(54) 发明名称
用于乘客运输控制的基于深度传感器的乘客检测

(57) 摘要
一种乘客运输系统包括深度感测传感器，其用于捕获邻近乘客运输门的视域内的对象的深度图数据，处理模块与所述深度感测传感器通信来接收所述深度图数据。所述处理模块使用所述深度图数据追踪对象并且计算与所述追踪对象相关的乘客数据，且乘客运输控制器从所述处理模块接收所述乘客数据。其中所述乘客运输控制器响应于所述乘客数据控制乘客运输调度控制功能。
1. 一种乘客运输系统，其包括：
深度感测传感器，其用于捕获邻近乘客运输门的视域内的对象的深度图像数据；
处理模块，其与所述深度感测传感器操作地通信来接收所述深度图像数据，所述处理模块使用所述深度图像数据来追踪对象并且计算与所述追踪对象相关联的乘客数据；和
乘客运输控制器，其从所述处理模块接收到所述乘客数据，其中所述乘客运输控制器响应于所述乘客数据控制乘客运输调度控制功能。

2. 根据权利要求1所述的系统，其中所述深度图像数据是3D深度图像数据。

3. 根据前述权利要求中任一一项所述的系统，其中所述深度感测传感器包括光学测量、相移测量、飞行时间测量、立体三角测量装置、光栅测量装置板、光场相机、编码孔径相机、计算成像技术、同时定位和地图构建（SLAM）、成像雷达、成像声纳、扫描LIDAR、闪光LIDAR、被动红外线（PIR）传感器和小型焦平面阵列（FPAs），或包括前述中至少一个的组合。

4. 根据前述权利要求中任一项所述的系统，其中所述视域约为180度。

5. 根据前述权利要求中任一项所述的系统，其中所述处理模块确定所追追踪对象的对象参数，其中所述对象参数包括对象计数、位置、尺寸、方向、加速度、速度、对象类别或包括前述中至少一个的组合。

6. 根据前述权利要求中任一项所述的系统，其中所述处理模块与所述乘客运输控制器通信且将所述追踪对象的所述对象参数传递给所述乘客运输控制器。

7. 根据前述权利要求中任一项所述的系统，其中所述处理模块基于所述追踪对象的对象参数确定所述乘客数据，其中提供给所述乘客运输控制器的所述乘客数据包括估计到达时间，到达概率，协方差，等待乘客运输的乘客数目或包括前述中至少一个的组合。

8. 根据权利要求5到7中任一项所述的系统，其中所述追踪对象的对象参数包括对象类别，且如果所述对象类别包括乘客，那么所述处理模块计算所述乘客数据。

9. 根据前述权利要求中任一项所述的系统，其中所述处理模块将所述深度感测传感器的所述视域分成第一区域和第二区域，其中所述第二区域被界定成邻近所述乘客运输门的区域。

10. 根据权利要求9所述的系统，其中所述乘客数据包括等待乘客运输的乘客数目，且其中所述处理模块基于进入所述第二区域的追踪对象数目来递增等待乘客运输的乘客数目。

11. 根据前述权利要求中任一项所述的系统，其中所述深度感测传感器位于邻近所述乘客运输门的墙壁上。

12. 根据权利要求1到11中任一项所述的系统，其中所述深度感测传感器位于约膝盖高度。

13. 根据前述权利要求中任一项所述的系统，其中所述深度感测传感器位于距邻近门150mm到700mm处。

14. 根据前述权利要求中任一项所述的系统，其中所述视域包括邻近所述乘客运输门的乘客等待区域。

15. 根据前述权利要求中任一项所述的系统，其中所述视域包括所述乘客运输门的至少部分包围所述乘客运输门的区域。

16. 一种提供视频辅助数据用于乘客运输控制的方法，所述方法包括：
检测位于深度感测传感器的视域中的对象；
基于距乘客运输门的距离追踪所述对象；
计算与所述追踪对象相关联的乘客数据；
将所述乘客数据传递给乘客运输控制器；和
响应于所述乘客数据用所述乘客运输控制器控制乘客运输室。

17. 根据权利要求 16 所述的方法，其中控制所述乘客运输室还包括打开所述乘客运输门、移动所述乘客运输室、停止所述乘客运输室、重新导向所述乘客运输室或包括前述中至少一个的组合。

18. 根据权利要求 16 到 17 中任一项所述的方法，其中控制还包括响应于所述乘客数据大致同时调度两个或多个乘客运输室。

19. 根据权利要求 16 到 18 中任一项所述的方法，其中计算乘客数据包括计算所述追踪对象的对象参数，其中所述对象参数包括位置、尺寸、速度、方向、加速度、对象类别或包括前述中至少一个的组合。

20. 根据权利要求 17 所述的方法，其中计算乘客数据包括背景减法。

21. 根据权利要求 17 所述的方法，其中计算乘客数据包括帧差分。

22. 根据权利要求 17 所述的方法，其中计算乘客数据包括假数据剔除。

23. 根据权利要求 21 所述的方法，其中假数据剔除包括：
计算深度背景；
分割前景对象；
移除前景区域；
通过 3D 形态学操作分割移动对象；
将所述移动对象变换到 3D 全局坐标；
估计所述移动对象的实际高度和实际体积；以及
通过几何过滤从场景边界移除假移动对象。

24. 根据权利要求 22 所述的方法，其中所述 3D 形态学操作包括通过深度背景减法计算 2D 前景对象，作为范围的函数对掩膜尺寸过滤，连接掩膜区域，基于深度间断性以 3D 分割对象或包括前述中至少一个的组合。

25. 根据权利要求 23 所述的方法，其中所述掩膜内的所述 2D 前景对象在任何深度。
用于乘客运输控制的基于深度传感器的乘客感测

技术背景
[0001] 本公开涉及一种乘客运输，且更明确地说，涉及一种用于电梯的基于深度传感器的控制。
[0002] 电梯性能可源自于许多因素。对于电梯乘客，重要因素包括运行时间。举例来说，随着基于时间的参数被最小化，乘客对电梯服务的满意度会提高。现代电梯系统仍可提供改进的乘客体验和通行性能的机会。

发明内容
[0003] 根据本公开的一个公开非限制性实施方案的乘客运输系统可包括：深度感测传感器，其用于捕获邻近乘客运输门的视域内的对象的深度图数据；处理模块，其与深度感测传感器可操作地通信来接收深度图数据；处理模块使用深度图数据来追踪对象并且计算与追踪对象相关的乘客数据；和乘客运输控制器，其从处理模块接收乘客数据，其中乘客运输控制器响应于乘客数据控制乘客运输调度控制功能。
[0004] 本公开的另一实施方案可包括，其中深度图数据是 3D 深度图数据。
[0005] 本公开的前述实施方案中的任一个的另一实施方案可包括，其中深度感测传感器或技术包括结构光测量、相移测量、飞行时间测量、立体三角测量装置、光三角测量装置板（sheet of light triangulation device）、光场相机、编码孔径相机、计算成像技术、同时定位和地图构建 (SLAM)、成像雷达、成像声纳、扫描 LIDAR、闪光 LIDAR、被动红外线 (PIR) 传感器和小型焦平面阵列 (FPA) 或包括前述中至少一个的组合。
[0006] 本公开的前述实施方案中任一个的另一实施方案可包括，其中视域约为 180 度。
[0007] 本公开的前述实施方案中任一个的另一实施方案可包括，其中处理模块计算追踪对象的对象参数，其中对象参数包括对象计数、位置、尺寸、方向、加速度、速度、对象类别或包括前述中至少一个的组合。
[0008] 本公开的前述实施方案中任一个的另一实施方案可包括，其中处理模块与乘客运输控制器通信且将对象参数传递给乘客运输控制器。
[0009] 本公开的前述实施方案中任一个的另一实施方案可包括，其中处理模块基于对象参数计算乘客数据，其中提供给乘客运输控制器的乘客数据包括估计到达时间、到达概率、平均速度，等待乘客运输的乘客数目或包括前述中至少一个的组合。
[0010] 本公开的前述实施方案中任一个的另一实施方案可包括，其中追踪对象的对象参数包括对象类别，且如果对象类别包括乘客，那么处理模块计算乘客数据。
[0011] 本公开的前述实施方案中任一个的另一实施方案可包括，其中处理模块将深度感测传感器的视域分成第一区域和第二区域，其中第二区域被界定成邻近乘客运输门的区域。
[0012] 本公开的前述实施方案中任一个的另一实施方案可包括，其中乘客数据包括等待乘客运输的乘客数目，且其中处理模块基于进入第二区域的追踪对象数目来递增等待乘客运输的乘客数目。
上意欲示例性而非限制性的。

[0029] 附图简述

[0030] 本领域的技术人员将从下文公开的非限制性实施方案的具体实施方式中明白各种特征。具体实施方式的附图可简述如下：

[0031] 图 1 是根据一个公开非限制性实施方案的电梯系统的示意图；
[0032] 图 2 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0033] 图 3 是根据另一个公开非限制性实施方案的电梯系统的透视图；
[0034] 图 4 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0035] 图 5 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0036] 图 6 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0037] 图 7 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0038] 图 8 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0039] 图 9 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0040] 图 10 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0041] 图 11 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0042] 图 12 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0043] 图 13 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0044] 图 14 是图示根据另一个公开非限制性实施方案的电梯系统的工作的示意图；
[0045] 图 15 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0046] 图 16 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0047] 图 17 是根据另一个公开非限制性实施方案的电梯系统的人员追踪器的示意图；
[0048] 图 18 是根据另一个公开非限制性实施方案的电梯系统的统计代码的方块图；
[0049] 图 19 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0050] 图 20 是根据另一个公开非限制性实施方案的电梯系统的平台的方块图；
[0051] 图 21 是根据另一个公开非限制性实施方案的电梯系统的算法的方块图；
[0052] 图 22 是通过轿厢内追踪从起点乘客等待区域到目的地乘客等待区域的乘客追踪的图形表示；
[0053] 图 23 是根据另一个公开非限制性实施方案的电梯系统的门配置的示意图；
[0054] 图 24 是根据另一个公开非限制性实施方案的电梯系统的方块图；
[0055] 图 25 是用于单个用户的通行列表产生的示意图；
[0056] 图 26 是电梯系统的算法的方块图。

具体实施方式

[0057] 图 1 示意性地图示了乘客运输系统 20，诸如电梯系统。系统 20 可包括电梯轿厢 22、电梯门 24、大厅电话 26、轿厢操作面板 (COP) 28、传感器系统 30 和控制系统 32。应了解虽然本文仅实例公开和说明电梯系统，但其它乘客运输系统诸如公共交通工具、通过各种安全检查站、触发视频监控、旅馆房间访问和其它检测，安全和识别的访问控制乘客运输也将从中受益。即，乘客运输可广泛解释成与个体通行相关联的控制。还应了解虽然单独定义特定系统，但系统中的每个或任何个可以另外方式组合或通过硬件和 / 或软件分离。
[0058] 乘客与电梯性能相关联的行进时间的总量可以包括三个时间间隔。第一个时间间隔可以是乘客在大厅等待电梯到达的时间量，下文是“等待时间”。第二个时间间隔可以是“门停留时间”或电梯门打开容许乘客进入或离开电梯的时间量，第三个时间间隔可以是“乘车时间”或乘客在电梯内花费的时间量。乘车时间还可包括在中间层停止来容纳乘客进入和/或离开电梯的时间，其在乘坐时间中至少增加停止期间的门停留时间。

[0059] 各种电梯系统可使用乘客启动的输入来发送对服务的需求。举例来说，来自大厅电话 26 的输入可包括按钮（例如向上、向下或所需目的地）来请求电梯服务。乘客启动的输入（例如通过电话按钮）可通知控制系统 32 存在乘客等待电梯服务。作为响应，控制系统 32 可将电梯轿厢 22 调度到适当楼层。视情况而定，在电梯轿厢 22 内，乘客可按下轿厢操作面板（COP）28 上指示所需目的地、方向等的按钮，并且控制系统 32 可将电梯轿厢 22 调度到所述目的地。

[0060] 控制系统 32 可包括具有处理器 42、存储器 44 和接口 46 的控制模块 40。控制模块 40 可包括中央控制单元的一部分、独立单元或其它系统（诸如基于云的系统）。处理器 42 可包括具有所需性能的任何类型的微处理器。存储器 44 可包括任何类型的计算机可读介质，其存储数据且控制本发明公开的过程。即，存储器 44 是示例性计算机存储介质，其上可具体实施有用计算机可读指令，诸如当执行时可实施所需步骤的过程。控制模块 40 的接口 46 可利用控制模块 40 与其他系统之间的通信。

[0061] 参考图 2，基于深度传感器的乘客检测系统 60 可包括与数据捕获模块 64 通信的传感器 62 和处理模块 66。基于深度传感器的乘客检测系统 60 可以是控制系统 32 的一部分。独立单元或其它系统（诸如，与控制系统 32 通信的基于云的系统）。数据捕获模块 64 和处理模块 66 可为传感器 62 特定有捕获和处理来自其的数据。在一个实例中，传感器 62 通过数据捕获模块 64 和处理模块 66 可操作来获取深度图像数据，诸如乘客存在于乘客等待区域或大厅 H 中、乘客的估计到达时间（ETA）、大厅 H 中的乘客数目等。

[0062] 根据一个公开非限制性实施方案，传感器 62 可安装在大厅 H 的墙壁 W 的下部分中，诸如处于膝盖高度（图 3）。在上述公开非限制性实施方案中，传感器 62 包括深度感测传感器。应了解本公开全文使用的术语“传感器”是针对任何 1D、2D、3D 深度传感器或其组合。这种传感器可在能够产生具有对应尺寸的深度图（还已知为点云或占据栅格）的光学、电磁或声波下操作。各种深度感测传感器技术和装置包括但不限于结构光测量、相移测量、飞行时间测量、立体三角测量装置、光三角测量装置、光场相机、编码孔径相机、计算成像技术、同时定位和地图构建（SLAM）、成像雷达、成像声纳、扫描 LIDAR、闪光 LIDAR、被动红外线（PIR）传感器和小型焦平面阵列（FPA）或包括前述中至少一个的组合。不同技术可以包括主动（传输和接收信号）或被动（仅接收信号）且可在电磁或声谱（诸如视觉、红外线等）的带下操作。使用深度感测可具有超越常规 2D 成像的特定优点。使用红外线感测可具有超越可变光谱成像的特定益处。替代或此外，使得传感器可以是具有一个或多个像素空间分辨率的红外线传感器，例如被动红外线（PIR）传感器或小型 IR 焦平面阵列（FPA）。

[0063] 应注意，2D 成像传感器（例如常规安全相机）与 1D、2D 或 3D 深度感测传感器之间在深度感测提供许多优点的程度上存在性质上和数量上的差异。在 2D 成像中，在从成像器的每个径向方向上的来自第一个对象的反射色彩（波长的混合物）被捕获。接着，2D 图像可包括源照明和场景中对象的光谱反射系数的组合光谱。2D 图像可通过由人员解释成图片。
在 1D、2D 或 3D 深度感测传感器中，不存在色彩（光谱）信息；更确切地说，在从传感器的径向方向（1D）或方向（2D、3D）上到第一反射对象的距离（深度、范围）被捕获。1D、2D 和 3D 技术可具有固有最大可检测范围极限且可具有相对低于典型 2D 成像器的空间分辨率。在对环境照明问题的相对免疫方面，与常规 2D 成像比较，使用 1D、2D 或 3D 深度感测可有利地提供改进型操作，对遮蔽对象的较好分离和较好的私密保护。使用红外线感测可具有超过可见光谱成像的特定益处。举例来说，2D 图像会无法被转变成深度图且深度图也无法具有被转变成 2D 图像（例如，至连续深度的人为分配连续色彩或灰度使人略微类似人如何见到 2D 图像来粗略地解释深度图，其并非常规意义上的图像。）的能力。无法将深度图转变成图像的能力看似缺点，但在本文公开的某些分析应用上会是有利的。

在一个实例中，传感器 62 可以是人眼安全行扫描 LIDAR，其中举例来说，视域（FOV）可约为 180°，其可水平覆盖大厅整个区域或邻近电梯门 24 的其它乘客区域（图 2）。举例来说，LIDAR 的输出可以是在安装传感器 62 的高度处的周围环境的 2D 水平扫描。对于主动传感器，扫描中的每个数据点表示 FOV 中实体对象点的反射，从而其可获得该对象点的范围和水平角。举例来说，LIDAR 的扫描速率可以是每次扫描为 50ms，这可利用乘客的可靠追踪。即，通过处理模块 66 应用分析过程之前，LIDAR 扫描数据可被转变成占据栅格表示。每个栅格表示小区域，例如 5cm x 5cm。栅格状态可被数字化指示，例如 1 或 0，来指示每个栅格正方形是否被占用。因此，每个数据扫描可被转变成二进制图且这些图接着用来获取大厅的背景模型，例如通过使用被设计或修改用于深度数据的过程，诸如高斯混合物模型（GMM）过程、主成分分析（PCA）过程、编码本过程或包括前述中至少一个的组合。

处理模块 66 可使用各种 3D 检测和追踪过程（本文另外公开），诸如背景减法、帧差分和 / 或假数据剔除，其可使系统更能抵抗假数据。这种假数据可以是深度感测固有的且可随使用的特定技术改变。对于主动技术，其中发射了特定信号且随后被检测来确定深度（例如结构光、飞行时间、LIDAR 等），高反射表面可产生假深度数据，例如，并非反射表面本身的深度，而是在到反射表面的深度加上从反射表面到一定程度漫反射表面的深度的深度处的反射反射表面的深度。高度漫反射表面无法反射足够量的传输信号来确定在深度图中造成假间隙的深度。甚至进一步，环境照明中的变动、其它主动深度传感器的干涉或信号处理中的不精确度会造成假数据。

参考图 4 和图 5，在另一公开非限制性实施方案中，以功能方块图公开了用于剔除假数据的过程 50、51。这些功能可在专用硬件电路、能够在基于微处理器的电子控制系统中执行的编程软件程序或包括前述中至少一个的组合中制定。

假数据剔除过程 50 可包括多个步骤。首先，可计算深度背景，其可用来从背景（例如墙壁和地板）分割前景对象（例如乘客、行李等）（步骤 52）。深度数据可以是三维的。应了解深度数据可替代地被称为深度图、点云或占据栅格。深度数据可相对“受干扰”。

基于多维的方式可用来建模深度背景。2D 成像器背景建模方法可能不足以用于深度背景建模。举例来说，深度不确定性可以是范围的分析函数，深度数据误差可间断（或不连续），且与典型的 2D 图像数据（例如，无法由连续概率分布表示）比较，深度分布可以是非高斯的，或包括前述中可使得 2D 成像器背景建模不足以用于深度背景建模的至少一个的组合。

其次，在背景减法和前景检测之后，形态学操作可用来过滤隔离小型前景区域
（例如，可能是“噪音”）且分割移动对象（称为斑点）用于进一步分析（步骤 54）。这个分析可以 3D 实施。然而，2D 连接组件的 3D 扩展可能是不合适的，因为 3D 数据仍自我遮蔽，例如，呈现占据栅格的“阴影”。过滤方式可包括扩展 2D 连接组件使其包括呈占据栅格的“未知”类别用于 3D 形态过滤的过程。

[0071] 参考图 5 进一步解释形态过滤。在 3D 形态过滤 51 中，可在多个步骤（例如，如图 5 中所示），可包括四个连续步骤中实施对遮蔽的解释。可通过深度背景减法计算 2D 前景对象。该膜内的前景对象可处于任何深度，且部分或完全遮蔽其后的对象。

[0072] 可在该膜上作为范围函数实施尺寸过滤，其可移除预测尺寸以下的对象（步骤 55）。任何“附近”该膜区域使用 2D 连接组件连接，其潜在地合并具有不同深度的对象（步骤 57）。接着可基于深度间断性以 3D 分割对象（步骤 59）。一些对象可能在深度间断分割之后将相对较小，例如，几乎完全被一个人遮蔽的另一个人将呈现为小型斑点。这种方式可用来追踪这种小对象使得其可被分类而不是将其过滤出去。

[0073] 参考图 4，用本文其它地方公开的传感器校准结果，前景斑点可被变换成 3D 全局坐标且可估计其实际高度和体积（步骤 56）。如果选择的特性（诸如高度、宽度、纵横比、体积、加速度、速度和/或其它时空特性）是在检测阈值（例如动态计算的阈值、静态阈值等）之外，那么形态过滤可用来移除斑点。

[0074] 可应用几何过滤来进一步移除场景边界之外的假斑点（步骤 58）。深度背景界定环境的 3D 场景边界。表示真实对象的斑点应在 3D 边界内。即，如果斑点的深度大于深度背景的对应位置的深度，那么斑点在 3D 边界之外且可被移除。例如，从反射表面（诸如镜子）检测到的斑点。乘客或其它移动对象接着可容易通过背景减法技术来检测，其对照明改变、阴影和遮蔽具有高稳健性，从而提供精确的乘客数据。为了进一步增大检测稳健性，可替代地或另外使用时间信息，例如，通过追踪。

[0075] 乘客追踪还可基于二进制前瞻图和追踪乘客并且估计其速度和移动方向的方法（诸如卡尔曼滤波器）。基于检测、追踪和计数，可获取乘客数据，诸如大厅中存在乘客、估计到达时间（ETA）和等待的乘客数目。接着，这个乘客数据可用来例如改进大厅电话登记和电梯调度。

[0076] 举例来说，借助于深度感测装置的检测、追踪和计数可利于接近的乘客登记大厅电话，尤其是在终端楼层，如果轿厢已经在所述楼层，那么为接近的乘客打开轿厢门；基于接近的乘客预先定位轿厢；和/或基于接近的乘客的数目产生多个大厅电话，诸如当多个乘客基本上同时离开研讨会时。

[0077] 在另一公开的限制性实施方案中，传感器 62 可安装有朝向电梯门 24 和大厅 II 的 FOV。这个位置使得可获得的信息远远比仅在电梯门打开时感应大堂 II 的轿厢中的传感器可用的信息更完整且进一步超越其。替代或另外，可如上使用类似过程，但特别设计和训练用于 3D 深度图数据。

[0078] 参考图 6，在另一公开的限制性实施方案中，传感器系统 30B 可包括在电梯轿厢 22 内的乘客追踪系统 70 以利于电梯门 24 的操作。乘客追踪系统 70 可包括与数据捕获模块 74 通信的传感器 72 以及与数据捕获模块 74 和门控制模块 78 通信的数据处理模块 76。乘客追踪系统 70 可以是控制系统 32 的一部分、独立单元或其它系统（诸如，与控制系统 32 通信的基于云的系统）。
乘客追踪系统可特别设计来使用深度数据图。追踪可被认为是贝叶斯估计问题，即，在给定先前系统状态、观测和不确定性的情况下，特定系统状态的概率是什么。在这种追踪中，系统状态可以是追踪对象的位置（例如位置）且可能是速度、加速度和其它对象特性，例如如本文另外地方公开的目标特征。不确定性被认为是噪音。取决于针对数学可追踪性或效率所作的简化假设，贝叶斯估计变成卡尔曼滤波（假设高斯性噪音）的变体或粒子滤波（假设非高斯噪音）的变体。在2D和3D对象追踪中，目标上存在许多像素/三维像素的情况下，系统状态通常包括目标表示，其包括有差别的信息，诸如色彩描述符（仅是2D的）、形状描述符、表面反射率等。可能目标模型是传感器且是专用的。

用于乘客追踪系统的一个公开非限制性实施方案是基于卡尔曼滤波且系统包括五个（5）变量：\(x, y, h, v_x\)和\(v_y\)，其表示目标的真实全局\(x\)和\(y\)位置、高度和在\(x\)方向和\(y\)方向上的速度。追踪过程包括两个步骤：预测和更新。恒定速度模型或其它类型的模型（诸如随机走动或恒定加速度模型）可应用于预测，通过处理，先前深度图中的目标（其状态）可被变送到当前深度图中。视需要可使用更复杂的模型。在更新步骤中，首先当前深度图中的全部目标使用对象检测过程（即，基于深度的背景减法和前景分割）检测，如本文另外地方公开，接着检测目标基于全局最优分配过程（例如，Munkres分配）与预测目标相关联。目标的\(x, y\)和\(h\)变量用作为分配特征。特征（\(x, y\)和\(h\)）有效地用于针对追踪关联区分不同目标。

对于具有相关联检测目标的预测目标，可根据卡尔曼等式视观测用相关联的检测目标更新系统状态。对于不具有相关联检测目标的预测目标，系统状态可保持相同，但目标的置信度将减小，例如，针对已经离开的视域的目标。如果置信度下降到预定或选择值以下，那么将解除追踪。对于不具有相关联预测目标的检测目标，将启动新的追踪器。

可替代或另外应用类似于卡尔曼滤波的其它追踪方式，其将在目标突然改变其速度的情况下更稳健。卡尔曼方式需要相对少的计算成本并且可更适于实时应用。

在这个实施方案中，传感器72可安装在电梯轿厢22的顶部，其FOV向下且朝向电梯门24。传感器72由此可操作来察觉到轿厢22中的乘客，且还在电梯门24打开时可操作来察觉到大厅H中的乘客。数据捕获模块74从传感器72捕获数据，例如，3D深度图数据。当门控制模块78发送信号来打开门24时，例如在电梯22停在楼层之后，门控制模块78还可触发信号使数据捕获模块74捕获传感器数据。在一个实施方案中，乘客追踪仅可在门24打开时启动和/或可在门24关闭时不启用。在另一实施方案中，数据捕获模块74可持续处理数据且由此检测门24何时打开，从而消除对来自门控制模块78的这个信息的需要，使得门控制模块78没有门位置信息。

参考图7，在另一公开非限制性实施方案中，以功能方块图公开了用于检测电梯轿厢22和大厅H中的对象的过程80，且应了解可在专用硬件电路或能够在基于微处理器的电子控制实施方案中执行的编程软件程序中确定这些功能。

数据捕获模块74将数据传递到数据处理模块76来检测电梯轿厢22中以及大厅H中的对象（步骤82）。对象检测可包括如本文其它地方公开的前景检测和使用用于深度数据的计算机视觉过程的乘客检测。乘客检测可通过人类模型似合（例如通过使用可变形部分模型）和分类来实现，其中检测和分类可被训练用于FOV和3D深度图数据。

接着，将追踪检测对象来获取其移动速度和方向（步骤84）。速度和方向可在传感器72中计算。
器坐标系统中和/或通过传感器校准处于全局坐标系统中，如本文其它地方另可公开。如果检测乘客正好站在电梯轿厢 22 或大厅 II 中，那么其移动速度是 0，其指示这些乘客不会马上乘坐或离开电梯轿厢 22。

【0087】对于基于深度图的追踪，可使用各种过程，如本文其它地方公开。举例来说，特定运动检测功能使用贝叶斯估计来检测乘客是只是正在移位还是有意从轿厢 22 内移向门 24。这对特定识别拥挤轿厢 22 后方的乘客想要离开的情况尤其有益。

【0088】利用电梯轿厢 22 和大厅 II 中的乘客移动速度和方向的信息，可分别控制电梯门 24（步骤 86）。举例来说，如果许多乘客或离开，那么电梯门 24 可被控制来保持打开比常规相对更久且接着在全部乘客已离车或离开之后迅速关闭。相反地，如果没有乘客等待乘坐或离开，那么电梯门 24 可被控制来比常规相对更快地关闭以减少乘客等待时间并提高通行效率。

【0089】参考图 8，在另一公开的非限制性实施方案中，传感器系统 30C 可包括未占用轿厢确定系统 90 来确定电梯轿厢 22 是否被占用，因为未占用电梯轿厢 22 可比占用电梯轿厢 22 有利地移动快五倍到十倍，或以使乘客不舒适的其它方式和/或在编码限制内移动。

【0090】未占用轿厢确定系统 90 可包括与数据捕获模块 94 通信的传感器 92，以及与数据捕获模块 94 和轿厢状态模块 98 通信的数据处理模块 96。未占用轿厢确定系统 90 可以是控制系统 32 的一部分，独立单元或其它系统（诸如，与控制系统 32 通信的基于云的系统）。未占用轿厢确定系统 90 可另外包括负载传感器 100，其与数据捕获模块 94 和数据处理模块 96 通信。

【0091】参考图 9。在另一公开的非限制性实施方案中，以功能方块图公开了用于确定电梯轿厢 22 未被占用的过程 110，且应了解可在专用硬件电路或能够在基于微处理器的电子控制实施方案中执行的编码软件程序中制定这些功能。

【0092】负载传感器 100 可操作以感测电梯轿厢 22 的当前负载重量，且还可进一步确定感测的负载重量是否小于预定阈值。负载传感器 100 还可触发信号给数据捕获模块 94 来指示电梯轿厢 22 较高概率（例如，大于 80% 或 90% 或 95%）是空的（步骤 111）。如果数据捕获模块 94 从负载传感器 100 接收信号，那么数据捕获模块 94 将把当前深度图传感器视图传送到数据处理模块 96（步骤 112）用于通过应用数据捕获过程进一步确认轿厢 22 是空的（步骤 113）。然而，负载传感器 100 可以是相关过程传感器且会容易随时间改变其精确度。如果负载传感器 100 足够不精确，那么可期望数据捕获模块 94 继续运行而不会由负载传感器 100 触发。

【0093】将 3D 深度感测传感器用作为传感器 92 利用通过轿厢内前景检测或乘客检测确认空轿厢，其中各个分析过程被修改而在深度数据下操作，如本文其它地方公开。3D 深度感测传感器可利于精确识别乘客、之前无法检测的对象（例如，诸如公文包、雨伞、行李等）或包括前述中至少一个的组合。这种识别可伴随有听得见的信息，举例来说，“请牢记您的财物”应了解可替代地提供其它适当警报。

【0094】数据处理模块 96 的输出可包括指示轿厢 22 是否被确认未占用（步骤 114）的信号。在这个信号下，可精确地应用电梯待机模式、未占用移动模式和/或电梯轿厢模式（步骤 120）。

【0095】来自数据处理模块 96 的信号可另外或替代地被输入到负载传感器 100 用于重新
校准来维持其精确度（步骤 116）。举例来说，在通过传感器 92 确认空轿厢 22 之后，可重新校准负载传感器 100。特定来说，如果确认轿厢 22 是空的，那么由负载传感器 100 感测的负载重量可被设置成零，或可使用差值来调整负载感测等式中的偏移量。

[0096] 在另一公开的非限制性实施方案中，可使用未占用轿厢管理系统 120 来利用电梯井道电话的操作、轿厢调度和轿厢运动，其是基于确定电梯轿厢 22 是否被占用来进行管理。更特定来说，未占用轿厢管理系统 120 可被使用以在轿厢 22 未被占用时取消全部其余轿厢电话、平衡轿厢 22 之间的乘客数目，将乘客引导到特定轿厢 22 和 / 或改变运动轮廓来增强乘客体验、改进调度和 / 或提高通过量。

[0097] 参考图 10，在另一公开的非限制性实施方案中，传感器系统 30D 可包括电梯监控系统 130 以用于检测电梯轿厢 22 内的对象和 / 或滞留乘客。电梯监控系统 130 可包括传感器 132，诸如 3D 深度感测传感器。使用 3D 深度感测传感器易于克服 2D 成像固有的限制，诸如照明改变和遮蔽，如本文其它地方公开。

[0098] 传感器 132 与数据捕获模块 134 通信，且数据处理模块 136 与数据捕获模块 132 和救援中心模块 138 通信。系统 130 可以是控制系统 32 的一部分，独立单元或其它系统（诸如与控制系统 32 通信的基于云的系统）。

[0099] 电梯操作监控模块 140 还可与数据捕获模块 134 通信。电梯操作监控模块 140 监控电梯系统 20 的状态且如果存在任何故障，那么电梯操作监控模块 140 会触发传感器 132。数据捕获模块 134 在被触发时将从传感器 132 捕获一个或多个深度图用于传递到数据处理模块 136。数据处理模块 136 接收 3D 深度图数据且可应用各种分析过程来确定电梯轿厢 22 中是否存在任何乘客或对象，如本文其它地方公开。数据捕获模块 134 还可在不被电梯操作监控模块 140 触发的情况下继续运行。

[0100] 在诸如停电的故障下，可提供备用电池 142 来继续 3D 感测和处理。继续的 3D 感测和处理的实施方式因此可以是通过在断电条件下审慎使用来保存电池寿命。

[0101] 参考图 11，在另一公开的非限制性实施方案中，以功能方块图公开了用于操作电梯监控系统 130 的过程 150，且应了解可在专用硬件电路或能够在基于微处理器的电子控制实施方案中执行的编程软件程序中制定这些功能。

[0102] 过程 150 提供初始数据处理来基于深度背景减法而提取前景区域（步骤 152）。深度背景模型可推理解是否需要进行更新。举例来说，深度背景模型的产生可基于编码本过程。用主动 3D 传感器的深度背景减法有利地耐抗照明改变，因为传输的信号用来确定深度。

[0103] 接着，基于深度图和空间信息分割前景区域（步骤 154）。在这个步骤中，对应于不同乘客或其它对象（诸如行李）的区域可从背景中分割出。最后，用人为模型检查每个分割区域来确定深度数据是否是人（步骤 156）。在一个示例中，基于深度的人形模型可以是可变形部分模型来增强对遮蔽的耐抗。基于部分的模型还可被训练用于深度数据和传感器 FOV 来增大精确度。可针对不同乘客姿势建立多个模型，诸如站立、坐下和躺下。接着，举例来说，输出结果来指示乘客或对象的数目（步骤 158）。数据处理模块 136 因此不仅输出关于电梯轿厢 22 中是否存在滞留乘客的信息，还将滞留乘客数目信息输出来传递到救援中心模块 138 以利于合适的救援响应。

[0104] 参考图 12，在另一公开的非限制性实施方案中，传感器系统 30E 可包括特殊负载
系统 160 以利于检测特殊负载状况。如本文定义，特殊负载状况可包括负载除了人类乘客之外的任何对象和由常规花费相对较长时间的任何负载，例如，轮椅、老年人、带有较大行李架的乘客等。

【0054】在检测特殊负载状况下，特殊负载系统 160 改进了乘客体验和通行性能。举例来说，电梯控制器 32 的电梯调度系统可给电梯轿厢 22 分配足够自由空间和电梯门控制器 78（图 6）可使电梯门 24 保持较长时间打开来适应较慢移动的乘客或其它特殊负载状况，诸如大型行李（其甚至可能进出轿厢 22 多次来装载）、服务车或甚至是自动车辆。

【0055】特殊负载系统 160 可包括传感器 122（安装在大厅 H 中或在远程信息亭中）来通过本发明其它地方公开的分析而查看需要电梯轿厢 22 的乘客。将 3D 深度感测传感器用作为传感器 162 克服了 2D 成像器的上述基本局限性。

【0056】传感器 162 与数据捕获模块 164 通信，数据捕获模块 164 与数据处理模块 166 通信，数据处理模块 166 与数据捕获模块 164 和特殊负载检测模块 168 通信。特殊负载检测模块 168 还可从分类器模块 170 接收信息且与电梯控制系统 172 通信。系统 160 可以是控制模块 32 的一部分，独立单元或其它系统（诸如，与控制系统 32 通信的基于云的系统）。

【0057】参考图 13，在另一公开的非限制性实施方案中，以功能方块图公开了用于操作特殊负载系统 160 的过程 180，且应了解可在专用硬件电路或能够在基于微处理器的电子控制系统方案中执行的编程软件程序中制定这些功能。

【0058】首先，如本文公开，响应于检测到乘客需要召唤电梯轿厢（步骤 182），特殊负载过程 180 将从传感器 162 获取深度图像数据（步骤 184）且接着将深度图像数据传递到数据处理模块 166（步骤 186）。数据处理模块 166 接着操作来从背景分割出前景对象，如本文其它地方公开（步骤 168）。这用于聚焦于前景对象且消除背景影响。被适当修改且训练用于深度数据的各种背景建模和减法过程可应用于分割前景对象，如本文其他地方公开。

【0059】在已经分割前景对象之后，空间或时空分类方式利于检测这些前景对象是否构成特殊负载状况（步骤 190）。对于特殊负载状况的一般情况，可能难以针对全部可能的特殊负载状况手动定义有用的特征并且包括传感器数据和环境中的大量可能变动。因此，特殊负载过程 180 可被训练来获取不同于常规负载的特殊负载状况的特征或特征层级。

【0060】在这些自动获取的特征下，可通过分类器模块 170 的有效地区分特殊负载检测（步骤 192）。举例来说，分类步骤 190 可以是特征获取和分类，诸如通过深入学习网络或稀有学习字典。可有利地使用本领域中已知的其它分类器。举例来说，可提供实施分类器训练用于各个对象，且对于实时检测，对象检测可基于预定要求特别定制。这允许特殊负载系统 160 更适应于各种特殊负载检测需要以及容易提供可量化性。

【0061】另外，检测到的特殊负载状况可被构建到邻近电梯的楼层面积。举例来说，这种机制构建可包括距电话按钮信息亭的距离和实际移动速度，使得电梯控制系统 172 可为特定调度决定和运动 / 门控制而定制（步骤 194）。举例来说，这可以在一个步骤中实施。举例来说，识别每个特殊负载状况时，分类器直接输出获取的所需楼层面积和实际移动速度。在上述实施方案中，这可在两个步骤中实施，首先分类特殊负载状况，接着针对特殊负载状况调节传感器数据的随后处理，举例来说，来计算楼层面积、速度或其它信息。

【0062】在一个实例中，且参考图 14，可追踪特殊负载状况，诸如在信息亭“K”上按下按钮的携带行李箱“L”的乘客，来获取移动速度“S”，从而从到电梯轿厢 22 的距离“D”提供 ETA（估
计到达时间）。ETA因此可用于适当调整和在充足停留时间内的门控制。

参考图 15，在另一公开的非限制性实施方案中，传感器系统 30F 可包括自动校准系统 200 有利于精确确定关键的校准参数而不是依赖于安装者的努力、技能和另外设备。

自动校准系统 200 可包括传感器 202，诸如 3D 深度感测传感器，其可实施其它功能，诸如本文其它地方公开的功能。传感器 202 可布置在电梯轿厢 22 内或在电梯大厅内。传感器 202 与数据捕获模块 204 通信，且数据捕获模块 204 与数据处理模块 206 通信且可与自动校准过程 210 通信。数据处理模块 206 还可与自动校准过程 210 通信。自动校准系统 200 可以是控制系统 32 的一部分、独立单元或其它系统（诸如，与控制系统 32 通信的基于云的系统）。

数据处理模块 206 还包括过程 210 (图 16) 用于自动校准系统 200 的操作。在另一公开的非限制性实施方案中，以功能方块图公开了用于传感器 202 的自动校准的过程 210，且应了解可于专用硬体电路或能够在微处理器的电子控制实施方案中执行的编程软件程序中制定这些功能。

最初，可通过使用如本文其它地方公开的背景减法和前景分割由视域中移动对象的系统 200 来确定传感器坐标系统的至少一次测量。接着，用来建立数学关系（诸如捕获校准信息的变换矩阵）的数据被记录到关于通过全局坐标 (x, y, z) 空间的乘客移动的传感器坐标系统 (u, v, d) 中（步骤 214）。

接着，关于场景几何的假设（例如，楼层是平坦的；乘客直立站在地面上；乘客不改变高度；门与地面垂直等）用来比较记录的传感器坐标系统数据与关于乘客高度的的统计数据 （图 17 和图 18；步骤 216）。例如，通过满足简单纵横比阈值的连接组件来检测直立乘客。一旦检测到足够的直立乘客，就可确定地板平面且可针对每个地板位置计算乘客的高度分布。

从对乘客高度分布的预定了解（图 18），可校准 Z 轴（步骤 218）。从乘客高度分布的这个 Z 轴校准可被认为是系统识别问题，其中必需持久且充分的输入是通过视域的乘客的尺寸和运动。记录的高度数据可在设置周期期间收集，保存一段时间段和 / 或受到遗忘因素的影响。

从作为范围的函数的视在高度或三维像素纵横比，接着可基于 Z 轴校准来校准 (X, Y) 轴（步骤 220）。传感器坐标数据接着可被映射到绝对或 “公制” 单位的全局坐标系统中（步骤 222）。

为了进一步利于识别乘客的意图（诸如接近、离开或经过），还可确定电梯门 24 的位置。电梯门 24 的位置可基于各种方法来确定，诸如检测乘客出现、消失的位置、深度改变检测、电梯轿厢的深度、电梯门水平移动和形状识别。即，还可延伸场景几何的推论来定位门、视域边缘等。另外，何使这些技术可在方便的情况下与安装者输入组合。所述方法可监控校准信息的矩阵数学关系估计的收敛来确定何时已经达到足够精确度。

在替代实施方案中，可在传感器坐标系统 (u, v, d) 中估计地板平面和电梯门位置且可在这个坐标系统中实施全部追踪。在这种情况下，可通过定时乘客追踪来获取估计到达时间，例如作为经验图的函数。

在替代实施方案中，可在试运转期间通过使安装者遵循标准操作程序来建立电梯门 24 的位置，因此校准试验台相对于电梯门 24 定位。举例来说，试验台可定位成与电梯门
24 的中心齐平且与电梯门 24 垂直定向。另外特征可用来指示具有独特识别特征的校准试验台上的每个校准点，诸如使用颜色、形状或图案，诸如 QR 码。

[0124] 在另一替代实施方案中，可识别除了电梯门 24 之外的其他受关注区域。例如，可指定乘客固定工具的位置（诸如 COP 28）、目的地入口信息亭、自动扶梯入口/出口平台的位置、门/访问控制装置的位置、房间入口/出口等。

[0125] 参考图 19，在另一公开的非限制性实施方案中，传感器系统 306 可包括乘客追踪系统 230 来检测大厅 II 和电梯轿厢 22 中的乘客而将全部信息链接在一起以针对建筑中的每个个体产生通行列表（图 20）用于各种应用。举例来说，基于通行列表信息的通行图案预测可集中在整个建筑层面的乘客通行信息上面不是单个区域或多个区域。通行列表信息提供了关于建筑中乘客行为的更详细信息，且还可用于除了电梯控制和调度之外的各种应用。

[0126] 乘客追踪系统 230 可包括多个传感器 242，其通过控制系统 32 与电梯系统 20 通信。在一个实例中，传感器 242 位于每个大厅 II 和每个电梯轿厢 22 中。或者，传感器 242 仅位于每个电梯轿厢 22 中。传感器 242 可以是 2D 成像器、3D 深度传感器或其任何组合。

[0127] 参考图 21，在这个公开的非限制性实施方案中，以功能方块图公开了用于操作电梯追踪系统 230 的过程 250，且应了解可在专用硬件电路或能够在基于微处理器的电子控制实施方案中执行的编程软件程序中制定这些功能。

[0128] 通行列表（图 20）包含已经使用电梯的每个个体乘客的详细信息，诸如到达时间、起点大厅、目的地大厅等。为了产生通行列表，从大厅的起点开始追踪每个个体乘客，直至乘客离开目的地大厅为止，以及在起点大厅与目的地大厅之间的轿厢内追踪。

[0129] 为了产生追踪列表，传感器 242 可基于各种乘客检测和追踪过程收集乘客信息，如本文其它地方公开。最初，当人员出现在大厅时或从电梯轿厢 22 离开之后可检测和追踪每个人员（步骤 252）。如果传感器 242 是 3D 深度传感器，那么可应用本文其它地方公开的检测和追踪过程。如果传感器 242 是 2D 成像传感器，那么可由多个注册传感器信道通过输入图像的线性和/或非线性变换来计算“完整信道特征”，接着可通过提升算法（boosting）获取基于“完整信道特征”的乘客检测模型，其提供了稳健且快速的方式来获取给定的大量候选特征，且当与串联分类器接轨时成了快速检测器。举例来说，这个检测和追踪过程可基于 2D RGB 视频。

[0130] 在一个实施方案中，设计了两个追踪器来追踪一个目标：通过在线提升算法的头部肩部追踪器和基于粒子滤波的身体追踪器。空间局限性还可用作组合两个追踪器，且提升的在线分类器可维持用于遮蔽和消失判断。

[0131] 举例来说，当人员进入电梯轿厢时，轿厢内的检测和追踪被触发（步骤 254）。即，每个人员在轿厢内时且当人员在目的地大厅时被追踪（步骤 256）。对于轿厢内的追踪，传感器相对朝下查看，因此乘客将看似只有头部和肩部出现在视域中。这在当其中乘客拥挤时会使追踪变复杂。为了解决 2D 图像传感器的这个复杂处，举例来说，每个乘客的头部首先通过圆霍夫变换被检测，接着形成基于光流的运动估计来过滤出静止候选者并调整头部检测结果来识别每个乘客。为了进一步利于轿厢内追踪，运动导向的粒子滤波方式可组合两个特征，例如 HSV 色彩柱状图和边缘定向柱状图，且基于运动估计使用有效的模型更新。
策略。
[0132] 为了使在一个传感器的FOV中追踪的人员与另一传感器的FOV中追踪的同一人员保持相关联，大厅/过道追踪和轿厢内追踪在当乘客从大厅/过道移动到轿厢中时相关联且反之亦然。2D图像传感器移动关联问题可对重叠和非重叠视域以及校准和非校准视域使用视觉监视技术。在一个实例中，可使用色彩或形状计算描述符（例如特征向量），且接着这个描述符来计算跨过不同视域的正确关联。

[0133] 在3D追踪中，无法用共通2D描述符（诸如色彩）和2D投影形状（例如，2D梯度）。这样，可使用3D描述符，即，表面反射率柱状图、空间定向的3D梯度的柱状图（HOG3D）等。HOG3D不同于2D HOG3D描述符，因为第三维是空间，而在HOG3D中，第三维是时间。然而，乘客形状乘客可分类似于仅使用HOG3D会不具充分鉴别力来清楚将追踪从一个传感器移动到另一个。

[0134] 在另一实施方案中，进入电梯轿厢的乘客自然顺序可用来关联追踪，例如，一个检测体积中的第一消失踪迹与另一检测体积中的第一新出现踪迹相关联等。即，也可能不足够精确，因为乘客在离开两个检测体积时可能交换顺序，且不会发生从新进入的严格顺序。为了确保精确度，重叠和校准检测体积提供了更好的性能，因为可已知重叠检测体积中的对象位置处于相同空间位置。

[0135] 在另一实施方案中，或可使用上述技术的组合。当多种技术提供了正确追踪关联的矛盾信息时，可通过解决贝叶斯估计问题来最大化在给定观测和不确定性下正确关联的概率来解决不确定性。将意识到关联问题的其它数学公式是可能的。针对位于大厅中的传感器242A与位于电梯轿厢22中的传感器242B之间的追踪移动，可使用基于图表的最优化方式（图22）。在一个实例中，基于图表的最优化方式包括三层节点，表示起始大厅的追踪、轿厢内追踪和目的地大厅追踪。

[0136] 接着，通过基于图表的最优化260来找到整体最佳路径而解决追踪移动。示例性基于图表的最优化260可通过顺序和时间差来加权。即，当乘客通常以顺序方式进入和离开轿厢时，容易实现其过滤来通过权重和节点的类似处而提供最佳路径。

[0137] 参考图23，如果电梯门24打开，那么门24的垂直边缘（当基于线的霍夫变换检测时）将按顺序横穿区域12.3。且如果门关闭，那么门边缘将按顺序横穿区域3.2.1。电梯门24的位置还可通过位于电梯轿厢22中的传感器242B或位于大厅12中的传感器242A来确认，其中查看电梯门24来确认门正打开、打开了、正关闭、关闭了。即，电梯门状态可从电梯控制器242输入或可由传感器242A/242B检测来提高追踪移动解决方案的性能和效率。举例来说，仅当电梯门打开时才需要实施追踪移动。应了解其它运输也将受益于此。

[0138] 参考图24，在另一公开的非限制性实施方案中，传感器系统30H可包括基于融合的乘客追踪系统270来预测乘客的可能移动。接着基于瞬时需要适应地分配电梯轿厢以便为建筑中的电梯乘客带来更多效率和便利。具有完整精确通行列表的电梯系统（图20）可（举例来说）基于每小时、每天、每周期等来预测乘客的可能移动，且基于预期通行使用电梯来为电梯乘客提高效率和便利。为了实现稳健通行列表的产生，提供了基于融合的通行列表产生方法。

[0139] 现在参考图25，基于融合的乘客追踪系统270可包括多个安全传感器280a到280n，其通过控制系统32与电梯系统20通信。即，来自本质上为控制系统32提供数据的
安全传感器 280 的传感器数据包括但不限于面部识别、指纹识别、指纹虹膜数据、安全卡信息等。在没有监控覆盖的区域或未很好实施分析过程的区域，额外安全传感器可识别人员且接着使用传感器融合关闭通行列表中的间隙来使整个过程更稳健。在身份与乘客相关联的情况下，保存身份和关联乘客追踪数据的方式是通过使用加密、认证和其它安全措施来保持隐私。

[0140] 传感器融合可通过贝叶斯推论来实施，但在替代实施方案中可通过任何熟知技术来实施。利用安全信息和通行历史数据，可确定在建筑中移动的人员的标签来了解常规行为并且提高电梯服务。在这个公开的非限制性实施方案中，通行列表含有使用者于传感器 284 的乘客的详细信息以及来自各个安全传感器 280 的安全数据。来自各个传感器的数据被融合且通过控制系统 32 被传递到电梯系统 20。识别信息与这个人的视觉描述特征链接，因此在不同成像器或传感器视野下的整个通行列表将具有 ID 信息。即，乘客通行列表是基于大厅和轿厢追踪结果之间的协调（“移交”）。接着，融合的数据可用以利于电梯调度。

[0141] 可预定义移交规则，诸如先进先出规则。对于先进先出规则，当大厅传感器和轿厢传感器同时针对相同区域中追踪的目标进行操作，即在另一个从大厅移动到乘坐轿厢时，这个离开大厅进入轿厢的信息就可用来将来自大厅的追踪器链接到轿厢中的追踪器。当乘客离开轿厢且进入大厅时，类似规则（离开轿厢进入大厅）可应用于使轿厢中的追踪器与大厅中的追踪器链接。

[0142] 在一个实例中，安全传感器识别特定乘客与全部其它传感器共享其安全数据而使追踪结果与该乘客的 ID 链接。第二，在一些区域中，其中未安装安全传感器，安全凭证信息可用来继续追踪建筑中存在该乘客且以这种方式继续为所述乘客产生通行列表。还可与其它成像器或传感器共享源自一个成像器或传感器视野的额外信息来进一步改进跨过非重叠视野的追踪关联。

[0143] 可使用对乘客意欲目的地的可能性预测的贝叶斯推论随时间组合单个乘客的通行列表，其中时间作为参数。这种系统可获取乘客 A 总是清早到楼层 N，通常在中午到楼层 C（自助餐厅）且总是在傍晚到车库。

[0144] 另外，可再次使用贝叶斯推论随时间组合多个乘客的通行列表，其中时间作为参数。这种系统利于在日常以及周末、假期等期间用于整个建筑的电梯用途的统计分布确定。这个消息可用于预先分配轿厢来运行（甚至是有意跳过楼层）用于有效停靠，调度轿厢等。

[0145] 给出通行列表的信息，通过用于实时解决最优化问题的技术来实现电梯最优化。通行列表信息还用于其它电梯相关应用（诸如电梯日常负载估计）来提供一个精确的能量报告用于将来的能量节约，基于反常通行列表信息的电梯系统诊断，现代价值主张等。

[0146] 参考图 26，在另一公开的非限制性实施方案中，过程 300 可进一步使用电梯传感器 284，以及来自各个安全传感器 280 的安全数据为乘客便利识别特定乘客，从而最优化电梯操作，改进操作和/或用于各种安全目的。过程 300 允许多个乘客同时进入轿厢而不混淆目的地。

[0147] 最初，例如当乘客接近电梯时可在起点大厅识别乘客（步骤 302）。电梯传感器 284 可同时操作，全域视域，多传感器识别，特定组合 2D 成像器，和 1D，2D 或 3D 深度传感器以及其替代物或组合，即 2D/3D。再者，来自各个成像器和深度传感器的数据被融合且通过控制系统 32 传递到电梯系统 20。举例来说，可通过乘客已知的事物（例如密码），乘客拥有的
事物（例如令牌或ID卡）和/或乘客类别（例如独特生物特征）来识别乘客。在一个生物特征实例中，面部识别相对便宜且具有良好发展。

接着，基于被识别人员登记用于预定义目的楼层的电话；步骤304）。期望楼层的确定可由人员事先录音或可由通行分析（诸如通过通行列表）自动获取。即使利用识别和追踪能力，在没有能够忽略异常值的统计分析下，即由于偶尔的非典型和电梯，无法自动辨别特定个体的图案。在一个实施例中，使用用于这种异常值忽略获取的稳健主要成分分析（RPCA）。在另一实施例中，可使用贝叶斯推论。

接着，特定电梯轿厢被分配给人员，且所述人员被引导到适当轿厢（步骤306）。各种分配可基于特定识别、普通用途等，使得特定乘客总是被引导到最近轿厢、最快轿厢到达他或她的目的地等。

如果人员乘坐错误轿厢或被导向错误轿厢，那么分配的轿厢可装有警报。警报可基于追踪乘客进入轿厢，然而警报不一定是要求离开，因为这种要求会造成消极的顾客体验。在一个实例中，警报可用来撤销先前轿厢中的乘客且登记新轿厢22中的意欲目的地楼层。电梯调度接着可实时重新最优化，包括重新引导乘客穿过空中大厅来提供期望的通过量和顾客体验。

接着，可追踪乘客从大厅进入轿厢，在中途期间，接着通过目的地大厅，如上文讨论。在一些情况下，当在轿厢内追踪乘客时，可识别不同目的地的选择。举例来说，当追踪乘客以与目的地一致时，人员已按下按钮来改变目的地的分析以及关于根据哪个按钮的来自轿厢控制器的时间相关信息可用于识别目的目的地的改变。一旦识别目的地的改变，由此就可实施通过最优化。

举例来说，如果乘客在不同于为该特定乘客登记的目的地错误地离开，那么过程300还可警告乘客（步骤308）。在一个实施例中，可期望在乘客实际上错误地离开之前就警告乘客。过程300由此可通过追踪分析推断乘客企图或开始朝向移动，例如朝向轿厢前部。顾客警报可通过听得见的声音信号完成。或者，为了安全目的，警报可安静地通知人员或系统追踪乘客。

本文公开和描绘的元件（包括附图中的流程图和方块图）意指元件之间的逻辑边界。然而，根据软件或硬件工程实践，描绘的元件及其功能可通过计算机执行在机器上执行，计算机执行介质具有能够执行存储在其上的程序指令的处理器，所述程序指令作为单片软件结构、作为独立软件模块或作为使用外部程序、代码、服务等的模块，或这些的任何组合，且全部这些执行方案可落入本公开的范围内。

应了解相对位置术语（诸如“向前”、“向后”、“上”、“下”、“上方”、“下方”、“底部”、“顶部”等）是参考常规操作姿势且不应被认为是以另外方式限制。

应了解贯穿本图中的相同参考数字对应或类似元件。还应了解虽然图示的实施例中公开了特定组件配置，但其它配置将受益于此。

虽然不同非限制性实施方案具有特定说明的组件，但本发明的实施方案不限于这些特定组合。可能使用来自任何非限制性实施方案的组件或特征中的一些与来自任何其它非限制性实施方案的特征或组件组合。

虽然示出、公开和要求了特定步骤顺序，但应理解步骤可以任何次序实施、分离或组合，除非另外指明，且仍将受益于本公开。
前述描述是示例性的而非定义性的。本文公开了各种非限制性实施方案，然而，本领域的一般技术人员将意识到根据上述教导，各种修改和变更将落入附属权利要求的范围内。因此，将了解在附属权利要求的范围内，可实行除了特定公开之外的公开内容。由于这个原因，应研读附属权利要求来确定真实范围和内容。
图 1
图 2

图 3
计算深度背景来分割前景对象；

通过3D形态操作移除隔离前景区域且分割移动对象用于进一步分析；

将移动对象变换为3D全局坐标来估计实际高度和体积

通过几何过渡从场景边界移除假移动对象。

乘客数据

电梯进度 门控制 登记 ...

图4
通过深度背景减法计算2D前景对象；

作为范围的函数对掩膜尺寸过滤；

连接掩膜区域；

基于深度间断性以3D分割对象。

图 5
图 9
图 10
视频帧捕获 → 前景对象分割 → 特殊负载检测 → 电梯控制系统

处理模块

分类器

电梯门控制

电梯进度系统
电梯呼叫

180

182

捕捉数据

184

将数据传递到
处理模块

186

从背景分离前景

188

确定特殊负载状况

190

分类特殊负载状况

192

将特殊负载状况
构建到楼层面积

194

图 13

图 14
在深度数据中识别移动对象

记录对象移动数据

比较场景几何和关于人员高度的统计数据

计算Z轴

计算X, Y轴

映射到全局坐标系统

图16
图 19
<table>
<thead>
<tr>
<th>ID</th>
<th>到达时间</th>
<th>起点楼层</th>
<th>离开时间</th>
<th>脱出电梯时间</th>
<th>电梯号</th>
<th>目的地</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>00:01:43</td>
<td>8</td>
<td>00:01:45</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>00:01:45</td>
<td>2</td>
<td>00:01:55</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>00:01:43</td>
<td>2</td>
<td>00:01:53</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>00:01:45</td>
<td>2</td>
<td>00:01:53</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>00:02:17</td>
<td>6</td>
<td>00:02:15</td>
<td>00:02:31</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

图20
追踪起点大厅中的每个乘客

追踪轿厢中的每个乘客

追踪目的地大厅中的每个乘客

图 21
图 22
图 23
图 24
通过图像数据和安全数据在特定乘客进入起点大厅之后识别该乘客

响应于识别特定乘客登记预定义目的地

为识别的人员分配特定电梯轿厢

如果识别的人员在错误目的地电梯，就发警报