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NOVELTY DETECTION USING DEEP plurality of encoder layers , wherein successively processing 
LEARNING NEURAL NETWORK the first reconstructed output comprises generating a second 

intermediate encoded input from the one of the encoder 
CROSS - REFERENCE TO RELATED layers . The method further comprises detecting a novelty of 

APPLICATIONS the original input based on a comparison of the first inter 
mediate encoded input and the second intermediate encoded 
input . 

This application claims the benefit of priority to U.S. In another aspect , an electronic apparatus for detecting Provisional Patent Application No. 62 / 831,027 , filed Apr. 8 , novelty of a sensor data using a deep learning neural 
2019 , entitled “ LAYERWISE INFORMATION LOSS network model comprises a deep learning neural network BASED NOVELTY DETECTION , ” the content of which is 10 module comprising an autoencoder , wherein the autoen 
hereby incorporated by reference herein in its entirety . coder comprises an encoder comprising a plurality of 

encoder layers and a decoder comprising a plurality of 
BACKGROUND decoder layers . The encoder is configured to receive from a 

test data generating module a first input comprising a sensor 
Field 15 data and to successively process the first input through the 

plurality of encoder layers to generate a first encoded input , 
The disclosed technology generally relates to novelty wherein successively processing the first input comprises 

detection and more particularly to novelty detection using a generating a first intermediate encoded input from one of the 
deep learning neural network . encoder layers prior to generating the first encoded input . 

20 The decoder is configured to receive the first encoded input 
Description of the Related Art from the encoder and to successively process the first 

encoded input through the plurality of decoder layers to 
Generally , novelty detection refers to data analysis meth- generate a first reconstructed output . The encoder is further 

ods or processes that include recognizing a difference configured to receive the first reconstructed output as a 
between an input , e.g. , test data , and previous inputs . The 25 second input and to successively process the first recon 
previous inputs can be , e.g. , data used during training a structed output through the plurality of encoder layers , 
learning system such as a neural network . Its practical wherein successively processing the first reconstructed out 
importance and challenging nature have led researchers to put comprises generating a second intermediate encoded 

input from one of the encoder layers . The deep learning propose many models and approaches . Novelty detection neural network module is configured to compute a novelty methods are particularly valuable when analyzing datasets in 30 score of the first input using the first intermediate encoded which a relatively large number of examples that can be input and the second intermediate encoded input . The elec categorized or labeled as being “ normal ” ( sometime also tronic apparatus additionally includes a novelty metric out 
referred to as positive examples or inliers ) is available , while put module configured to output the novelty score . 
a significantly smaller or insufficient number of examples another aspect , a non - transitory computer - readable 
that can be categorized or labeled as being “ abnormal ” 35 medium has stored thereon executable instruction that when 
( sometimes also referred to as negative examples or outliers ) executed cause a computing device to perform steps for 
is available . detecting novelty of a sensor data using a deep learning 
Some novelty detection techniques using deep learning neural network model . The steps comprise providing a deep 

neural networks have been proposed for various applica- learning neural network model comprising an autoencoder 
tions . In some novelty detection methods , an input is pro- 40 on an electronic device . The autoencoder comprises an 
cessed through a deep learning neural network to obtain an encoder comprising a plurality of encoder layers and a 
output that describes the input , and a comparison between decoder comprising a plurality of decoder layers . The steps 
the output and the input may be used to determine novelty . additionally comprise feeding a first input comprising a 
However , there is a need for improved novelty detection sensor data into the encoder and successively processing the 
methods using a deep learning neural network . first input through the plurality of encoder layers to generate 

a first encoded input , wherein successively processing the 
SUMMARY first input comprises generating a first intermediate encoded 

input from one of the encoder layers prior to generating the 
first encoded input . The steps additionally comprise feeding In one aspect , a method for detecting novelty using a deep the first encoded input into the decoder and successively learning neural network model comprises providing a deep 50 processing the first encoded input through the plurality of learning neural network model . The deep learning neural decoder layers to generate a first reconstructed output . The network model comprises an encoder comprising a plurality steps additionally comprise feeding the first reconstructed of encoder layers and a decoder comprising a plurality of output as a second input into the encoder and successively decoder layers . The method additionally comprises feeding processing the first reconstructed output through the plural 

a first input into the encoder and successively processing the 55 ity of encoder layers , wherein successively processing the 
first input through the plurality of encoder layers to generate first reconstructed output comprises generating a second 
a first encoded input , wherein successively processing the intermediate encoded input from one of the encoder layers . 
first input comprises generating a first intermediate encoded The steps additionally comprise computing a novelty score 
input from one of the encoder layers prior to generating the of the first input using the first intermediate encoded input 
first encoded input . The method additionally comprises 60 and the second intermediate encoded input . The steps further 
feeding the first encoded input from the encoder into the comprise outputting the novelty score . 
decoder and successively processing the first encoded input 
through the plurality of decoder layers to generate a first BRIEF DESCRIPTION OF THE DRAWINGS 
reconstructed output . The method additionally comprises 
feeding the first reconstructed output from the decoder as a 65 FIG . 1 is a flow chart of a method for detecting novelty 
second or subsequent input into the encoder and succes- using a deep learning neural network , according to embodi 
sively processing the first reconstructed output through the 
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FIG . 2 is a schematic illustration of an autoencoder having may be available for training a neural network model . In 
a deep learning architecture for detecting novelty , according these systems , a relatively small number of example data 
to embodiments . sets representing negative instances ( e.g. , data indicative of 

FIG . 3 is a flow chart of a method of processing a first abnormal system behavior ) may be available . In addition , a 
input , which may be a sensor data , through a plurality of 5 relatively large number of possible “ abnormal ” modes may 
encoder layers to generate one or more first intermediate exist , many of which may not be known a priori , such that 
encoded inputs , according to embodiments . training a neural network of their characteristics may be 
FIG . 4 is a flow chart of a method of processing a first impractical . As a result , conventional multi - class classifica 

encoded input , which may be generated by an encoder as tion schemes may be unsuitable for these applications . A 
illustrated in FIG . 3 , through a plurality of decoder layers to 10 solution to such circumstances may be offered by novelty 
generate a first reconstructed output , according to embodi- detection , in which a description of normality is learnt by 
ments . constructing a model in which a relatively large number of 

FIG . 5 is a flow chart of a method of processing a first example data sets representing positive instances ( e.g. , data 
reconstructed output , which may be generated by a decoder indicative of normal system behavior ) may be relatively 
as illustrated in FIG . 4 , through the plurality of encoder 15 easily collected or available . Previously unseen patterns of 
layers to generate one or more second intermediate encoded behaviors or characteristics are then tested by comparing 
inputs , according to embodiments . them with a model of normality to detect novelty . A novelty 
FIG . 6A schematically illustrates a method of quantifying score , which may or may not be probabilistic , may be 

a detected novelty by using one or more pairs of first and compared to a decision threshold , based on which the test 
second intermediate encoded inputs , which may be gener- 20 data may be determined to be “ abnormal ” if the threshold is 
ated according to methods illustrated in FIGS . 3-5 , accord exceeded . 
ing to embodiments . In recent years , novelty detection techniques using deep 
FIG . 6B is an example algorithm for implementing the learning neural networks have been proposed for various 

method illustrated in FIG . 6A , according to embodiments . applications . Some novelty detection methods that use a 
FIG . 7A is a simplified conceptual representation of a 25 deep neural network utilize reconstruction error to detect 

distribution of first intermediate encoded inputs and of novelty , because discriminative learning schemes are not 
second intermediate encoded inputs in a vector space under suitable for highly class - imbalanced data which is common 
a schematic example circumstance . in various applications as described above . Some unsuper 
FIG . 7B is a simplified conceptual representation of a vised and semi - supervised learning models can handle such 

distribution of first intermediate encoded inputs and second 30 imbalance by focusing on characterization of normality and 
intermediate encoded inputs in a vector space under a detecting samples out of the normality : e.g. , principal com 
schematic example circumstance . ponent analysis ( PCA ) for linearity and autoencoders for 
FIG . 8 schematically illustrates a method of processing a non - linearity . Variational autoencoders ( VAE ) have been 

first encoded input , which may be generated by an encoder used to model normality by identifying a lower dimensional 
as illustrated in FIG . 3 , through a plurality of decoder layers 35 space that compressively represents principal information of 
to generate one or more intermediate decoded outputs , normal data , and finding data that cannot be effectively 
according to embodiments . represented in that space by measuring a reconstruction error 

FIG . 9 illustrates graphs of novelty scores experimentally in the original space . Some other novelty detection methods 
obtained using a novelty detection method according to use a generative adversarial network ( GAN ) to model a 
embodiments in which the number of intermediate encoded 40 distribution of normal data . Despite having the same general 
inputs is varied . objective of discovering a proper lower dimension , GAN 

FIG . 10 illustrates graphs of distributions of novelty score uses as a criterion the quality of synthetic data from the low 
experimentally obtained using a novelty detection method dimensional space rather than reconstruction quality of 
according to embodiments . training data . Some methods combine autoencoders with an 
FIG . 11 schematically illustrates a functional block dia- 45 adversarial learning scheme , to meet its quality of both 

gram of an electronic apparatus incorporating an autoen- dimension reduction and generation . However , the inventors 
coder module having a deep learning architecture for detect- have recognized a shortcoming of some of these methods 
ing novelty , according to embodiments . based on using ordinary reconstruction error , which is that 

they do not exploit all the information found along a 
DETAILED DESCRIPTION 50 projection pathway , e.g. , intermediate outputs by interme 

diate layers of deep autoencoders . 
Generally , novelty detection refers to data analysis meth- As described herein , an intermediate output refers to an 

ods or processes that include detecting or recognizing a output generated by a hidden layer of a deep neural network 
difference between an input , e.g. , data to be tested , and by only partially processing an input therethough , prior to 
previous inputs . The previous inputs can be , e.g. , data used 55 obtaining an output . When the deep neural network includes 
during training a learning system such as a neural network . an autoencoder , an intermediate output can be generated by 
Novelty detection has gained much research and develop- a hidden layer of an encoder or a decoder of an autoencoder . 
ment attention for application in various systems . Novelty As describe herein , an intermediate output that is generated 
detection can be particularly useful in systems , e.g. , mission- by a hidden layer of the encoder of the autoencoder may be 
critical systems , in which it may be possible to acquire a 60 referred to as an intermediate encoded input , while an 
relatively large data set corresponding to a “ normal ” class intermediate output that is generated by a hidden layer of the 
for training a learning system of its behaviors or character- decoder of the autoencoder may be referred to herein as an 
istics , while a data set corresponding to an “ abnormal ” class intermediate decoded output or an intermediate recon 
may be relatively scarce and therefore difficult to train the structed output . 
learning system of its behaviors or characteristics . In these 65 Novelty detection methods can be set up differently based 
modern high - integrity systems , only a limited understanding on the diversity of normal data in a training data set . For a 
of the relationships between the various system components given labeled data set , in some methods , a small fraction of 
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classes is designated as being normal , while in some other appreciated that the latter quantity cannot be computed by 
methods , a majority of classes is designated as being normal . directly evaluating its definition because the decoder of an 
The former approach has been used in one class classifica- autoencoder is learned as a black box rather than composi 
tion context , where evaluation may be performed by orga- tion of meaningful layer - wise functions . This results in no 
nizing training data into collection of samples belonging to s correspondence between encoding and decoding layers . 
a small number of normal classes . On the other hand , the Nevertheless , according to the methods disclosed herein , a latter approach assumes greater diversity of normal data by reconstruction of the hidden representation of an input can constructing a training data set with samples of a relatively be computed by feeding a reconstructed output to the large number of normal classes : e.g. , nine digits with Modi autoencoder a second time . Thus , the methods according to fied National Institute of Standards and Technology 10 embodiments can be interpreted to incorporate reconstruc ( MNIST ) database . tions of hidden representations , as well as to incorporate As described above , in some novelty detection methods , hidden representations of the input reconstruction . an input is processed through an autoencoder of a deep 
learning neural network , and a reconstruction error obtained Novelty Detection Using Intermediate Encoded Input from 
therefrom is used to determine novelty . However , using a 15 Hidden Layers 
reconstruction error to determine novelty can be inadequate According to various embodiments of novelty detection 
for detecting novelty under some circumstances . For methods described herein , an autoencoder is used to detect 
example , various novelty detection methods using a deep novelty by analyzing information not only in an input space 
learning autoencoder measure the quality of reconstruction ( e.g. , an input to be processed through an autoencoder and 
only in the input space , e.g. , by comparing an input with a 20 an output processed completely through the autoencoder ) , 
reconstructed output . That is , such methods do not fully but also by analyzing information in hidden spaces along a 
utilize intermediate outputs in the hierarchical hidden spaces projection pathway of the autoencoder . As described above , 
by the intermediate layers of the deep learning autoencoder . analyzing information in hidden spaces includes analyzing 
Such methods can result in a significant loss of valuable an intermediate output from a hidden layer after processing 
information , because outputs by the intermediate layers can 25 an input partially though the autoencoder up to and includ 
yield valuable that maybe lost in the overall reconstructed ing the hidden layer . The input and its reconstruction are 
output by the autoencoder . It will be appreciated that , even projected onto the hidden spaces to obtain pairs of hidden 
if two inputs processed through an autoencoder result in the vectors , and thus obtained pairs of hidden vectors are 
same reconstructed output , their hidden representations or aggregated to quantify a relative novelty of the input . A 
intermediate outputs by the intermediate layers may not be 30 metric that quantifies a difference between the pairs of 
identical . As a result , in these methods , valuable information hidden vectors is then used to determine whether the original 
from hidden spaces that may be hierarchically identified by input is novel . Advantageously , various embodiments 
the deep architecture may be lost . described herein leverage the information generated by an 

To address these and other shortcomings of novelty autoencoder more fully compared to methods that mostly 
detection using a deep learning autoencoder , embodiments 35 utilize an initial input and a final output by exploiting 
of novelty detection disclosed herein advantageously information that can be extracted from hidden spaces to 
include detecting novelty of a data sample by evaluating its detect novelty of an input . FIG . 1 is a flow chart of a method 
reconstruction along a projection pathway , or intermediate 100 for detecting novelty of an input , e.g. , a sensor data , 
encoded or decoded outputs , of the autoencoder . As using a deep learning neural network model , according to 
described herein , a projection pathway refers to a path 40 embodiments . The method 100 comprises providing 110 a 
including a sequence of mappings defined by different layers deep learning neural network model comprising a plurality 
of the autoencoder . Unlike some novelty detection methods of hidden layers . In the illustrate example , the method 100 
that compare an input and its reconstructed output to detect comprises providing a deep learning neural network model 
novelty , various methods according to embodiments extend comprising a plurality of hidden layers . For example , the 
the space of the comparison into hidden spaces . For 45 deep learning neural network can include an autoencoder . 
example , pairs of hidden representations of the input and its An autoencoder comprises an encoder ( g ) and a decoder ( f ) , 
reconstruction are obtained , which may be aggregated to each of which can include a plurality of hidden layers . Thus , 
quantify novelty of the input . For example , a pair of hidden a deep learning neural network can include an autoencoder , 
representation may include a first intermediate encoded which in turn can include an encoder ( g ) comprising a 
input obtained from an intermediate layer of an encoder by 50 plurality of encoder layers 81 , 82 , ge and a decoder ( f ) 
processing an original input through hidden layers of the comprising a plurality of decoder layers f1 , f2 , ... fl . The 
encoder up to and including that intermediate layer , and a number of encoder layers and the number of decoder layers 
second intermediate encoded input obtained from the same can be the same or different . The deep neural network can be 
intermediate layer of the encoder by processing a recon- provided on an electronic apparatus , e.g. , a volatile or a 
structed output from the autoencoder though the hidden 55 nonvolatile memory or a storage device of a computing 
layers of the encoder up to and including the same interme- device . The deep neural network can also be provided on a 
diate layer . non - transitory computer - readable medium , e.g. , a nonvola 

In addition , embodiments of novelty detection disclosed tile memory or a storage medium , which may or may not be 
herein can evaluate a reconstruction of a hidden represen- part of an electronic apparatus . 
tation of the input . The reconstruction of the hidden repre- 60 Still referring to FIG . 1 , the method 100 additionally 
sentation of the input can be , e.g. , an intermediate decoded comprises feeding 120 a first input , e.g. , a test data , into the 
output that is obtained from processing an input through the encoder and successively processing the first input through 
autoencoder up to and including an intermediate layer of a the plurality of encoder layers to generate a first encoded 
decoder . Given an input , the hidden representation of recon- input . Successively processing the first input comprises 
struction of the input that the methods according to embodi- 65 generating a first intermediate encoded input , after partly 
ments computes can be shown to correspond to reconstruc- processing through the encoder , from one of the encoder 
tion of hidden representation of the input . It will be layers prior to generating the first encoded input . The first 
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intermediate encoded input may be stored on a non - transi- ments are not so limited and in some other embodiments , the 
tory computer - readable medium , e.g. , a nonvolatile memory encoder 200A may be configured such that , while the 
or a storage medium . The method additionally comprises number of neurons in the first encoder layer ( 81 ) 204-1 is 
feeding 130 the first encoded input into the decoder and greater than the number of neurons in the last encoder layer 
successively processing the first encoded input through the 5 ( gl ) 204-6 , the number of neurons in the intermediate plurality of decoder layers to generate a first reconstructed 
output . The method additionally comprises feeding 140 the layers may not always decrease between immediately adja 
first reconstructed output as a second input into the encoder cent pairs of encoder layers . For example , there may be at 
and successively processing the first reconstructed output least one immediately adjacent pair of encoder layers where 
through the plurality of encoder layers . Successively pro- 10 the number of neurons increases or remains unchanged from 
cessing the first reconstructed output comprises generating a an encoder layer to the immediately subsequent encoder 
second intermediate encoded input , after partly processing layer . Similarly , in some other embodiments , the decoder 
thorough the encoder , from the one of the encoder layers . 200B may be configured such that , while the number of 
The second intermediate encoded input may be stored on the neurons in the first decoder layer ( fi ) 208-1 is greater than 
non - transitory computer - readable medium . The method fur- 15 the number of neurons in the last decoder layer ( fl ) 208-6 , 
ther comprises detecting 150 a novelty of the first input the number of neurons in the intermediate layers may not 
using the first intermediate encoded input and the second always increase between immediately adjacent pairs of 
intermediate encoded input . For example , the first interme encoder layers . For example , there may be at least one diate encoded input and the second intermediate encoded immediately adjacent pair of encoder layers where the input stored on the computer - readable medium may be 20 number of neurons decreases or remains unchanged from an compared using a microprocessor . encoder layer to an immediately subsequent decoder layer . The methods according to embodiments use a deep learn In some configurations , at least some corresponding pairs ing neural network model comprising an auto - encoder . As 
described herein , an autoencoder refers to a neural network ( e.g. , 81 and f1 , 82 and f? , ... gl and fe ) of encoder and 
that learns to copy its input to its output . That is , an 25 decoder layers have the same number of neurons . In some 
autoencoder is configured to learn a representation for a set configurations , at least some corresponding pairs of the 
of data , e.g. , by dimensionality reduction , by training the encoder and decoder layers have different numbers of neu 
neural network to ignore signal “ noise . ” An autoencoder has rons . However , configurations are not so limited , and in 
an input layer , an output layer and one or more hidden layers some other configurations , each of the corresponding pairs 
connecting them . The autoencoder has one or more internal 30 of the encoder and decoder layers has the same or different 
( hidden ) layer that describes a code used to represent the number of neurons . 
input , and includes two main parts : an encoder ( g ) that maps Thus configured , the encoder 200A reduces the number of 
the input into the code , and a decoder ( f ) that maps the code characteristics or dimensions of its input , e.g. , test data , 
to a reconstruction of the original input . By doing so , the successively through its layers to generate an encoded input , 
autoencoder is configured to generate from the reduced 35 while the decoder 200B increases the number of character 
encoding a representation as close as possible to its original istics or dimensions of its input , e.g. , the encoded input , 
input . The output layer has the same number of nodes successively through its layers . In the illustrated example , 
( neurons ) as the input layer , and with the the output of the encoder , referred to herein as the encoded of purpose 
structing its inputs ( minimizing the difference between the input , serves as the input of the decoder . When arranged as 
input and the output ) instead of predicting the target value Y 40 such , the layers of the decoder 200B inversely maps to the 
given inputs X. Therefore , autoencoders are unsupervised layers of the encoder 200A . The overall operation performed 
learning models ( do not require labeled inputs to enable by the autoencoder 200 can be expressed as A = fog . Each of 
learning ) . Autoencoders are restricted to reconstruct the the encoder layers ( 81 , 82 , • . . gl ) 204-1 , 204-2 , .. 
input only approximately , prioritizing the most relevant 204-6 is configured to receive from a previous encoder layer aspects or characteristics of the data to be copied . an intermediate input and reduce the number of character FIG . 2 schematically illustrates an example of an auto istics or the dimensionality thereof by at least one charac encoder ( A ) 200 having a deep learning architecture for teristic or dimension to generate an intermediate input for detecting novelty of an input , e.g. , a sensor data , according feeding into the next encoder layer . Conversely , each of the to embodiments . The autoencoder 200 includes an encoder 
( g ) 200A and a decoder ( f ) 200B . The encoder 200A includes 50 decoder layers ( f1 , f2 , ... fe ) 208-1 , 208-2 , ... 208 - l is 
one or more , e.g. , a plurality ( 1 ) , of hidden encoder layers configured to receive from a previous layer an intermediate 

reconstructed output and increase the number of character 
( 81 , 82 , ge ) 204-1 , 204-2 , 204-6 , and the decoder istics or dimensionality thereof by at least one characteristic 
200B includes one or more , e.g. , a plurality ( l ) , of hidden or dimension to generate an intermediate reconstructed 
decoder layers ( f1 , f2 , ... fe ) 208-1 , 208-2 , .. 208-6 . In 55 output for feeding into the next decoder layer . While in the 
the illustrated embodiment of the encoder 200A , each illustrated example , the number ( C ) of encoder layers and 
encoder layer has a plurality of neurons , also referred to the number of decoder layers are equal , examples are not so 
herein as nodes or units , and successive encoder layers have limited , and in other examples , they can be different . 
successively decreasing number of neurons . Successively According to various embodiments , the autoencoder 200 
decreasing number of neurons can successively decrease the 60 can be a suitable autoencoder . For example , without limi 
dimensionality of the information processed therethrough . tation , the autoencoder 200 can be a variational autoencoder 
Similarly , in the illustrated embodiment of the decoder ( VAE ) . In contrast to some autoencoders that aim to mini 
200B , each decoder layer has a plurality of neurons , and mize a distance between an input and a corresponding 
successive decoder layers have successively increasing decoder output , e.g. , a reconstructed output from a decoder 
number of neurons . Successively increasing the number of 65 similar to that described above with respect to FIGS . 1 and 
neurons can successively increase the dimensionality of the 2 , a VAE additionally imposes a specified distribution on 
information processed therethrough . However , embodi- encoder outputs , e.g. , an encoded input from an encoder 
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similar to that described above with respect to FIGS . 1 and costs , or the low frequency at which abnormal events occur . 
2. For instance , a unit Gaussian distribution may be used for For example , because precision manufacturing processes are 
the specified distribution . As a result , an objective function designed to be inherently robust against excursions or out 
of VAE includes two terms : ( 1 ) a distance between an input liers , an occurrence of an “ abnormal ” behavior may be rare 
and a decoder output , in a similar manner to other autoen- 5 and / or expensive to generate intentionally . Therefore , it is 
coders , and ( 2 ) a distance between a distribution of an difficult to obtain a very well - sampled negative or “ abnor 
encoder output and the specified distribution . mal ” class . Thus , according to embodiments of novelty 

Another example of the autoencoder 200 is an adversarial detection methods described herein , where a novelty thresh 
autoencoder ( AAE ) . In a similar manner as a VAE , AAE old z ( s ) = k is defined as a decision boundary such that x is 
imposes a specified distribution on encoder outputs . How- 10 classified “ normal ” if z ( x ) sk , or “ novel ” otherwise , the data 
ever , unlike a VAE , AAE adopts " adversarial training ” set used to train the autoencoder may have less than 10 % , 
instead of directly measuring a distance between the distri- less than 5 % , less than 1 % , less than 0.1 % , less than 0.01 % 
bution of encoder outputs and the specified distribution . For that are " novel . ” 
this purpose , AAE uses a neural network known as a In some novelty detection methods , upon training an 
discriminator , which is trained to classify encoder outputs 15 autoencoder using normal data samples , a novelty of a test 
and vectors drawn from the specified distribution . As a data sample can be measured and represented by a recon 
result , an AAE has three training goals : ( 1 ) a pair of an struction error E defined in the input space as : 
encoder and a decoder are trained similar to other autoen 
coders , ( 2 ) the discriminator is trained to output 1 for vectors E = \ x - A ( x ) 2 - VE_1 " ( x - A ( x ) :) , 
drawn from the specified distribution and 0 for encoder 20 where x ; is an element of an input vector and A ( x ) ; is a 
outputs , and ( 3 ) the encoder is trained to make the discrimi reconstructed output of the x ; processed through an autoen 
nator output 1 for encoder outputs . coder . 

Another example of the autoencoder 200 is a conditional A sample may be determined to be more likely to be novel 
variational autoencoder ( CVAE ) . CVAE is a variant of VAE , as the reconstruction error becomes larger because the 
which enables incorporation of auxiliary information asso- 25 sample is farther from the manifold identified by the auto 
ciated with data samples , e.g. , labels . In addition to VAE , encoder in the input space . However , as described above , the 
CVAE additionally accepts the associated information , e.g. , inventors have discovered that the reconstruction error 
labels , which may be encoded as a vector , as an input of the obtained from a fully reconstructed output may not fully 
encoder or the decoder . This additional input enables inter- exploit information that may be generated by a trained 
pretation of data samples dependently on their associated 30 autoencoder , especially when the architecture is deep , in part 
information . By way of illustration , the temperature of a because hierarchical information identified by the deep 
manufacturing environment may differ depending on the architecture may not be utilized . Thus , by performing steps 
product being manufactured . In such environment , a product 120 , 130 , 140 and 150 of the method 100 illustrated in FIG . 
identification may be used as the associated information . It 1 , various novelty detection methods according to embodi 
will be appreciated that the associated information can be 35 ments measure a reconstruction - based novelty using infor 
used as an additional input for any intermediate hidden mation obtained not only in an input space , e.g. , information 
layers of the encoder and / or the decoder , as well as for the obtained by processing an input completely processing 
input of the encoder and / or the decoder . Moreover , this through an autoencoder , but also using information obtained 
technique can be incorporated with AE and other variants of from hidden spaces , e.g. , information obtained by process 
AE . 40 ing an input partly through the autoencoder , thus by exam 

Referring back to FIG . 1 , prior to feeding 120 a first input ining a projection pathway of the autoencoder . In particular , 
into an encoder , the autoencoder 200 may be trained . Train- as described herein , the input and a reconstructed output are 
ing objectives of the autoencoder include minimizing a projected onto the hidden spaces to obtain pairs of hidden 
difference between an input x and a reconstructed output vectors from a hidden layer of the autoencoder , and are 
A ( x ) . The space represented by the hidden layers of the 45 aggregated to quantify a novelty of the input . 
encoder may be referred to as a latent space . The latent space Alternatively , an intermediate reconstructed output may 
provides a more concise representation of the input data than be used to quantify a degree of novelty of an input . That is , 
the input data itself . As described above , the dataset used to an intermediate encoded input and the corresponding inter 
train the autoencoder in novelty detection can be distin- mediate reconstructed output may be compared to quantify 
guished by a relatively large number of examples of the 50 the degree of novelty . To make the comparison a proper 
“ normal ” condition or positive examples compared to a comparison , the autoencoder may be trained , where the 
relatively small or insufficient number of examples of the training objective function of the autoencoder may include 
“ abnormalities ” or negative examples . Novelty detection is a term minimizing a difference between an intermediate 
distinguishable from conventional pattern recognition meth- encoded input and an intermediate reconstructed output 
ods , which typically focus on classification of two or more 55 involved in the comparison for the novelty quantification . 
classes . In a general setup of multi - class classification , a set FIG . 3 is a flow chart of a method of processing a first 
of training examples are provided , where each example may input , which may be a sensor data , through a plurality of 
be a D dimensional vector having a label . From the labelled encoder layers to generate one or more first intermediate 
dataset , a function may be constructed such that for a given encoded inputs , according to embodiments . FIG . 3 illus 
input , an estimate of one of the multiple labels is obtained . 60 trates feeding 120 ( FIG . 1 ) a first input 304 , e.g. , a sensor 
In contrast , the training data set novelty detection is data , into the encoder g and successively processing the first 
approached within the framework of one - class classification , input 304 through the plurality ( l ) of encoder layers ( 81 , in which one class ( the specified normal , positive class ) has 
to be distinguished from all other possibilities . It is usually 82 , gl ) 204-1 , 204-1 , . . . 204-6 to generate a first 
assumed that the positive class is very well sampled , while 65 encoded input 308. One or more intermediate first encoded 
the other class ( es ) is / are severely under - sampled . The scar- inputs 308-1 , 308-2 , . . . 308l to be used for novelty 
city of negative examples can be due to high measurement detection are generated by processing the first input 304 
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partly through the encoder ( g ) up to and including a corre- intermediate reconstructed outputs 408-6 , 408- ( 1-1 ) , ... 
sponding one of the encoder layers 204-1 , 204-1 , 408-1 to be fed back into the encoder g is generated by 
204 - l , prior to generating the first encoded input 308 that is processing the first encoded input 308 partly through the 
obtained after the first input 304 is processed completely decoder ( f ) up to and including a corresponding one of the 
through the encoder ( g ) . Unlike some novelty detection decoder layers 208-6 , 208- ( 1-1 ) , . . . 208-1 prior to techniques in which the first input 304 may be compared generating the first reconstructed output 404 that is obtained 
against the first reconstructed output 404 ( FIG . 4 ) to deter after the first encoded input 308 is processed completely mine a novelty of the first input 304 , e.g. , by obtaining a through the decoder ( f ) . Similar to intermediate encoded 
novelty score , according to embodiments , one or more of the 10 inputs , one or more of the intermediate reconstructed out 
intermediate first encoded inputs 308-1 , 308-2 , puts 408-6 , 408- ( 6-1 ) , ... 408-1 may be stored , e.g. , in a 308-6 may be stored in , e.g. , a memory or a storage device , memory or a storage device , for later use in determining for later use in determining novelty , e.g. , by comparing novelty . In the illustrated embodiment , one or more of the against corresponding ones of second encoded inputs 508-1 , intermediate reconstructed outputs 408-6 , 408 - ( ( - 1 ) , . 508-2 , .. 508 - ( FIG . 5 ) . In the illustrated embodiment , 408-1 may be generated from corresponding one or more of one or more of the first encoded inputs 308-1 , 308-2 , ... the decoder layers 208-6 , 208- ( 2-1 ) , ... 208-1 prior to 308 - l may be generated from corresponding one or more of generating the first reconstructed output 404. The first 
the encoder layers 204-1 , 204-1 , . . . 204 - l prior to gener- encoded input 308 comprises a dataset , e.g. , compressed 
ating the first encoded input 308. The first input 304 com- 20 sensor data represented by one or more vectors having an 
prises a dataset , e.g. , a sensor data represented by one or & th number ( DL ) of characteristics or dimensions , where more vectors , having an initial number ( D. ) of characteris each of the characteristics or dimensions can correspond to tics or dimensions , where each of the characteristics or a reconstructed physical parameter or feature represented by dimensions can correspond to a physical parameter or fea the dataset . As illustrated , the first encoded input 308 having ture represented by the dataset . As illustrated , the first input 25 
304 is fed into a first encoder layer ( 81 ) 204-1 to generate a an 6 th number ( DL ) of characteristics is fed into an lth 
first intermediate encoded input 308-1 from the 81 , which is decoder layer ( fl ) 208-6 to generate the intermediate recon 
compressed relative to the first input 304 by the hidden structed output 408 - l from the fl 208- & , which is decom 
neurons , units or nodes of the g , 204-1 to have a first number pressed relative to the first encoded input 308 by hidden 
( D ) of characteristics or dimensions , where D , < D .. Sub- 30 
sequently , the first intermediate encoded input 308-1 from neurons , units or nodes of the fl 208-6 to have an ( l - 1 ) th 
the g? 204-1 is fed into a second encoder layer ( 82 ) 204-2 to number ( D ( 2-1 ) ) of characteristics or dimensions , where 
generate a first intermediate encoded input 308-2 from the g2 D ( l - 1 ) > DC . Subsequently , the lth intermediate recon 
204-2 , which is compressed relative to the first intermediate structed output 208-2 from the fl 208-2 is fed into an encoded input 308-1 from the g? 204-1 by the hidden 35 
neurons of the g2 204-2 to have a second number ( D2 ) of ( l - 1 ) th decoder layer fe 208- ( 1-1 ) to generate the 
characteristics or dimensions , where D2 < D ,. That is , as the intermediate reconstructed output 408- ( 1-1 ) from the fe 
first input 304 is processed through hidden successive 208- ( 1-1 ) , which is decompressed by the hidden neurons of encoder layers , the number of characteristics or dimensions is successively reduced . The characteristics or dimensions 40 the fl - 1 ) 208- ( 6-1 ) to have D ( l -2 ) number of character 
can correspond to different parameters contained in the istics , where D ( 1-2 ) > D ( 1-1 ) . That is , as the first encoded 
sensor data . The process is repeated until a first intermediate input 308 is processed through hidden successive decoder 
encoded input 308- ( 1-1 ) from an ( l - 1 ) th layer gil - 1 ) layers , the number of characteristics or dimensions is suc 

cessively increases . The characteristics or dimensions can having an ( l - 1 ) th number ( DC ) of characteristics is fed into 45 correspond to different parameters contained in the sensor 
an 6 th encoder layer gl 204-6 to generate a first interme- data . The process is repeated until the intermediate recon 
diate encoded input 308 - l from the gl , which is com structed output 408-2 from the 2nd decoder layer f , 208-2 

having the D1 number of characteristics is fed into a first pressed by the hidden neurons of the gl to have an lth decoder layer f 208-1 to generate the intermediate recon 
number ( DL ) number of characteristics , where Dl < D ( 1-1 ) . 50 structed output 408-1 from the f , 208-1 , which is decom 
When the & th encoder layer ( gl ) 204 - é is the last encoder pressed by hidden neurons of the f , to have the D , number 
layer of the encoder g , the first intermediate encoded input of characteristics , where D. > D . Thus in the illustrated 
308 - l from the gl 204 - l can represent the first encoded embodiment , the first reconstructed output 404 is recon 
input 308 , which is subsequently fed into the decoder f , as structed to have the same number ( D. ) characteristics or 
described above and further in detail below with respect to 55 dimensions as the first input 304. When the first decoder 
FIG . 4 . layer f ; 208-1 is the last decoder layer of the decoder f , the 
FIG . 4 is a flow chart of a method of processing a first first intermediate reconstructed output 408-1 from the fi 

encoded input , which may be generated by an encoder as 208-1 can represent the first reconstructed output 404 , which 
illustrated in FIG . 3 , through a plurality of decoder layers to is subsequently fed into the encoder g , as described above 
generate a first reconstructed output , according to embodi- 60 and further in below with respect to FIG . 5 . FIG . 5 is a flow chart of a method of processing a first ments . FIG . 4 illustrates feeding 130 ( FIG . 1 ) the first 
encoded input 308 generated by the encoder g as illustrated reconstructed output , which may be generated by a decoder 
in FIG . 3 into the decoder f and successively processing the as illustrated in FIG . 4 , through the plurality of encoder 

layers to generate one or more second intermediate encoded 
first encoded input 308 through the plurality ( C ) of decoder 65 inputs , according to embodiments . FIG . 5 illustrates feeding 
layers ( fe , fe - 19 fi ) 208-6 , 208- ( 6-1 ) , . . . 208-1 to 140 ( FIG . 1 ) the first reconstructed output 404 , obtained 
generate a first reconstructed output 404. One or more from the decoder f as described above with respect to FIG . 
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4 , as a second input 404 into the encoder ( g ) and succes- reference to FIG . 6A , a method 600A of quantifying a 
sively processing through the plurality of encoder layers ( 81 , detected novelty by examining the projection pathway of an 
82 , . gl ) 204-1 , 204-1 , . . . 204-6 to generate a second autoencoder is schematically described . The method 600A 

illustrates the first input 304 that is fed 120 ( FIG . 1 ) into the encoded input 504. One or more second intermediate encoder g and successively processed through the plurality g 
encoded inputs 508-1 , 508-2 , 5081 to be used for of encoder layers ( 81 , 82 , ... gl ) to generate a first encoded 
novelty detection are generated by processing the second input 308 according to the method described above with 
input 404 partly through the encoder ( g ) up to and including respect to FIG . 3 , the first encoded input that is fed 130 ( FIG . 
a corresponding one of the encoder layers 204-1 , 1 ) into the decoder fand successively processed through the 
204-1 , ... 204 - l in a similar manner as described above 10 plurality of decoder layers ( fe , fe -1 , ... fi ) to generate a first reconstructed output 404 according to the method described with respect to FIG . 3 , prior to generating the second above with respect to FIG . 4. The first reconstructed output encoded input 504. In a similar manner as described above 404 is then fed 140 ( FIG . 1 ) into the encoder g as a second with respect FIG . 3 for feeding the first input 304 into the input and successively processed through the plurality of 
encoder g to obtain a first encoded input 308 , in the 15 encoder layers ( 81 , 82 , illustrated process , the second input 404 is fed into the first gl ) according to the method 
encoder layer ( 81 ) 204-1 to generate the second intermediate described above with respect to FIG . 5. From the first input 

304 and the reconstructed output 404 that are projected onto encoded input 508-1 from the g? , the second intermediate the hidden spaces or layers , e.g. , processed partly through encoded input 508-1 from the g , is fed into a second encoder the encoder ( g ) up to and including one of the encoder layers layer ( 92 ) 204-2 to generate a second intermediate encoded 
input 508-2 from the g2 , and so on , until a second interme 204-1 , 204-1 , . . . 204-6 , one or more pairs of hidden vectors 

can be obtained . The pairs of the hidden vectors can then diate encoded input 508- ( 1-1 ) from the ( l –1 ) th encoder used to obtain a novelty score . For example , the pairs of the 
layer gl -1 ) 204- ( l -1 ) is fed into the l th encoder layer hidden vectors may be aggregated to quantify the novelty of 
( gl ) 204 - l to generate a second intermediate encoded input the original input . 
508 - l from the gl 204-6 , which can represent the second Referring to FIG . 6A , a mathematical expression of the 

method 600A may be described as follows . An overall 
encoded input 504 when the gl 204 - l is the last encoder computation performed by an autoencoder 200 ( FIG . 2 ) may 
layer of the encoder g . In a similar manner as described be represented as A = fog , where g and f are computations 
above with respect to FIG . 3 , unlike some novelty detection performed by an encoder g and a decoder f , respectively . As 
techniques , according to embodiments , one or more of the 30 described above , the encoder g has l number of hidden intermediate second encoded inputs 508-1 , 508-2 , layers 81 , 82 , ... gl each configured to perform its own 508-6 may be stored , e.g. , in a memory or a storage device , 
for later use in determining novelty , e.g. , by comparing computation , such that g = glo ... 081. A computation 
against corresponding ones of first encoded inputs 308-1 , performed by a portion of g having i layers can be expressed 

as follows : 308-2 , ... 308 - C ( FIG . 3 ) 
Thus , as described herein , advantageously , unlike some 

novelty detection techniques in which the first encoded input for 1sist . In the illustrated method 600A , the first input 304 308 ( FIG . 3 ) may be compared against the first reconstructed ( FIG . 3 ) is represented as x , which may be an input vector , 
output 404 ( FIG . 4 ) that is obtained by processing com- 40 having D , characteristics or dimensions , and the first recon pletely through the autoencoder to detect novelty , in the structed output 404 ( FIG . 4 ) is represented as ê , which may methods according to embodiments , one or more interme be a vector representing the reconstruction output computed 
diate first encoded inputs 308-1 , 308-2 , ... 308-6 ( FIG . 3 ) by A and having the same De characteristics or dimensions . 
that have been obtained by processing a first input 304 partly That is , ô = A ( x ) . While in some novelty detection methods , 
through the encoder been stored in , e.g. , a memory or a 45 only x and ê may be compared to detect novelty , various 
storage device , may be used in determining novelty , e.g. , by methods according to embodiments obtain projections of x 
comparing against corresponding ones of second encoded and û onto hidden spaces along a projection pathway of A. 
inputs 508-1 , 508-2 , ... 508l that have also been obtained For example , by feeding x and în into A , one or more pairs 
by processing the first reconstructed output 404 partly of vectors 604 represented as ( hi , h ) , may be obtained from 
through the encoder to detect novelty , e.g. , by calculating a the hidden layers 204-1 , 204-1 , ... 204-2 ( FIGS . 3 and 5 ) , novelty score . Thus , the novelty methods according to where : 
embodiments not only utilize the first encoded input 308 h : ( x ) = g : { ( x ) , ( FIG . 3 ) from the encoder g and the first reconstructed 
output 404 ( FIG . 4 ) from the decoder f , but also utilizes one h ( x ) = g . : ( ) = g.:(A(x ) ) . 
or more intermediate first encoded inputs 308-1 , 308-2 , .. That is , each of h ; ( x ) represents a first intermediate encoded 308 - C ( FIG . 3 ) and corresponding ones of second encoded input 308 - i from an ith layer 204 - i of the encoder g as 
inputs 508-1 , 508-2 , ... 508 - C ( FIG . 5 ) generated by the described above with respect to FIG . 3 , and each of h ( x ) 
corresponding hidden layers . Thus , information generated represents a second intermediate encoded input 508 - i from 
along the pathway of the autoencoder is more fully utilized . 60 the ith layer 204 - i of the encoder g as described above with 
Novelty Scoring Using Intermediate Encoded Input from respect to FIG . 5 . 
Hidden Layers According to various methods described herein , a novelty 
FIG . 6A schematically illustrates a method of quantifying score may be obtained using the pairs of vectors obtained as 

a detected novelty by using one or more pairs of first and described above . In particular , a novelty score of x may be 
second intermediate encoded inputs from an encoder , which 65 obtained by aggregating the pairs of vectors to obtain an 
may be generated according to methods described with aggregate H : 
respect to , e.g. , FIGS . 3-5 , according to embodiments . In H ( x ) = { ( h , ( x ) , ( x ) ) : 1 < i << . 
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The method 600A may also be summarized by an algo- may be is calculated as x² + y ?, where equal weight is given 
rithm 600B shown in FIG . 6B , which is an example algo- to the component distances x and y in in X and Y directions , 
rithm for implementing the method illustrated in FIG . 6A , respectively . In the illustrated distribution 704A , first and 
according to embodiments . It will be appreciated that , while second intermediate encoded inputs are spread relatively 
the algorithm 600B includes for loop in lines 3-5 to clearly 5 symmetrically in X and Y axes , and the component distances 
state the variables to construct the H , in practice , the x and y are relatively similar in magnitude . Under these 
computation may be performed by one feed - forward of each circumstances , calculating the distance between the pair of 
of x and Â to g . It will be appreciated that the methods vectors as an unweighted Euclidean distance may not result 
described herein represent generalizations of some recon in significant overemphasizing or underemphasizing a rela 
struction methods where go is defined as the identity func- 10 tive importance of the component distances x and y . How 
tion and a novelty score function ( Sord ) can be represented as ever , when the first and second intermediate encoded inputs 

are spread unevenly in X and Y axes , the component follows : distances x and y may be given different weights to prevent 
significant overemphasizing or underemphasizing the rela 

Sora ( H ( x ) ) = || h0 ( x ) -?o ( x ) || 22 15 tive importance of the component offsets x and y . This is 
where h . ( x ) = . ( x ) = x and h , ( x ) = 8 . ( x ) = . illustrated in FIG . 7B . 

In the following , example methods of defining a novelty FIG . 7B is a schematic representation 700B of a distri 
score are described according to embodiments , which more bution 704B including first intermediate encoded inputs 
fully utilize the H compared to the The example 308-1 , 308-2 , 308 - C ( FIG . 3 ) and second intermediate 
methods described herein are particularly advantageous 20 encoded inputs 508-1 , 508-2 , ... 508-1 . Unlike the distri where there is essentially no knowledge about interpretation bution 704A of FIG . 7A , the distribution 704B includes first of identified hidden spaces , which is relatively common in and second intermediate encoded inputs that are skewed 
models with deep neural networks . However , examples are and / or spread relatively unevenly in the vector space repre 
not so limited , and more elaborate metrics can be designed sented by X and Y axes . In the illustrated distribution 704B , 
if some knowledge regarding hidden spaces is available . the first and second intermediate encoded inputs are spread 

According to some embodiments , novelty scoring relatively asymmetrically in X and Y axes , and the compo 
includes a simple aggregation along a pathway ( SAP ) . For nent distances x and y are relatively large in magnitude . 
a data given sample x , the SAP includes summing squares of Under this circumstance , calculating the distance between 
Euclidean distances for all pairs in H. A novelty score the pair of vectors as an unweighted Euclidean distance may 
function Snap using the SAP may be expressed as : result in significant overemphasizing or underemphasizing a 

relative importance of the component offsets x and y . Under 
$ 54p ( x ) = XY_ || ( x ) NAx ) || 22- || h ( x ) = ( 3x ) | 32 , such circumstances , a normalization may be performed by 

where h ( x ) and û ( x ) are the concatenations of [ ho ( x ) , . one or both of orthogonalization and scaling . As illustrated 
in FIG . 7B , orthogonalization is performed by rotating the he ( x ) ] and [ h . ( x ) ; ... ; he ( x ) ] , respectively . reference axes to X ' and Y ' to better match the major axes of 

Although the SAP is intuitive , it may not sufficiently the orientation of the data distribution . For example , in the 
reflect properties of hidden spaces under some circum illustrated example , one or more of the axes are in directions 
stances . For example , the SAP may not reflect relative corresponding to greatest or smallest data variance . Based 
weights of different distances in a distribution of pairs in H. on the relatively smaller variance along the Y ' compared to 
For instance , the magnitude of distances can depend on the the X ' , a higher weight may be assigned to y * 2 when 
hidden layers , or there may exist correlated neurons across calculating the distance . This is because a relatively smaller layers which may unintentionally be emphasized in SAP . displacement in the Y ' direction may actually represent a 

To address these circumstances , according to some other higher degree of abnormality compared to a similar dis 
embodiments , novelty scoring includes normalized aggre- placement in the X ' direction . 
gation along a pathway ( NAP ) . Solely to aid in understand Thus , normalizing the distances according to embodi 
ing , a schematic representation of novelty scoring based on ments using the NAP method may be performed in two 
NAP is provided with respect to FIGS . 7A and 7B . FIG . 7A steps : orthogonalization and scaling . Let d ( x ) = h ( x ) = ( x ) . is a schematic representation of novelty scoring based on Given a training set X , let D be a matrix whose i - th row SAP , and FIG . 7B is a schematic representation of novelty scoring based on NAP . It will be appreciated that these so corresponds to d ( xi ) for x , ex , and D the column - wise centered matrix of D. For the normalization , D = UXVI or a 
non - limiting schematic representations are provided for singular value decomposition ( SVD ) of D is computed to 
illustrative purposes only to aid in understanding . obtain its singular values and right singular vectors V. For 
FIG . 7A is a schematic representation 700A of a distri a given data sample x , a novelty score function Snap may be 

bution 704A including first intermediate encoded inputs expressed as : 
308-1 , 308-2 , ... 308- € ( FIG . 3 ) and second intermediate 
encoded inputs 508-1 , 508-2 , 508-6 . A pair of vectors SNAP ( x ) = 1 / ( d ( x ) -wy ) 12-12 
represented as ( hi , ) , where h ; ( x ) represents a vector from Where uy is the column - wise mean of D , d ( x ) is expressed 
a first intermediate encoded input 308 - i from an ith layer as a column vector . 
204 - i of the encoder g as described above with respect to 60 Computation of Hidden Reconstruction 
FIG . 3 , and h > ( x ) represents vector from a second interme- It will be appreciated that there is no explicit correspon 
diate encoded input 508 - i from the same ith layer 204 - i of dence between hidden layers in g and f , and as such two 
the encoder g as described above with respect to FIG . 5 , are spaces defined by a pair of the corresponding hidden layers 
separated in a vector space having X and Y axes by distances in g and f cannot be directly compared . Therefore , an 
x and y , respectively . To calculate a Euclidean distance 65 intermediate reconstructed output from a hidden decoder 
between the pair of vectors , the component distances x and layer that corresponds to an activated encoded layer may not 
y are given about the same weight , such that the distance be directly computed . Nevertheless , it can be shown that 
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there is an indirect way to compute the intermediate recon- able to learn f ; = g ; -4 . Neural networks are , however , highly 
structed output from a hidden decoder layer without modi- flexible frameworks in which we can deal with models of 
fying an ordinary autoencoder or incorporating additional arbitrary function forms by adjusting network architecture . components . In particular , without being bound to any 
theory , it can be shown below with respect to FIG . 8 that h ; This property enables us to design a layer capable of 
indeed corresponds to an intermediate reconstructed output . representing fi . For instance , even if f , is too complicated to 

In a similar manner as described above , let A = fog repre- be represented with a single fully connected layer , f ; can still 
sent overall computation by an autoencoder , and Mo = { A ( x ) : be approximated by stacking multiple layers . Hence , given XER " } be the low dimensional manifold that A describes , 10 g ; and X , f ; can be represented by neural networks . e.g .: 

VxEM0X = A ( x ) Experimental Examples of Novelty Detection Using Inter 
mediate Encoded Input from Hidden Layers Defining M = { 8 / ( x ) : XEM , } , which is the low dimen 

sional image of M , defined by gói g and f restricted on M , In the following , experimental results from implementa 
and Me , respectively , are inverse functions of each other . 15 tions of novelty detection methods according to embodi 
Let us assume that there exists a decoder F = fio ... ofl such ments are described , and the results are compared to those 
that obtained using other methods . The novelty detection meth 

VxEMC F ( x ) = f ( x ) ods were tested on several benchmarks and diverse datasets 
20 collected from Kaggle repository and the University of VhEM ; h = ( gif ) ( h ) . Calif . at Irvine ( UCI ) Machine Learning Repository that are 

The second of the above conditions makes fl a proper suitable for evaluating novelty detection methods . 
decoder corresponding to gi + 1 ;, and then , the i - th hidden The datasets from Kaggle and the UCI repositories are reconstruction h : ( x ) is defined by : chosen from problem sets of anomaly detection and multi h ( x ) = fl + 18i + 1 . ) ( h_ ( x ) ) class classification , as summarized in TABLE 1 below . It 
Thus , it can be concluded that h ( x ) is equal to hiz ( x ) for will be noted that MI - F and MI - V share the same feature 
XEM , as follows : matrix , but are considered to be different datasets because 

normal and abnormal labels are assigned by different col 
umns , i.e. , pairs of first and second vectors generated from 

h ( X ) = ( Frith Si + 1 ) ( :( x ) ) = the same encoder layers that have passed visual inspection , 
Beritog ) ( x ) = 18 : 08 • g ) ( x ) = ( 8 : A ) ( x ) = h ; ( ) = h . ( x ) . respectively . These datasets are used to compare the novelty 

detection methods according to embodiments against some 
other autoencoder - based methods . 

: 1 + 1 

25 

30 

= 
: + 1 

= = 
: + 1 

TABLE 1 

Description of Datasets Used in Experimental Evaluation . 

Name # Samples # Features # Class Domain Novelty Target 

2 MI - F 
MI - V 
EOPT 
NASA 
RARM 
STL 
OTTO 
SNSR 
MNIST 
F - MNIST 

25,286 
23.125 
90,515 
4,687 

20,221 
1,941 

61,878 
58,509 
70,000 
70,000 

58 
58 
20 
33 
6 

27 
93 
48 
784 
784 

2 
2 
2 
2 
7 
9 

11 
10 
10 

CNC milling Machine not completed 
CNC milling Workpiece out - of - spec 
Storage system System failures 
Astronomy Hazardous asteroids 
Robotics Malfunctions 
Steel Surface defects 
E - commerce Types of products 
Electric Currents Defective conditions 
Hand written digits Digits 
Fashion articles Articles 

. 
55 

where f ; is not needed for computation , but only g ; and f . It To compare the novelty detection methods according to 
will be noted that for XEM , already on the manifold , its i - th embodiments against some other recent novelty detection 
hidden reconstruction Ê ; ( x ) becomes equal to its hidden methods , some popular benchmark datasets are used , 
activation hy ( x ) = h ; ( x ) for every 1sist : i.e. , h / ( x ) = î ; ( x ) as namely Mixed National Institute of Standards and Technol 
X = A ( x ) . For xMo , its hidden reconstruction ? ; ( x ) will ogy ( MNIST ) and Fashion MNIST ( FMNIST ) . For these 
differ from its hidden activation h ; ( x ) . datasets , instead of taking pre - split training and test sets , 
Now , the existence of f can be shown as follows . Since they are merged for post - processing . 

X = A ( x ) for xEM . , gi and f ; are one - to - one functions from As described herein , novelty detection methods are con 
M - 1 and M , respectively . Defining 1-3 , - for M , and figured to detect novel patterns in datasets by focusing on 
f = fio ... off , it also holds f = 8-7 . This implies x = ( fog ) ( x ) 60 deviations from model - learned normal patterns . Thus , train 
for xEM , and consequently , f - f on Mt. This definition of ing datasets may contain essentially only normal samples , 
fi satisfies the two conditions above , and as discussed , while the test datasets contain both normal and anomalous 
hidden reconstructions of an input , în ; ( x ) = ( ft . og ) ( x ) can samples in the evaluation setups described herein . Thus , if a 
be computed through computing the i - th hidden activation of dataset contains anomaly labels , all samples in that dataset 
the reconstructed input Å = A ( x ) , ( x ) . 65 with such label are assigned to the test dataset . If a dataset 

The f can be implemented in a neural network . Given die does not have any anomaly label , the following two setups 
if the symmetric architecture for f ; is used , we may not be are considered : 

1-1 

1 + 1 

a 
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Multimodal Normality : A single class is assigned as a least 90 % of the variance is selected as the bottleneck size 
novelty class and the remaining classes are assigned as of the autoencoders . The bottleneck size has been set to 20 
a normal class . This setup is repeated to produce for benchmark datasets . Leaky - ReLU ( Xu et al . , 2015 ) 
sub - datasets with all possible novelty assignments . For activation and batch normalization ( Ioffe & Szegedy , 2015 ) 
instance , MNIST results in a set of datasets with 10 5 layers are appended to all layers except the last layer . 
different novelty classes . The AE , VAE and AAE are trained with the Adam 

Unimodal Normality : In contrast to the multimodal nor- optimizer ( Kingma & Ba , 2015 ) , and the model with the 
mality setup , one class is selected as a normal class , and lowest validation loss is selected as the best model . For 
the others are as novelty . For instance , MNIST results training stability of VAE , ten ( 10 ) Monte Carlo samples were 
in a set of datasets with 10 different normal classes . 10 averaged in the “ reparamterization trick ” ( Kingma & Well 

These two setups have been applied to STL , OTTO , ing , 2014 ) to obtain reconstruction from the decoder . In the 
SNSR , MNIST , and F - MNIST datasets . The novelty detec- calculation of SAP and NAP , reconstructions in the input 
tion methods according to embodiments and other methods space for MNIST and F - MNIST are excluded . 
are compared using a metric known in the industry as Area Each AUROC score is obtained by averaging AUROC 
Under Receiver Operating Characteristic ( AUROC ) . It will 15 scores from five trials to reduce the random errors in training 
be noted that thresholding - based metrics such as F1 score neural networks . TABLE 2 summarizes the results of per 
have not been employed because access to abnormal formance evaluation where the best score for each model is 
samples is only allowed during testing time . Hence , the in shown in bold . Also , the best score for each dataset is 
focus has been on the separability of models for novelty with shown with an underline . Since STL , OTTO , SNSR , 
AUROC . 20 MNIST , and F - MNIST do not have anomaly labels , their 

For the datasets summarized in TABLE 1 , the effective- scores are averaged over all possible anomaly class assign 
ness of the reconstruction error is compared for the SAP and ments . For instance , the AUROC value for OTTO in the 

for three different type of autoencoders , namely an unimodal normality setup is the average of nine ( 9 ) AUROC 
autoencoder ( AE ) , a variational autoencoder ( VAE ) and values with different anomaly class assignments . In TABLE 
adversarial autoencoder ( AAE ) . For the benchmark datasets , 25 2 , the novelty detection method according to embodiments 
recent approaches including OCNN ( Chalapathy et al . , shows the highest AUROC scores for most of the cases . 
2018 ) , GPND ( Pidhorskyi et al . , 2018 ) , DSVDD ( Ruff et al . , NAP is observed to be more effective with AE and VAE 
2018 ) and GT ( Golan & El - Yaniv , 2018 ) are available . To compared to AAE . In summary , the novelty detection 
obtain the performances of the existing approaches , the method according to embodiments has been shown to 
respective codes have been downloaded and applied against 30 achieve the best performance for 13 cases out of 15 ( see the 
the problem setups . Given novelty classes , the test sets are underlines ) . 

TABLE 2 

Comparison of AUROC for Different Novelty Detection Methods . 

AE VAE AAE 

Date Recon SAP NAP RECON SAP NAP RECON SAP NAP 

Multimodal Normality 

STL 
OTTO 
SNSR 
MNIST 
F - MNIST 

0.596 
0.620 
0.601 
0.825 
0.712 

0.603 
0.630 
0.611 
0.881 
0.725 

0.714 0.533 0.537 0.703 
0.662 0.598 0.615 0.620 
0.645 0.601 0.607 0.630 
0.899 0.864 0.907 0.927 
0.734 0.710 0.671 0.737 

Unimodal Normality 

0.716 
0.620 
0.616 
0.847 
0.721 

0.696 
0.635 
0.610 
0.911 
0.710 

0.711 
0.668 
0.606 
0.929 
0.727 

MI - F 
MI - V 
EOPT 
NASA 
RARM 
STL 
OTTO 
SNSR 
MNIST 
F - MNIST 

0.694 
0.883 
0.650 
0.662 
0.647 
0.552 
0.675 
0.791 
0.972 
0.924 

0.755 
0.878 
0.648 
0.614 
0.630 
0.629 
0.680 
0.781 
0.980 
0.928 

0.707 
0.913 
0.627 
0.665 
0.665 
0.845 
0.749 
0.903 
0.979 
0.933 

0.455 
0.680 
0.604 
0.582 
0.655 
0.526 
0.626 
0.714 
0.957 
0.905 

0.392 
0.576 
0.580 
0.519 
0.635 
0.595 
0.612 
0.685 
0.954 
0.863 

0.540 
0.799 
0.594 
0.676 
0.678 
0.823 
0.741 
0.902 
0.976 
0.934 

0.663 
0.870 
0.594 
0.719 
0.665 
0.790 
0.738 
0.863 
0.972 
0.922 

0.759 
0.861 
0.585 
0.716 
0.667 
0.761 
0.729 
0.868 
0.966 
0.905 

0.704 
0.882 
0.624 
0.724 
0.684 
0.798 
0.752 
0.924 
0.977 
0.928 

created by randomly selecting samples while maintaining TABLE 3 summarizes the comparison of novelty detec 
novelty ratios to 35 % for the multimodal and 50 % for the tion methods according to embodiments to recent novelty 
unimodal normality setups , respectively . It is noted that the detection methods . As described above with respect to 
expectation value of AUROC is invariant to the novelty 60 TABLE 2 , AUROC values are calculated by averaging 
ratio . results from ten ( 10 ) cases with different anomaly class 

Symmetric architecture with fully connected layers are assignments for both datasets . Except for the unimodal 
used for the three base models , AE , VAE , and AAE . Each F - MNIST setup , NAP outperforms all competing methods 
encoder and decoder has been provided with ten ( 10 ) layers regardless of base model choice . Even in the case where 
with different bottleneck size . For the Kaggle and UCI 65 NAP scores did not win , the performance of RAPP is 
datasets , PCA is carried out for each dataset first . The comparable to the best one , GT , which relies on image 
minimum number of principal components that explain at specific data transformations . 



Dataset OCNN GPND DSVDD GT 

MNIST 
F - MNIST 

0.600 
0.609 

0.501 
0.691 

0.622 
0.610 

0.893 
0.725 

0.899 
0.734 

0.927 
0.737 

0.929 
0.727 

MNIST 
F - MNIST 

0.927 
0.915 

0.971 
0.917 

0.922 
0.923 

0.974 
0.935 

0.979 
0.933 

0.976 
0.934 

0.977 
0.928 
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TABLE 3 0 is designated as being novel , the distributions for normal 
and novel samples show relatively clear separation to pro 

AUROC on benchmark datasets . duce a relatively high AUROC value of 0.9780 . On the other 
NAPAE NAPVAENAP AAE hand , when the digit 1 is designated as being novel , the two 

5 distributions largely overlap , which results in a relatively 
Multimodal Normality ( Novelty Ratio : 35 % ) low AUROC value of 0.3669 . In FIG . 10 , the graphs ( b ) and 

( d ) show distributions of NAP scores when novelty digits are 
0 and 1 , respectively . In contrast to distributions of the 

Unimodal Normality ( Novelty Ratio : 50 % ) reconstruction errors , distributions of the NAP scores show 
10 consistently clear separation regardless of whether digit 0 or 

digit 1 is designated as being novel . Comparing graphs ( c ) 
and ( d ) , when the digit 1 is designated as being novel for 
MNIST , utilization of hidden reconstructions leads to a 

FIG . 9 illustrate graphs of novelty scores experimentally notable improvement over using reconstruction errors alone . 
obtained using a novelty detection method according to 15 Considering that reconstruction error is associated with 
embodiments in which the number of intermediate encoded the distance between an original data sample and its pro 
inputs is varied . In particular , each of the left and right jection onto the reconstruction space , we can infer , based on 
graphs of FIG . 9 illustrates AUROC of NAP on MNIST as the observations discussed above with respect to FIG . 9 , that 
a function of the number of hidden reconstructions or data samples for digit 1 are located relatively closer to the 
intermediate encoded inputs used to calculate NAP for the 20 reconstruction space , even though they are not part of the 
multimodal normality setup as described above . Each label training set . Based on this inference , we provide further 
designated as a : b on the x - axis indicates that NAP is explanation below . 
calculated with reconstructions in the a - th to b - th hidden Let the set of normal digits be Cnormal . Assuming that each 

normal digit c from MNIST has a feature set Se to charac spaces corresponding to a - th to b - th hidden layers . The a - th 25 terize itself , the union of these feature sets defines a set of hidden space refers to the hidden space that is closest to the normal features S , input space among the hidden spaces used and the b - th 
hidden space refers to the hidden space that is farthest from S = US , where CECnormal . 
the input space ( or closest to the bottleneck latent space ) In the present application , S is approximated by a recon among the hidden spaces used . For For example , 1:11 30 struction space of an autoencoder trained with representative 
indicates that NAP is calculated with reconstructions in all samples from all normal classes . Let this approximation be of the hidden spaces in the first to 11th hidden spaces Š . Let the set of novel digits be Cnovel and the feature set of corresponding to first to ten hidden layers , except for the a novelty digit a be Sq . In majority of the cases , we expect bottleneck latent space ( space between the encoder and the S , not to be a subset of Š because these novelty samples are 
decoder ) . The left graph corresponds to AUROC plotted as 35 not involved in training of the autoencoder . It should be 
a function of a : b in which a = 1 , i.e. , the first hidden space is noted that novelty detection is carried out by checking always the hidden space that is the closest to the input side . whether Sq - Š Ø . For the case where digit 1 is designated as For example , in the left graph , 1 : 5 corresponds to NAP the novel class , a hypothesis is that the feature set S , of digit calculated using hidden spaces starting with the hidden 1 is similar to S = n S. where CEC normal due to its simple space corresponding to g . 204-1 ( FIG . 2 ) and ending with 40 shape : i.e. , IS , IS / -0 . Therefore , S , IŠ is likely to be an empty 
the hidden space corresponding to g5 204-5 ( FIG . 5 ) . The set as well , and thus , novelty detection will suffer in per right graph corresponds to AUROC plotted as a function of formance . a : b in which b = 11 , i.e. , the last hidden space is always the In contrast to conventional novelty detection methods hidden space that is the closest to the bottleneck latent space based on measuring the reconstruction error that primarily or the farthest from the input space . For example , in the right 45 investigate extremes of a projection pathway , the novelty 
graph , 5:11 corresponds to NAP calculated using hidden detection method according to embodiments focuses on the spaces starting with the hidden space corresponding to g5 entire sequence of the pathway to extract a fingerprint of a 204-5 ( FIG . 2 ) and ending with the hidden space corre data sample from intermediate hidden reconstructions . This 
sponding to ge 204 - L ( FIG . 5 ) , where l = 11 . The overall enables SAP and NAP to achieve more sophisticated char 
trend shows that the accuracy gets higher as more hidden 50 acterization for data , and as a consequence , consistently high 
reconstructions or encoded inputs are included for the NAP performance is obtained across various cases as shown 
calculation . Another observation is that reconstructions in above . 
hidden spaces close to the input space are more discrimi- In summary , the novelty detection method according to 
native for novelty compared to those close to the latent embodiments effectively utilizes hidden reconstructions 
space . 55 along a projection pathway of deep autoencoders . To this 
FIG . 10 illustrates graphs ( a ) - ( d ) of distributions of nov- end , the concept of reconstruction in the input space is 

elty score experimentally obtained using a novelty detection extended to hidden spaces of an autoencoder , and a tractable 
method according to embodiments . SAP and NAP show way to compute the hidden reconstructions is presented , 
consistent performance across all digits for the multimodal which requires neither modifying nor retraining the autoen 
normality case . To demonstrate this observation , FIG . 10 60 coder . The experimental results show that the methods 
illustrate distributions of novelty scores for MNIST . The according to embodiments outperform other competing 
graphs ( a ) and ( c ) are distributions of reconstruction errors methods in terms of AUROC for diverse datasets including 
when novelty digits are 0 and 1 , respectively . The graphs ( b ) popular benchmarks . 
and ( d ) are distributions of NAP scores when novelty digits Applications of Novelty Detection Using Intermediate 
are 0 and 1 , respectively . In FIG . 10 , the graphs ( a ) and ( c ) 65 Encoded Input from Hidden Layers 
show distributions of the reconstruction errors when novelty Novelty detection according to various embodiments can 
digits are 0 and 1 , respectively . As illustrated , when the digit be particularly useful in systems , e.g. , mission - critical sys 
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tems , in which it may be possible to acquire a relatively large detection may be critical . Compared to wafers in semicon 
data set corresponding to a “ normal ” class for training a ductor industry , the while the volume of production may be 
learning system of its behaviors or characteristics , while a smaller , the value of a single product is much greater . For 
data set corresponding to an “ abnormal ” class may be instance , if a defect is found after assembling , the loss per 
relatively scarce and therefore difficult to train the learning 5 unit can be as high as the full cost of the unit itself , e.g. , a 
system of its behaviors or characteristics . Some example whole automobile that can cost over tens of thousands of 
applications of novelty detection include , for example , dollars . In addition , safety requirements for critical compo 
manufacturing systems such as precision manufacturing nents may be relatively stringent . 
systems , medical diagnostic systems such as mammograms , Similar to semiconductor manufacturing tools , equipment 
complex industrial systems such as faults and failure detec- 10 for car manufacturing also has installed therein many sen 
tion systems , structural detection systems for detecting sors . Also , similar to semiconductor manufacturing environ 
structural damage , electronic security systems for detecting ment , the same manufacturing equipment may be used to 
electronic intrusions , credit card or mobile phone fraud manufacture various products . For instance , one equipment 
detection systems for detecting unusual usage behavior , may manufacture different parts for different lines of 
video surveillance systems for detecting physical intrusions , 15 vehicles , or the same or different equipment may manufac 
mobile robotics , sensor networks , astronomy cataloguing ture nominally the same part for the same line of vehicles . 
systems and text mining systems , to name a few examples . Another example of precision manufacturing where 

In various applications of the novelty detection methods anomaly detection is critical may be energy storage device 
according to embodiments , the training data set as well as manufacturing , e.g. , battery manufacturing . Undetected 
the test data may be data obtained from sensors . For 20 anomalies energy storage device manufacturing can be 
example , in a precision manufacturing environment , the costly , and can cause injury from fire or explosion . As 
input data for the neural networks described above may be energy storage devices widely used across various industry 
obtained from sensors attached to manufacturing equipment sectors , e.g. , in consumer - oriented products , detecting its 
that generates a large amount of data . Examples of sensor abnormal behavior is critical . 
data that can be monitored using the methods described 25 Yet another example of precision manufacturing is phar 
herein include plasma , temperature , pressure , humidity , gas , maceutical manufacturing . In contrast to general commodity 
motion ( e.g. , speed ) , position , illumination or light , current , products , pharmaceutical products have strict safety require 
voltage , vibration , weight , visual appearance , substrate war- ments . Elaborate anomaly detection schemes are necessary 
page , physical properties of materials ( e.g. , thickness , den to identify subtle abnormal patterns . 
sity , etc. ) , optical properties of materials ( e.g. , refractive 30 Systems and Apparatuses Configured for Novelty Detection 
index , absorbance , etc. ) and particles , to name a few . Based Using Intermediate Encoded Input from Hidden Layers 
on collected data from sensors , normal and abnormal states FIG . 11 schematically illustrates a functional block dia 
of manufacturing environment may be characterized , and gram of a system 1100 including an electronic apparatus for 
anomalous patterns during operation can be detected , e.g. , detecting novelty of a sensor data using a deep learning 
real - time , using various embodiments described herein . 35 neural network model , according to embodiments . The 
By way of a specific example , semiconductor manufac- apparatus comprises a deep learning neural network module 

turing environment is an example of precision manufactur- 1104 comprising an autoencoder 1108. The autoencoder 
ing environment where an anomaly that is not detected 1108 in turn comprises an encoder 1112 comprising a 
timely can potentially cause costly loss of time and revenue . plurality of encoder layers and a decoder 1116 comprising a 
Because a typical semiconductor wafer manufacturing pro- 40 plurality of decoder layers . The apparatus is communica 
cess flow includes tens or even hundreds of process steps , tively coupled to a test data generating module 1120 and 
early detection of anomaly can be particularly important , as configured to receive therefrom a first input comprising a 
late detection may cause propagation of manufacturing sensor data and to successively process the first input 
anomaly over large portions of the process flow . through the plurality of encoder layers to generate a first 
One of the difficulties associated with semiconductor 45 encoded input . Successively processing the first input com 

manufacturing relates to frequently changing conditions a prises generating a first intermediate encoded input from one 
wafer is subjected to in a tool . Under some circumstances , of the encoder layers prior to generating the first encoded 
the same tool runs multiple recipes . Under some other input . The decoder is configured to receive the first encoded 
circumstances , the same recipe run on the same or different input from the encoder and to successively process the first 
tools subjects wafers to variable process conditions . Regard- 50 encoded input through the plurality of decoder layers to 
less , because manufacturing excursions can be costly , strict generate a first reconstructed output . The encoder is further 
process controls are implemented at various points during configured to receive the first reconstructed output as a 
fabrication . As a result , “ abnormal ” data samples are rela- second input and to successively process the first recon 
tively rare compared to “ normal ” data sets . Hence , multi- structed output through the plurality of encoder layers . 
class classification techniques may not be practical for 55 Successively processing the first reconstructed output com 
detecting such excursions . As a result , even under normal prises generating a second intermediate encoded input from 
operation , sensor data collected during wafer processing can one of the encoder layers . The deep learning neural network 
have different characteristics . In other words , there can be module 1104 is configured to compute a novelty score of the 
diverse “ normal ” states . To detect anomalies in such data , first input using the first intermediate encoded input and the 
advanced techniques are needed to characterize heteroge- 60 second intermediate encoded input . The electronic apparatus 
neous normal data and distinguish abnormal patterns there- additionally includes a novelty metric output module 1124 
from . The methods described herein advantageously provide configured to output the novelty score . 
sensitive novelty detection by additionally providing char- The neural network module 1104 is communicatively 
acterization of manufacturing processes from investigation coupled to a memory module 1128 , a microprocessor mod 
of hidden information from a neural network . 65 ule 1132 and a storage module 1136. The memory module 
By way of another example of precision manufacturing , 1128 , the microprocessor module 1132 and the storage 

automotive manufacturing is another area where anomaly module 1136 are communicatively connected to each other 
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through , for example , a bus . In some embodiments , the example , computing systems may include general purpose 
neural network module 1104 can include a software code computers ( e.g. , servers ) programmed with specific com 
that that can be stored and / or executed locally , e.g. , by a puter instructions or special purpose computers , special 
local microprocessor module 1132 and a local memory purpose circuitry , and so forth . A code module may be 
module 1128 and / or a local storage module 1136 of a local 5 compiled and linked into an executable program , installed in a 

computing device . In some other embodiments , the software a dynamic link library , or may be written in an interpreted 
code can be stored and / or executed remotely , e.g. , by a programming language . In some embodiments , particular 
remote server microprocessor module 1132 and a remote operations and methods may be performed by circuitry that 
memory module 1128 and / or a remote storage module 1132 . is specific to a given function . The memory module 1128 can include memory devices such 10 Further , certain embodiments of the functionality of the as a static random access memory ( SRAM ) and a dynamic present disclosure are sufficiently mathematically , compu random access memory ( RAM ) . The memory devices can be tationally , or technically complex that application - specific configured as different levels of cache memory communi 
catively coupled to the microprocessor module 1132 through hardware or one or more physical computing devices ( uti 
a memory bus that provides a data path for flow of data to 15 lizing appropriate specialized executable instructions ) may 
and from the memory devices and the microprocessor mod be necessary to perform the functionality , for example , due 
ule 1132. The storage module 470 is configured to perma to the volume or complexity of the calculations involved or 
nently store data without power . In some implementations , to provide results substantially in real - time . For example , a 
the storage module 1136 includes storage media , such as a video may include many frames , with each frame having 
hard disk , a nonvolatile memory such as flash memory , 20 millions of pixels , and specifically programmed computer 
read - only memory ( ROM ) , among others . hardware is necessary to process the video data to provide a 
As described above , unlike some novelty detection tech- desired image processing task or application in a commer 

niques , in the methods according to embod its , one or cially reasonable amount of time . 
more intermediate first encoded inputs 308-1 , 308-2 , Code modules or any type of data may be stored on any 
308-6 ( FIG . 3 ) are obtained by processing a first input 304 25 type of non - transitory computer - readable medium , such as 
partly through the encoder . These intermediate first encoded physical computer storage including hard drives , solid state 
inputs may advantageously be stored in , e.g. , the memory memory , random access memory ( RAM ) , read only memory 
module 1128 and / or the storage module 1136. Similarly , one ( ROM ) , optical disc , volatile or non - volatile storage , com 
or more of the intermediate second encoded inputs 508-1 , binations of the same and / or the like . In some embodiments , 
508-2 , ... 508-6 ( FIG . 5 ) obtained by processing the first the non - transitory computer - readable medium may be part 
reconstructed output 404 may be stored in , e.g. , the memory of one or more of the local processing and data module , the 
module 1128 and / or the storage module 1136. Subsequently , remote processing module , and remote data repository . The 
the stored intermediate second encoded inputs may be used , methods and modules ( or data ) may also be transmitted as 
e.g. , using the microprocessor module 1132 for determining 35 generated data signals ( e.g. , as part of a carrier wave or other 
novelty , e.g. , by comparing against the corresponding ones analog or digital propagated signal ) on a variety of com 
of first encoded inputs 308-1 , 308-2 , ... 308- € ( FIG . 3 ) . puter - readable transmission mediums , including wireless 
Thus , the memory module 1128 and / or the storage module based and wired / cable - based mediums , and may take a 
1136 are configured to store both training data sets as well variety of forms ( e.g. , as part of a single or multiplexed 
as test data sets , as well as the first input that is partly or fully 40 analog signal , or as multiple discrete digital packets or 
processed by the autoencoder . frames ) . The results of the disclosed processes or process 

The test data generating module 1120 is configured to steps may be stored , persistently or otherwise , in any type of 
provide the first input to the neural network module 1104 . non - transitory , tangible computer storage or may be com 
The test data generating module 1120 can include any municated via a computer - readable transmission medium . 
apparatus suitable for feeding the first input to be analyzed 45 Any processes , blocks , states , steps , or functionalities in 
for novelty . For example , the test data generating module flow diagrams described herein and / or depicted in the 
1120 can include any of the sensors described above , which attached figures should be understood as potentially repre 
in turn may be communicatively coupled to an apparatus senting code modules , segments , or portions of code which 
from which the sensor data may be generated , e.g. , a include one or more executable instructions for implement 
manufacturing equipment . In this configuration , the first 50 ing specific functions ( e.g. , logical or arithmetical ) or steps 
input can be a sensor data connected to the manufacturing in the process . The various processes , blocks , states , steps , 
equipment . or functionalities may be combined , rearranged , added to , 

The novelty metric output module 1124 may be config- deleted from , modified , or otherwise changed from the 
ured to output the novelty score of the first input using the illustrative examples provided herein . In some embodi 
first intermediate encoded input and the second intermediate 55 ments , additional or different computing systems or code 
encoded input generated by the deep learning neural net- modules may perform some or all of the functionalities 
work module 1104. The novelty score may be outputted in described herein . The methods and processes described 
any suitable format , including textual , graphical or image herein are also not limited to any particular sequence , and 
format , onto any suitable output medium , e.g. , a display the blocks , steps , or states relating thereto may be performed 
device , paper or an electronic file . 60 in other sequences that are appropriate , for example , in 

It will be appreciated that each of the processes , methods , serial , in parallel , or in some other manner . Tasks or events 
and algorithms described herein and / or depicted in the may be added to or removed from the disclosed example 
figures may be embodied in , and fully or partially automated embodiments . Moreover , the separation of various system 
by , code modules executed by one or more physical com- components in the embodiments described herein is for 
puting systems , hardware computer processors , application- 65 illustrative purposes and should not be understood as requir 
specific circuitry , and / or electronic hardware configured to ing such separation in all embodiments . It should be under 
execute specific and particular computer instructions . For stood that the described program components , methods , and 
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systems may generally be integrated together in a single tionally , the operations may be rearranged or reordered in 
computer product or packaged into multiple computer prod- other embodiments . In certain circumstances , multitasking 
ucts . and parallel processing may be advantageous . Moreover , the 

In the foregoing specification , the invention has been separation of various system components in the embodi 
described with reference to specific embodiments thereof . It 5 ments described above should not be understood as requir 
will , however , be evident that various modifications and ing such separation in all embodiments , and it should be 
changes may be made thereto without departing from the understood that the described program components and 
broader spirit and scope of the invention . The specification systems may generally be integrated together in a single 
and drawings are , accordingly , to be regarded in an illus- software product or packaged into multiple software prod 
trative rather than restrictive sense . 10 ucts . Additionally , other embodiments are within the scope 

Indeed , it will be appreciated that the systems and meth- of the following claims . In some cases , the actions recited in 
ods of the disclosure each have several innovative aspects , the claims may be performed in a different order and still 
no single one of which is solely responsible or required for achieve desirable results . 
the desirable attributes disclosed herein . The various fea- Accordingly , the claims are not intended to be limited to 
tures and processes described above may be used indepen- 15 the embodiments shown herein , but are to be accorded the 
dently of one another , or may be combined in various ways . widest scope consistent with this disclosure , the principles 
All possible combinations and subcombinations and the novel features disclosed herein . 
intended to fall within the scope of this disclosure . What is claimed is : 

Certain features that are described in this specification in 1. A method implemented on an electronic device for 
the context of separate embodiments also may be imple- 20 detecting novelty of sensor data using a deep learning neural 
mented in combination in a single embodiment . Conversely , network model , the method comprising : 
various features that are described in the context of a single providing the deep learning neural network model com 
embodiment also may be implemented in multiple embodi- prising an autoencoder on an electronic device , the 
ments separately or in any suitable subcombination . More- autoencoder comprising an encoder comprising a plu 
over , although features may be described above as acting in 25 rality of encoder layers and a decoder comprising a 
certain combinations and even initially claimed as such , one plurality of decoder layers ; 
or more features from a claimed combination may in some feeding a first input comprising the sensor data into the 
cases be excised from the combination , and the claimed encoder and successively processing the first input 
combination may be directed to a subcombination or varia through the plurality of encoder layers to generate a 
tion of a subcombination . No single feature or group of 30 first encoded input , wherein successively processing 
features is necessary or indispensable to each and every the first input comprises generating a first intermediate 
embodiment . encoded input from one of the encoder layers prior to 

It will be appreciated that conditional language used generating the first encoded input ; 
herein , such as , among others , “ can , " " could , " " might , ” feeding the first encoded input into the decoder and 
" may , ” “ e.g. , " and the like , unless specifically stated other- 35 successively processing the first encoded input through 
wise , or otherwise understood within the context as used , is the plurality of decoder layers to generate a first recon 
generally intended to convey that certain embodiments structed output ; 
include , while other embodiments do not include , certain feeding the first reconstructed output as a second input 
features , elements and / or steps . Thus , such conditional lan- into the encoder and successively processing the first 
guage is not generally intended to imply that features , 40 reconstructed output through the plurality of encoder 
elements and / or steps are in any way required for one or layers , wherein successively processing the first recon 
more embodiments or that one or more embodiments nec structed output comprises generating a second interme 
essarily include logic for deciding , with or without author diate encoded input from one of the encoder layers ; 
input or prompting , whether these features , elements and / or wherein generating the first intermediate encoded input 
steps are included or are to be performed in any particular 45 comprises generating a first vector and generating the 
embodiment . The terms “ comprising , ” “ including , ” “ hav- second intermediate encoded input comprises generat 
ing , " and the like are synonymous and are used inclusively , ing a second vector , and wherein the first and second 
in an open - ended fashion , and do not exclude additional vectors have a lower dimension compared to the first 
elements , features , acts , operations , and so forth . Also , the input , and 
term “ or ” is used in its inclusive sense ( and not in its 50 wherein the first intermediate encoded input and the 
exclusive sense ) so that when used , for example , to connect second intermediate encoded input are generated from 
a list of elements , the term “ or ” means one , some , or all of the same one of the encoder layers ; 
the elements in the list . In addition , the articles “ a , " " an , " and computing a novelty score of the first input based on 
and “ the ” as used in this application and the appended claims the first intermediate encoded input and the second 
are to be construed to mean “ one or more " or " at least one " 55 intermediate encoded input , wherein computing the 
unless specified otherwise . Similarly , while operations may novelty score comprises computing a distance between 
be depicted in the drawings in a particular order , it is to be the first vector and the second vector in a vector space ; 
recognized that such operations need not be performed in the and 
particular order shown or in sequential order , or that all outputting the novelty score . 
illustrated operations be performed , to achieve desirable 60 2. The method of claim 1 , wherein the first vector and the 
results . Further , the drawings may schematically depict one second vector have the same dimension . 
more example processes in the form of a flowchart . How- 3. The method of claim 1 , wherein successively process 
ever , other operations that are not depicted may be incor- ing the first input through the plurality of encoder layers 
porated in the example methods and processes that are comprises generating a plurality of first vectors from a 
schematically illustrated . For example , one or more addi- 65 subset including at least some of the plurality of encoder 
tional operations may be performed before , after , simulta- layers , and wherein successively processing the first recon 
neously , or between any of the illustrated operations . Addi- structed output through the plurality of encoder layers 
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comprises generating a plurality of second vectors from the wherein generating the first intermediate encoded input 
subset including at least some of the plurality of encoder comprises generating a first vector and generating the 
layers , and wherein computing the novelty score comprises second intermediate encoded input comprises generat 
aggregating a plurality of vector pairs which include first ing a second vector , and wherein the first and second 
and second vectors . vectors have a lower dimension compared to the first 

4. The method of claim 3 , wherein computing the novelty input , and 
score further comprises computing distances between the wherein the first intermediate encoded input and the plurality of vector pairs . second intermediate encoded input are generated from 5. The method of claim 4 , wherein computing the novelty the same one of the encoder layers ; score further comprises summing squares of the distances in 10 wherein the deep learning neural network module is the vector space . configured to compute a novelty score of the first input 6. The method of claim 4 , wherein the first and second based on the first intermediate encoded input and the vectors are represented in the vector space having orthogo 
nal axes , and wherein prior to computing the distances , the second intermediate encoded input , wherein computing 
method comprises rotating the axes based on a distribution 15 the novelty score comprises computing a distance 
of the first and second vectors in the vector space . between the first vector and the second vector in a 

7. The method of claim 6 , wherein computing the dis vector space ; and 
tances between the plurality of vector pairs further com the novelty metric output module configured to output the 
prises assigning different weights to each of at least two axes novelty score . 
in different directions based on a distribution in the vector 20 13. A non - transitory computer - readable medium having 
space of the plurality of vector pairs . stored thereon executable instructions that when executed 

8. The method of claim 1 , wherein the deep learning cause a computing device to perform steps for detecting 
neural network model comprises the autoencoder that has novelty of sensor data using a deep learning neural network 
been trained using a training dataset consisting essentially of model , the steps comprising : 
data representing a single normal class . providing the deep learning neural network model com 

9. The method of claim 8 , wherein the training dataset prising an autoencoder on an electronic device , the 
comprises data such that a probability of the novelty score autoencoder comprising an encoder comprising a plu exceeding a novelty threshold is lower than 1 % . rality of encoder layers and a decoder comprising a 

10. The method of claim 1 , wherein the sensor data plurality of decoder layers ; comprises manufacturing parameters collected from a 30 feeding a first input comprising the sensor data into the manufacturing environment . encoder and successively processing the first input 11. The method of claim 1 , wherein the first reconstructed through the plurality of encoder layers to generate a output is not further processed through remaining ones of first encoded input , wherein successively processing the encoder layers or through the decoder after generating 
the second intermediate encoded input from the one of the 35 the first input comprises generating a first intermediate 
encoder layers . encoded input from one of the encoder layers prior to 

12. An electronic apparatus for detecting novelty of generating the first encoded input ; 
sensor data using a deep learning neural network model , the feeding the first encoded input into the decoder and 

successively processing the first encoded input through apparatus comprising : the plurality of decoder layers to generate a first recon the deep learning neural network module comprising an 40 structed output ; autoencoder , the autoencoder comprising an encoder 
comprising a plurality of encoder layers and a decoder feeding the first reconstructed output as a second input 
comprising a plurality of decoder layers , and into the encoder and successively processing the first 

a novelty metric output module , reconstructed output through the plurality of encoder 
wherein the encoder is configured to receive from a test 45 layers , wherein successively processing the first recon 

data generating module a first input comprising the structed output comprises generating a second interme 
sensor data and to successively process the first input diate encoded input from one of the encoder layers , 
through the plurality of encoder layers to generate a wherein generating the first intermediate encoded input 
first encoded input , wherein successively processing comprises generating a first vector and generating the 

second intermediate encoded input comprises generat the first input comprises generating a first intermediate 50 
encoded input from one of the encoder layers prior to ing a second vector , and wherein the first and second 
generating the first encoded input ; vectors have a lower dimension compared to the first 

wherein the decoder is configured to receive the first input , and 
encoded input from the encoder and to successively wherein the first intermediate encoded input and the 
process the first encoded input through the plurality of 55 second intermediate encoded input are generated from 
decoder layers to generate a first reconstructed output ; the same one of the encoder layers ; and 

wherein the encoder is further configured to receive the computing a novelty score of the first input based on the 
first reconstructed output as a second input and to first intermediate encoded input and the second inter 
successively process the first reconstructed output mediate encoded input , wherein computing the novelty 
through the plurality of encoder layers , wherein suc- 60 score comprises computing a distance between the first 

vector and the second vector in a vector space ; and cessively processing the first reconstructed output com 
prises generating a second intermediate encoded input outputting the novelty score . 
from one of the encoder layers , 

a 
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