intermediate

encoded input 308-(€-1) from an (£-1)th layer g & _),
having an (€ -1)th number (D€ ) of characteristics is fed into
an £ th encoder layer g€ 204-¢ to generate a first interme-
diate encoded input 308-€ from the g€, which is com-
pressed by the hidden neurons of the g€ to have an €th
number (D€ ) number of characteristics, where D€ <D(€ -1).
When the £ th encoder layer (g€ ) 204-£€ is the last encoder
layer of the encoder g, the first intermediate encoded input

308-¢ from the g€ 204-€ can represent the first encoded
input 308, which is subsequently fed into the decoder f, as
described above and further in detail below with respect to
FIG. 4.

FIG. 4 is a flow chart of a method of processing a first
encoded input, which may be generated by an encoder as
illustrated in FIG. 3, through a plurality of decoder layers to
generate a first reconstructed output, according to embodi-
ments. FIG. 4 illustrates feeding 130 (FIG. 1) the first
encoded input 308 generated by the encoder g as illustrated
in FIG. 3 into the decoder f and successively processing the

first encoded input 308 through the plurality (€) of decoder

layers (f;, f;_;, . . . f,) 208-€, 208-(¢ -1), . . . 208-1 to
generate a first reconstructed output 404. One or more
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intermediate reconstructed outputs 408-¢ , 408-(£ 1), . . .
408-1 to be fed back into the encoder g is generated by
processing the first encoded input 308 partly through the
decoder (f) up to and including a corresponding one of the

decoder layers 208-€, 208-(€-1), . . . 208-1 prior to
generating the first reconstructed output 404 that is obtained
after the first encoded input 308 is processed completely
through the decoder (f). Similar to intermediate encoded
inputs, one or more of the intermediate reconstructed out-

puts 408-€, 408-(£ -1), . . . 408-1 may be stored, e.g., in a
memory or a storage device, for later use in determining
novelty. In the illustrated embodiment, one or more of the

intermediate reconstructed outputs 408-€, 408-(€-1), . . .
408-1 may be generated from corresponding one or more of

the decoder layers 208-€, 208-(£ -1), . . . 208-1 prior to
generating the first reconstructed output 404. The first
encoded input 308 comprises a dataset, e.g., compressed
sensor data represented by one or more vectors having an

¢th number (D€) of characteristics or dimensions, where
each of the characteristics or dimensions can correspond to
a reconstructed physical parameter or feature represented by
the dataset. As illustrated, the first encoded input 308 having

an €th number (D€) of characteristics is fed into an €th
decoder layer (f€ ) 208-€ to generate the intermediate recon-

structed output 408-€ from the f€ 208-€, which is decom-
pressed relative to the first encoded input 308 by hidden

neurons, units or nodes of the f€ 208-¢ to have an (€ -1)th
number (D(€ -1)) of characteristics or dimensions, where
D(€-1)>DE€. Subsequently, the €th intermediate recon-
structed output 208-€ from the f€ 208-€ is fed into an
(£-Dth decoder layer f€_,, 208-(£-1) to generate the
intermediate reconstructed output 408-(€ —1) from the £ _
208-(¢ -1), which is decompressed by the hidden neurons of
the € _,, 208-(€ -1) to have D(€ -2) number of character-

istics, where D(€ =2)>D(€ -1). That is, as the first encoded
input 308 is processed through hidden successive decoder
layers, the number of characteristics or dimensions is suc-
cessively increases. The characteristics or dimensions can
correspond to different parameters contained in the sensor
data. The process is repeated until the intermediate recon-
structed output 408-2 from the 2"¢ decoder layer f, 208-2
having the D1 number of characteristics is fed into a first
decoder layer f; 208-1 to generate the intermediate recon-
structed output 408-1 from the f; 208-1, which is decom-
pressed by hidden neurons of the f; to have the D, number
of characteristics, where Dy>D,. Thus in the illustrated
embodiment, the first reconstructed output 404 is recon-
structed to have the same number (D) characteristics or
dimensions as the first input 304. When the first decoder
layer f, 208-1 is the last decoder layer of the decoder f, the
first intermediate reconstructed output 408-1 from the f;
208-1 can represent the first reconstructed output 404, which
is subsequently fed into the encoder g, as described above
and further in below with respect to FIG. 5.

FIG. 5 is a flow chart of a method of processing a first
reconstructed output, which may be generated by a decoder
as illustrated in FIG. 4, through the plurality of encoder
layers to generate one or more second intermediate encoded
inputs, according to embodiments. FIG. 5 illustrates feeding
140 (FIG. 1) the first reconstructed output 404, obtained
from the decoder f as described above with respect to FIG.
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4, as a second input 404 into the encoder (g) and succes-
sively processing through the plurality of encoder layers (g,

25, - - . g€) 204-1,204-1, . . . 204-€ to generate a second
encoded input 504. One or more second intermediate

encoded inputs 508-1, 508-2, . . . 508¢ to be used for
novelty detection are generated by processing the second
input 404 partly through the encoder (g) up to and including
a corresponding one of the encoder layers 204-1,

204-1, . . . 204-¢ in a similar manner as described above
with respect to FIG. 3, prior to generating the second
encoded input 504. In a similar manner as described above
with respect FIG. 3 for feeding the first input 304 into the
encoder g to obtain a first encoded input 308, in the
illustrated process, the second input 404 is fed into the first
encoder layer (g, ) 204-1 to generate the second intermediate
encoded input 508-1 from the g,, the second intermediate
encoded input 508-1 from the g, is fed into a second encoder
layer (g,) 204-2 to generate a second intermediate encoded
input 508-2 from the g,, and so on, until a second interme-

diate encoded input 508-(¢ 1) from the (€ -1)th encoder
layer g€ _,, 204-(€ -1) is fed into the €th encoder layer
(g€) 204-¢ to generate a second intermediate encoded input
508-¢ from the g€ 204-¢, which can represent the second

encoded input 504 when the g€ 204-€ is the last encoder
layer of the encoder g. In a similar manner as described
above with respect to FIG. 3, unlike some novelty detection
techniques, according to embodiments, one or more of the
intermediate second encoded inputs 508-1, 508-2, . . .

508-¢ may be stored, e.g., in a memory or a storage device,
for later use in determining novelty, e.g., by comparing
against corresponding ones of first encoded inputs 308-1,

308-2, . ..308-¢ (FIG. 3)

Thus, as described herein, advantageously, unlike some
novelty detection techniques in which the first encoded input
308 (FIG. 3) may be compared against the first reconstructed
output 404 (FIG. 4) that is obtained by processing com-
pletely through the autoencoder to detect novelty, in the
methods according to embodiments, one or more interme-

diate first encoded inputs 308-1, 308-2, . . . 308-¢ (FIG. 3)
that have been obtained by processing a first input 304 partly
through the encoder been stored in, e.g., a memory or a
storage device, may be used in determining novelty, e.g., by
comparing against corresponding ones of second encoded

inputs 508-1, 508-2, . . . 508¢ that have also been obtained
by processing the first reconstructed output 404 partly
through the encoder to detect novelty, e.g., by calculating a
novelty score. Thus, the novelty methods according to
embodiments not only utilize the first encoded input 308
(FIG. 3) from the encoder g and the first reconstructed
output 404 (FIG. 4) from the decoder f, but also utilizes one
or more intermediate first encoded inputs 308-1, 308-2, . . .

308-¢ (FIG. 3) and corresponding ones of second encoded

inputs 508-1, 508-2, . . . 508-¢ (FIG. 5) generated by the
corresponding hidden layers. Thus, information generated
along the pathway of the autoencoder is more fully utilized.
Novelty Scoring Using Intermediate Encoded Input from
Hidden Layers

FIG. 6 A schematically illustrates a method of quantifying
a detected novelty by using one or more pairs of first and
second intermediate encoded inputs from an encoder, which
may be generated according to methods described with
respect to, e.g., FIGS. 3-5, according to embodiments. In
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reference to FIG. 6A, a method 600A of quantifying a
detected novelty by examining the projection pathway of an
autoencoder is schematically described. The method 600A
illustrates the first input 304 that is fed 120 (FIG. 1) into the
encoder g and successively processed through the plurality

of encoder layers (g,, g, . . . g€ ) to generate a first encoded
input 308 according to the method described above with
respect to FIG. 3, the first encoded input that is fed 130 (FIG.
1) into the decoder f and successively processed through the
plurality of decoder layers (f;, f; _;, . . . f;) to generate a first
reconstructed output 404 according to the method described
above with respect to FIG. 4. The first reconstructed output
404 is then fed 140 (FIG. 1) into the encoder g as a second
input and successively processed through the plurality of

encoder layers (g, g,, . . . g€) according to the method
described above with respect to FIG. 5. From the first input
304 and the reconstructed output 404 that are projected onto
the hidden spaces or layers, e.g., processed partly through
the encoder (g) up to and including one of the encoder layers

204-1,204-1, . .. 204-€ , one or more pairs of hidden vectors
can be obtained. The pairs of the hidden vectors can then
used to obtain a novelty score. For example, the pairs of the
hidden vectors may be aggregated to quantify the novelty of
the original input.

Referring to FIG. 6A, a mathematical expression of the
method 600A may be described as follows. An overall
computation performed by an autoencoder 200 (FIG. 2) may
be represented as A=fog, where g and f are computations
performed by an encoder g and a decoder f, respectively. As

described above, the encoder g has € number of hidden
layers g,, g, .
computation, such that g=g€o . . . og,. A computation

performed by a portion of g having i layers can be expressed
as follows:

. . gf each configured to perform its own

&£ 8O - - -

for 1=i=€ . In the illustrated method 600A, the first input 304
(FIG. 3) is represented as x, which may be an input vector,
having D, characteristics or dimensions, and the first recon-
structed output 404 (FIG. 4) is represented as X, which may
be a vector representing the reconstruction output computed
by A and having the same D, characteristics or dimensions.
That is, x=A(x). While in some novelty detection methods,
only x and X may be compared to detect novelty, various
methods according to embodiments obtain projections of x
and x onto hidden spaces along a projection pathway of A.
For example, by feeding x and x into A, one or more pairs

081

of vectors 604 represented as (h,, h,), may be obtained from

the hidden layers 204-1, 204-1, . . . 204-€ (FIGS. 3 and 5),
where:

hi(x)=g..(x),
hx)=g.(#)=g.(4x)).

That is, each of h,(x) represents a first intermediate encoded
input 308-i from an ith layer 204-i of the encoder g as
described above with respect to FIG. 3, and each of h,(x)
represents a second intermediate encoded input 508-/ from
the ith layer 204-i of the encoder g as described above with
respect to FIG. 5.

According to various methods described herein, a novelty
score may be obtained using the pairs of vectors obtained as
described above. In particular, a novelty score of x may be
obtained by aggregating the pairs of vectors to obtain an
aggregate H:

HE~{ @) )11 ).
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The method 600A may also be summarized by an algo-
rithm 600B shown in FIG. 6B, which is an example algo-
rithm for implementing the method illustrated in FIG. 6A,
according to embodiments. It will be appreciated that, while
the algorithm 600B includes for loop in lines 3-5 to clearly
state the variables to construct the H, in practice, the
computation may be performed by one feed-forward of each
of x and x to g. It will be appreciated that the methods
described herein represent generalizations of some recon-
struction methods where g, is defined as the identity func-
tion and a novelty score function (s,,;) can be represented as
follows:

S ot H )P o3) o @)1

where hy(x)=g,(x)=x and h,(x)=g,(X)=X.

In the following, example methods of defining a novelty
score are described according to embodiments, which more
fully utilize the H compared to the s, , The example
methods described herein are particularly advantageous
where there is essentially no knowledge about interpretation
of identified hidden spaces, which is relatively common in
models with deep neural networks. However, examples are
not so limited, and more elaborate metrics can be designed
if some knowledge regarding hidden spaces is available.

According to some embodiments, novelty scoring
includes a simple aggregation along a pathway (SAP). For
a data given sample x, the SAP includes summing squares of
Euclidean distances for all pairs in H. A novelty score
function sy, using the SAP may be expressed as:

550~ 2Ll @b L= h)-h@),
where h(x) and () are the concatenations of [hy(X), . . . ,
hy (0)] and [Ry(X); . . . ; he (x)], respectively.

Although the SAP is intuitive, it may not sufficiently
reflect properties of hidden spaces under some circum-
stances. For example, the SAP may not reflect relative
weights of different distances in a distribution of pairs in H.
For instance, the magnitude of distances can depend on the
hidden layers, or there may exist correlated neurons across
layers which may unintentionally be emphasized in SAP.

To address these circumstances, according to some other
embodiments, novelty scoring includes normalized aggre-
gation along a pathway (NAP). Solely to aid in understand-
ing, a schematic representation of novelty scoring based on
NAP is provided with respect to FIGS. 7A and 7B. FIG. 7A
is a schematic representation of novelty scoring based on
SAP, and FIG. 7B is a schematic representation of novelty
scoring based on NAP. It will be appreciated that these
non-limiting schematic representations are provided for
illustrative purposes only to aid in understanding.

FIG. 7A is a schematic representation 700A of a distri-
bution 704A including first intermediate encoded inputs

308-1, 308-2, . . . 308-¢ (FIG. 3) and second intermediate

encoded inputs 508-1, 508-2, . . . 508-€ . A pair of vectors
represented as (h,, h,), where h,(x) represents a vector from
a first intermediate encoded input 308-i from an ith layer
204-i of the encoder g as described above with respect to
FIG. 3, and fl,.(x) represents vector from a second interme-
diate encoded input 508-/ from the same ith layer 204-i of
the encoder g as described above with respect to FIG. 5, are
separated in a vector space having X and Y axes by distances
x and vy, respectively. To calculate a Euclidean distance
between the pair of vectors, the component distances x and
y are given about the same weight, such that the distance
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may be is calculated as x*+y>, where equal weight is given
to the component distances x and y in in X and Y directions,
respectively. In the illustrated distribution 704A, first and
second intermediate encoded inputs are spread relatively
symmetrically in X and Y axes, and the component distances
x and y are relatively similar in magnitude. Under these
circumstances, calculating the distance between the pair of
vectors as an unweighted Euclidean distance may not result
in significant overemphasizing or underemphasizing a rela-
tive importance of the component distances x and y. How-
ever, when the first and second intermediate encoded inputs
are spread unevenly in X and Y axes, the component
distances x and y may be given different weights to prevent
significant overemphasizing or underemphasizing the rela-
tive importance of the component offsets x and y. This is
illustrated in FIG. 7B.

FIG. 7B is a schematic representation 700B of a distri-
bution 704B including first intermediate encoded inputs

308-1, 308-2, . . . 308-¢ (FIG. 3) and second intermediate

encoded inputs 508-1, 508-2, . . . 508-€ . Unlike the distri-
bution 704A of FIG. 7A, the distribution 704B includes first
and second intermediate encoded inputs that are skewed
and/or spread relatively unevenly in the vector space repre-
sented by X and Y axes. In the illustrated distribution 704B,
the first and second intermediate encoded inputs are spread
relatively asymmetrically in X and Y axes, and the compo-
nent distances x and y are relatively large in magnitude.
Under this circumstance, calculating the distance between
the pair of vectors as an unweighted Euclidean distance may
result in significant overemphasizing or underemphasizing a
relative importance of the component offsets x and y. Under
such circumstances, a normalization may be performed by
one or both of orthogonalization and scaling. As illustrated
in FIG. 7B, orthogonalization is performed by rotating the
reference axes to X' and Y' to better match the major axes of
the orientation of the data distribution. For example, in the
illustrated example, one or more of the axes are in directions
corresponding to greatest or smallest data variance. Based
on the relatively smaller variance along the Y' compared to
the X', a higher weight may be assigned to y'* when
calculating the distance. This is because a relatively smaller
displacement in the Y' direction may actually represent a
higher degree of abnormality compared to a similar dis-
placement in the X' direction.

Thus, normalizing the distances according to embodi-
ments using the NAP method may be performed in two
steps: orthogonalization and scaling. Let d(x)=h(x)-h(x).
Given a training set X, let D be a matrix whose i-th row
corresponds to d(xi) for x,€X, and D the column-wise
centered matrix of D. For the normalization, D=UZV7 or a
singular value decomposition (SVD) of D is computed to
obtain its singular values 2 and right singular vectors V. For
a given data sample X, a novelty score function s,,,» may be
expressed as:

Sxap®) AN VETL?,

Where 1, is the column-wise mean of D, d(x) is expressed
as a column vector.
Computation of Hidden Reconstruction

It will be appreciated that there is no explicit correspon-
dence between hidden layers in g and f, and as such two
spaces defined by a pair of the corresponding hidden layers
in g and f cannot be directly compared. Therefore, an
intermediate reconstructed output from a hidden decoder
layer that corresponds to an activated encoded layer may not
be directly computed. Nevertheless, it can be shown that
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there is an indirect way to compute the intermediate recon-
structed output from a hidden decoder layer without modi-
fying an ordinary autoencoder or incorporating additional
components. In particular, without being bound to an
theory, it can be shown below with respect to FIG. 8 that h,
indeed corresponds to an intermediate reconstructed output.

In a similar manner as described above, let A=fog repre-
sent overall computation by an autoencoder, and My={ A(x):
xER”} be the low dimensional manifold that A describes,
e.g.

VxEMy,x=A4(x)

Defining M,={g_(x):xEM,}, which is the low dimen-

sional image of M,, defined by g ;, g and f restricted on M,

and M¢, respectively, are inverse functions of each other.

Let us assume that there exists a decoder f=f,o . . . of€ such
that

vxeml JX)=Ax)
VEEM, h=(g o) ().

The second of the above conditions makes € .., , a proper
decoder corresponding to g,,,., and then, the i-th hidden
reconstruction h',(x) is defined by:

R0=GE 11081 ) D)

Thus, it can be concluded that h,(x) is equal to I',(x) for
xEM,, as follows:

i) = (Fpiag 0givn W) =

(Frivio8)@ = (g0 Fog)®) = (g50A)x) = Ii(8) = Fy(x).
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able to learn f=g,*. Neural networks are, however, highly
flexible frameworks in which we can deal with models of
arbitrary function forms by adjusting network architecture.
This property enables us to design a layer capable of
representing T,. For instance, even if £, is too complicated to
be represented with a single fully connected layer, T, can still
be approximated by stacking multiple layers. Hence, given
g, and X, f, can be represented by neural networks.
Experimental Examples of Novelty Detection Using Inter-
mediate Encoded Input from Hidden Layers

In the following, experimental results from implementa-
tions of novelty detection methods according to embodi-
ments are described, and the results are compared to those
obtained using other methods. The novelty detection meth-
ods were tested on several benchmarks and diverse datasets
collected from Kaggle repository and the University of
Calif. at Irvine (UCI) Machine Learning Repository that are
suitable for evaluating novelty detection methods.

The datasets from Kaggle and the UCI repositories are
chosen from problem sets of anomaly detection and multi-
class classification, as summarized in TABLE 1 below. It
will be noted that MI-F and MI-V share the same feature
matrix, but are considered to be different datasets because
normal and abnormal labels are assigned by different col-
umns, i.e., pairs of first and second vectors generated from
the same encoder layers that have passed visual inspection,
respectively. These datasets are used to compare the novelty
detection methods according to embodiments against some
other autoencoder-based methods.

TABLE 1

Description of Datasets Used in Experimental Evaluation.

Name # Samples
MI-F 25,286
MI-V 23,125
EOPT 90,515
NASA 4,687
RARM 20,221
STL 1,941
OTTO 61,878
SNSR 58,509
MNIST 70,000
F-MNIST 70,000

# Features  # Class Domain Novelty Target
58 2 CNC milling Machine not completed
58 2 CNC milling Workpiece out-of-spec
20 2 Storage system System failures
33 2 Astronomy Hazardous asteroids
6 2 Robotics Malfunctions
27 7 Steel Surface defects
93 9  E-commerce Types of products
48 11 Electric Currents Defective conditions
784 10 Hand written digits Digits
784 10 Fashion articles Articles

where T, is not needed for computation, but only g, and f. It
will be noted that for XM, already on the manifold, its i-th
hidden reconstruction h',(x) becomes equal to its_hidden
activation h,(x)=h,(x) for every 1=i=?: ie., h(x)=h'(x) as
x=A(x). For x&M,, its hidden reconstruction h',(x) will
differ from its hidden activation h,(x).

Now, the existence of f can be shown as follows. Since
x=A(x) for xEM,, g; and {; are one-to-one functions from
M, , and M,, respectively. Defining f=g,”" for M, and
f=f,o ... of#, it also holds f=g~". This implies x=(fog)(x)
for XxEM,, and consequently, f=f on M€ . This definition of
f; satisfies the two conditions above, and as discussed,
hidden reconstructions of an input, h',(x)=(f£ ,,,0g)(X) can
be computed through computing the i-th hidden activation of
the reconstructed input X=A(x), h,(x).

The f can be implemented in a neural network. Given g,
if the symmetric architecture for f; is used, we may not be

65

To compare the novelty detection methods according to
embodiments against some other recent novelty detection
methods, some popular benchmark datasets are used,
namely Mixed National Institute of Standards and Technol-
ogy (MNIST) and Fashion MNIST (FMNIST). For these
datasets, instead of taking pre-split training and test sets,
they are merged for post-processing.

As described herein, novelty detection methods are con-
figured to detect novel patterns in datasets by focusing on
deviations from model-learned normal patterns. Thus, train-
ing datasets may contain essentially only normal samples,
while the test datasets contain both normal and anomalous
samples in the evaluation setups described herein. Thus, if a
dataset contains anomaly labels, all samples in that dataset
with such label are assigned to the test dataset. If a dataset
does not have any anomaly label, the following two setups
are considered:
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Multimodal Normality: A single class is assigned as a
novelty class and the remaining classes are assigned as
a normal class. This setup is repeated to produce
sub-datasets with all possible novelty assignments. For
instance, MNIST results in a set of datasets with 10
different novelty classes.

Unimodal Normality: In contrast to the multimodal nor-
mality setup, one class is selected as a normal class, and
the others are as novelty. For instance, MNIST results
in a set of datasets with 10 different normal classes.

These two setups have been applied to STL, OTTO,
SNSR, MNIST, and F-MNIST datasets. The novelty detec-
tion methods according to embodiments and other methods
are compared using a metric known in the industry as Area
Under Receiver Operating Characteristic (AUROC). It will
be noted that thresholding-based metrics such as F1 score
have not been employed because access to abnormal
samples is only allowed during testing time. Hence, the
focus has been on the separability of models for novelty with
AUROC.

For the datasets summarized in TABLE 1, the effective-
ness of the reconstruction error is compared for the SAP and
NAP, for three different type of autoencoders, namely an
autoencoder (AE), a variational autoencoder (VAE) and
adversarial autoencoder (AAE). For the benchmark datasets,
recent approaches including OCNN (Chalapathy et al.,
2018), GPND (Pidhorskyi et al., 2018), DSVDD (Ruff et al.,
2018) and GT (Golan & El-Yaniv, 2018) are available. To
obtain the performances of the existing approaches, the
respective codes have been downloaded and applied against
the problem setups. Given novelty classes, the test sets are
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least 90% of the variance is selected as the bottleneck size
of the autoencoders. The bottleneck size has been set to 20
for benchmark datasets. Leaky-ReLU (Xu et al., 2015)
activation and batch normalization (Ioffe & Szegedy, 2015)
layers are appended to all layers except the last layer.

The AE, VAE and AAE are trained with the Adam
optimizer (Kingma & Ba, 2015), and the model with the
lowest validation loss is selected as the best model. For
training stability of VAE, ten (10) Monte Carlo samples were
averaged in the “reparamterization trick” (Kingma & Well-
ing, 2014) to obtain reconstruction from the decoder. In the
calculation of SAP and NAP, reconstructions in the input
space for MNIST and F-MNIST are excluded.

Each AUROC score is obtained by averaging AUROC
scores from five trials to reduce the random errors in training
neural networks. TABLE 2 summarizes the results of per-
formance evaluation where the best score for each model is
in shown in bold. Also, the best score for each dataset is
shown with an underline. Since STL, OTTO, SNSR,
MNIST, and F-MNIST do not have anomaly labels, their
scores are averaged over all possible anomaly class assign-
ments. For instance, the AUROC value for OTTO in the
unimodal normality setup is the average of nine (9) AUROC
values with different anomaly class assignments. In TABLE
2, the novelty detection method according to embodiments
shows the highest AUROC scores for most of the cases.
NAP is observed to be more effective with AE and VAE
compared to AAE. In summary, the novelty detection
method according to embodiments has been shown to
achieve the best performance for 13 cases out of 15 (see the
underlines).

TABLE 2

Comparison of AUROC for Different Novelty Detection Methods.

AE VAE AAE

Date Recon SAP NAP RECON SAP NAP RECON SAP NAP

Multimodal Normality
STL 0.596 0.603 0.714 0.533  0.537  0.703  0.716 0.696 0.711
OTTO 0.620 0.630 0.662 0.598  0.615  0.620  0.620 0.635 0.668
SNSR 0.601 0.611 0.645 0.601  0.607 0.630 0.616 0.610 0.606
MNIST 0.825 0.881 0.899 0.864 0907  0.927 0.847 0911 0.929
F-MNIST 0.712 0.725 0.734 0710  0.671 0.737  0.721 0.710 0.727

Unimodal Normality
MI-F 0.694 0.755 0707 0455 0392  0.540  0.663 0.789 0.704
MI-V 0.883  0.878 0913 0.680 0576  0.799  0.870 0.861 0.882
EOPT 0.650 0.648 0.627 0.604 0.580  0.594  0.594 0.3585 0.624
NASA 0.662 0.614 0.665 0582 0519  0.676 0719 0716 0.724
RARM 0.647 0.630 0.665 0.655 0.635 0.678 0.665 0.667 0.684
STL 0.552  0.629 0.845 0.526 0.595  0.823  0.790 0.761 0.798
OTTO 0.675 0.680 0.749 0.626 0.612  0.741  0.738 0.729 0.752
SNSR 0.791 0.781 0903 0.714  0.685  0.902  0.863 0.868 0.924
MNIST 0972 0980 0979 0957 0934 0976 0972 0966 0.977
F-MNIST 0924 0928 0933 0905 0.863 0934 0922 0905 0.928

created by randomly selecting samples while maintaining
novelty ratios to 35% for the multimodal and 50% for the
unimodal normality setups, respectively. It is noted that the
expectation value of AUROC is invariant to the novelty
ratio.

Symmetric architecture with fully connected layers are
used for the three base models, AE, VAE, and AAE. Each
encoder and decoder has been provided with ten (10) layers
with different bottleneck size. For the Kaggle and UCI
datasets, PCA is carried out for each dataset first. The
minimum number of principal components that explain at
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TABLE 3 summarizes the comparison of novelty detec-
tion methods according to embodiments to recent novelty
detection methods. As described above with respect to
TABLE 2, AUROC values are calculated by averaging
results from ten (10) cases with different anomaly class
assignments for both datasets. Except for the unimodal
F-MNIST setup, NAP outperforms all competing methods
regardless of base model choice. Even in the case where
NAP scores did not win, the performance of RAPP is
comparable to the best one, GT, which relies on image-
specific data transformations.
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TABLE 3

AUROC on benchmark datasets.

Dataset OCNN GPND DSVDD GT NAP,; NAP, NAP, .~ 5
Multimodal Normality (Novelty Ratio: 35%)
MNIST 0.600  0.501 0.622  0.893 0.899  0.927 0.929
F-MNIST 0.609  0.691 0.610 0725 0734  0.737 0.727
Unimodal Normality (Novelty Ratio: 50%)
10
MNIST 0.927 0971 0.922 0974 0979 0976 0977
F-MNIST 0915 0917 0923 0.935 0933 0934 0928

FIG. 9 illustrate graphs of novelty scores experimentally
obtained using a novelty detection method according to
embodiments in which the number of intermediate encoded
inputs is varied. In particular, each of the left and right
graphs of FIG. 9 illustrates AUROC of NAP on MNIST as
a function of the number of hidden reconstructions or
intermediate encoded inputs used to calculate NAP for the
multimodal normality setup as described above. Each label
designated as a:b on the x-axis indicates that NAP is
calculated with reconstructions in the a-th to b-th hidden
spaces corresponding to a-th to b-th hidden layers. The a-th
hidden space refers to the hidden space that is closest to the
input space among the hidden spaces used and the b-th
hidden space refers to the hidden space that is farthest from
the input space (or closest to the bottleneck latent space)
among the hidden spaces used. For For example, 1:11
indicates that NAP is calculated with reconstructions in all
of the hidden spaces in the first to 11% hidden spaces
corresponding to first to ten hidden layers, except for the
bottleneck latent space (space between the encoder and the
decoder). The left graph corresponds to AUROC plotted as
a function of a:b in which a=1, i.e., the first hidden space is
always the hidden space that is the closest to the input side.
For example, in the left graph, 1:5 corresponds to NAP
calculated using hidden spaces starting with the hidden
space corresponding to g, 204-1 (FIG. 2) and ending with
the hidden space corresponding to g5 204-5 (FIG. 5). The
right graph corresponds to AUROC plotted as a function of
a:b in which b=11, i.e., the last hidden space is always the
hidden space that is the closest to the bottleneck latent space
or the farthest from the input space. For example, in the right
graph, 5:11 corresponds to NAP calculated using hidden
spaces starting with the hidden space corresponding to g
204-5 (FIG. 2) and ending with the hidden space corre-

sponding to g¢ 204-¢ (FIG. 5), where €=11. The overall
trend shows that the accuracy gets higher as more hidden
reconstructions or encoded inputs are included for the NAP
calculation. Another observation is that reconstructions in
hidden spaces close to the input space are more discrimi-
native for novelty compared to those close to the latent
space.

FIG. 10 illustrates graphs (a)-(d) of distributions of nov-
elty score experimentally obtained using a novelty detection
method according to embodiments. SAP and NAP show
consistent performance across all digits for the multimodal
normality case. To demonstrate this observation, FIG. 10
illustrate distributions of novelty scores for MNIST. The
graphs (a) and (c) are distributions of reconstruction errors
when novelty digits are 0 and 1, respectively. The graphs (b)
and (d) are distributions of NAP scores when novelty digits
are 0 and 1, respectively. In FIG. 10, the graphs (a) and (c)
show distributions of the reconstruction errors when novelty
digits are 0 and 1, respectively. As illustrated, when the digit
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0 is designated as being novel, the distributions for normal
and novel samples show relatively clear separation to pro-
duce a relatively high AUROC value 0f 0.9780. On the other
hand, when the digit 1 is designated as being novel, the two
distributions largely overlap, which results in a relatively
low AUROC value of 0.3669. In FIG. 10, the graphs (b) and
(d) show distributions of NAP scores when novelty digits are
0 and 1, respectively. In contrast to distributions of the
reconstruction errors, distributions of the NAP scores show
consistently clear separation regardless of whether digit 0 or
digit 1 is designated as being novel. Comparing graphs (c)
and (d), when the digit 1 is designated as being novel for
MNIST, utilization of hidden reconstructions leads to a
notable improvement over using reconstruction errors alone.

Considering that reconstruction error is associated with
the distance between an original data sample and its pro-
jection onto the reconstruction space, we can infer, based on
the observations discussed above with respect to FIG. 9, that
data samples for digit 1 are located relatively closer to the
reconstruction space, even though they are not part of the
training set. Based on this inference, we provide further
explanation below.

Let the set of normal digits be C,_,,,,..,- Assuming that each
normal digit ¢ from MNIST has a feature set S, to charac-
terize itself, the union of these feature sets defines a set of
normal features S,

S=U_S, where c€C,,,,nar

In the present application, S is approximated by a recon-
struction space of an autoencoder trained with representative
samples from all normal classes. Let this approximation be
S. Let the set of novel digits be C,,,,; and the feature set of
a novelty digit a be S,. In majority of the cases, we expect
S, not to be a subset of § because these novelty samples are
not involved in training of the autoencoder. It should be
noted that novelty detection is carried out by checking
whether S_-8=@. For the case where digit 1 is designated as
the novel class, a hypothesis is that the feature set S, of digit
1 is similar to S=N_S_, where c¢€C,,,,,,.; due to its simple
shape: i.e., IS,\SI=0. Therefore, S,\§ is likely to be an empty
set as well, and thus, novelty detection will suffer in per-
formance.

In contrast to conventional novelty detection methods
based on measuring the reconstruction error that primarily
investigate extremes of a projection pathway, the novelty
detection method according to embodiments focuses on the
entire sequence of the pathway to extract a fingerprint of a
data sample from intermediate hidden reconstructions. This
enables SAP and NAP to achieve more sophisticated char-
acterization for data, and as a consequence, consistently high
performance is obtained across various cases as shown
above.

In summary, the novelty detection method according to
embodiments effectively utilizes hidden reconstructions
along a projection pathway of deep autoencoders. To this
end, the concept of reconstruction in the input space is
extended to hidden spaces of an autoencoder, and a tractable
way to compute the hidden reconstructions is presented,
which requires neither modifying nor retraining the autoen-
coder. The experimental results show that the methods
according to embodiments outperform other competing
methods in terms of AUROC for diverse datasets including
popular benchmarks.

Applications of Novelty Detection Using Intermediate
Encoded Input from Hidden Layers

Novelty detection according to various embodiments can

be particularly useful in systems, e.g., mission-critical sys-
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tems, in which it may be possible to acquire a relatively large
data set corresponding to a “normal” class for training a
learning system of its behaviors or characteristics, while a
data set corresponding to an “abnormal” class may be
relatively scarce and therefore difficult to train the learning
system of its behaviors or characteristics. Some example
applications of novelty detection include, for example,
manufacturing systems such as precision manufacturing
systems, medical diagnostic systems such as mammograms,
complex industrial systems such as faults and failure detec-
tion systems, structural detection systems for detecting
structural damage, electronic security systems for detecting
electronic intrusions, credit card or mobile phone fraud
detection systems for detecting unusual usage behavior,
video surveillance systems for detecting physical intrusions,
mobile robotics, sensor networks, astronomy cataloguing
systems and text mining systems, to name a few examples.

In various applications of the novelty detection methods
according to embodiments, the training data set as well as
the test data may be data obtained from sensors. For
example, in a precision manufacturing environment, the
input data for the neural networks described above may be
obtained from sensors attached to manufacturing equipment
that generates a large amount of data. Examples of sensor
data that can be monitored using the methods described
herein include plasma, temperature, pressure, humidity, gas,
motion (e.g., speed), position, illumination or light, current,
voltage, vibration, weight, visual appearance, substrate war-
page, physical properties of materials (e.g., thickness, den-
sity, etc.), optical properties of materials (e.g., refractive
index, absorbance, etc.) and particles, to name a few. Based
on collected data from sensors, normal and abnormal states
of manufacturing environment may be characterized, and
anomalous patterns during operation can be detected, e.g.,
real-time, using various embodiments described herein.

By way of a specific example, semiconductor manufac-
turing environment is an example of precision manufactur-
ing environment where an anomaly that is not detected
timely can potentially cause costly loss of time and revenue.
Because a typical semiconductor wafer manufacturing pro-
cess flow includes tens or even hundreds of process steps,
early detection of anomaly can be particularly important, as
late detection may cause propagation of manufacturing
anomaly over large portions of the process flow.

One of the difficulties associated with semiconductor
manufacturing relates to frequently changing conditions a
wafer is subjected to in a tool. Under some circumstances,
the same tool runs multiple recipes. Under some other
circumstances, the same recipe run on the same or different
tools subjects wafers to variable process conditions. Regard-
less, because manufacturing excursions can be costly, strict
process controls are implemented at various points during
fabrication. As a result, “abnormal” data samples are rela-
tively rare compared to “normal” data sets. Hence, multi-
class classification techniques may not be practical for
detecting such excursions. As a result, even under normal
operation, sensor data collected during wafer processing can
have different characteristics. In other words, there can be
diverse “normal” states. To detect anomalies in such data,
advanced techniques are needed to characterize heteroge-
neous normal data and distinguish abnormal patterns there-
from. The methods described herein advantageously provide
sensitive novelty detection by additionally providing char-
acterization of manufacturing processes from investigation
of hidden information from a neural network.

By way of another example of precision manufacturing,
automotive manufacturing is another area where anomaly
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detection may be critical. Compared to wafers in semicon-
ductor industry, the while the volume of production may be
smaller, the value of a single product is much greater. For
instance, if a defect is found after assembling, the loss per
unit can be as high as the full cost of the unit itself, e.g., a
whole automobile that can cost over tens of thousands of
dollars. In addition, safety requirements for critical compo-
nents may be relatively stringent.

Similar to semiconductor manufacturing tools, equipment
for car manufacturing also has installed therein many sen-
sors. Also, similar to semiconductor manufacturing environ-
ment, the same manufacturing equipment may be used to
manufacture various products. For instance, one equipment
may manufacture different parts for different lines of
vehicles, or the same or different equipment may manufac-
ture nominally the same part for the same line of vehicles.

Another example of precision manufacturing where
anomaly detection is critical may be energy storage device
manufacturing, e.g., battery manufacturing. Undetected
anomalies energy storage device manufacturing can be
costly, and can cause injury from fire or explosion. As
energy storage devices widely used across various industry
sectors, e.g., in consumer-oriented products, detecting its
abnormal behavior is critical.

Yet another example of precision manufacturing is phar-
maceutical manufacturing. In contrast to general commodity
products, pharmaceutical products have strict safety require-
ments. Elaborate anomaly detection schemes are necessary
to identify subtle abnormal patterns.

Systems and Apparatuses Configured for Novelty Detection
Using Intermediate Encoded Input from Hidden Layers

FIG. 11 schematically illustrates a functional block dia-
gram of a system 1100 including an electronic apparatus for
detecting novelty of a sensor data using a deep learning
neural network model, according to embodiments. The
apparatus comprises a deep learning neural network module
1104 comprising an autoencoder 1108. The autoencoder
1108 in turn comprises an encoder 1112 comprising a
plurality of encoder layers and a decoder 1116 comprising a
plurality of decoder layers. The apparatus is communica-
tively coupled to a test data generating module 1120 and
configured to receive therefrom a first input comprising a
sensor data and to successively process the first input
through the plurality of encoder layers to generate a first
encoded input. Successively processing the first input com-
prises generating a first intermediate encoded input from one
of the encoder layers prior to generating the first encoded
input. The decoder is configured to receive the first encoded
input from the encoder and to successively process the first
encoded input through the plurality of decoder layers to
generate a first reconstructed output. The encoder is further
configured to receive the first reconstructed output as a
second input and to successively process the first recon-
structed output through the plurality of encoder layers.
Successively processing the first reconstructed output com-
prises generating a second intermediate encoded input from
one of the encoder layers. The deep learning neural network
module 1104 is configured to compute a novelty score of the
first input using the first intermediate encoded input and the
second intermediate encoded input. The electronic apparatus
additionally includes a novelty metric output module 1124
configured to output the novelty score.

The neural network module 1104 is communicatively
coupled to a memory module 1128, a microprocessor mod-
ule 1132 and a storage module 1136. The memory module
1128, the microprocessor module 1132 and the storage
module 1136 are communicatively connected to each other
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through, for example, a bus. In some embodiments, the
neural network module 1104 can include a software code
that that can be stored and/or executed locally, e.g., by a
local microprocessor module 1132 and a local memory
module 1128 and/or a local storage module 1136 of a local
computing device. In some other embodiments, the software
code can be stored and/or executed remotely, e.g., by a
remote server microprocessor module 1132 and a remote
memory module 1128 and/or a remote storage module 1132.
The memory module 1128 can include memory devices such
as a static random access memory (SRAM) and a dynamic
random access memory (RAM). The memory devices can be
configured as different levels of cache memory communi-
catively coupled to the microprocessor module 1132 through
a memory bus that provides a data path for flow of data to
and from the memory devices and the microprocessor mod-
ule 1132. The storage module 470 is configured to perma-
nently store data without power. In some implementations,
the storage module 1136 includes storage media, such as a
hard disk, a nonvolatile memory such as flash memory,
read-only memory (ROM), among others.

As described above, unlike some novelty detection tech-
niques, in the methods according to embodiments, one or
more intermediate first encoded inputs 308-1, 308-2, . . .

308-€ (FIG. 3) are obtained by processing a first input 304
partly through the encoder. These intermediate first encoded
inputs may advantageously be stored in, e.g., the memory
module 1128 and/or the storage module 1136. Similarly, one
or more of the intermediate second encoded inputs 508-1,

508-2, . . . 508-£ (FIG. 5) obtained by processing the first
reconstructed output 404 may be stored in, e.g., the memory
module 1128 and/or the storage module 1136. Subsequently,
the stored intermediate second encoded inputs may be used,
e.g., using the microprocessor module 1132 for determining
novelty, e.g., by comparing against the corresponding ones

of first encoded inputs 308-1, 308-2, . . . 308-¢ (FIG. 3).
Thus, the memory module 1128 and/or the storage module
1136 are configured to store both training data sets as well
as test data sets, as well as the first input that is partly or fully
processed by the autoencoder.

The test data generating module 1120 is configured to
provide the first input to the neural network module 1104.
The test data generating module 1120 can include any
apparatus suitable for feeding the first input to be analyzed
for novelty. For example, the test data generating module
1120 can include any of the sensors described above, which
in turn may be communicatively coupled to an apparatus
from which the sensor data may be generated, e.g., a
manufacturing equipment. In this configuration, the first
input can be a sensor data connected to the manufacturing
equipment.

The novelty metric output module 1124 may be config-
ured to output the novelty score of the first input using the
first intermediate encoded input and the second intermediate
encoded input generated by the deep learning neural net-
work module 1104. The novelty score may be outputted in
any suitable format, including textual, graphical or image
format, onto any suitable output medium, e.g., a display
device, paper or an electronic file.

It will be appreciated that each of the processes, methods,
and algorithms described herein and/or depicted in the
figures may be embodied in, and fully or partially automated
by, code modules executed by one or more physical com-
puting systems, hardware computer processors, application-
specific circuitry, and/or electronic hardware configured to
execute specific and particular computer instructions. For
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example, computing systems may include general purpose
computers (e.g., servers) programmed with specific com-
puter instructions or special purpose computers, special
purpose circuitry, and so forth. A code module may be
compiled and linked into an executable program, installed in
a dynamic link library, or may be written in an interpreted
programming language. In some embodiments, particular
operations and methods may be performed by circuitry that
is specific to a given function.

Further, certain embodiments of the functionality of the
present disclosure are sufficiently mathematically, compu-
tationally, or technically complex that application-specific
hardware or one or more physical computing devices (uti-
lizing appropriate specialized executable instructions) may
be necessary to perform the functionality, for example, due
to the volume or complexity of the calculations involved or
to provide results substantially in real-time. For example, a
video may include many frames, with each frame having
millions of pixels, and specifically programmed computer
hardware is necessary to process the video data to provide a
desired image processing task or application in a commer-
cially reasonable amount of time.

Code modules or any type of data may be stored on any
type of non-transitory computer-readable medium, such as
physical computer storage including hard drives, solid state
memory, random access memory (RAM), read only memory
(ROM), optical disc, volatile or non-volatile storage, com-
binations of the same and/or the like. In some embodiments,
the non-transitory computer-readable medium may be part
of one or more of the local processing and data module, the
remote processing module, and remote data repository. The
methods and modules (or data) may also be transmitted as
generated data signals (e.g., as part of a carrier wave or other
analog or digital propagated signal) on a variety of com-
puter-readable transmission mediums, including wireless-
based and wired/cable-based mediums, and may take a
variety of forms (e.g., as part of a single or multiplexed
analog signal, or as multiple discrete digital packets or
frames). The results of the disclosed processes or process
steps may be stored, persistently or otherwise, in any type of
non-transitory, tangible computer storage or may be com-
municated via a computer-readable transmission medium.

Any processes, blocks, states, steps, or functionalities in
flow diagrams described herein and/or depicted in the
attached figures should be understood as potentially repre-
senting code modules, segments, or portions of code which
include one or more executable instructions for implement-
ing specific functions (e.g., logical or arithmetical) or steps
in the process. The various processes, blocks, states, steps,
or functionalities may be combined, rearranged, added to,
deleted from, modified, or otherwise changed from the
illustrative examples provided herein. In some embodi-
ments, additional or different computing systems or code
modules may perform some or all of the functionalities
described herein. The methods and processes described
herein are also not limited to any particular sequence, and
the blocks, steps, or states relating thereto may be performed
in other sequences that are appropriate, for example, in
serial, in parallel, or in some other manner. Tasks or events
may be added to or removed from the disclosed example
embodiments. Moreover, the separation of various system
components in the embodiments described herein is for
illustrative purposes and should not be understood as requir-
ing such separation in all embodiments. It should be under-
stood that the described program components, methods, and
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systems may generally be integrated together in a single
computer product or packaged into multiple computer prod-
ucts.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than restrictive sense.

Indeed, it will be appreciated that the systems and meth-
ods of the disclosure each have several innovative aspects,
no single one of which is solely responsible or required for
the desirable attributes disclosed herein. The various fea-
tures and processes described above may be used indepen-
dently of one another, or may be combined in various ways.
All possible combinations and subcombinations are
intended to fall within the scope of this disclosure.

Certain features that are described in this specification in
the context of separate embodiments also may be imple-
mented in combination in a single embodiment. Conversely,
various features that are described in the context of a single
embodiment also may be implemented in multiple embodi-
ments separately or in any suitable subcombination. More-
over, although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination may in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination. No single feature or group of
features is necessary or indispensable to each and every
embodiment.

It will be appreciated that conditional language used
herein, such as, among others, “can,” “could,” “might,”
“may,” “e.g.,” and the like, unless specifically stated other-
wise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements and/or steps. Thus, such conditional lan-
guage is not generally intended to imply that features,
elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments nec-
essarily include logic for deciding, with or without author
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment. The terms “comprising,” “including,” “hav-
ing,” and the like are synonymous and are used inclusively,
in an open-ended fashion, and do not exclude additional
elements, features, acts, operations, and so forth. Also, the
term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connect
a list of elements, the term “or” means one, some, or all of
the elements in the list. In addition, the articles “a,” “an,”
and “the” as used in this application and the appended claims
are to be construed to mean “one or more” or “at least one”
unless specified otherwise. Similarly, while operations may
be depicted in the drawings in a particular order, it is to be
recognized that such operations need not be performed in the
particular order shown or in sequential order, or that all
illustrated operations be performed, to achieve desirable
results. Further, the drawings may schematically depict one
more example processes in the form of a flowchart. How-
ever, other operations that are not depicted may be incor-
porated in the example methods and processes that are
schematically illustrated. For example, one or more addi-
tional operations may be performed before, after, simulta-
neously, or between any of the illustrated operations. Addi-
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tionally, the operations may be rearranged or reordered in
other embodiments. In certain circumstances, multitasking
and parallel processing may be advantageous. Moreover, the
separation of various system components in the embodi-
ments described above should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described program components and
systems may generally be integrated together in a single
software product or packaged into multiple software prod-
ucts. Additionally, other embodiments are within the scope
of' the following claims. In some cases, the actions recited in
the claims may be performed in a different order and still
achieve desirable results.

Accordingly, the claims are not intended to be limited to
the embodiments shown herein, but are to be accorded the
widest scope consistent with this disclosure, the principles
and the novel features disclosed herein.

What is claimed is:

1. A method implemented on an electronic device for
detecting novelty of sensor data using a deep learning neural
network model, the method comprising:

providing the deep learning neural network model com-

prising an autoencoder on an electronic device, the
autoencoder comprising an encoder comprising a plu-
rality of encoder layers and a decoder comprising a
plurality of decoder layers;

feeding a first input comprising the sensor data into the

encoder and successively processing the first input
through the plurality of encoder layers to generate a
first encoded input, wherein successively processing
the first input comprises generating a first intermediate
encoded input from one of the encoder layers prior to
generating the first encoded input;

feeding the first encoded input into the decoder and

successively processing the first encoded input through
the plurality of decoder layers to generate a first recon-
structed output;
feeding the first reconstructed output as a second input
into the encoder and successively processing the first
reconstructed output through the plurality of encoder
layers, wherein successively processing the first recon-
structed output comprises generating a second interme-
diate encoded input from one of the encoder layers;

wherein generating the first intermediate encoded input
comprises generating a first vector and generating the
second intermediate encoded input comprises generat-
ing a second vector, and wherein the first and second
vectors have a lower dimension compared to the first
input, and

wherein the first intermediate encoded input and the

second intermediate encoded input are generated from
the same one of the encoder layers;

and computing a novelty score of the first input based on

the first intermediate encoded input and the second
intermediate encoded input, wherein computing the
novelty score comprises computing a distance between
the first vector and the second vector in a vector space;
and

outputting the novelty score.

2. The method of claim 1, wherein the first vector and the
second vector have the same dimension.

3. The method of claim 1, wherein successively process-
ing the first input through the plurality of encoder layers
comprises generating a plurality of first vectors from a
subset including at least some of the plurality of encoder
layers, and wherein successively processing the first recon-
structed output through the plurality of encoder layers
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comprises generating a plurality of second vectors from the
subset including at least some of the plurality of encoder
layers, and wherein computing the novelty score comprises
aggregating a plurality of vector pairs which include first
and second vectors.

4. The method of claim 3, wherein computing the novelty
score further comprises computing distances between the
plurality of vector pairs.

5. The method of claim 4, wherein computing the novelty
score further comprises summing squares of the distances in
the vector space.

6. The method of claim 4, wherein the first and second
vectors are represented in the vector space having orthogo-
nal axes, and wherein prior to computing the distances, the
method comprises rotating the axes based on a distribution
of the first and second vectors in the vector space.

7. The method of claim 6, wherein computing the dis-
tances between the plurality of vector pairs further com-
prises assigning different weights to each of at least two axes
in different directions based on a distribution in the vector
space of the plurality of vector pairs.

8. The method of claim 1, wherein the deep learning
neural network model comprises the autoencoder that has
been trained using a training dataset consisting essentially of
data representing a single normal class.

9. The method of claim 8, wherein the training dataset
comprises data such that a probability of the novelty score
exceeding a novelty threshold is lower than 1%.

10. The method of claim 1, wherein the sensor data
comprises manufacturing parameters collected from a
manufacturing environment.

11. The method of claim 1, wherein the first reconstructed
output is not further processed through remaining ones of
the encoder layers or through the decoder after generating
the second intermediate encoded input from the one of the
encoder layers.

12. An electronic apparatus for detecting novelty of
sensor data using a deep learning neural network model, the
apparatus comprising:

the deep learning neural network module comprising an

autoencoder, the autoencoder comprising an encoder
comprising a plurality of encoder layers and a decoder
comprising a plurality of decoder layers; and
a novelty metric output module,
wherein the encoder is configured to receive from a test
data generating module a first input comprising the
sensor data and to successively process the first input
through the plurality of encoder layers to generate a
first encoded input, wherein successively processing
the first input comprises generating a first intermediate
encoded input from one of the encoder layers prior to
generating the first encoded input;
wherein the decoder is configured to receive the first
encoded input from the encoder and to successively
process the first encoded input through the plurality of
decoder layers to generate a first reconstructed output;

wherein the encoder is further configured to receive the
first reconstructed output as a second input and to
successively process the first reconstructed output
through the plurality of encoder layers, wherein suc-
cessively processing the first reconstructed output com-
prises generating a second intermediate encoded input
from one of the encoder layers,
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wherein generating the first intermediate encoded input
comprises generating a first vector and generating the
second intermediate encoded input comprises generat-
ing a second vector, and wherein the first and second
vectors have a lower dimension compared to the first
input, and

wherein the first intermediate encoded input and the

second intermediate encoded input are generated from
the same one of the encoder layers;

wherein the deep learning neural network module is

configured to compute a novelty score of the first input
based on the first intermediate encoded input and the
second intermediate encoded input, wherein computing
the novelty score comprises computing a distance
between the first vector and the second vector in a
vector space; and

the novelty metric output module configured to output the

novelty score.

13. A non-transitory computer-readable medium having
stored thereon executable instructions that when executed
cause a computing device to perform steps for detecting
novelty of sensor data using a deep learning neural network
model, the steps comprising:

providing the deep learning neural network model com-

prising an autoencoder on an electronic device, the
autoencoder comprising an encoder comprising a plu-
rality of encoder layers and a decoder comprising a
plurality of decoder layers;

feeding a first input comprising the sensor data into the

encoder and successively processing the first input
through the plurality of encoder layers to generate a
first encoded input, wherein successively processing
the first input comprises generating a first intermediate
encoded input from one of the encoder layers prior to
generating the first encoded input;

feeding the first encoded input into the decoder and

successively processing the first encoded input through
the plurality of decoder layers to generate a first recon-
structed output;
feeding the first reconstructed output as a second input
into the encoder and successively processing the first
reconstructed output through the plurality of encoder
layers, wherein successively processing the first recon-
structed output comprises generating a second interme-
diate encoded input from one of the encoder layers,

wherein generating the first intermediate encoded input
comprises generating a first vector and generating the
second intermediate encoded input comprises generat-
ing a second vector, and wherein the first and second
vectors have a lower dimension compared to the first
input, and

wherein the first intermediate encoded input and the

second intermediate encoded input are generated from
the same one of the encoder layers; and

computing a novelty score of the first input based on the

first intermediate encoded input and the second inter-

mediate encoded input, wherein computing the novelty

score comprises computing a distance between the first

vector and the second vector in a vector space; and
outputting the novelty score.
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