wO 20107111096 A1 | |10 0000 OOV T OO OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ,fl"\\
f Do)

International Bureau

(43) International Publication Date
30 September 2010 (30.09.2010)

PCT

OO0 OO G A
(10) International Publication Number

WO 2010/111096 A1l

(51) International Patent Classification:
HO4N 7/12 (2006.01)

(74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,

Taylor & Zafman LLP, 1279 Oakmead Parkway, Sunny-
vale, CA 94085-4040 (US).

(21) International Application Number:
PCT/US2010/027716 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: . AO, AfT, AU, AZ BA, BB, BG, BII, BR, BW, BY, BZ
17 March 2010 (17.03.2010) CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
, TN, TIR, ITU, D, TL, IN, 1S, JP, KT, KG, KM, KN, KP,
(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/210,888 23 March 2009 (23.03.2009) us NO, NZ, OM, TE, I'G, PH, 'L, P'T, RO, RS, RU, SC, SD,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): ON- A \) o
LIVE, INC. [US/US]; 181 Lytton Avenue, Palo Alto, CA (84) Designated States (unless otherwise indicated, for every
94301 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(72) Inventors; and ZW), llurasian (AM, AZ, BY, KG, KZ, MDD, RU, TJ,
(75) Inventors/Applicants (for US only): PERLMAN, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
Stephen, G. [US/US]; 181 Lytton Avenue, Palo Alto, CA ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
94301 (US). VAN DER LAAN, Roger [NL/US]; 1310 MC, MK, MT, NL, NO, 'L, PT, RO, SE, SI, 8K, SM,
University Drive, Menlo Park, CA 94025 (US). COT- TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
TER, Timothy [US/US]; 181 Matadero Drive, Sunny- ML, MR, NE, SN, TD, TG).
vale, CA 94086 (US). FURMAN, Secott [US/US]; 123 Published:

Hedge Road, Menlo Park, CA 94025 (US). MCCOOL,

Robert [US/US]; 360 Sherwood Way, Menlo Park, CA —

94025 (US). BUCKLEY, Ian [US/US]; 73 Highland Av-
cnuc, San Carlos, CA 94070 (US).

with international search report (4rt. 21(3))

(54) Title: SYSTEM AND METHOD FOR COMPRESSING VIDEO FRAMES OR PORTIONS THEREOF BASED ON FEED-

BACK INFORMATION FROM A CLIENT DEVICE

Garne or
Aaplication
Dsvelopers

220

Cantent | [Tools ~ [Royally $

Subscription Fee §

User Praniises 211
Hame Cffice Client

Monitar or HOTV
222

Hesting Servica

Low-Latercy

e g
Intérnet Controller |
206 Actior 1 L}

'
1
r
|
|
1
'
'
'
'
|
i
T
1
1
1
|
|

PC or Mac

Mohile Device

FIG. 2a

(57) Abstract: A computer-implemented system and method are described for performing video compression. For example, a
method according to one embodiment comprises: encoding a plurality of video frames or portions thereot according to a first en-
coding format; transmitting the plurality of cncoded video framcs or portions to a client device; receiving feedback information
from the client device, the feedback information usable to determine whether data contained in the video frames or portions has
not been successtully received and/or decoded; in response to detecting that a video frame or portion thereot has not been success-
fully received and/or decoded, encoding a video frame or portion thereof according to a second encoding format; and transmitting
the video frames or portions thereof to the client device.

WO 2010/111096 PCT/US2010/027716

System and Method for Compressing Video Frames
or Portions Thereof Based on Feedback Information From a Client

Device

RELATED APPLICATION

[01] This application claims priority to U.S. Provisional Application
Serial No. 61/210,888, filed, March 23, 2009, entitled, “System And Method
For Compressing Video Using Feedback”, which is a continuation-in-part of
co-pending U.S. Application Serial No. 12/359,150, filed January 23, 2009,
entitled, “System And Method for Protecting Certain Types of Multimedia
Data Transmitted Over A Communication Channel”, and is a continuation of
co-pending U.S. Application Serial No. 11/999,475, filed December 5, 2007,
entitled, “Hosting And Broadcasting Virtual Events Using Streaming
Interactive Video” which is a continuation-in-part (CIP) application of Serial
No. 10/315,460 filed December 10, 2002 entitled, “APPARATUS AND METHOD
FOR WIRELESS VIDEO GAMING”, which is assigned to the assignee of the
present CIP application.

TECHNICAL FIELD
[02] The present disclosure relates generally to the field of data
processing systems that improve a users' ability to manipulate and access

audio and video media.

BACKGROUND

[03] Recorded audio and motion picture media has been an aspect
of society since the days of Thomas Edison. At the start of the 20" century
there was wide distribution of recorded audio media (cylinders and records)
and motion picture media (nickelodeons and movies), but both technologies
were still in their infancy. In the late 1920s motion pictures were combined
with audio on a mass-market basis, followed by color motion pictures with
audio. Radio broadcasting gradually evolved into a largely advertising-

1

WO 2010/111096 PCT/US2010/027716

supported form of broadcast mass-market audio media. When a television
(TV) broadcast standard was established in the mid-1940s, television joined
radio as a form of broadcast mass-market media bringing previously
recorded or live motion pictures into the home.

[04] By the middle of the 20th century, a large percentage of US
homes had phonograph record players for playing recorded audio media, a
radio to receive live broadcast audio, and a television set to play live
broadcast audio / video (A/V) media. Very often these 3 “media players”
(record player, radio and TV) were combined into one cabinet sharing
common speakers that became the “media center” for the home. Although
the media choices were limited to the consumer, the media “ecosystem” was
quite stable. Most consumers knew how to use the “media players” and
were able to enjoy the full extent of their capabilities. At the same time, the
publishers of the media (largely the motion picture and televisions studios,
and the music companies) were able to distribute their media both to
theaters and to the home without suffering from widespread piracy or
“second sales’, i.e., the resale of used media. Typically publishers do not
derive revenue from second sales, and as such, it reduces revenue that
publishers might otherwise derive from the buyer of used media for new
sales. Although there certainly were used records sold during the middle of
the 20™ century, such sales did not have a large impact on record publishers
because, unlike a motion picture or video program -- which is typically
watched once or only a few times by an adult -- a music track may be
listened to hundreds or even thousands of times. So, music media is far less
“perishable” (i.e., it has lasting value to an adult consumer) than motion
picture/video media. Once a record was purchased, if the consumer liked
the music, the consumer was likely to keep it a long time.

[05] From the middle of the 20" century through the present day,
the media ecosystem has undergone a series of radical changes, both to the
benefit and the detriment of consumers and publishers. With the widespread

2

WO 2010/111096 PCT/US2010/027716

introduction of audio recorders, especially cassette tapes with high-quality
stereo sound, there certainly was a higher degree of consumer
convenience. But it also marked the beginning of what is now a widespread
practice with consumer media: piracy. Certainly, many consumers used the
cassette tapes for taping their own records purely for convenience, but
increasingly consumers (e.g., students in a dormitory with ready access to
each others’ record collections) would make pirated copies. Also,
consumers would tape music played over the radio rather than buying a
record or tape from the publisher.

[06] The advent of the consumer VCR led to even more consumer
convenience, since now a VCR could be set to record a TV show which
could be watched at a later time, and it also led to the creation of the video
rental business, where movies as well as TV programming could be
accessed on an “on demand” basis. The rapid development of mass-market
home media devices since the mid-1980s has led to an unprecedented level
of choice and convenience for the consumer, and also has led to a rapid
expansion of the media publishing market.

[07] Today, consumers are faced with a plethora of media choices
as well as a plethora of media devices, many of which are tied to particular
forms of media or particular publishers. An avid consumer of media may
have a stack of devices connected to TVs and computers in various rooms
of the house, resulting in a “rat's nest” of cables to one or more TV sets
and/or personal computers (PCs) as well as a group of remote controls. (In
the context of the present application, the term “personal computer” or “PC”
refers to any sort of computer suitable for us in the home or office, including
a desktop, a Macintosh® or other non-Windows computers, Windows-
compatible devices, Unix variations, laptops, etc.) These devices may
include a video game console, VCR, DVD player, audio surround-sound
processor/amplifier, satellite set-top box, cable TV set-top box, etc. And, for

an avid consumer, there may be multiple similar-function devices because of

3

WO 2010/111096 PCT/US2010/027716

compatibility issues. For example, a consumer may own both a HD-DVD
and a Blu-ray DVD player, or both a Microsoft Xbox® and a Sony
Playstation® video game system. Indeed, because of incompatibility of
some games across versions of game consoles, the consumer may own
both an XBox and a later version, such as an Xbox 360®. Frequently,
consumers are befuddled as to which video input and which remote to use.
Even after a disc is placed into the correct player (e.g., DVD, HD-DVD, Blu-
ray, Xbox or Playstation), the video and audio input is selected for that the
device, and the correct remote control is found, the consumer is still faced
with technical challenges. For example, in the case of a wide-screen DVD,
the user may need to first determine and then set the correct aspect ratio
on his TV or monitor screen (e.qg., 4:3, Full, Zoom, Wide Zoom, Cinema
Wide, etc.). Similarly, the user may need to first determine and then set the
correct audio surround sound system format (e.g., AC-3, Dolby Digital, DTS,
etc.). Often times, the consumer is unaware that they may not be enjoying
the media content to the full capability of their television or audio system
(e.g., watching a movie squashed at the wrong aspect ratio, or listening to
audio in stereo rather than in surround sound).

[08] Increasingly, Internet-based media devices have been added
to the stack of devices. Audio devices like the Sonos® Digital Music system
stream audio directly from the Internet. Likewise, devices like the Slingbox™
entertainment player record video and stream it through a home network or
out through the Internet where it can be watched remotely on a PC. And
Internet Protocol Television (IPTV) services offer cable TV-like services
through Digital Subscriber Line (DSL) or other home Internet connections.
There have also been recent efforts to integrate multiple media functions
into a single device, such as the Moxi® Media Center and PCs running
Windows XP Media Center Edition. While each of these devices offers an
element of convenience for the functions that it performs, each lacks
ubiquitous and simple access to most media. Further, such devices

4

WO 2010/111096 PCT/US2010/027716

frequently cost hundreds of dollars to manufacture, often because of the
need for expensive processing and/or local storage. Additionally, these
modern consumer electronic devices typically consume a great deal of
power, even while idle, which means they are expensive over time and
wasteful of energy resources. For example, a device may continue to
operate if the consumer neglects to turn it off or switches to a different video
input. And, because none of the devices is a complete solution, it must be
integrated with the other stack of devices in the home, which still leaves the
user with a rat’s nest of wires and a sea of remote controls.

[09] Furthermore, when many newer Internet-based devices do
work properly, they typically offer media in a more generic form than it might
otherwise be available. For example, devices that stream video through the
Internet often stream just the video material, not the interactive “extras” that
often accompany DVDs, like the “making of” videos, games, or director’s
commentary. This is due to the fact that frequently the interactive material is
produced in a particular format intended for a particular device that handles
interactivity locally. For example, each of DVD, HD-DVDs and Blu-ray discs
have their own particular interactive format. Any home media device or local
computer that might be developed to support all of the popular formats
would require a level of sophistication and flexibility that would likely make it
prohibitively expensive and complex for the consumer to operate.

[0010] Adding to the problem, if a new format were introduced later in
the future the local device may not have the hardware capability to support
the new format, which would mean that the consumer would have to
purchase an upgraded local media device. For example, if higher-resolution
video or stereoscopic video (e.g., one video stream for each eye) were
introduced at a later date, the local device may not have the computational
capability to decode the video, or it may not have the hardware to output the
video in the new format (e.g., assuming stereoscopy is achieved through
120fps video synchronized with shuttered glasses, with 60fps delivered to

5

WO 2010/111096 PCT/US2010/027716

each eye, if the consumer’s video hardware can only support 60fps video,
this option would be unavailable absent an upgraded hardware purchase).
[0011] The issue of media device obsolescence and complexity is a
serious problem when it comes to sophisticated interactive media, especially
video games.

[0012] Modern video game applications are largely divided into four
major non-portable hardware platforms: Sony PlayStation® 1, 2 and 3 (PS1,
PS2, and PS3); Microsoft Xbox® and Xbox 360®; and Nintendo
Gamecube® and Wii™; and PC-based games. Each of these platforms is
different than the others so that games written to run on one platform usually
do not run on another platform. There may also be compatibility problems
from one generation of device to the next. Even though the majority of
software game developers create software games that are designed
independent of a particular platform, in order to run a particular game on a
specific platform a proprietary layer of software (frequently called a "game
development engine") is needed to adapt the game for use on a specific
platform. Each platform is sold to the consumer as a “console” (i.e., a
standalone box attached to a TV or monitor/speakers) or it is a PC itself.
Typically, the video games are sold on optical media such as a Blu-ray DVD,
DVD-ROM or CD-ROM, which contains the video game embodied as a
sophisticated real-time software application. As home broadband speeds
have increased, video games are becoming increasingly available for
download.

[0013] The specificity requirements to achieve platform-compatibility
with video game software is extremely exacting due to the real-time nature
and high computational requirements of advanced video games. For
example, one might expect full game compatibility from one generation to
the next of video games (e.g., from XBox to XBox 360, or from Playstation 2
(“PS2”) to Playstation 3 (“PS3"), just as there is general compatibility of
productivity applications (e.g., Microsoft Word) from one PC to another with

6

WO 2010/111096 PCT/US2010/027716

a faster processing unit or core. However, this is not the case with video
games. Because the video game manufacturers typically are seeking the
highest possible performance for a given price point when a video game
generation is released, dramatic architectural changes to the system are
frequently made such that many games written for the prior generation
system do not work on the later generation system. For example, XBox was
based upon the x86-family of processors, whereas XBox 360 was based
upon a PowerPC-family.

[0014] Techniques can be utilized to emulate a prior architecture, but
given that video games are real-time applications, it is often unfeasible to
achieve the exact same behavior in an emulation. This is a detriment to the
consumer, the video game console manufacturer and the video game
software publisher. For the consumer, it means the necessity of keeping
both an old and new generation of video game consoles hooked up to the
TV to be able to play all games. For the console manufacturer it means cost
associated with emulation and slower adoption of new consoles. And for the
publisher it means that multiple versions of new games may have to be
released in order to reach all potential consumers -- not only releasing a
version for each brand of video game (e.g., XBox, Playstation), but often a
version for each version of a given brand (e.g., PS2 and PS3). For example,
a separate version of Electronic Arts’ “Madden NFL 08” was developed for
XBox, XBox 360, PS2, PS3, Gamecube, Wii, and PC, among other
platforms.

[0015] Portable devices, such as cellular (“cell”) phones and portable
media players also present challenges to game developers. Increasingly
such devices are connected to wireless data networks and are able to
download video games. But, there are a wide variety of cell phones and
media devices in the market, with a wide range of different display
resolutions and computing capabilities. Also, because such devices typically
have power consumption, cost and weight constraints, they typically lack

7

WO 2010/111096 PCT/US2010/027716

advanced graphics acceleration hardware like a Graphics Processing Unit
(“GPU"), such as devices made by NVIDIA of Santa Clara, CA.
Consequently, game software developers typically develop a given game
title simultaneously for many different types of portable devices. A user may
find that a given game title is not available for his particular cell phone or
portable media player.

[0016] In the case of home game consoles, hardware platform
manufacturers typically charge a royalty to the software game developers for
the ability to publish a game on their platform. Cell phone wireless carriers
also typically charge a royalty to the game publisher to download a game
into the cell phone. In the case of PC games, there is no royalty paid to
publish games, but game developers typically face high costs due to the
higher customer service burden to support the wide range of PC
configurations and installation issues that may arise. Also, PCs typically
present less barriers to the piracy of game software since they are readily
reprogrammable by a technically-knowledgeable user and games can be
more easily pirated and more easily distributed (e.g., through the Internet).
Thus, for a software game developer, there are costs and disadvantages in
publishing on game consoles, cell phones and PCs.

[0017] For game publishers of console and PC software, costs do not
end there. To distribute games through retail channels, publishers charge a
wholesale price below the selling price for the retailer to have a profit
margin. The publisher also typically has to pay the cost of manufacturing
and distributing the physical media holding the game. The publisher is also
frequently charged a “price protection fee” by the retailer to cover possible
contingencies such as where the game does not sell, or if the game’s price
is reduced, or if the retailer must refund part or all of the wholesale price
and/or take the game back from a buyer. Additionally, retailers also typically
charge fees to publishers to help market the games in advertising flyers.
Furthermore, retailers are increasingly buying back games from users who

8

WO 2010/111096 PCT/US2010/027716

have finished playing them, and then sell them as used games, typically
sharing none of the used game revenue with the game publisher. Adding to
the cost burden placed upon game publishers is the fact that games are
often pirated and distributed through the Internet for users to download and
make free copies.

[0018] As Internet broadband speeds have been increasing and
broadband connectivity has become more widespread in the US and
worldwide, particularly to the home and to Internet “cafes” where Internet-
connected PCs are rented, games are increasingly being distributed via
downloads to PCs or consoles. Also, broadband connections are
increasingly used for playing multiplayer and massively multiplayer online
games (both of which are referred to in the present disclosure by the
acronym “MMOG”). These changes mitigate some of the costs and issues
associated with retail distribution. Downloading online games addresses
some of the disadvantages to game publishers in that distribution costs
typically are less and there are little or no costs from unsold media. But
downloaded games are still subject to piracy, and because of their size
(often many gigabytes in size) they can take a very long time to download.
In addition, multiple games can fill up small disk drives, such as those sold
with portable computers or with video game consoles. However, to the
extent games or MMOGs require an online connection for the game to be
playable, the piracy problem is mitigated since the user is usually required to
have a valid user account. Unlike linear media (e.g., video and music) which
can be copied by a camera shooting video of the display screen or a
microphone recording audio from the speakers, each video game
experience is unique, and can not be copied using simple video/audio
recording. Thus, even in regions where copyright laws are not strongly
enforced and piracy is rampant, MMOGs can be shielded from piracy and
therefore a business can be supported. For example, Vivendi SA’s “World of
Warcraft” MMOG has been successfully deployed without suffering from

9

WO 2010/111096 PCT/US2010/027716

piracy throughout the world. And many online or MMOG games, such as
Linden Lab’s “Second Life” MMOG generate revenue for the games’
operators through economic models built into the games where assets can
be bought, sold, and even created using online tools. Thus, mechanisms in
addition to conventional game software purchases or subscriptions can be
used to pay for the use of online games.

[0019] While piracy can be often mitigated due to the nature of online
or MMOGs, online game operator still face remaining challenges. Many
games require substantial local (i.e., in-home) processing resources for
online or MMOGs to work properly. If a user has a low performance local
computer (e.g., one without a GPU, such as a low-end laptop), he may not
be able to play the game. Additionally, as game consoles age, they fall
further behind the state-of-the-art and may not be able to handle more
advanced games. Even assuming the user’s local PC is able to handle the
computational requirements of a game, there are often installation
complexities. There may be driver incompatibilities (e.g., if a new game is
downloaded, it may install a new version of a graphics driver that renders a
previously-installed game, reliant upon an old version of the graphics driver,
inoperable). A console may run out of local disk space as more games are
downloaded. Complex games typically receive downloaded patches over
time from the game developer as bugs are found and fixed, or if
modifications are made to the game (e.g., if the game developer finds that a
level of the game is too hard or too easy to play). These patches require
new downloads. But sometimes not all users complete downloading of all
the patches. Other times, the downloaded patches introduce other
compatibility or disk space consumption issues.

[0020] Also, during game play, large data downloads may be required
to provide graphics or behavioral information to the local PC or console. For
example, if the user enters a room in a MMOG and encounters a scene or a
character made up of graphics data or with behaviors that are not available

10

WO 2010/111096 PCT/US2010/027716

on the user’s local machine, then that scene or character’s data must be
downloaded. This may result in a substantial delay during game play if the
Internet connection is not fast enough. And, if the encountered scene or
character requires storage space or computational capability beyond that of
the local PC or console, it can create a situation where the user can not
proceed in the game, or must continue with reduced-quality graphics. Thus,
online or MMOG games often limit their storage and/or computational
complexity requirements. Additionally, they often limit the amount of data
transfers during the game. Online or MMOG games may also narrow the
market of users that can play the games.

[0021] Furthermore, technically-knowledgeable users are increasingly
reverse-engineering local copies of games and modifying the games so that
they can cheat. The cheats maybe as simple as making a button press
repeat faster than is humanly possible (e.g., so0 as to shoot a gun very
rapidly). In games that support in-game asset transactions the cheating can
reach a level of sophistication that results in fraudulent transactions
involving assets of actual economic value. When an online or MMOGs
economic model is based on such asset transactions, this can result in
substantial detrimental consequences to the game operators.

[0022] The cost of developing a new game has grown as PCs and
consoles are able to produce increasingly sophisticated games (e.g., with
more realistic graphics, such as real-time ray-tracing, and more realistic
behaviors, such as real-time physics simulation). In the early days of the
video game industry, video game development was a very similar process to
application software development; that is, most of the development cost was
in the development of the software, as opposed to the development of the
graphical, audio, and behavioral elements or “assets”, such as those that
may be developed for a motion picture with extensive special effects. Today,
many sophisticated video game development efforts more closely resemble
special effects-rich motion picture development than software development.

11

WO 2010/111096 PCT/US2010/027716

For instance, many video games provide simulations of 3-D worlds, and
generate increasingly photorealistic (i.e., computer graphics that seem as
realistic as live action imagery shot photographically) characters, props, and
environments. One of the most challenging aspects of photorealistic game
development is creating a computer-generated human face that is
indistinguishable from a live action human face. Facial capture technologies
such Contour™ Reality Capture developed by Mova of San Francisco, CA
captures and tracks the precise geometry of a performer’s face at high
resolution while it is in motion. This technology allows a 3D face to be
rendered on a PC or game console that is virtually indistinguishable from a
captured live action face. Capturing and rendering a “photoreal” human face
precisely is useful in several respects. First, highly recognizable celebrities
or athletes are often used in video games (often hired at a high cost), and
imperfections may be apparent to the user, making the viewing experience
distracting or unpleasant. Frequently, a high degree of detail is required to
achieve a high degree of photorealism -- requiring the rendering of a large
number of polygons and high-resolution textures, potentially with the
polygons and/or textures changing on a frame-by-frame basis as the face
moves.

[0023] When high polygon-count scenes with detailed textures
change rapidly, the PC or game console supporting the game may not have
sufficient RAM to store enough polygon and texture data for the required
number of animation frames generated in the game segment. Further, the
single optical drive or single disk drive typically available on a PC or game
console is usually much slower than the RAM, and typically can not keep up
with the maximum data rate that the GPU can accept in rendering polygons
and textures. Current games typically load most of the polygons and
textures into RAM, which means that a given scene is largely limited in
complexity and duration by the capacity of the RAM. In the case of facial

animation, for example, this may limit a PC or a game console to either a

12

WO 2010/111096 PCT/US2010/027716

low resolution face that is not photoreal, or to a photoreal face that can only
be animated for a limited number of frames, before the game pauses, and
loads polygons and textures (and other data) for more frames.

[0024] Watching a progress bar move slowly across the screen as a
PC or console displays a message similar to “Loading...” is accepted as an
inherent drawback by today’s users of complex video games. The delay
while the next scene loads from the disk (“disk” herein, unless otherwise
qualified, refers to non-volatile optical or magnetic media, as well non-disk
media such as semiconductor “Flash” memory) can take several seconds or
even several minutes. This is a waste of time and can be quite frustrating to
a game player. As previously discussed, much or all of the delay may be
due to the load time for polygon, textures or other data from a disk, but it
also may be the case that part of the load time is spent while the processor
and/or GPU in the PC or console prepares data for the scene. For example,
a soccer video game may allow the players to choose among a large
number of players, teams, stadiums and weather conditions. So, depending
on what particular combination is chosen, different polygons, textures and
other data (collectively “objects”) may be required for the scene (e.g.,
different teams have different colors and patterns on their uniforms). It may
be possible to enumerate many or all of the various permutations and pre-
compute many or all of the objects in advance and store the objects on the
disk used to store the game. But, if the number of permutations is large, the
amount of storage required for all of the objects may be too large to fit on
the disk (or too impractical to download). Thus, existing PC and console
systems are typically constrained in both the complexity and play duration of
given scenes and suffer from long load times for complex scenes.

[0025] Another significant limitation with prior art video game systems
and application software systems is that they are increasingly using large
databases, e.g., of 3D objects such as polygons and textures, that need to
be loaded into the PC or game console for processing. As discussed above,

13

WO 2010/111096 PCT/US2010/027716

such databases can take a long time to load when stored locally on a disk.
Load time, however, is usually far more severe if the database is stored a
remote location and is accessed through the Internet. In such a situation it
may take minutes, hours, or even days to download a large database.
Further, such databases are often created a great expense (e.9., a 3D
model of a detailed tall-masted sailing ship for use in a game, movie, or
historical documentary) and are intended for sale to the local end-user.
However, the database is at risk of being pirated once it has been
downloaded to the local user. In many cases, a user wants to download a
database simply for the sake of evaluating it to see if it suits the user’s
needs (e.g., if a 3D costume for a game character has a satisfactory
appearance or look when the user performs a particular move). A long load
time can be a deterrent for the user evaluating the 3D database before
deciding to make a purchase.

[0026] Similar issues occur in MMOGs, particularly as games that
allow users to utilize increasingly customized characters. For a PC or game
console to display a character it needs to have access to the database of 3D
geometry (polygons, textures, etc.) as well as behaviors (e.g., if the
character has a shield, whether the shield is strong enough to deflect a
spear or not) for that character. Typically, when a MMOG is first played by a
user, a large number of databases for characters are already available with
the initial copy of the game, which is available locally on the game’s optical
disk or downloaded to a disk. But, as the game progresses, if the user
encounters a character or object whose database is not available locally
(e.g., if another user has created a customized character), before that
character or object can be displayed, its database must be downloaded.
This can result in a substantial delay of the game.

[0027] Given the sophistication and complexity of video games,
another challenge for video game developers and publishers with prior art
video game consoles, is that it frequently takes 2 to 3 years to develop a

14

WO 2010/111096 PCT/US2010/027716

video game at a cost of tens of millions of dollars. Given that new video
game console platforms are introduced at a rate of roughly once every five
years, game developers need to start development work on those games
years in advance of the release of the new game console in order to have
video games available concurrently when the new platform is released.
Several consoles from competing manufactures are sometimes released
around the same time (e.g., within a year or two of each other), but what
remains to be seen is the popularity of each console, e.g., which console will
produce the largest video game software sales. For example, in a recent
console cycle, the Microsoft XBox 360, the Sony Playstation 3, and the
Nintendo Wii were scheduled to be introduced around the same general
timeframe. But years before the introductions the game developers
essentially had to “place their bets” on which console platforms would be
more successful than others, and devote their development resources
accordingly. Motion picture production companies also have to apportion
their limited production resources based on what they estimate to be the
likely success of a movie well in advance of the release of the movie. Given
the growing level of investment required for video games, game production
is increasingly becoming like motion picture production, and game
production companies routinely devote their production resources based on
their estimate of the future success of a particular video game. But, unlike
they motion picture companies, this bet is not simply based on the success
of the production itself; rather, it is predicated on the success of the game
console the game is intended to run on. Releasing the game on multiple
consoles at once may mitigate the risk, but this additional effort increases
cost, and frequently delays the actual release of the game.

[0028] Application software and user environments on PCs are
becoming more computationally intensive, dynamic and interactive, not only
to make them more visually appealing to users, but also to make them more

useful and intuitive. For example, both the new Windows Vista™ operating

15

WO 2010/111096 PCT/US2010/027716

system and successive versions of the Macintosh® operating system
incorporate visual animation effects. Advanced graphics tools such as
Maya™ from Autodesk, Inc., provide very sophisticated 3D rendering and
animation capability which push the limits of state-of-the-art CPUs and
GPUs. However, the computational requirements of these new tools create
a number of practical issues for users and software developers of such
products.

[0029] Since the visual display of an operating system (OS) must
work on a wide range of classes of computers -- including prior-generation
computers no longer sold, but still upgradeable with the new OS — the OS
graphical requirements are limited to a large degree by a least common
denominator of computers that the OS is targeted for, which typically
includes computers that do not include a GPU. This severely limits the
graphics capability of the OS. Furthermore, battery-powered portable
computers (e.g., laptops) limit the visual display capability since high
computational activity in a CPU or GPU typically results in higher power
consumption and shorter battery life. Portable computers typically include
software that automatically lowers processor activity to reduce power
consumption when the processor is not utilized. In some computer models
the user may lower processor activity manually. For example, Sony’s VGN-
SZ280P laptop contains a switch labeled “Stamina” on one side (for low
performance, more battery life) and “Speed” on the other (for high
performance, less battery life). An OS running on a portable computer must
be able to function usably even in the event the computer is running at a
fraction of its peak performance capability. Thus, OS graphics performance
often remains far below the state-of-the-art available computational
capability.

[0030] High-end computationally-intense applications like Maya are
frequently sold with the expectation that they will be used on high-
performance PCs. This typically establishes a much higher performance,

16

WO 2010/111096 PCT/US2010/027716

and more expensive and less portable, least common denominator
requirement. As a consequence, such applications have a much more
limited target audience than a general purpose OS (or general purpose
productivity application, like Microsoft Office) and typically sell in much lower
volume than general purpose OS software or general purpose application
software. The potential audience is further limited because often times it is
difficult for a prospective user to try out such computationally-intense
applications in advance. For example, suppose a student wants to learn how
to use Maya or a potential buyer already knowledgeable about such
applications wants to try out Maya before making the investment in the
purchase (which may well involve also buying a high-end computer capable
of running Maya). While either the student or the potential buyer could
download, or get a physical media copy of, a demo version of Maya, if they
lack a computer capable of running Maya to its full potential (e.g., handling a
complex 3D scene), then they will be unable to make an fully-informed
assessment of the product. This substantially limits the audience for such
high-end applications. It also contributes to a high selling price since the
development cost is usually amortized across a much smaller number of
purchases than those of a general-purpose application.

[0031] High-priced applications also create more incentive for
individuals and businesses to use pirated copies of the application software.
As a result, high-end application software suffers from rampant piracy,
despite significant efforts by publishers of such software to mitigate such
piracy through various techniques. Still, even when using pirated high-end
applications, users cannot obviate the need to invest in expensive state-of-
the-art PCs to run the pirated copies. So, while they may obtain use of a
software application for a fraction of its actual retail price, users of pirated
software are still required to purchase or obtain an expensive PC in order to

fully utilize the application.

17

WO 2010/111096 PCT/US2010/027716

[0032] The same is true for users of high-performance pirated video
games. Although pirates may get the games at fraction of their actual price,
they are still required to purchase expensive computing hardware (e.g., a
GPU-enhanced PC, or a high-end video game console like the XBox 360)
needed to properly play the game. Given that video games are typically a
pastime for consumers, the additional cost for a high-end video game
system can be prohibitive. This situation is worse in countries (e.g., China)
where the average annual income of workers currently is quite low relative
to that of the United States. As a result, a much smaller percentage of the
population owns a high-end video game system or a high-end PC. In such
countries, “Internet cafes”, in which users pay a fee to use a computer
connected to the Internet, are quite common. Frequently, such Internet
cafes have older model or low-end PCs without high performance features,
such as a GPU, which might otherwise enable players to play
computationally-intensive video games. This is a key factor in the success of
games that run on low-end PCs, such as Vivendi’'s “World of Warcraft” which
is highly successful in China, and is commonly played in Internet cafes
there. In contrast, a computationally-intensive game, like “Second Life” is
much less likely to be playable on a PC installed in a Chinese Internet café.
Such games are virtually inaccessible to users who only have access to low-
performance PCs in Internet cafes.

[0033] Barriers also exist for users who are considering purchasing a
video game and would first like to try out a demonstration version of the
game by downloading the demo through the Internet to their home. A video
game demo is often a full-fledged version of the game with some features
disabled, or with limits placed on the amount of game play. This may involve
a long process (perhaps hours) of downloading gigabytes of data before the
game can be installed and executed on either a PC or a console. In the case
of a PC, it may also involve figuring out what special drivers are needed
(e.g., DirectX or OpenGL drivers) for the game, downloading the correct

18

WO 2010/111096 PCT/US2010/027716

version, installing them, and then determining whether the PC is capable of
playing the game. This latter step may involve determining whether the PC
has enough processing (CPU and GPU) capability, sufficient RAM, and a
compatible OS (e.g., some games run on Windows XP, but not Vista). Thus,
after a long process of attempting to run a video game demo, the user may
well find out that the video game demo can't be possibly played, given the
user's PC configuration. Worse, once the user has downloaded new drivers
in order to try the demo, these driver versions may be incompatible with
other games or applications the user uses regularly on the PC, thus the
installation of a demo may render previously operable games or applications
inoperable. Not only are these barriers frustrating for the user, but they
create barriers for video game software publishers and video game
developers to market their games.

[0034] Another problem that results in economic inefficiency has to do
with the fact that given PC or game console is usually designed to
accommodate a certain level of performance requirement for applications
and/or games. For example, some PCs have more or less RAM, slower or
faster CPUs, and slower or faster GPUs, if they have a GPUs at all. Some
games or applications make take advantage of the full computing power of a
given PC or console, while many games or applications do not. If a user’s
choice of game or application falls short of the peak performance
capabilities of the local PC or console, then the user may have wasted
money on the PC or console for unutilized features. In the case of a console,
the console manufacturer may have paid more than was necessary o
subsidize the console cost.

[0035] Another problem that exists in the marketing and enjoyment of
video games involves allowing a user to watch others playing games before
the user commits to the purchase of that game. Several prior art approaches
exist for the recording of video games for replay at a later time. For example,
U.S. Patent No. 5,558,339 teaches recording game state information,

19

WO 2010/111096 PCT/US2010/027716

including game controller actions, during “gameplay” in the video game
client computer (owned by the same or different user). This state information
can be used at a later time to replay some or all of the game action on a
video game client computer (e.g., PC or console). A significant drawback to
this approach is that for a user to view the recorded game, the user must
possess a video game client computer capable of playing the game and
must have the video game application running on that computer, such that
the gameplay is identical when the recorded game state is replayed. Beyond
that, the video game application has to be written in such a way that there is
no possible execution difference between the recorded game and the played
back game.

[0036] For example, game graphics are generally computed on a
frame-by-frame basis. For many games, the game logic sometimes may
take shorter or longer than one frame time to compute the graphics
displayed for the next frame, depending on whether the scene is particularly
complex, or if there are other delays that slow down execution (e.g., on a
PC, another process may be running that takes away CPU cycles from the
game applications). In such a game, a “threshold” frame that is computed in
slightly less than one frame time (say a few CPU clock cycles less) can
eventually occur. When that same scene is computed again using the exact
same game state information, it could easily take a few CPU clock cycles
more than one frame time (e.g., if an internal CPU bus is slightly out of
phase with the an external DRAM bus and it introduces a few CPU cycle
times of delay, even if there is no large delay from another process taking
away milliseconds of CPU time from game processing). Therefore, when the
game is played back the frame gets calculated in two frame times rather
than a single frame time. Some behaviors are based on how often the game
calculates a new frame (e.g., when the game samples the input from the
game controllers). While the game is played, this discrepancy in the time
reference for different behaviors does not impact game play, but it can result

20

WO 2010/111096 PCT/US2010/027716

in the played-back game producing a different result. For example, if a
basketball’s ballistics are calculated at a steady 60 fps rate, but the game
controller input is sampled based on rate of computed frames, the rate of
computed frames may be 53 fps when the game was recorded, but 52 fps
when the game is replayed, which can make the difference between
whether the basketball is blocked from going into the basket or not, resulting
in a different outcome. Thus, using game state to record video games
requires very careful game software design to ensure that the replay, using
the same game state information, produces the exact same outcome.
[0037] Another prior art approach for recording video game is to
simply record the video output of a PC or video game system (e.g., to a
VCR, DVD recorder, or to a video capture board on a PC). The video then
can be rewound and replayed, or alternatively, the recorded video uploaded
to the Internet, typically after being compressed. A disadvantage to this
approach is that when a 3D game sequence is played back, the user is
limited to viewing the sequence from only the point of view from which the
sequence was recorded. In other words, the user cannot change the point of
view of the scene.

[0038] Further, when compressed video of a recorded game
sequence played on a home PC or game console is made available to other
users through the Internet, even if the video is compressed in real-time, it
may be impossible to upload the compressed video in real-time to the
Internet. The reason why is because many homes in the world that are
connected to the Internet have highly asymmetric broadband connections
(e.g., DSL and cable modems typically have far higher downstream
bandwidth than upstream bandwidth). Compressed high resolution video
sequences often have higher bandwidths than the upstream bandwidth
capacity of the network, making them impossible to upload in real-time.
Thus, there would be a significant delay after the game sequence is played

(perhaps minutes or even hours) before another user on the Internet would

21

WO 2010/111096 PCT/US2010/027716

be able to view the game. Although this delay is tolerable in certain
situations (e.g., to watch a game player’s accomplishments that occurred at
a prior time), it eliminates the ability to watch a game live (e.g., a basketball
tournament, played by champion players) or with “instant replay” capability
as the game is played live.

[0039] Another prior art approach allows a viewer with a television
receiver to watch video games live, but only under the control of the
television production crew. Some television channels, in both the US and in
other countries provide video game viewing channels, where the television
viewing audience is able to watch certain video game users (e.g., top-rated
players playing in tournaments) on video game channels. This is
accomplished by having the video output of the video game systems (PCs
and/or consoles) fed into the video distribution and processing equipment for
the television channel. This is not unlike when the television channel is
broadcasting a live basketball game in which several cameras provide live
feeds from different angles around the basketball court. The television
channel then is able to make use of their video/audio processing and effects
equipment to manipulate the output from the various video game systems.
For example, the television channel can overlay text on top of the video from
a video game that indicates the status of different players (just as they might
overlay text during a live basketball game), and the television channel can
overdub audio from a commentator who can discuss the action occurring
during the games. Additionally, the video game output can be combined with
cameras recording video of the actual players of the games (e.g., showing
their emotional response to the game).

[0040] One problem with this approach is that such live video feeds
must be available to the television channel’s video distribution and
processing equipment in real-time in order for it to have the excitement of a
live broadcast. As previously discussed, however, this is often impossible
when the video game system is running from the home, especially if part of

22

WO 2010/111096 PCT/US2010/027716

the broadcast includes live video from a camera that is capturing real-world
video of the game player. Further, in a tournament situation, there is a
concern that an in-home gamer may modify the game and cheat, as
previously described. For these reasons, such video game broadcasts on
television channels are often arranged with players and video game systems
aggregated at a common location (e.g., at a television studio or in an arena)
where the television production equipment can accept video feeds from
multiple video game systems and potentially live cameras.

[0041] Although such prior art video game television channels can
provide a very exciting presentation to the television viewing audience that is
an experience akin to a live sporting event, e.g., with the video game players
presented as “athletes”, both in terms of their actions in the video game
world, and in terms of their actions in the real world, these video game
systems are often limited to situations where players are in close physical
proximity to one another. And, since television channels are broadcasted,
each broadcasted channel can only show one video stream, which is
selected by the television channel's production crew. Because of these
limitations and the high cost of broadcast time, production equipment and
production crews, such television channels typically only show top-rated
players playing in top tournaments.

[0042] Additionally, a given television channel broadcasting a full-
screen image of a video game to the entire television viewing audience
shows only one video game at a time. This severely limits a television
viewer’s choices. For example, a television viewer may not be interested in
the game(s) shown at a given time. Another viewer may only be interested

in watching the game play of a particular player that is not featured by the
television channel at a given time. In other cases, a viewer may only be
interested in watching a how an expert player handles a particular level in a
game. Still other viewers may wish to control the viewpoint that a video
game is seen from, which is different from that chosen by the production

23

WO 2010/111096 PCT/US2010/027716

team, etc. In short, a television viewer may have a myriad of preferences in
watching video games that are not accommodated by the particular
broadcast of a television network, even if several different television
channels are available. For all of the aforementioned reasons, prior art video
game television channels have significant limitations in presenting video
games to television viewers.

[0043] Another drawback of prior art video games systems and
application software systems is that they are complex, and commonly suffer
from errors, crashes and/or unintended and undesired behaviors
(collectively, “bugs”). Although games and applications typically go through
a debugging and tuning process (frequently called “Software Quality
Assurance” or SQA) before release, almost invariably once the game or
application is released to a wide audience in the field bugs crop up.
Unfortunately, it is difficult for the software developer to identify and track
down many of the bugs after release. It can be difficult for software
developers to become aware of bugs. Even when they learn about a bug,
there may only be a limited amount of information available to them to
identify what caused the bug. For example, a user may call up a game
developer’'s customer service line and leave a message stating that when
playing the game, the screen started to flash, then changed to a solid blue
color and the PC froze. That provides the SQA team with very little
information useful in tracking down a bug. Some games or applications that
are connected online can sometimes provide more information in certain
cases. For example, a “watchdog” process can sometimes be used to
monitor the game or application for “crashes”. The watchdog process can
gather statistics about the status of the game or applications process (e.g.,
the status of the stack, of the memory usage, how far the game or
applications has progressed, etc.) when it crashes and then upload that
information to the SQA team via the Internet. But in a complex game or
application, such information can take a very long time to decipher in order

24

WO 2010/111096 PCT/US2010/027716

to accurately determine what the user was doing at the time of the crash.
Even then, it may be impossible to determine what sequence of events led
to the crash.

[0044] Yet another problem associated with PCs and game consoles
is that they are subject to service issues which greatly inconvenience the
consumer. Service issues also impact the manufacturer of the PC or game
console since they typically are required to send a special box to safely ship
the broken PC or console, and then incur the cost of repair if the PC or
console is in warranty. The game or application software publisher can also
be impacted by the loss of sales (or online service use) by PCs and/or
consoles being in a state of repair.

[0045] Figure 1 illustrates a prior art video gaming system such as a
Sony Playstation® 3, Microsoft Xbox 360®, Nintendo Wii™, Windows-based
personal computer or Apple Macintosh. Each of these systems includes a
central processing unit (CPU) for executing program code, typically a
graphical processing unit (GPU) for performing advanced graphical
operations, and multiple forms of input/output (1/0) for communicating with
external devices and users. For simplicity, these components are shown
combined together as a single unit 100. The prior art video gaming system
of Figure 1 also is shown including an optical media drive 104 (e.g., a DVD-
ROM drive); a hard drive 103 for storing video game program code and
data; a network connection 105 for playing multi-player games, for
downloading games, patches, demos or other media; a random access
memory (RAM) 101 for storing program code currently being executed by
the CPU/GPU 100; a game controller 106 for receiving input commands
from the user during gameplay; and a display device 102 (e.g., a
SDTV/HDTV or a computer monitor).

[0046] The prior art system shown in Figure 1 suffers from several
limitations. First, optical drives 104 and hard drives 103 tend to have much
slower access speeds as compared to that of RAM 101. When working

25

WO 2010/111096 PCT/US2010/027716

directly through RAM 101, the CPU/GPU 100 can, in practice, process far
more polygons per second than is possible when the program code and
data is read directly off of hard drive 103 or optical drive 104 due to the fact
that RAM 101 generally has much higher bandwidth and does not suffer
from the relatively long seek delays of disc mechanisms. But only a limited
amount of RAM is provided in these prior art systems (e.g., 256-512Mbytes).
Therefore, a “Loading...” sequence in which RAM 101 is periodically filled
up with the data for the next scene of the video game is often required.
[0047] Some systems attempt to overlap the loading of the program
code concurrently with the gameplay, but this can only be done when there
is a known sequence of events (e.g., if a car is driving down a road, the
geometry for the approaching buildings on the roadside can be loaded while
the car is driving). For complex and/or rapid scene changes, this type of
overlapping usually does not work. For example, in the case where the user
is in the midst of a battle and RAM 101 is completely filled with data
representing the objects within view at that moment, if the user moves the
view rapidly to the left to view objects that are not presently loaded in RAM
101, a discontinuity in the action will result since there not be enough time to
load the new objects from Hard Drive 103 or Optical Media 104 into RAM
101.

[0048] Another problem with the system of Figure 1 arises due to
limitations in the storage capacity of hard drives 103 and optical media 104.
Although disk storage devices can be manufactured with a relatively large
storage capacity (e.g., 50 gigabytes or more), they still do not provide
enough storage capacity for certain scenarios encountered in current video
games. For example, as previously mentioned, a soccer video game might
allow the user to choose among dozens of teams, players and stadiums
throughout the world. For each team, each player and each stadium a large

number of texture maps and environment maps are needed to characterize

26

WO 2010/111096 PCT/US2010/027716

the 3D surfaces in the world (e.g., each team has a unique jersey, with each
requiring a unique texture map).

[0049] One technique used to address this latter problem is for the
game to pre-compute texture and environment maps once they are selected
by the user. This may involve a number of computationally-intensive
processes, including decompressing images, 3D mapping, shading,
organizing data structures, etc. As a result, there may be a delay for the
user while the video game is performing these calculations. On way to
reduce this delay, in principle, is to perform all of these computations —
including every permutation of team, player roster, and stadium — when the
game was originally developed. The released version of the game would
then include all of this pre-processed data stored on optical media 104, or
on one or more servers on the Internet with just the selected pre-processed
data for a given team, player roster, stadium selection downloaded through
the Internet to hard drive 103 when the user makes a selection. As a
practical matter, however, such pre-loaded data of every permutation
possible in game play could easily be terabytes of data, which is far in
excess of the capacity of today’s optical media devices. Furthermore, the
data for a given team, player roster, stadium selection could easily be
hundreds of megabytes of data or more. With a home network connection
of, say, 10Mbps, it would take longer to download this data through network
connection 105 than it would to compute the data locally.

[0050] Thus, the prior art game architecture shown in Figure 1
subjects the user to significant delays between major scene transitions of
complex games.

[0051] Another problem with prior art approaches such as that shown
in Figure 1 is that over the years video games tend to become more
advanced and require more CPU/GPU processing power. Thus, even
assuming an unlimited amount of RAM, video games hardware

requirements go beyond the peak level of processing power available in

27

WO 2010/111096 PCT/US2010/027716

these systems. As a result, users are required to upgrade gaming hardware
every few years to keep pace (or play newer games at lower quality levels).
One consequence of the trend to ever more advanced video games is that
video game playing machines for home use are typically economically
inefficient because their cost is usually determined by the requirements of
the highest performance game they can support. For example, an XBox 360
might be used to play a game like “Gears of War”, which demands a high
performance CPU, GPU, and hundreds of megabytes of RAM, or the XBox
360 might be used to play Pac Man, a game from the 1970s that requires
only kilobytes of RAM and a very low performance CPU. Indeed, an XBox
360 has enough computing power to host many simultaneous Pac Man
games at once.

[0052] Video games machines are typically turned off for most of the
hours of a week. According to a July 2006 Nielsen Entertainment study of
active gamers 13 years and older, on average, active gamers spend
fourteen hours/week playing console video games, or just 12% of the total
hours in a week. This means that the average video game console is idle
88% of the time, which is an inefficient use of an expensive resource. This is
particularly significant given that video game consoles are often subsidized
by the manufacturer to bring down the purchase price (with the expectation
that the subsidy will be earned back by royalties from future video game
software purchases).

[0053] Video game consoles also incur costs associated with almost
any consumer electronic device. For instance, the electronics and
mechanisms of the systems need to be housed in an enclosure. The
manufacturer needs to offer a service warranty. The retailer who sells the
system needs to collect a margin on either the sale of the system and/or on
the sale of video game software. All of these factors add to the cost of the
video game console, which must either be subsidized by the manufacturer,
passed along to the consumer, or both.

28

WO 2010/111096 PCT/US2010/027716

[0054] In addition, piracy is a major problem for the video game
industry. The security mechanisms utilized on virtually every major video
gaming system have been “cracked” over the years, resulting in
unauthorized copying of video games. For example, the Xbox 360 security
system was cracked in July 2006 and users are now able to download illegal
copies online. Games that are downloadable (e.g., games for the PC or the
Mac) are particularly vulnerable to piracy. In certain regions of the world
where piracy is weakly policed there is essentially no viable market for
standalone video game software because users can buy pirated copies as
readily as legal copies for a tiny fraction of the cost. Also, in many parts of
the world the cost of a game console is such a high percentage of income
that even if piracy were controlled, few people could afford a state-of-the-art
gaming system.

[0055] In addition, the used game market reduces revenue for the
video game industry. When a user has become tired of a game, they can
sell the game to a store which will resell the game to other users. This
unauthorized but common practice significantly reduces revenues of game
publishers. Similarly, a reduction in sales on the order of 50% commaonly
occurs when there is a platform transition every few years. This is because
users stop buying games for the older platforms when they know that the
newer version platform is about to be released (e.g., when Playstation 3 is
about to be released, users stop buying Playstation 2 games). Combined,
the loss of sales and increased development costs associated with the new
platforms can have a very significant adverse impact on the profitability of
game developers.

[0056] New game consoles are also very expensive. The Xbox 360,
the Nintendo Wii, and the Sony Playstation 3 all retail for hundreds of
dollars. High powered personal computer gaming systems can cost up to
$8000. This represents a significant investment for users, particularly

29

WO 2010/111096 PCT/US2010/027716

considering that the hardware becomes obsolete after a few years and the
fact that many systems are purchased for children.

[0057] One approach to the foregoing problems is online gaming in
which the gaming program code and data are hosted on a server and
delivered to client machines on-demand as compressed video and audio
streamed over a digital broadband network. Some companies such as G-
Cluster in Finland (now a subsidiary of Japan’s SOFTBANK Broadmedia)
currently provide these services online. Similar gaming services have
become available in local networks, such as those within hotels and offered
by DSL and cable television providers. A major drawback of these systems
is the problem of latency, i.e., the time it takes for a signal to travel to and
from the game server, which is typically located in an operator's “head-end”.
Fast action video games (also known as “twitch” video games) require very
low latency between the time the user performs an action with the game
controller and the time the display screen is updated showing the result of
the user action. Low latency is needed so that the user has the perception
that the game is responding “instantly”. Users may be satisfied with different
latency intervals depending on the type of game and the skill level of the
user. For example, 100ms of latency may be tolerable for a slow casual
game (like backgammon) or a slow-action role playing game, but in a fast
action game a latency in excess of 70 or 80ms may cause the user to
perform more poorly in the game, and thus is unacceptable. For instance, in
a game that requires fast reaction time there is a sharp decline in accuracy
as latency increases from 50 to 100ms.

[0058] When a game or application server is installed in a nearby,
controlled network environment, or one where the network path to the user
is predictable and/or can tolerate bandwidth peaks, it is far easier to control
latency, both in terms of maximum latency and in terms of the consistency of
the latency (e.g., so the user observes steady motion from digital video
streaming through the network). Such level of control can be achieved

30

WO 2010/111096 PCT/US2010/027716

between a cable TV network head-end to a cable TV subscriber's home, or
from a DSL central office to DSL subscriber's home, or in a commercial
office Local Area Network (LAN) environment from a server or a user. Also,
it is possible to obtain specially-graded point-to-point private connections
between businesses which have guaranteed bandwidth and latency. Butin a
game or application system that hosts games in a server center connected
to the general Internet and then streams compressed video to the user
through a broadband connection, latency is incurred from many factors,
resulting in severe limitations in the deployment of prior art systems.

[0059] In a typical broadband-connected home, a user may have a
DSL or cable modem for broadband service. Such broadband services
commonly incur as much as a 25ms round-trip latency (and at times more)
between the user's home and the general Internet. In addition, there are
round-trip latencies incurred from routing data through the Internet to a
server center. The latency through the Internet varies based on the route
that the data is given and the delays it incurs as it is routed. In addition to
routing delays, round-trip latency is also incurred due to the speed of light
traveling through the optical fiber that interconnects most of the Internet. For
example, for each 1000 miles, approximately 22ms is incurred in round-trip
latency due to the speed of light through the optical fiber and other
overhead.

[0060] Additional latency can occur due to the data rate of the data
streamed through the Internet. For example, if a user has DSL service that
is sold as “6Mbps DSL service”, in practice, the user will probably get less
than 5Mbps of downstream throughput at best, and will likely see the
connection degrade periodically due to various factors such as congestion
during peak load times at the Digital Subscriber Line Access Multiplexer
(DSLAM). A similar issue can occur reducing a the data rate of a cable
modem is used for a connection sold as “6Mbps cable modem service” to far
less than that, if there is congestion in the local shared coaxial cable looped

31

WO 2010/111096 PCT/US2010/027716

through the neighborhood, or elsewhere in the cable modem system
network. If data packets at a steady rate of 4Mbps are streamed as one-way
in User Datagram Protocol (UDP) format from a server center through such
connections, if everything is working well, the data packets will pass through
without incurring additional latency, but if there is congestion (or other
impediments) and only 3.5Mbps is available to stream data to the user, then
in a typical situation either packets will be dropped, resulting in lost data, or
packets will queue up at the point of congestion, until they can be sent,
thereby introducing additional latency. Different points of congestion have
different queuing capacity to hold delayed packets, so in some cases
packets that can’t make it through the congestion are dropped immediately.
In other cases, several megabits of data are queued up and eventually be
sent. But, in almost all cases, queues at points of congestion have capacity
limits, and once those limits are exceeded, the queues will overflow and
packets will be dropped. Thus, to avoid incurring additional latency (or
worse, loss of packets), it is necessary to avoid exceeding the data rate
capacity from the game or application server to the user.

[0061] Latency is also incurred by the time required to compress
video in the server and decompress video in the client device. Latency is
further incurred while a video game running on a server is calculating the
next frame to be displayed. Currently available video compression
algorithms suffer from either high data rates or high latency. For example,
motion JPEG is an intraframe-only lossy compression algorithm that is
characterized by low-latency. Each frame of video is compressed
independently of each other frame of video. When a client device receives a
frame of compressed motion JPEG video, it can immediately decompress
the frame and display it, resulting in very low latency. But because each
frame is compressed separately, the algorithm is unable to exploit
similarities between successive frames, and as a result intraframe-only

video compression algorithms suffer from very high data rates. For example,

32

WO 2010/111096 PCT/US2010/027716

60 fps (frames per second) 640x480 motion JPEG videc may require
40Mbps (megabits per second) or more of data. Such high data rates for
such low resolution video windows would be prohibitively expensive in many
broadband applications (and certainly for most consumer Internet-based
applications). Further, because each frame is compressed independently,
artifacts in the frames that may result from the lossy compression are likely
to appear in different places in successive frames. This can results in what
appears to the viewer as a moving visual artifacts when the video is
decompressed.

[0062] Other compression algorithms, such as MPEG2, H.264 or VC9
from Microsoft Corporation as they are used in prior art configurations, can
achieve high compression ratios, but at the cost of high latency. Such
algorithms utilize interframe as well as intraframe compression. Periodically,
such algorithms perform an intraframe-only compression of a frame. Such a
frame is known as a key frame (typically referred to as an “I” frame). Then,
these algorithms typically compare the | frame with both prior frames and
successive frames. Rather than compressing the prior frames and
successive frames independently, the algorithm determines what has
changed in the image from the | frame to the prior and successive frames,
and then stores those changes as what are called “B” frames for the
changes preceding the | frame and “P” frames for the changes following the
| frame. This results in much lower data rates than intraframe-only
compression. But, it typically comes at the cost of higher latency. An | frame
is typically much larger than a B or P frame (often 10 times larger), and as a
result, it takes proportionately longer to transmit at a given data rate.

[0063] Consider, for example, a situation where the | frames are 10X
the size of B and P frames, and there are 29 B frames + 30 P frames = 59
interframes for every single | intraframe, or 60 frames total for each “Group
of Frames” (GOP). So, at 60 fps, there is 1 60-frame GOP each second.
Suppose the transmission channel has a maximum data rate of 2Mbps. To

33

WO 2010/111096 PCT/US2010/027716

achieve the highest quality video in the channel, the compression algorithm
would produce a 2Mbps data stream, and given the above ratios, this would
result in 2 Megabits (Mb) / (59+10) = 30,394 bits per intraframe and 303,935
bits per | frame. When the compressed video stream is received by the
decompression algorithm, in order for the video to play steadily, each frame
needs to decompressed and displayed at a regular interval (e.g., 60 fps). To
achieve this result, if any frame is subject to transmission latency, all of the
frames need to be delayed by at least that latency, so the worst-case frame
latency will define the latency for every video frame. The | frames introduce
the longest transmission latencies since they are largest, and an entire |
frame would have to be received before the | frame could be decompressed
and displayed (or any interframe dependent on the | frame). Given that the
channel data rate is 2Mbps, it will take 303,935/2Mb = 145ms to transmit an
| frame.

[0064] An interframe video compression system as described above
using a large percentage of the bandwidth of the transmission channel will
be subject to long latencies due to the large size of an | frame relative to the
average size of a frame. Or, to put it another way, while prior art interframe
compression algorithms achieve a lower average per-frame data rate than
intraframe-only compression algorithms (e.g., 2Mbps vs. 40Mbps), they still
suffer from a high peak per-frame data rate (e.g., 303,935 * 60 = 18.2Mbps)
because of the large | frames. Bear in mind, though that the above analysis
assumes that the P and B frames are all much smaller than the | frames.
While this is generally true, it is not true for frames with high image
complexity uncorrelated with the prior frame, high motion, or scene changes.
In such situations, the P or B frames can become as large as | frames (if a P
or B frame gets larger than an | frame, a sophisticated compression
algorithm will typically “force” an | frame and replace the P or B frame with
an | frame). So, | frame-sized data rate peaks can occur at any moment in a

digital video stream. Thus, with compressed video, when the average video

34

WO 2010/111096 PCT/US2010/027716

data rate approaches data rate capacity of the transmission channels (as is
frequently the case, given the high data rate demands for video) the high
peak data rates from | frames or large P or B frames result in a high frame
latency.

[0065] Of course, the above discussion only characterizes the
compression algorithm latency created by large B, P or | frames in a GOP. If
B frames are used, the latency will be even higher. The reason why is
because before a B frame can be displayed, all of the B frames after the B
frame and the | frame must be received. Thus, in a group of picture (GOP)
sequence such as BBBBBIPPPPPBBBBBIPPPPP, where there are 5 B
frames before each | frame, the first B frame can not be displayed by the
video decompressor until the subsequent B frames and | frame are
received. So, if video is being streamed at 60fps (i.e., 16.67ms/frame),
before the first B frame can be decompressed, five B frames and the | frame
will take 16.67 * 6 = 100ms to receive, no matter how fast the channel
bandwidth is, and this is with just 5 B frames. Compressed video sequences
with 30 B frames are quite common. And, at a low channel bandwidth like
2Mbps, the latency impact caused by the size of the | frame is largely
additive to the latency impact due to waiting for B frames to arrive. Thus, on
a 2Mbps channel, with a large number of B frames it is quite easy to exceed
500ms of latency or more using prior art video compression technology. If B
frames are not used (at the cost of a lower compression ratio for given
quality level), the B frame latency is not incurred, but the latency caused by
the peak frame sizes, described above, is still incurred.

[0066] The problem is exacerbated by very the nature of many video
games. Video compression algorithms utilizing the GOP structure described
above have been largely optimized for use with live video or motion picture
material intended for passive viewing. Typically, the camera (whether a real
camera, or a virtual camera in the case of a computer-generated animation)

and scene is relatively steady, simply because if the camera or scene

35

WO 2010/111096 PCT/US2010/027716

moves around too jerkily, the video or movie material is (a) typically
unpleasant to watch and (b) if it is being watched, usually the viewer is not
closely following the action when the camera jerks around suddenly (e.g., if
the camera is bumped when shooting a child blowing out the candles on a
birthday cake and suddenly jerks away from the cake and back again, the
viewers are typically focused on the child and the cake, and disregard the
brief interruption when the camera suddenly moves). In the case of a video
interview, or a video teleconference, the camera may be held in a fixed
position and not move at all, resulting in very few data peaks at all. But 3D
high action video games are characterized by constant motion (e.g.,
consider a 3D racing, where the entire frame is in rapid motion for the
duration of the race, or consider first-person shooters, where the virtual
camera is constantly moving around jerkily). Such video games can result in
frame sequences with large and frequent peaks where the user may need to
clearly see what is happening during those sudden motions. As such,
compression artifacts are far less tolerable in 3D high action video games.
Thus, the video output of many video games, by their nature, produces a
compressed video stream with very high and frequent peaks.

[0067] Given that users of fast-action video games have little
tolerance for high latency, and given all of the above causes of latency, to
date there have been limitations to server-hosted video games that stream
video on the Internet. Further, users of applications that require a high
degree of interactivity suffer from similar limitations if the applications are
hosted on the general Internet and stream video. Such services require a
network configuration in which the hosting servers are set up directly in a
head end (in the case of cable broadband) or the central office (in the case
of Digital Subscriber Lines (DSL)), or within a LAN (or on a specially-graded
private connection) in a commercial setting, so that the route and distance
from the client device to the server is controlled to minimize latency and
peaks can be accommodated without incurring latency. LANs (typically rated

36

WO 2010/111096 PCT/US2010/027716

at 100Mbps-1Gbps) and leased lines with adequate bandwidth typically can
support peak bandwidth requirements (e.g., 18Mbps peak bandwidth is a
small fraction of a 100Mbps LAN capacity).

[0068] Peak bandwidth requirements can also be accommodated by
residential broadband infrastructure if special accommodations are made.
For example, on a cable TV system, digital video traffic can be given
dedicated bandwidth which can handle peaks, such as large | frames. And,
on a DSL system, a higher speed DSL modem can be provisioned, allowing
for high peaks, or a specially-graded connection can provisioned which can
handle a higher data rates. But, conventional cable modem and DSL
infrastructure attached to the general Internet have far less tolerance for
peak bandwidth requirements for compressed video. So, online services that
host video games or applications in server centers a long distance from the
client devices, and then stream the compressed video output over the
Internet through conventional residential broadband connections suffer from
significant latency and peak bandwidth limitations — particularly with respect
to games and applications which require very low latency (e.g., first person
shooters and other multi-user, interactive action games, or applications

requiring a fast response time).

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] The present disclosure will be understood more fully from the
detailed description that follows and from the accompanying drawings,
which however, should not be taken to limit the disclosed subject matter to
the specific embodiments shown, but are for explanation and understanding
only.

[0070] FIG. 1 illustrates an architecture of a prior art video gaming

system.

37

WO 2010/111096 PCT/US2010/027716

[0071] FIGS. 2a-b illustrate a high level system architecture according

to one embodiment.

[0072] FIG. 3 illustrates actual, rated, and required data rates for
communication between a client and a server.

[0073] FIG. 4a illustrates a hosting service and a client employed
according to one embodiment.

[0074] FIG. 4b illustrates exemplary latencies associated with

communication between a client and hosting service.

[0075] FIG 4c illustrates a client device according to one
embodiment.
[0076] FIG 4d illustrates a client device according to another

embodiment.

[0077] FIG 4e illustrates an example block diagram of the client
device in Figure 4c.

[0078] FIG 4f illustrates an example block diagram of the client device
in Figure 4d.
[0079] FIG. 5 illustrates an example form of video compression which

may be employed according to one embodiment.

[0080] FIG. 6a illustrates an example form of video compression
which may be employed in another embodiment.

[0081] FIG. 6b illustrates peaks in data rate associated with

transmitting a low complexity, low action video sequence.

38

WO 2010/111096 PCT/US2010/027716

[0082] FIG. 6¢ illustrates peaks in data rate associated with
transmitting a high complexity, high action video sequence.

[0083] FIGS. 7a-b illustrate example video compression techniques
employed in one embodiment.

[0084] FIG. 8 illustrates additional example video compression
techniques employed in one embodiment.

[0085] FIGS. 9a-c illustrate frame rate processing techniques

employed in one embodiment of the invention.

[0086] FIGS. 10a-b illustrate one embodiment which efficiently packs

image tiles within packets.

[0087] FIGS. 11a-d illustrate embodiments which employ forward

error correction techniques.

[0088] FIG. 12 illustrates one embodiment which uses multi-core

processing units for compression.

[0089] FIGS. 13a-b illustrate geographical positioning and
communication between hosting services according to various

embodiments.

[0090] FIG. 14 illustrates exemplary latencies associated with

communication between a client and a hosting service.

[0091] FIG. 15 illustrates an example hosting service server center

architecture.

[0092] FIG. 16 illustrates an example screen shot of one embodiment

of a user interface which includes a plurality of live video windows.

39

WO 2010/111096 PCT/US2010/027716

[0093] FIG. 17 illustrates the user interface of Figure 16 following the

selection of a particular video window.

[0094] FIG. 18 illustrates the user interface of Figure 17 following
zooming of the particular video window to full screen size.

[0095] FIG. 19 illustrates an example collaborative user video data
overlaid on the screen of a multiplayer game.

[0096] FIG. 20 illustrates an example user page for a game player on

a hosting service.
[0097] FIG. 21 illustrates an example 3D interactive advertisement.

[0098] FIG. 22 illustrates an example sequence of steps for producing
a photoreal image having a textured surface from surface capture of a live

performance.

[0099] FIG. 23 illustrates an example user interface page that allows

for selection of linear media content.

[0100] FIG. 24 is a graph that illustrates the amount of time that
elapses before the web page is live versus connection speed.

[0101]FIGS. 25a-b illustrates embodiments of the invention which employ a

feedback channel from the client device to the hosting service.

[0102]FIGS. 26a-b illustrate an embodiment in which encodes tiles/frames

based on the last known tile/frame to have been successfully received.

[0103] FIGS. 27a-b illustrate an embodiment in which the state of a game or
application is ported from a first hosting service or server to a second

hosting service or server.

40

WO 2010/111096 PCT/US2010/027716

[0104] FIG. 28 illustrates one embodiment in which the state of a game or

application is ported using difference data.

[0105] FIG. 29 illustrates one embodiment of the invention which employs a

temporary decoder on the client device.

[0106] FIG. 30 illustrates how “| tiles” are interspersed across “R frames”

according to one embodiment of the invention.

[0107] FIGS. 31a-h illustrate embodiments of the invention which generate

a live stream and/or one or more HQ streams.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0108] In the following description specific details are set forth, such
as device types, system configurations, communication methods, etc., in
order to provide a thorough understanding of the present disclosure.
However, persons having ordinary skill in the relevant arts will appreciate
that these specific details may not be needed to practice the embodiments
described.

[0109] Figures 2a-b provide a high-level architecture of two
embodiments in which video games and software applications are hosted
by a hosting service 210 and accessed by client devices 205 at user
premises 211 (note that the “user premises” means the place wherever the
user is located, including outdoors if using a mobile device) over the Internet
206 (or other public or private network) under a subscription service. The
client devices 205 may be general-purpose computers such as Microsoft
Windows- or Linux-based PCs or Apple, Inc. Macintosh computers with a
wired or wireless connection to the Internet either with internal or external

display device 222, or they may be dedicated client devices such as a set-

41

WO 2010/111096 PCT/US2010/027716

top box (with a wired or wireless connection to the Internet) that outputs
video and audio to a monitor or TV set 222, or they may be mobile devices,
presumably with a wireless connection to the Internet.

[0110] Any of these devices may have their own user input devices
(e.g., keyboards, buttons, touch screens, track pads or inertial-sensing
wands, video capture cameras and/or motion-tracking cameras, etc.), or
they may use external input devices 221 (e.g., keyboards, mice, game
controllers, inertial sensing wand, video capture cameras and/or motion
tracking cameras, etc.), connected with wires or wirelessly. As described in
greater detail below, the hosting service 210 includes servers of various
levels of performance, including those with high-powered CPU/GPU
processing capabilities. During playing of a game or use of an application
on the haosting service 210, a home or office client device 205 receives
keyboard and/or controller input from the user, and then it transmits the
controller input through the Internet 206 to the hosting service 210 that
executes the gaming program code in response and generates successive
frames of video output (a sequence of video images) for the game or
application software (e.g., if the user presses a button which would direct a
character on the screen to move to the right, the game program would then
create a sequence of video images showing the character moving to the
right). This sequence of video images is then compressed using a low-
latency video compressor, and the hosting service 210 then transmits the
low-latency video stream through the Internet 206. The home or office client
device then decodes the compressed video stream and renders the
decompressed video images on a monitor or TV. Consequently, the
computing and graphical hardware requirements of the client device 205 are
significantly reduced. The client 205 only needs to have the processing
power to forward the keyboard/controller input to the Internet 206 and
decode and decompress a compressed video stream received from the
Internet 206, which virtually any personal computer is capable of doing

42

WO 2010/111096 PCT/US2010/027716

today in software on its CPU (e.g., a Intel Corporation Core Duo CPU
running at approximately 2GHz is capable of decompressing 720p HDTV
encoded using compressors such as H.264 and Windows Media VC9).

And, in the case of any client devices, dedicated chips can also perform
video decompression for such standards in real-time at far lower cost and
with far less power consumption than a general-purpose CPU such as would
be required for a modern PC. Notably, to perform the function of forwarding
controller input and decompressing video, home client devices 205 do not
require any specialized graphics processing units (GPUSs), optical drive or
hard drives, such as the prior art video game system shown in Figure 1.
[0111] As games and applications software become more complex
and more photo-realistic, they will require higher-performance CPUs, GPUs,
more RAM, and larger and faster disk drives, and the computing power at
the hosting service 210 may be continually upgraded, but the end user will
not be required to update the home or office client platform 205 since its
processing requirements will remain constant for a display resolution and
frame rate with a given video decompression algorithm. Thus, the hardware
limitations and compatibility issues seen today do not exist in the system
illustrated in Figures 2a-b.

[0112] Further, because the game and application software executes
only in servers in the hosting service 210, there never is a copy of the game
or application software (either in the form of optical media, or as downloaded
software) in the user's home or office (“office” as used herein unless
otherwise qualified shall include any non-residential setting, including,
schoolrooms, for example). This significantly mitigates the likelihood of a
game or application software being illegally copied (pirated), as well as
mitigating the likelihood of a valuable database that might be use by a game
or applications software being pirated. Indeed, if specialized servers are
required (e.g., requiring very expensive, large or noisy equipment) to play
the game or application software that are not practical for home or office

43

WO 2010/111096 PCT/US2010/027716

use, then even if a pirated copy of the game or application software were
obtained, it would not be operable in the home or office.

[0113] In one embodiment, the hosting service 210 provides software
development tools to the game or application software developers (which
refers generally to software development companies, game or movie
studios, or game or applications software publishers) 220 which design
video games so that they may design games capable of being executed on
the hosting service 210. Such tools allow developers to exploit features of
the hosting service that would not normally be available in a standalone PC
or game console (e.g., fast access to very large databases of complex
geometry (“geometry” unless otherwise qualified shall be used herein to
refer to polygons, textures, rigging, lighting, behaviors and other
components and parameters that define 3D datasets)).

[0114] Different business models are possible under this architecture.
Under one model, the hosting service 210 collects a subscription fee from
the end user and pays a royalty to the developers 220, as shown in Figure
2a. In an alternate implementation, shown in Figure 2b, the developers 220
collects a subscription fee directly from the user and pays the hosting
service 210 for hosting the game or application content. These underlying
principles are not limited to any particular business model for providing
online gaming or application hosting.

[0115] COMPRESSED VIDEO CHARACTERISTICS

[0116] As discussed previously, one significant problem with
providing video game services or applications software services online is
that of latency. A latency of 70-80ms(from the point a input device is
actuated by the user to the point where a response is displayed on the
display device) is at the upper limit for games and applications requiring a
fast response time. However, this is very difficult to achieve in the context of
the architecture shown in Figures 2a and 2b due to a number of practical
and physical constraints.

WO 2010/111096 PCT/US2010/027716

[0117] As indicated in Figure 3, when a user subscribes to an Internet
service, the connection is typically rated by a nominal maximum data rate
301 to the user’s home or office. Depending on the provider's policies and
routing equipment capabilities, that maximum data rate may be more or less
strictly enforced, but typically the actual available data rate is lower for one
of many different reasons. For example, there may be too much network
traffic at the DSL central office or on the local cable modem loop, or there
may be noise on the cabling causing dropped packets, or the provider may
establish a maximum number of bits per month per user. Currently, the
maximum downstream data rate for cable and DSL services typically ranges
from several hundred Kilobits/second (Kbps) to 30 Mbps. Cellular services
are typically limited to hundreds of Kbps of downstream data. However, the
speed of the broadband services and the number of users who subscribe to
broadband services will increase dramatically over time. Currently, some
analysts estimate that 33% of US broadband subscribers have a
downstream data rate of 2Mbps or more. For example, some analysts
predict that by 2010, over 85% of US broadband subscribers will have a
data rate of 2Mbps or mare.

[0118] As indicated in Figure 3, the actual available max data rate
302 may fluctuate over time. Thus, in a low-latency, online gaming or
application software context it is sometimes difficult to predict the actual
available data rate for a particular video stream. If the data rate 303
required to sustain a given level of quality at given number of frames-per-
second (fps) at a given resolution (e.g., 640 x 480 @ 60 fps) for a certain
amount of scene complexity and motion rises above the actual available
max data rate 302 (as indicated by the peak in Figure 3), then several
problems may occur. For example, some internet services will simply drop
packets, resulting in lost data and distorted/lost images on the user’s video
screen. Other services will temporarily buffer (i.e., queue up) the additional
packets and provide the packets to the client at the available data rate,

45

WO 2010/111096 PCT/US2010/027716

resulting in an increase in latency — an unacceptable result for many video
games and applications. Finally, some Internet service providers will view
the increase in data rate as a malicious attack, such as a denial of service
attack (a well known technique used by hackers to disable network
connections), and will cut off the user’s Internet connection for a specified
time period. Thus, the embodiments described herein take steps to ensure
that the required data rate for a video game does not exceed the maximum
available data rate.

[0119] HOSTING SERVICE ARCHITECTURE

[0120] Figure 4a illustrates an architecture of the hosting service 210
according to one embodiment. The hosting service 210 can either be
located in a single server center, or can be distributed across a plurality of
server centers (to provide for lower latency connections to users that have
lower latency paths to certain server centers than others, to provide for load
balancing amongst users, and to provide for redundancy in the case one or
more server centers fail). The hosting service 210 may eventually include
hundreds of thousands or even millions of servers 402, serving a very large
user base. A hosting service control system 401 provides overall control for
the hosting service 210, and directs routers, servers, video compression
systems, billing and accounting systems, etc. In one embodiment, the
hosting service control system 401 is implemented on a distributed
processing Linux-based system tied to RAID arrays used to store the
databases for user information, server information, and system statistics. In
the foregoing descriptions, the various actions implemented by the hosting
service 210, unless attributed to other specific systems, are initiated and
controlled by the hosting service control system 401.

[0121] The hosting service 210 includes a number of servers 402
such as those currently available from Intel, IBM and Hewlett Packard, and
others. Alternatively, the servers 402 can be assembled in a custom

configuration of components, or can eventually be integrated so an entire

46

WO 2010/111096 PCT/US2010/027716

server is implemented as a single chip. Although this diagram shows a
small number of servers 402 for the sake of illustration, in an actual
deployment there may be as few as one server 402 or as many as millions
of servers 402 or more. The servers 402 may all be configured in the same
way (as an example of some of the configuration parameters, with the same
CPU type and performance; with or without a GPU, and if with a GPU, with
the same GPU type and performance; with the same number of CPUs and
GPUs; with the same amount of and type/speed of RAM; and with the same
RAM configuration), or various subsets of the servers 402 may have the
same configuration (e.g., 25% of the servers can be configured a certain
way, 50% a different way, and 25% yet another way), or every server 402
may be different.

[0122] In one embodiment, the servers 402 are diskless, i.e., rather
than having its own local mass storage (be it optical or magnetic storage, or
semiconductor-based storage such as Flash memory or other mass storage
means serving a similar function), each server accesses shared mass
storage through fast backplane or network connection. In one embodiment,
this fast connection is a Storage Area Network (SAN) 403 connected to a
series of Redundant Arrays of Independent Disks (RAID) 405 with
connections between devices implemented using Gigabit Ethernet. As is
known by those of skill in the art, a SAN 403 may be used to combine many
RAID arrays 405 together, resulting in extremely high bandwidth—
approaching or potentially exceeding the bandwidth available from the RAM
used in current gaming consoles and PCs. And, while RAID arrays based on
rotating media, such as magnetic media, frequently have significant seek-
time access latency, RAID arrays based on semiconductor storage can be
implemented with much lower access latency. In another configuration,
some or all of the servers 402 provide some or all of their own mass storage
locally. For example, a server 402 may store frequently-accessed
infarmation such as its operating system and a copy of a video game or

47

WO 2010/111096 PCT/US2010/027716

application on low-latency local Flash-based storage, but it may utilize the
SAN to access RAID Arrays 405 based on rotating media with higher seek
latency to access large databases of geometry or game state information on
a less frequent bases.

[0123] In addition, in one embodiment, the hosting service 210
employs low-latency video compression logic 404 described in detail below.
The video compression logic 404 may be implemented in software,
hardware, or any combination thereof (certain embodiments of which are
described below). Video compression logic 404 includes logic for
compressing audio as well as visual material.

[0124] In operation, while playing a video game or using an
application at the user premises 211 via a keyboard, mouse, game controller
or other input device 421, control signal logic 413 on the client 415 transmits
control signals 406a-b (typically in the form of UDP packets) representing
the button presses (and other types of user inputs) actuated by the user to
the hosting service 210. The control signals from a given user are routed to
the appropriate server (or servers, if multiple servers are responsive to the
user’s input device) 402. As illustrated in Figure 4a, control signals 406a
may be routed to the servers 402 via the SAN. Alternatively or in addition,
control signals 406b may be routed directly to the servers 402 over the
hosting service network (e.g., an Ethernet-based local area network).
Regardless of how they are transmitted, the server or servers execute the
game or application software in response to the control signals 406a-b.
Although not illustrated in Figure 4a, various networking components such
as a firewall(s) and/or gateway(s) may process incoming and outgoing traffic
at the edge of the hosting service 210 (e.g., between the hosting service 210
and the Internet 410) and/or at the edge of the user premises 211 between
the Internet 410 and the home or office client 415. The graphical and audio
output of the executed game or application software— i.e., new sequences
of video images—are provided to the low-latency video compression logic

48

WO 2010/111096 PCT/US2010/027716

404 which compresses the sequences of video images according to low-
latency video compression techniques, such as those described herein and
transmits a compressed video stream, typically with compressed or
uncompressed audio, back to the client 415 over the Internet 410 (or, as
described below, over an optimized high speed network service that
bypasses the general Internet). Low-latency video decompression logic 412
on the client 415 then decompresses the video and audio streams and
renders the decompressed video stream, and typically plays the
decompressed audio stream, on a display device 422 Alternatively, the
audio can be played on speakers separate from the display device 422 or
not at all. Note that, despite the fact that input device 421 and display device
422 are shown as free-standing devices in Figures 2a and 2b, they may be
integrated within client devices such as portable computers or mobile
devices.

[0125] Home or office client 415 (described previously as home or
office client 205 in Figures 2a and 2b) may be a very inexpensive and low-
power device, with very limited computing or graphics performance and may
well have very limited or no local mass storage. In contrast, each server
402, coupled to a SAN 403 and multiple RAIDs 405 can be an exceptionally
high performance computing system, and indeed, if multiple servers are
used cooperatively in a parallel-processing configuration, there is almost no
limit to the amount of computing and graphics processing power that can be
brought to bear. And, because of the low-latency video compression 404
and low-latency video compression 412, perceptually to the user, the
computing power of the servers 402 is being provided to the user. When the
user presses a button on input device 421, the image on display 422 is
updated in response to the button press perceptually with no meaningful
delay, as if the game or application software were running locally. Thus, with
a home or office client 415 that is a very low performance computer or just
an inexpensive chip that implements the low-latency video decompression

49

WO 2010/111096 PCT/US2010/027716

and control signal logic 413, a user is provided with effectively arbitrary
computing power from a remote location that appears to be available locally.
This gives users the power to play the most advanced, processor-intensive
(typically new) video games and the highest performance applications.
[0126] Figure 4c shows a very basic and inexpensive home or office
client device 465. This device is an embodiment of home or office client 415
from Figures 4a and 4b. It is approximately 2 inches long. It has an Ethernet
jack 462 that interfaces with an Ethernet cable with Power over Ethernet
(PoE), from which it derives its power and its connectivity to the Internet. It is
able to run Network Address Translation (NAT) within a network that
supports NAT. In an office environment, many new Ethernet switches have
PoE and bring PoE directly to a Ethernet jack in an office. It such a situation,
all that is required is an Ethernet cable from the wall jack to the client 465. If
the available Ethernet connection does not carry power (e.g., in a home with
a DSL or cable modem, but no PoE), then there are inexpensive wall
“bricks” (i.e., power supplies) available that will accept an unpowered
Ethernet cable and output Ethernet with POE.

[0127] The client 465 contains control signal logic 413 (of Figure 4a)
that is coupled to a Bluetooth wireless interface, which interfaces with
Bluetooth input devices 479, such as a keyboard, mouse, game controller
and/or microphone and/or headset. Also, one embodiment of client 465 is
capable of outputting video at 120fps coupled with a display device 468 able
to support 120fps video and signal (typically through infrared) a pair of
shuttered glasses 466 to alternately shutter one eye, then the other with
each successive frame. The effect perceived by the user is that of a
stereoscopic 3D image that “jumps out” of the display screen. One such
display device 468 that supports such operation is the Samsung HL-
T5076S. Since the video stream for each eye is separate, in one
embodiment two independent video streams are compressed by the hosting

service 210, the frames are interleaved in time, and the frames are

50

WO 2010/111096 PCT/US2010/027716

decompressed as two independent decompression processes within client
465.

[0128] The client 465 also contains low latency video decompression
logic 412, which decompresses the incoming video and audio and output
through the HDMI (High-Definition Multimedia Interface),connector 463
which plugs into an SDTV (Standard Definition Television) or HDTV (High
Definition Television) 468, providing the TV with video and audio, or into a
monitor 468 that supports HDMI. If the user’'s monitor 468 does not support
HDMI, then an HDMI-to-DVI (Digital Visual Interface) can be used, but the
audio will be lost. Under the HDMI standard, the display capabilities (e.g.
supported resolutions, frame rates) 464 are communicated from the display
device 468, and this information is then passed back through the Internet
connection 462 back to the hosting service 210 so it can stream
compressed video in a format suitable for the display device.

[0129] Figure 4d shows a home or office client device 475 that is the
same as the home or office client device 465 shown in Figure 4¢ except that
is has more external interfaces. Also, client 475 can accept either PoE for
power, or it can run off of an external power supply adapter (not shown) that
plugs in the wall. Using client 475 USB input, video camera 477 provides
compressed video to client 475, which is uploaded by client 475 to hosting
service 210 for use described below. Built into camera 477 is a low-latency
compressor utilizing the compression techniques described below.

[0130] In addition to having an Ethernet connector for its Internet
connection, client 475 also has an 802.11g wireless interface to the Internet.
Both interfaces are able to use NAT within a network that supports NAT.
[0131] Also, in addition to having an HDMI connector to output video
and audio, client 475 also has a Dual Link DVI-I connector, which includes
analog output (and with a standard adapter cable will provide VGA output). It

also has analog outputs for composite video and S-video.

WO 2010/111096 PCT/US2010/027716

[0132] For audio, the client 475 has left/right analog stereo RCA
jacks, and for digital audio output it has a TOSLINK output.

[0133] In addition to a Bluetooth wireless interface to input devices
479, it also has USB jacks to interface to input devices.

[0134] Figure 4e shows one embodiment of the internal architecture
of client 465. Either all or some of the devices shown in the diagram can be
implemented in a Field Programmable Logic Array, a custom ASIC orin
several discrete devices, either custom designed or off-the-shelf.

[0135] Ethernet with PoE 497 attaches to Ethernet Interface 481.
Power 499 is derived from the Ethernet with POE 497 and is connected to
the rest of the devices in the client 465. Bus 480 is a common bus for
communication between devices.

[0136] Control CPU 483 (almost any small CPU, such as a MIPS
R4000 series CPU at 100MHz with embedded RAM is adequate) running a
small client control application from Flash 476 implements the protocol stack
for the network (i.e. Ethernet interface) and also communicates with the
Hosting Service 210, and configures all of the devices in the client 465. It
also handles interfaces with the input devices 469 and sends packets back
to the hosting service 210 with user controller data, protected by Forward
Error Correction, if necessary. Also, Control CPU 483 monitors the packet
traffic (e.g. if packets are lost or delayed and also timestamps their arrival).
This information is sent back to the hosting service 210 so that it can
constantly monitor the network connection and adjust what it sends
accordingly. Flash memory 476 is initially loaded at the time of manufacture
with the control program for Control CPU 483 and also with a serial number
that is unique to the particular Client 465 unit. This serial number allows the
hosting service 210 to uniquely identify the Client 465 unit.

[0137] Bluetooth interface 484 communicates to input devices 469

wirelessly through its antenna, internal to client 465.

WO 2010/111096 PCT/US2010/027716

[0138] Video decompressor 486 is a low-latency video decompressor
configured to implement the video decompression described herein. A large
number of video decompression devices exist, either off-the-shelf, or as
Intellectual Property (IP) of a design that can be integrated into an FPGA or
a custom ASIC. One company offering IP for an H.264 decoder is Ocean
Logic of Manly, NSW Australia. The advantage of using IP is that the
compression techniques used herein do not conform to compression
standards. Some standard decompressors are flexible enough to be
configured to accommodate the compression techniques herein, but some
cannot. But, with IP, there is complete flexibility in redesigning the
decompressor as needed.

[0139] The output of the video decompressor is coupled to the video
output subsystem 487, which couples the video to the video output of the
HDMI interface 490.

[0140] The audio decompression subsystem 488 is implemented
either using a standard audio decompressor that is available, or it can be
implemented as IP, or the audio decompression can be implemented within
the control processor 483 which could, for example, implement the Vorbis
audio decompressor (available at Vorbis.com).

[0141] The device that implements the audio decompression is
coupled to the audio output subsystem 489 that couples the audio to the
audio output of the HDMI interface 490

[0142] Figure 4f shows one embodiment of the internal architecture of
client 475. As can be seen, the architecture is the same as that of client 465
except for additional interfaces and optional external DC power from a
power supply adapter that plugs in the wall, and if so used, replaces power
that would come from the Ethernet PoE 497. The functionality that is in
common with client 465 will not be repeated below, but the additional

functionality is described as follows.

WO 2010/111096 PCT/US2010/027716

[0143] CPU 483 communicates with and configures the additional
devices.
[0144] WiFi subsystem 482 provides wireless Internet access as an

alternative to Ethernet 497 through its antenna. WiFi subsystems are
available from a wide range of manufacturers, including Atheros
Communications of Santa Clara, CA.

[0145] USB subsystem 485 provides an alternative to Bluetooth
communication for wired USB input devices 479. USB subsystems are quite
standard and readily available for FPGAs and ASICs, as well as frequently
built into off-the-shelf devices performing other functions, like video
decompression.

[0146] Video output subsystem 487 produces a wider range of video
outputs than within client 465. In addition to providing HDMI 490 video
output, it provides DVI-1 491, S-video 492, and composite video 493. Also,
when the DVI-1 491 interface is used for digital video, display capabilities
464 are passed back from the display device to the control CPU 483 so that
it can notify the hosting service 210 of the display device 478 capabilities. All
of the interfaces provided by the video output subsystem 487 are quite
standard interfaces and readily available in many forms.

[0147] Audio output subsystem 489 outputs audio digitally through
digital interface 494 (S/PDIF and/or Toslink) and audio in analog form
through stereo analog interface 495.

[0148] ROUND-TRIP LATENCY ANALYSIS

[0149] Of course, for the benefits of the preceding paragraph to be
realized, the round trip latency between a user's action using input device
421 and seeing the consequence of that action on display device 420 should
be no more than 70-80ms. This latency must take into account all of the
factors in the path from input device 421 in the user premises 211 to hosting
service 210 and back again to the user premises 211 to display device 422.
Figure 4b illustrates the various components and networks over which

54

WO 2010/111096 PCT/US2010/027716

signals must travel, and above these components and networks is a timeline
that lists exemplary latencies that can be expected in a practical
implementation. Note that Figure 4b is simplified so that only the critical
path routing is shown. Other routing of data used for other features of the
system is described below. Double-headed arrows (e.g., arrow 453)
indicate round-trip latency and a single-headed arrows (e.g., arrow 457)
indicate one-way latency, and “~” denotes an approximate measure. It
should be pointed out that there will be real-world situations where the
latencies listed cannot be achieved, but in a large number of cases in the
US, using DSL and cable modem connections to the user premises 211,
these latencies can be achieved in the circumstances described in the next
paragraph. Also, note that, while cellular wireless connectivity to the
Internet will certainly work in the system shown, most current US cellular
data systems (such as EVDO) incur very high latencies and would not be
able to achieve the latencies shown in Figure 4b. However, these
underlying principles may be implemented on future cellular technologies
that may be capable of implementing this level of latency. Further, there are
game and application scenarios (e.g., games that do not require fast user
reaction time, such as chess) where the latency incurred through a current
US cellular data system, while noticeable to the user, would be acceptable
for the game or application.

[0150] Starting from the input device 421 at user premises 211, once
the user actuates the input device 421, a user control signal is sent to client
415 (which may be a standalone device such a set-top box, or it may be
software or hardware running in another device such as a PC or a mobile
device), and is packetized (in UDP format in one embodiment) and the
packet is given a destination address to reach hosting service 210. The
packet will also contain information to indicate which user the control signals
are coming from. The control signal packet(s) are then forwarded through
Firewall/Router/NAT (Network Address Translation) device 443 to WAN

55

WO 2010/111096 PCT/US2010/027716

interface 442. WAN interface 442 is the interface device provided to the user
premises 211 by the User’s ISP (Internet Service Provider). The WAN
interface 442 may be a Cable or DSL modem, a WiMax transceiver, a Fiber
transceiver, a Cellular data interface, an Internet Protocol-over-powerline
interface, or any other of many interfaces to the Internet. Further,
Firewall/Router/NAT device 443 (and potentially WAN interface 442) may be
integrated into the client 415. An example of this would be a mobile phone,
which includes software to implement the functionality of home or office
client 415, as well as the means to route and connect to the Internet
wirelessly through some standard (e.g., 802.119).

[0151] WAN Interface 442 then routes the control signals to what
shall be called herein the “point of presence” 441 for the user’s Internet
Service Provider (ISP) which is the facility that provides an interface
between the WAN transport connected to the user premises 211 and the
general Internet or private networks. The point of presence’s characteristics
will vary depending upon nature of the Internet service provided. For DSL, it
typically will be a telephone company Central Office where a DSLAM is
located. For cable modems, it typically will be a cable Multi-System Operator
(MSO) head end. For cellular systems, it typically will be a control room
associated with cellular tower. But whatever the point of presence’s nature,
it will then route the control signal packet(s) to the general Internet 410. The
control signal packet(s) will then be routed to the WAN Interface 441 to the
hosting service 210, through what most likely will be a fiber transceiver
interface. The WAN 441 will then route the control signal packets to routing
logic 409 (which may be implemented in many different ways, including
Ethernet switches and routing servers), which evaluates the user’s address
and routes the control signal(s) to the correct server 402 for the given user.
[0152] The server 402 then takes the control signals as input for the
game or application software that is running on the server 402 and uses the
control signals to process the next frame of the game or application. Once

56

WO 2010/111096 PCT/US2010/027716

the next frame is generated, the video and audio is output from server 402
to video compressor 404. The video and audio may be output from server
402 to compressor 404 through various means. To start with, compressor
404 may be built into server 402, so the compression may be implemented
locally within server 402. Or, the video and/or audio may be output in
packetized form through a network connection such as an Ethernet
connection to a network that is either a private network between server 402
and video compressor 404, or a through a shared network, such as SAN
403. Or, the video may be output through a video output connector from
server 402, such as a DVI or VGA connector, and then captured by video
compressor 404. Also, the audio may be output from server 402 as either
digital audio (e.g., through a TOSLINK or S/PDIF connector) or as analog
audio, which is digitized and encoded by audio compression logic within
video compressor 404.

[0153] Once video compressor 404 has captured the video frame and
the audio generated during that frame time from server 402, the video
compressor will compress the video and audio using techniques described
below. Once the video and audio is compressed it is packetized with an
address to send it back to the user’s client 415, and it is routed to the WAN
Interface 441, which then routes the video and audio packets through the
general Internet 410, which then routes the video and audio packets to the
user’'s ISP point of presence 441, which routes the video and audio packets
to the WAN Interface 442 at the user’s premises, which routes the video and
audio packets to the Firewall/Router/NAT device 443, which then routes the
video and audio packets to the client 415.

[0154] The client 415 decompresses the video and audio, and then
displays the video on the display device 422 (or the client’s built-in display
device) and sends the audio to the display device 422 or to separate
amplifier/speakers or to an amplifier/speakers built in the client.

WO 2010/111096 PCT/US2010/027716

[0155] For the user to perceive that the entire process just described
is perceptually without lag, the round-trip delay needs be less than 70 or
80ms. Some of the latency delays in the described round-trip path are under
the control of the hosting service 210 and/or the user and others are not.
Nonetheless, based on analysis and testing of a large number of real-world
scenarios, the following are approximate measurements.

[0156] The one-way transmission time to send the control signals 451
is typically less than 1ms, the rounditrip routing through the user premises
452 is typically accomplished, using readily available consumer-grade
Firewall/Router/NAT switches over Ethernet in about 1ms. User ISPs vary
widely in their round trip delays 453, but with DSL and cable modem
providers, we typically see between 10 and 25ms. The round trip latency on
the general Internet 410 can vary greatly depending on how traffic is routed
and whether there are any failures on the route (and these issues are
discussed below), but typically the general Internet provides fairly optimal
routes and the latency is largely determined by speed of light through optical
fiber, given the distance to the destination. As discussed further below, we
have established 1000 miles as a roughly the furthest distance that we
expect to place a hosting service 210 away from user premises 211. At 1000
miles (2000 miles round trip) the practical transit time for a signal through
the Internet is approximately 22ms. The WAN Interface 441 to the hosting
service 210 is typically a commercial-grade fiber high speed interface with
negligible latency. Thus, the general Internet latency 454 is typically
between 1 and 10ms. The one-way routing 455 latency through the hosting
service 210 can be achieved in less than 1ms. The server 402 will typically
compute a new frame for a game or an application in less than one frame
time (which at 60fps is 16.7ms) so 16ms is a reasonable maximum one-way
latency 456 to use. In an optimized hardware implementation of the video
compression and audio compression algorithms described herein, the
compression 457 can be completed in 1ms. In less optimized versions, the

58

WO 2010/111096 PCT/US2010/027716

compression may take as much as 6ms (of course even less optimized
versions could take longer, but such implementations would impact the
overall latency of the round trip and would require other latencies to be
shorter (e.g., the allowable distance through the general Internet could be
reduced) to maintain the 70-80ms latency target). The round trip latencies of
the Internet 454, User ISP 453, and User Premises Routing 452 have
already been considered, so what remains is the video decompression 458
latency which, depending on whether the video decompression 458 is
implemented in dedicated hardware, or if implemented in software on a
client device 415 (such as a PC or mobile device) it can vary depending
upon the size of the display and the performance of the decompressing
CPU. Typically, decompression 458 takes between 1 and 8ms.

[0157] Thus, by adding together all of the worst-case latencies seen
in practice, we can determine the worst-case round trip latency that can be
expected to be experience by a user of the system shown in Figure 4a. They
are: 1+1+25+22+1+16+6+8 = 80ms. And, indeed, in practice (with caveats
discussed below), this is roughly the round trip latency seen using prototype
versions of the system shown in Figure 4a, using off-the-shelf Windows PCs
as client devices and home DSL and cable modem connections within the
US. Of course, scenarios better than worst case can result in much shorter
latencies, but they cannot be relied upon in developing a commercial service
that is used widely.

[0158] To achieve the latencies listed in Figures 4b over the general
Internet requires the video compressor 404 and video decompressor 412
from Figure 4a in the client 415 to generate a packet stream which very
particular characteristics, such that the packet sequence generated through
entire path from the hosting service 210 to the display device 422 is not
subject to delays or excessive packet loss and, in particular, consistently
falls with the constraints of the bandwidth available to the user over the
user’s Internet connection through WAN interface 442 and

59

WO 2010/111096 PCT/US2010/027716

Firewall/Router/NAT 443. Further, the video compressor must create a
packet stream which is sufficiently robust so that it can tolerate the inevitable
packet loss and packet reordering that occurs in normal Internet and
network transmissions.

[0159] Low-LATENCY VIDEO COMPRESSION

[0160] To accomplish the foregoing goals, one embodiment takes a
new approach to video compression which decreases the latency and the
peak bandwidth requirements for transmitting video. Prior to the description
of these embodiments, an analysis of current video compression techniques
will be provided with respect to Figure 5 and Figures 6a-b. Of course, these
techniques may be employed in accordance with underlying principles if the
user is provided with sufficient bandwidth to handle the data rate required by
these techniques. Note that audio compression is not addressed herein
other than to state that it is implemented simultaneously and in synchrony
with the video compression. Prior art audio compression techniques exist
that satisfy the requirements for this system.

[0161] Figure 5 illustrates one particular prior art technique for
compressing video in which each individual video frame 501-503 is
compressed by compression logic 520 using a particular compression
algorithm to generate a series of compressed frames 511-513. One
embodiment of this technique is “motion JPEG” in which each frame is
compressed according to a Joint Pictures Expert Group (JPEG)
compression algorithm, based upon the discrete cosine transform (DCT).
Various different types of compression algorithms may be employed,
however, while still complying with these underlying principles (e.g., wavelet-
based compression algorithms such as JPEG-2000).

[0162] One problem with this type of compression is that it reduces
the data rate of each frame, but it does not exploit similarities between
successive frames to reduce the data rate of the overall video stream. For

example, as illustrated in Figure 5, assuming a frame rate of

60

WO 2010/111096 PCT/US2010/027716

640x480x24bits/pixel = 640*480*24/8/1024=900 Kilobytes/frame
(KB/frame), for a given quality of image, motion JPEG may only compress
the stream by a factor of 10, resulting in a data stream of 90 KB/frame. At
60 frames/sec, this would require a channel bandwidth of 90 KB * 8 bits * 60
frames/sec = 42.2Mbps, which would be far too high bandwidth for almost all
home Internet connections in the US today, and too high bandwidth for
many office Internet connections. Indeed, given that it would demand a
constant data stream at such a high bandwidth, and it would be just serving
one user, even in an office LAN environment, it would consume a large
percentage of a 100Mbps Ethernet LAN’s bandwidth and heavily burden
Ethernet switches supporting the LAN. Thus, the compression for motion
video is inefficient when compared with other compression techniques (such
as those described below). Moreover, single frame compression algorithms
like JPEG and JPEG-2000 that use lossy compression algorithms produce
compression artifacts that may not be noticeable in still images (e.g., an
artifact within dense foliage in the scene may not appear as an artifact since
the eye does not know exactly how the dense foliage should appear). But,
once the scene is in motion, an artifact can stand out because the eye
detects that the artifact changed from frame-to-frame, despite the fact the
artifact is in an area of the scene where it might not have been noticeable in
a still image. This results in the perception of “background noise” in the
sequence of frames, similar in appearance to the “snow” noise visible during
marginal analog TV reception. Of course, this type of compression may still
be used in certain embodiments described herein, but generally speaking, to
avoid background naoise in the scene, a high data rate (i.e., a low
compression ratio) is required for a given perceptual quality.

[0163] Other types of compression, such as H.264, or Windows
Media VC9, MPEG2 and MPEG4 are all more efficient at compressing a
video stream because they exploit the similarities between successive
frames. These techniques all rely upon the same general techniques to

61

WO 2010/111096 PCT/US2010/027716

compress video. Thus, although the H.264 standard will be described, the
same general principles apply to various other compression algorithms. A
large number of H.264 compressors and decompressor are available,
including the x264 open source software library for compressing H.264 and
the FFmpeg open source software libraries for decompressing H.264.
[0164] Figures 6a and 6b illustrate an exemplary prior art
compression technique in which a series of uncompressed video frames
501-503, 559-561 are compressed by compression logic 620 into a series of
‘| frames” 611, 671; “P frames” 612-613; and “B frames” 670. The vertical
axis in Figure 6a generally signifies the resulting size of each of the encoded
frames (although the frames are not drawn to scale). As described above,
video coding using | frames, B frames and P frames is well understood by
those of skill in the art. Briefly, an | frame 611 is a DCT-based compression
of a complete uncompressed frame 501 (similar to a compressed JPEG
image as described above). P frames 612-613 generally are significantly
smaller in size than | frames 611 because they take advantage of the data in
the previous | frame or P frame; that is, they contain data indicating the
changes between the previous | frame or P frame. B frames 670 are similar
to that of P frames except that B frames use the frame in the following
reference frame as well as potentially the frame in the preceding reference
frame.

[0165] For the following discussion, it will be assumed that the
desired frame rate is 60 frames/second, that each | frame is approximately
160 Kb, the average P frame and B frame is 16 Kb and that a new | frame is
generated every second. With this set of parameters, the average data rate
would be: 160 Kb + 16 Kb * 59 = 1.1Mbps. This data rate falls well within
the maximum data rate for many current broadband Internet connections to
homes and offices. This technique also tends to avoid the background
noise problem from intraframe-only encoding because the P and B frames

track differences between the frames, so compression artifacts tend not to

62

WO 2010/111096 PCT/US2010/027716

appear and disappear from frame-to-frame, thereby reducing the
background noise problem described above.

[0166] One problem with the foregoing types of compression is that
although the average data rate is relatively low (e.g., 1.1Mbps), a single |
frame may take several frame times to transmit. For example, using prior art
techniques a 2.2 Mbps network connection (e.g., DSL or cable modem with
2.2Mbps peak of max available data rate 302 from Figure 3a) would typically
be adequate to stream video at 1.1 Mbps with a 160Kbps | frame each 60
frames. This would be accomplished by having the decompressor queue up
1 second of video before decompressing the video. In 1 second, 1.1Mb of
data would be transmitted, which would be easily accommodated by a
2.2Mbps max available data rate, even assuming that the available data rate
might dip periodically by as much as 50%. Unfortunately, this prior art
approach would result in a 1-second latency for the video because of the 1-
second video buffer at the receiver. Such a delay is adequate for many prior
art applications (e.g., the playback of linear video), but is far too long a
latency for fast action video games which cannot tolerate more than 70-
80ms of latency.

[0167] If an attempt were made to eliminate the 1-second video
buffer, it still would not result in an adequate reduction in latency for fast
action video games. For one, the use of B frames, as previously described,
would necessitate the reception of all of the B frames preceding an | frame
as well as the | frame. If we assume the 59 non-| frames are roughly split
between P and B frames, then there would be at least 29 B frames and an |
frame received before any B frame could be displayed. Thus, regardless of
the available bandwidth of the channel, it would necessitate a delay of
29+1=30 frames of 1/60™ second duration each, or 500ms of latency.
Clearly that is far too long.

[0168] Thus, another approach would be to eliminate B frames and
only use | and P frames. (One consequence of this is the data rate would

63

WO 2010/111096 PCT/US2010/027716

increase for a given quality level, but for the sake of consistency in this
example, let's continue to assume that each | frame is 160Kb and the
average P frame is 16Kb in size, and thus the data rate is still 1.1Mbps) This
approach eliminates the unavoidable latency introduced by B frames, since
the decoding of each P frame is only reliant upon the prior received frame. A
problem that remains with this approach is that an | frame is so much larger
than an average P frame, that on a low bandwidth channel, as is typical in
most homes and in many offices, the transmission of the | frame adds
substantial latency. This is illustrated in Figure 6b. The video stream data
rate 624 is below the available max data rate 621 except for the | frames,
where the peak data rate required for the | frames 623 far exceeds the
available max data rate 622 (and even the rated max data rate 621). The
data rate required by the P frames is less than the available max data rate.
Even if the available max data rate peaks at 2.2Mbps remains steadily at its
2.2Mbps peak rate, it will take 160Kb/2.2Mb=71ms to transmit the | frame,
and if the available max data rate 622 dips by 50% (1.1Mbps), it will take
142ms to transmit the | frame. So, the latency in transmitting the | frame will
fall somewhere in between 71-142ms. This latency is additive to the
latencies identified in Figure 4b, which in the worst case added up to 70 ms,
so this would result in a total round trip latency of 141-222ms from the point
the user actuates input device 421 until an image appears on display device
422, which is far too high. And if the available max data rate dips below
2.2Mbps, the latency will increase further.

[0169] Note also that there generally are severe consequences to
‘lamming” an ISP with peak data rate 623 that are far in excess of the
available data rate 622. The equipment in different ISPs will behave
differently, but the following behaviors are quite common among DSL and
cable modem ISPs when receiving packets at much higher data rate than
the available data rate 622: (a) delaying the packets by queuing them

(introducing latency), (b) dropping some or all of the packets, (c) disabling

o4

WO 2010/111096 PCT/US2010/027716

the connection for a period of time (most likely because the ISP is
concerned it is a malicious attack, such as “denial of service” attack). Thus,
transmitting a packet stream at full data rate with characteristics such as
those shown in Figure 6b is not a viable option. The peaks 623 may be
queued up at the hosting service 210 and sent at a data rate below the
available max data rate, introducing the unacceptable latency described in
the preceding paragraph.

[0170] Further, the video stream data rate sequence 624 shown in
Figure 6b is a very “tame” video stream data rate sequence and would be
the sort of data rate sequence that one would expect to result from
compressing the video from a video sequence that does not change very
much and has very little motion (e.g., as would be common in video
teleconferencing where the cameras are in a fixed position and have little
motion, and the objects, in the scene, e.g., seated people talking, show little
motion).

[0171] The video stream data rate sequence 634 shown in Figure 6¢
is a sequence typical to what one would expect to see from video with far
more action, such as might be generated in a motion picture or a video
game, or in some application software. Note that in addition to the | frame
peaks 633, there are also P frame peaks such as 635 and 636 that are quite
large and exceed the available max data rate on many occasions. Although
these P frame peaks are not quite as large as the | frame peaks, they still
are far too large to be carried by the channel at full data rate, and as with the
| frame peaks, they P frame peaks must be transmitted slowly (thereby
increasingly latency).

[0172] On a high bandwidth channel (e.g., a 100Mbps LAN, or a high
bandwidth 100Mbps private connection) the network would be able to
tolerate large peaks, such as | frame peaks 633 or P frame peaks 636, and
in principle, low latency could be maintained. But, such networks are

frequently shared amongst many users (e.g., in an office environment), and

65

WO 2010/111096 PCT/US2010/027716

such “peaky” data would impact the performance of the LAN, particularly if
the network traffic was routed to a private shared connection (e.g., from a
remote data center to an office). To start with, bear in mind that this
example is of a relatively low resolution video stream of 640x480 pixels at
60fps. HDTV streams of 1920x1080 at 60fps are readily handled by modern
computers and displays, and 2560x1440 resolution displays at 60fps are
increasingly available (e.g., Apple, Inc.’s 30” display). A high action video
sequence at 1920x1080 at 60fps may require 4.5 Mbps using H.264
compression for a reasonable quality level. If we assume the | frames peak
at 10X the nominal data rate, that would result in 45Mbps peaks, as well as
smaller, but still considerable, P frame peak. If several users were receiving
video streams on the same 100Mbps network (e.g., a private network
connection between an office and data center), it is easy to see how the
peaks from several users’ video stream could happen to align,
overwhelming the bandwidth of the network, and potentially overwhelming
the bandwidth of the backplanes of the switches supporting the users on the
network. Even in the case of a Gigabit Ethernet network, if enough users
had enough peaks aligned at once, it could overwhelm the network or the
network switches. And, once 2560x1440 resolution video becomes more
commonplace, the average video stream data rate may be 9.5Mbps,
resulting in perhaps a 95Mbps peak data rate. Needless to say, a 100Mbps
connection between a data center and an office (which today is an
exceptionally fast connection) would be completely swamped by the peak
traffic from a single user. Thus, even though LANs and private network
connections can be more tolerant of peaky streaming video, the streaming
video with high peaks is not desirable and might require special planning
and accommodation by an office’s IT department.

[0173] Of course, for standard linear video applications these issues
are not a problem because the data rate is “smoothed” at the point of
transmission and the data for each frame below the max available data rate

66

WO 2010/111096 PCT/US2010/027716

622, and a buffer in the client stores a sequence of |, P and B frames before
they are decompressed. Thus, the data rate over the network remains close
to the average data rate of the video stream. Unfortunately, this introduces
latency, even if B frames are not used, that is unacceptable for low-latency
applications such as video games and applications require fast response
time.

[0174] One prior art solution to mitigating video streams that have
high peaks is to use a technique often referred to as “Constant Bit Rate”
(CBR) encoding. Although the term CBR would seem to imply that all frames
are compressed to have the same bit rate (i.e., size), what it usually refers to
is a compression paradigm where a maximum bit rate across a certain
number of frames (in our case, 1 frame) is allowed. For example, in the
case of Figure 6c, if a CBR constraint were applied to the encoding that
limited the bit rate to, for example, 70% of the rated max data rate 621, then
the compression algorithm would limit the compression of each of the
frames so that any frame that would normally be compressed using more
than 70% of the rated max data rate 621 would be compressed with less
bits. The result of this is that frames that would normally require more bits to
maintain a given quality level would be “starved” of bits and the image
quality of those frames would be worse than that of other frames that do not
require more bits than the 70% of the rate max data rate 621. This approach
can produce acceptable results for certain types of compressed video where
there (a) little motion or scene changes are expected and (b) the users can
accept periodic quality degradation. A good example of a CBR-suited
application is video teleconferencing since there are few peaks, and if the
quality degrades briefly (for example, if the camera is panned, resulting in
significant scene motion and large peaks, during the panning there may not
be enough bits for high-quality image compression, which would result in
degraded image quality), it is acceptable for most users. Unfortunately,
CBR is not well-suited for many other applications which have scenes of

67

WO 2010/111096 PCT/US2010/027716

high complexity or a great deal of motion and/or where a reasonably
constant level of quality is required.

[0175] The low-latency compression logic 404 employed in one
embodiment uses several different techniques to address the range of
problems with streaming low-latency compressed video, while maintaining
high quality. First, the low-latency compression logic 404 generates only |
frames and P frames, thereby alleviating the need to wait several frame
times to decode each B frame. In addition, as illustrated in Figure 7a, in one
embodiment, the low-latency compression logic 404 subdivides each
uncompressed frame 701-760 into a series of “tiles” and individually
encodes each tile as either an | frame or a P frame. The group of
compressed | frames and P frames are referred to herein as “R frames” 711-
770. In the specific example shown in Figure 7a, each uncompressed frame
is subdivided into a 4 x 4 matrix of 16 tiles. However, these underlying
principles are not limited to any particular subdivision scheme.

[0176] In one embodiment, the low-latency compression logic 404
divides up the video frame into a number of tiles, and encodes (i.e.,
compresses) one tile from each frame as an | frame (i.e., the tile is
compressed as if it is a separate video frame of 1/16" the size of the full
image, and the compression used for this “mini” frame is | frame
compression) and the remaining tiles as P frames (i.e., the compression
used for each *mini” 1/16" frame is P frame compression). Tiles
compressed as | frames and as P frames shall be referred to as “I tiles” and
“P tiles”, respectively. With each successive video frame, the tile to be
encoded as an | tile is changed. Thus, in a given frame time, only one tile of
the tiles in the video frame is an | tile, and the remainder of the tiles are P
tiles. For example, in Figure 7a, tile 0 of uncompressed frame 701 is
encoded as | tile lp and the remaining 1-15 tiles are encoded as P tiles P4
through P45 to produce R frame 711. In the next uncompressed video frame
702, tile 1 of uncompressed frame 701 is encoded as | tile |, and the

68

WO 2010/111096 PCT/US2010/027716

remaining tiles 0 and 2 through 15 are encoded as P tiles, Py and P, through
Pis, to produce R frame 712. Thus, the | tiles and P tiles for tiles are
progressively interleaved in time over successive frames. The process
continues until a R tile 770 is generated with the last tile in the matrix
encoded as an | tile (i.e., l15). The process then starts over, generating
another R frame such as frame 711 (i.e., encoding an | tile for tile 0) etc.
Although not illustrated in Figure 7a, in one embodiment, the first R frame of
the video sequence of R frames contains only | tiles (i.e., so that subsequent
P frames have reference image data from which to calculate motion).
Alternatively, in one embodiment, the startup sequence uses the same | tile
pattern as normal, but does not include P tiles for those tiles that have not
yet been encoded with an | tile. In other words, certain tiles are not encoded
with any data until the first | tile arrives, thereby avoiding startup peaks in the
video stream data rate 934 in Figure 9a, which is explained in further detail
below. Moreover, as described below, various different sizes and shapes
may be used for the tiles while still complying with these underlying
principles.

[0177] The video decompression logic 412 running on the client 415
decompresses each tile as if it is a separate video sequence of small | and P
frames, and then renders each tile to the frame buffer driving display device
422. For example, lo and P, from R frames 711 to 770 are used to
decompress and render tile 0 of the video image. Similarly, |1 and P4 from R
frames 711 to 770 are used to reconstruct tile 1, and so on. As mentioned
above, decompression of | frames and P frames is well known in the art, and
decompression of | tiles and P tiles can be accomplished by having a
multiple instances of a video decompressor running in the client 415.
Although multiplying processes would seem to increase the computational
burden on client 415, it actually doesn'’t because the tile themselves are
proportionally smaller relative to the number of additional processes, so the

69

WO 2010/111096 PCT/US2010/027716

number of pixels displayed is the same as if there were one process and
using conventional full sized | and P frames.

[0178] This R frame technique significantly mitigates the bandwidth
peaks typically associated with | frames illustrated in Figures 6b and 6¢
because any given frame is mostly made up of P frames which are typically
smaller than | frames. For example, assuming again that a typical | frame is
160Kb, then the | tiles of each of the frames illustrated in Figure 7a would be
roughly 1/16 of this amount or 10Kb. Similarly, assuming that a typical P
frame is 16 Kb, then the P frames for each of the tiles illustrated in Figure 7a
may be roughly 1Kb The end result is an R frame of approximately 10Kb +
15 * 1Kb = 25Kb. So, each 60-frame sequence would be 25Kb * 60 =
1.5Mbps. So, at 60 frames/second, this would require a channel capable of
sustaining a bandwidth of 1.5Mbps, but with much lower peaks due to | tiles
being distributed throughout the 60-frame interval.

[0179] Note that in previous examples with the same assumed data
rates for | frames and P frames, the average data rate was 1.1Mbps. This is
because in the previous examples, a new | frame was only introduced once
every 60 frame times, whereas in this example, the 16 tiles that make up an
| frame cycle through in 16 frames times, and as such the equivalent of an |
frame is introduced every 16 frame times, resulting in a slightly higher
average data rate. In practice, though, introducing more frequent | frames
does not increase the data rate linearly. This is due to the fact that a P frame
(or a P tile) primarily encodes the difference from the prior frame to the next.
So, if the prior frame is quite similar to the next frame, the P frame will be
very small, if the prior frame is quite different from the next frame, the P
frame will be very large. But because a P frame is largely derived from the
previous frame, rather than from the actual frame, the resulting encoded
frame may contain more errors (e.g., visual artifacts) than an | frame with an
adequate number of bits. And, when one P frame follows another P frame,

what can occur is an accumulation of errors that gets worse when there is a

70

WO 2010/111096 PCT/US2010/027716

long sequence of P frames. Now, a sophisticated video compressor will
detect the fact that the quality of the image is degrading after a sequence of
P frames and, if necessary, it will allocate more bits to subsequent P frames
to bring up the quality or, if it is the most efficient course of action, replace a
P frame with an | frame. So, when long sequences of P frames are used
(e.g., 59 P frames, as in prior examples above) particularly when the scene
has a great deal of complexity and/or motion, typically, more bits are needed
for P frames as they get further removed from an | frame.

[0180] Or, to look at P frames from the opposite point of view, P
frames that closely follow an | frame tend to require less bits than P frames
that are further removed from an | frame. So, in the example shown in
Figure 7a, no P frame is further than 15 frames removed from an | frame
that precedes it, where as in the prior example, a P frame could be 59
frames removed from an | frame. Thus, with more frequent | frames, the P
frames are smaller. Of course, the exact relative sizes will vary based on
the nature of the video stream, but in the example of Figure 7a, if an | tile is
10Kb, P tiles on average, may be only 0.75kb in size resulting in 10Kb + 15~
0.75Kb = 21.25Kb, or at 60 frames per second, the data rate would be
21.25Kb * 60 = 1.3Mbps, or about 16% higher data rate than a stream with
an | frame followed by 59 P frames at 1.1Mbps. Once, again, the relative
results between these two approaches to video compression will vary
depending up on the video sequence, but typically, we have found
empirically that using R-frames require about 20% more bits for a given level
of quality than using | /P frame sequences. But, of course, R frames
dramatically reduce the peaks which make the video sequences usable with
far less latency than I/P frame sequences.

[0181] R frames can be configured in a variety of different ways,
depending upon the nature of the video sequence, the reliability of the
channel, and the available data rate. In an alternative embodiment, a
different number of tiles is used than 16 in a 4x4 configuration. For example

71

WO 2010/111096 PCT/US2010/027716

2 tiles may be used in a 2x1 or 1x2 configuration, 4 tiles may be used in a
2x2, 4x1 or 1x4 configuration, 6 tiles may be used in a 3x2, 2x3, 6x1 or 1x6
configurations or 8 tiles may be used in a 4x2 (as shown in Figure 7b), 2x4,
8x1 or 1x8 configuration. Note that the tiles need not be square, nor must
the video frame be square, or even rectangular. The tiles can be broken up
into whatever shape best suits the video stream and the application used.
[0182] In another embodiment, the cycling of the | and P tiles is not
locked to the number of tiles. For example, in an 8-tile 4x2 configuration, a
16-cycle sequence can still be used as illustrated in Figure 7b. Sequential
uncompressed frames 721, 722, 723 are each divided into 8 tiles, 0-7 and
each tile is compressed individually. From R frame 731, only tile O is
compressed as an | tile, and the remaining tiles are compressed as P tiles.
Far subsequent R frame 732 all of the 8 tiles are compressed as P tiles, and
then for subsequent R frame 733, tile 1 is compressed as an | tile and the
other tiles are all compressed as P tiles. And, so the sequencing continues
for 16 frames, with an | tile generated only every other frame, so the last |
tile is generated for tile 7 during the 15™ frame time (not shown in Figure 7b)
and during the 16" frame time R frame 780 is compressed using all P tiles.
Then, the sequence begins again with tile 0 compressed as an | tile and the
other tiles compressed as P tiles. As in the prior embodiment, the very first
frame of the entire video sequence would typically be all | tiles, to provide a
reference for P tiles from that point forward. The cycling of | tiles and P tiles
need not even be an even multiple of the number of tiles. For example, with
8 tiles, each frame with an | tile can be followed by 2 frames with all P tiles,
before another | tile is used. In yet another embodiment, certain tiles may be
sequenced with | tiles more often than other tiles if, for example, certain
areas of the screen are known to have more motion requiring from frequent |
tiles, while others are more static (e.g., showing a score for a game)
requiring less frequent | tiles. Moreover, although each frame is illustrated in
Figures 7a-b with a single | tile, multiple | tiles may be encoded in a single

72

WO 2010/111096 PCT/US2010/027716

frame (depending on the bandwidth of the transmission channel).
Conversely, certain frames or frame sequences may be transmitted with no |
tiles (i.e., only P tiles).

[0183] The reason the approaches of the preceding paragraph works
well is that while not having | tiles distributed across every single frame
would seem to be result in larger peaks, the behavior of the system is not
that simple. Since each tile is compressed separately from the other tiles, as
the tiles get smaller the encoding of each tile can become less efficient,
because the compressor of a given tile is not able to exploit similar image
features and similar motion from the other tiles. Thus, dividing up the screen
into 16 tiles generally will result in a less efficient encoding than dividing up
the screen into 8 tiles. But, if the screen is divided into 8 tiles and it causes
the data of a full | frame to be introduced every 8 frames instead of every 16
frames, it results in a much higher data rate overall. So, by introducing a full
| frame every 16 frames instead of every 8 frames, the overall data rate is
reduced. Also, by using 8 larger tiles instead of 16 smaller tiles, the overall
data rate is reduced, which also mitigates to some degree the data peaks
caused by the larger tiles.

[0184] In another embodiment, the low-latency video compression
logic 404 in Figures 7a and 7b controls the allocation of bits to the various
tiles in the R frames either by being pre-configured by settings, based on
known characteristics of the video sequence to be compressed, or
automatically, based upon an ongoing analysis of the image quality in each
tile. For example, in some racing video games, the front of the player’s car
(which is relatively motionless in the scene) takes up a large part of the
lower half of the screen, whereas the upper half of the screen is entirely
filled with the oncoming roadway, buildings and scenery, which is almost
always in motion. If the compression logic 404 allocates an equal number of
bits to each tile, then the tiles on the bottom half of the screen (tiles 4-7) in
uncompressed frame 721 in Figure 7b, will generally be compressed with

73

WO 2010/111096 PCT/US2010/027716

higher quality than tiles than the tiles in the upper half of the screen (tiles 0-
3) in uncompressed frame 721 in Figure 7b. If this particular game, or this
particular scene of the game is known to have such characteristics, then the
operators of the hosting service 210 can configure the compression logic
404 to allocate more bits to the tiles in the top of the screen than to tiles at
the bottom of the screen. Or, the compression logic 404 can evaluate the
quality of the compression of the tiles after frames are compressed (using
one or more of many compression quality metrics, such as Peak Signal-To-
Noise Ratio (PSNR)) and if it determines that over a certain window of time,
certain tiles are consistently producing better quality results, then it gradually
allocates more bits to tiles that are producing lower quality results, until the
various tiles reach a similar level of quality. In an alternative embodiment,
the compressor logic 404 allocates bits to achieve higher quality in a
particular tile or group of tiles. For example, it may provide a better overall
perceptual appearance to have higher quality in the center of the screen
than at the edges.

[0185] In one embodiment, to improve resolution of certain regions of
the video stream, the video compression logic 404 uses smaller tiles to
encode areas of the video stream with relatively more scene complexity
and/or motion than areas of the video stream with relatively less scene
complexity and/or motion. For example, as illustrated in Figure 8, smaller
tiles are employed around a moving character 805 in one area of one R
frame 811 (potentially followed by a series of R frames with the same tile
sizes (not shown)). Then, when the character 805 moves to a new area of
the image, smaller tiles are used around this new area within another R
frame 812, as illustrated. As mentioned above, various different sizes and
shapes may be employed as “tiles” while still complying with these
underlying principles.

[0186] While the cyclic I/P tiles described above substantially reduce
the peaks in the data rate of a video stream, they do not eliminate the peaks

74

WO 2010/111096 PCT/US2010/027716

entirely, particularly in the case of rapidly-changing or highly complex video
imagery, such as occurs with motion pictures, video games, and some
application software. For example, during a sudden scene transition, a
complex frame may be followed by another complex frame that is
completely different. Even though several | tiles may have preceded the
scene transition by only a few frame times, they don’t help in this situation
because the new frame’s material has no relation to the previous | tiles. In
such a situation (and in other situations where even though not everything
changes, much of the image changes), the video compressor 404 will
determine that many, if not all, of the P tiles are more efficiently coded as |
tiles, and what results is a very large peak in the data rate for that frame.
[0187] As discussed previously, it is simply the case that with most
consumer-grade Internet connections (and many office connections), it
simply is not feasible to “jam” data that exceeds the available maximum data
rate shown as 622 in Figure 6¢, along with the rated maximum data rate
621. Note that the rated maximum data rate 621 (e.g., “6Mbps DSL”) is
essentially a marketing number for users considering the purchase of an
Internet connection, but generally it does not guarantee a level of
performance. For the purposes of this application, it is irrelevant, since our
only concern is the available maximum data rate 622 at the time the video is
streamed through the connection. Consequently, in Figures 9a and 9c, as
we describe a solution to the peaking problem, the rated maximum data rate
is omitted from the graph, and only the available maximum data rate 922 is
shown. The video stream data rate must not exceed the available maximum
data rate 922.

[0188] To address this, the first thing that the video compressor 404
does is determine a peak data rate 941, which is a data rate the channel is
able to handle steadily. This rate can be determined by a number of
techniques. One such technique is by gradually sending an increasingly
higher data rate test stream from the hosting service 210 to the client 415 in

75

WO 2010/111096 PCT/US2010/027716

Figures 4a and 4b, and having the client provide feedback to the hosting
service as to the level of packet loss and latency. As the packet loss and/or
latency begins to show a sharp increase, that is an indication that the
available maximum data rate 922 is being reached. After that, the hosting
service 210 can gradually reduce the data rate of the test stream until the
client 415 reports that for a reasonable period of time the test stream has
been received with an acceptable level of packet loss and the latency is
near minimal. This establishes a peak maximum data rate 941, which will
then be used as a peak data rate for streaming video. Over time, the peak
data rate 941 will fluctuate (e.g., if another user in a household starts to
heavily use the Internet connection), and the client 415 will need to
constantly monitor it to see whether packet loss or latency increases,
indicating the available max data rate 922 is dropping below the previously
established peak data rate 941, and if so the peak data rate 941. Similarly, if
over time the client 415 finds that the packet loss and latency remain at
optimal levels, it can request that the video compressor slowly increases the
data rate to see whether the available maximum data rate has increased
(e.g., if another user in a household has stopped heavy use of the Internet
connection), and again waiting until packet loss and/or higher latency
indicates that the available maximum data rate 922 has been exceeded, and
again a lower level can be found for the peak data rate 941, but one that is
perhaps higher than the level before testing an increased data rate. So, by
using this technique (and other techniques like it) a peak data rate 941 can
be found, and adjusted periodically as needed. The peak data rate 941
establishes the maximum data rate that can be used by the video
compressor 404 to stream video to the user. The logic for determining the
peak data rate may be implemented at the user premises 211 and/or on the
hosting service 210. At the user premises 211, the client device 415
performs the calculations to determine the peak data rate and transmits this
infarmation back to the hosting service 210; at the hosting service 210, a

76

WO 2010/111096 PCT/US2010/027716

server 402 at the hosting service performs the calculations to determine the
peak data rate based on statistics received from the client 415 (e.g., packet
loss, latency, max data rate, etc).

[0189] Figure 9a shows an example video stream data rate 934 that
has substantial scene complexity and/or motion that has been generated
using the cyclic I/P tile compression techniques described previously and
illustrated in Figures 7a, 7b and 8. The video compressor 404 has been
configured to output compressed video at an average data rate that is below
the peak data rate 941, and note that, most of the time, the video stream
data rate remains below the peak data rate 941. A comparison of data rate
934 with video stream data rate 634 shown in Figure 6c created using I/P/B
or I/P frames shows that the cyclic I/P tile compression produces a much
smoother data rate. Still, at frame 2x peak 952 (which approaches 2x the
peak data rate 942) and frame 4x peak 954 (which approaches 4x the peak
data rate 944), the data rate exceeds the peak data rate 941, which is
unacceptable. In practice, even with high action video from rapidly changing
video games, peaks in excess of peak data rate 941 occur in less than 2%
of frames, peaks in excess of 2x peak data rate 942 occur rarely, and peaks
in excess of 3x peak data rate 943 occur hardly ever. But, when they do
occur (e.g., during a scene transition), the data rate required by them is
necessary to produce a good quality video image.

[0190] One way to solve this problem is simply to configure the video
compressor 404 such that its maximum data rate output is the peak data
rate 941. Unfortunately, the resulting video output quality during the peak
frames is poor since the compression algorithm is “starved” for bits. What
results is the appearance of compression artifacts when there are sudden
transitions or fast motion, and in time, the user comes to realize that the
artifacts always crop up when there is sudden changes or rapid motion, and

they can become quite annoying.

77

WO 2010/111096 PCT/US2010/027716

[0191] Although the human visual system is quite sensitive to visual
artifacts that appear during sudden changes or rapid motion, it is not very
sensitive to detecting a reduction in frame rate in such situations. In fact,
when such sudden changes occur, it appears that the human visual system
is preoccupied with tracking the changes, and it doesn't notice if the frame
rate briefly drops from 60fps to 30fps, and then returns immediately to 60fps.
And, in the case of a very dramatic transition, like a sudden scene change,
the human visual system doesn'’t notice if the frame rate drops to 20fps or
even 15fps, and then immediately returns to 60fps. So long as the frame
rate reduction only occurs infrequently, to a human observer, it appears that
the video has been continuously running at 60fps.

[0192] This property of the human visual system is exploited by the
techniques illustrated in Figure 9b. A server 402 (from Figures 4a and 4b)
produces an uncompressed video output stream at a steady frame rate (at
60fps in one embodiment). A timeline shows each frame 961-970 output
each 1/60" second. Each uncompressed video frame, starting with frame
961, is output to the low-latency video compressor 404, which compresses
the frame in less than a frame time, producing for the first frame
compressed frame 1 981. The data produced for the compressed frame 1
981 may be larger or smaller, depending upon many factors, as previously
described. If the data is small enough that it can be transmitted to the client
415 in a frame time (1/60™ second) or less at the peak data rate 941, then it
is transmitted during transmit time (xmit time) 991 (the length of the arrow
indicates the duration of the transmit time). In the next frame time, server
402 produces uncompressed frame 2 962, it is compressed to compressed
frame 2 982, and it is transmitted to client 415 during transmit time 992,
which is less than a frame time at peak data rate 941.

[0193] Then, in the next frame time, server 402 produces
uncompressed frame 3 963. When it is compressed by video compressor
404, the resulting compressed frame 3 983 is more data than can be

78

WO 2010/111096 PCT/US2010/027716

transmitted at the peak data rate 941 in one frame time. So, it is transmitted
during transmit time (2x peak) 993, which takes up all of the frame time and
part of the next frame time. Now, during the next frame time, server 402
produces another uncompressed frame 4 964 and outputs it to video
compressor 404 but the data is ignored and illustrated with 974. This is
because video compressor 404 is configured to ignore further
uncompressed video frames that arrive while it is still transmitting a prior
compressed frame. Of course client 415's video decompressor will fail to
receive frame 4, but it simply continues to display on display device 422
frame 3 for 2 frame times (i.e., briefly reduces the frame rate from 60fps to
30fps).

[0194] For the next frame 5, server 402 outputs uncompressed frame
5 965, is compressed to compressed frame 5 985 and transmitted within 1
frame during transmit time 995. Client 415’s video decompressor
decompresses frame 5 and displays it on display device 422. Next, server
402 outputs uncompressed frame 6 966, video compressor 404 compresses
it to compressed frame 6 986, but this time the resulting data is very large.
The compressed frame is transmitted during transmit time (4x peak) 996 at
the peak data rate 941, but it takes almost 4 frame times to transmit the
frame. During the next 3 frame times, video compressor 404 ignores 3
frames from server 402, and client 415’s decompressor holds frame 6
steadily on the display device 422 for 4 frames times (i.e., briefly reduces
the frame rate from 60fps to 15fps). Then finally, server 402 outputs frame
10 970, video compressor 404 compresses it into compressed frame 10
987, and it is transmitted during transmit time 997, and client 415's
decompressor decompresses frame 10 and displays it on display device 422
and once again the video resumes at 60fps.

[0195] Note that although video compressor 404 drops video frames
from the video stream generated by server 402, it does not drop audio data,

regardless of what form the audio comes in, and it continues to compress

79

WO 2010/111096 PCT/US2010/027716

the audio data when video frames are dropped and transmit them to client
415, which continues to decompress the audio data and provide the audio to
whatever device is used by the user to playback the audio. Thus audio
continues unabated during periods when frames are dropped. Compressed
audio consumes a relatively small percentage of bandwidth, compared to
compressed video, and as result does not have a major impact on the
overall data rate. Although it is not illustrated in any of the data rate
diagrams, there is always data rate capacity reserved for the compressed
audio stream within the peak data rate 941.

[0196] The example just described in Figure 9b was chosen to
illustrate how the frame rate drops during data rate peaks, but what it does
not illustrate is that when the cyclic I/P tile techniques described previously
are used, such data rate peaks, and the consequential dropped frames are
rare, even during high scene complexity/high action sequences such as
those that occur in video games, motion pictures and some application
software. Consequently, the reduced frame rates are infrequent and brief,
and the human visual system does not detect them.

[0197] If the frame rate reduction mechanism just described is applied
to the video stream data rate illustrated in Figure 9a, the resulting video
stream data rate is illustrated in Figure 9c. In this example, 2x peak 952 has
been reduced to flattened 2x peak 953, and 4x peak 955 has been reduced
to flattened 4x peak 955, and the entire video stream data rate 934 remains
at or below the peak data rate 941.

[0198] Thus, using the techniques described above, a high action
video stream can be transmitted with low latency through the general
Internet and through a consumer-grade Internet connection. Further, in an
office environment on a LAN (e.g., 100Mbs Ethernet or 802.11g wireless) or
on a private network (e.g., 100Mbps connection between a data center an
offices) a high action video stream can be transmitted without peaks so that
multiple users (e.g., transmitting 1920x1080 at 60fps at 4.5Mbps) can use

80

WO 2010/111096 PCT/US2010/027716

the LAN or shared private data connection without having overlapping peaks
overwhelming the network or the network switch backplanes.

[0199] DATA RATE ADJUSTMENT

[0200] In one embodiment, the hosting service 210 initially assesses
the available maximum data rate 622 and latency of the channel to
determine an appropriate data rate for the video stream and then
dynamically adjusts the data rate in response. To adjust the data rate, the
hosting service 210 may, for example, modify the image resolution and/or
the number of frames/second of the video stream to be sent to the client
415. Also, the hosting service can adjust the quality level of the compressed
video. When changing the resolution of the video stream, e.g., from a 1280
x 720 resolution to a 640 x 360 the video decompression logic 412 on the
client 415 can scale up the image to maintain the same image size on the
display screen.

[0201] In one embodiment, in a situation where the channel
completely drops out, the hosting service 210 pauses the game. In the case
of a multiplayer game, the hosting service reports to the other users that the
user has dropped out of the game and/or pauses the game for the other

users.
[0202] DROPPED OR DELAYED PACKETS
[0203] In one embodiment, if data is lost due to packet loss between

the video compressor 404 and client 415 in Figures 4a or 4b, or due to a
packet being received out of order that arrives too late to decompress and
meet the latency requirements of the decompressed frame, the video
decompression logic 412 is able to mitigate the visual artifacts. In a
streaming I/P frame implementation, if there is a lost/delayed packet, the
entire screen is impacted, potentially causing the screen to completely
freeze for a period of time or show other screen-wide visual artifacts. For
example, if a lost/delayed packet causes the loss of an | frame, then the
decompressor will lack a reference for all of the P frames that follow until a

81

WO 2010/111096 PCT/US2010/027716

new | frame is received. If a P frame is lost, then it will impact the P frames
for the entire screen that follow. Depending on how long it will be before an |
frame appears, this will have a longer or shorter visual impact. Using
interleaved I/P tiles as shown in Figures 7a and 7b, a lost/delayed packet is
much less likely to impact the entire screen since it will only affect the tiles
contained in the affected packet. If each tile’s data is sent within an
individual packet, then if a packet is lost, it will only affect one tile. Of course,
the duration of the visual artifact will depend on whether an | tile packet is
lost and, if a P tile is lost, how many frames it will take until an | tile appears.
But, given that different tiles on the screen are being updated with | frames
very frequently (potentially every frame), even if one tile on the screen is
affected, other tiles may not be. Further, if some event cause a loss of
several packets at once (e.g., a spike in power next to a DSL line that briefly
disrupts the data flow), then some of the tiles will be affected more than
others, but because some tiles will quickly be renewed with a new | tile, they
will be only briefly affected. Also, with a streaming I/P frame implementation,
not only are the | frames the most critical frame, but the | frames are
extremely large, so if there is an event that causes a dropped/delayed
packet, there is a higher probability that an | frame will be affected (i.e., if
any part of an | frame is lost, it is unlikely that the | frame can be
decompressed at all) than a much smaller | tile. For all of these reasons,
using I/P tiles results in far fewer visual artifacts when packets are
dropped/delayed than with I/P frames.

[0204] One embodiment attempts to reduce the effect of lost packets
by intelligently packaging the compressed tiles within the TCP (transmission
control protocol) packets or UDP (user datagram protocol) packets. For
example, in one embodiment, tiles are aligned with packet boundaries
whenever possible. Figure 10a illustrates how tiles might be packed within a
series of packets 1001-1005 without implementing this feature. Specifically,
in Figure 10a, tiles cross packet boundaries and are packed inefficiently so

82

WO 2010/111096 PCT/US2010/027716

that the loss of a single packet results in the loss of multiple frames. For
example, if packets 1003 or 1004 are lost, three tiles are lost, resulting in
visual artifacts.

[0205] By contrast, Figure 10b illustrates tile packing logic 1010 for
intelligently packing tiles within packets to reduce the effect of packet loss.
First, the tile packing logic 1010 aligns tiles with packet boundaries. Thus,
tiles T1, T3, T4, T7, and T2 are aligned with the boundaries of packets
1001-1005, respectively. The tile packing logic also attempts to fit tiles
within packets in the most efficient manner possible, without crossing packet
boundaries. Based on the size of each of the tiles, tiles T1 and T6 are
combined in one packet 1001; T3 and T5 are combined in one packet 1002;
tiles T4 and T8 are combined in one packet 1003; tile T8 is added to packet
1004; and tile T2 is added to packet 1005. Thus, under this scheme, a
single packet loss will result in the loss of no more than 2 tiles (rather than 3
tiles as illustrated in Figure 10a).

[0206] One additional benefit to the embodiment shown in Figure 10b
is that the tiles are transmitted in a different order in which they are
displayed within the image. This way, if adjacent packets are lost from the
same event interfering with the transmission it will affect areas which are not
near each other on the screen, creating a less noticeable artifacting on the
display.

[0207] One embodiment employs forward error correction (FEC)
techniques to protect certain portions of the video stream from channel
errors. As is known in the art, FEC techniques such as Reed-Solomon and
Viterbi generate and append error correction data information to data
transmitted over a communications channel. If an error occurs in the
underlying data (e.g., an | frame), then the FEC may be used to correct the
error.

[0208] FEC codes increase the data rate of the transmission, so

ideally, they are only used where they are most needed. If data is being

33

WO 2010/111096 PCT/US2010/027716

sent that would not result in a very noticeable visual artifact, it may be
preferable to not use FEC codes to protect the data. For example, a P tile
that immediately precedes an | tile that is lost will only create a visual artifact
(i.e., on tile on the screen will not be updated) for 1/60" of second on the
screen. Such a visual artifact is barely detectable by the human eye. As P
tiles are further back from an | tile, losing a P tile becomes increasingly more
noticeable. For example, if a tile cycle pattern is an | tile followed by 15 P
tiles before an | tile is available again, then if the P tile immediately following
an | tile is lost, it will result in that tile showing an incorrect image for 15
frame times (at 60 fps, that would be 250ms). The human eye will readily
detect a disruption in a stream for 250ms. So, the further back a P tile is
from a new | tile (i.e., the closer a P tiles follows an | tile), the more
noticeable the artifact. As previously discussed, though, in general, the
closer a P tile follows an | tile, the smaller the data for that P tile. Thus, P
tiles following | tiles not only are more critical to protect from being lost, but
they are smaller in size. And, in general, the smaller the data is that needs
to be protected, the smaller the FEC code needs to be to protect it.

[0209] So, as illustrated in Figure 11a, in one embodiment, because
of the importance of | tiles in the video stream, only | tiles are provided with
FEC codes. Thus, FEC 1101 contains error correction code for | tile 1100
and FEC 1104 contains error correction code for | tile 1103. In this
embodiment, no FEC is generated for the P tiles.

[0210] In one embodiment illustrated in Figure 11b FEC codes are
also generated for P tiles which are most likely to cause visual artifacts if
lost. In this embodiment, FECs 1105 provide error correction codes for the
first 3 P tiles, but not for the P tiles that follow. In another embodiment, FEC
codes are generated for P tiles which are smallest in data size (which will
tend to self-select P tiles occurring the soonest after an | tile, which are the
most critical to protect).

R

WO 2010/111096 PCT/US2010/027716

[0211] In another embodiment, rather than sending an FEC code with
a tile, the tile is transmitted twice, each time in a different packet. If one
packet is lost/delayed, the other packet is used.

[0212] In one embodiment, shown in Figure 11¢, FEC codes 1111
and 1113 are generated for audio packets, 1110 and 1112, respectively,
transmitted from the hosting service concurrently with the video. Itis
particularly important to maintain the integrity of the audio in a video stream
because distorted audio (e.g., clicking or hissing) will result in a particularly
undesirable user experience. The FEC codes help to ensure that the audio
content is rendered at the client computer 415 without distortion.

[0213] In another embodiment, rather than sending an FEC code with
audio data, the audio data is transmitted twice, each time in a different
packet. If one packet is lost/delayed, the other packet is used.

[0214] In addition, in one embodiment illustrated in Figure 11d, FEC
codes 1121 and 1123 are used for user input commands 1120 and 1122,
respectively (e.g., button presses) transmitted upstream from the client 415
to the hosting service 210. This is important because missing a button
press or a mouse movement in a video game or an application could result
in an undesirable user experience.

[0215] In another embodiment, rather than sending an FEC code with
user input command data, the user input command data is transmitted twice,
each time in a different packet. If one packet is lost/delayed, the other
packet is used.

[0216] In one embodiment, the hosting service 210 assesses the
quality of the communication channel with the client 415 to determine
whether to use FEC and, if so, what portions of the video, audio and user
commands to which FEC should be applied. Assessing the “quality” of the
channel may include functions such as evaluating packet loss, latency, etc,
as described above. If the channel is particularly unreliable, then the
hosting service 210 may apply FEC to all of | tiles, P tiles, audio and user

85

WO 2010/111096 PCT/US2010/027716

commands. By contrast, if the channel is reliable, then the hosting service
210 may apply FEC only to audio and user commands, or may not apply
FEC to audio or video, or may not use FEC at all. Various other
permutations of the application of FEC may be employed while still
complying with these underlying principles. In one embodiment, the hosting
service 210 continually monitors the conditions of the channel and changes
the FEC policy accordingly.

[0217] In another embodiment, referring to Figures 4a and 4b, when a
packet is lost/delayed resulting in the loss of tile data or if, perhaps because
of a particularly bad packet loss, the FEC is unable to correct lost tile data,
the client 415 assesses how many frames are left before a new | tile will be
received and compares it to the round-trip latency from the client 415 to
hosting service 210. If the round-trip latency is less than the number of
frames before a new | tile is due to arrive, then the client 415 sends a
message to the hosting service 210 requesting a new | tile. This message is
routed to the video compressor 404, and rather than generating a P tile for
the tile whose data had been lost, it generates an | tile. Given that the
system shown in Figs. 4a and 4b is designed to provide a round-trip latency
that is typically less than 80ms, this results in a tile being corrected within
80ms (at 60fps, frames are 16.67ms of duration, thus in full frame times,
80ms latency would result in a corrected a tile within 83.33ms, which is 5
frame times—a noticeable disruption, but far less noticeable than, for
example, a 250ms disruption for 15 frames). When the compressor 404
generates such an | tile out of its usual cyclic order, if the | tile would cause
the bandwidth of that frame to exceed the available bandwidth, then the
compressor 404 will delay the cycles of the other tiles so that the other tiles
receive P tiles during that frame time (even if one tile would normally be due
an | tile during that frame), and then starting with the next frame the usual
cycling will continue, and the tile that normally would have received an | tile
in the preceding frame will receive an | tile. Although this action briefly

86

WO 2010/111096 PCT/US2010/027716

delays the phase of the R frame cycling, it normally will not be noticeable

visually.

[0218] VIDEO AND AUDIO COMPRESSOR/DECOMPRESSOR
IMPLEMENTATION

[0219] Figure 12 illustrates one particular embodiment in which a

multi-core and/or multi-processor 1200 is used to compress 8 tiles in
parallel. In one embodiment, a dual processor, quad core Xeon CPU
computer system running at 2.66 GHz or higher is used, with each core
implementing the open source x264 H.264 compressor as an independent
process. However, various other hardware/software configurations may be
used while still complying with these underlying principles. For example,
each of the CPU cores can be replaced with an H.264 compressor
implemented in an FPGA. In the example shown in Figure 12, cores 1201-
1208 are used to concurrently process the | tiles and P tiles as eight
independent threads. As is well known in the art, current multi-core and
multi-processor computer systems are inherently capable of multi-threading
when integrated with multi-threading operating systems such as Microsoft
Windows XP Professional Edition (either 64-bit or the 32-bit edition) and
Linux.

[0220] In the embodiment illustrated in Figure 12, since each of the 8
cores is responsible for just one tile, it operates largely independently from
the other cores, each running a separate instantiation of x264. A PCI
Express x1-based DVI capture card, such as the Sendero Video Imaging IP
Development Board from Microtronix of Oosterhout, The Netherlands is
used to capture uncompressed video at 640x480, 800x600, or 1280x720
resolution, and the FPGA on the card uses Direct Memory Access (DMA) to
transfer the captured video through the DVI bus into system RAM. The tiles
are arranged in a 4x2 arrangement 1205 (although they are illustrated as
square tiles, in this embodiment they are of 160x240 resolution). Each
instantiation of x264 is configured to compress one of the 8 160x240 tiles,

87

WO 2010/111096 PCT/US2010/027716

and they are synchronized such that, after an initial | tile compression, each
core enters into a cycle, each one frame out of phase with the other, to
compress one | tile followed by seven P tiles, and illustrated in Figure 12.
[0221] Each frame time, the resulting compressed tiles are combined
into a packet stream, using the techniques previously described, and then
the compressed tiles are transmitted to a destination client 415.

[0222] Although not illustrated in Figure 12, if the data rate of the
combined 8 tiles exceeds a specified peak data rate 941, then all 8 x264
processes are suspended for as many frame times as are necessary until
the data for the combined 8 tiles has been transmitted.

[0223] In one embodiment, client 415 is implemented as software on
a PC running 8 instantiations of FFmpeg. A receiving process receives the
8 tiles, and each tile is routed to an FFmpeg instantiation, which
decompresses the tile and renders it to an appropriate tile location on the
display device 422.

[0224] The client 415 receives keyboard, mouse, or game controller
input from the PC’s input device drivers and transmits it to the server 402.
The server 402 then applies the received input device data and applies it to
the game or application running on the server 402, which is a PC running
Windows using an Intel 2.16GHz Core Duo CPU. The server 402 then
produces a new frame and outputs it through its DVI output, either from a
motherboard-based graphics system, or through a NVIDIA 8800GTX PCI
Express card's DVI output.

[0225] Simultaneously, the server 402 outputs the audio produced by
game or applications through its digital audio output (e.g., S/PDIF), which is
coupled to the digital audio input on the dual quad-core Xeon-based PC that
is implementing the video compression. A Vorbis open source audio
compressor is used to compress the audio simultaneously with the video
using whatever core is available for the process thread. In one embodiment,
the core that completes compressing its tile first executes the audio

38

WO 2010/111096 PCT/US2010/027716

compression. The compressed audio is then transmitted along with the
compressed video, and is decompressed on the client 415 using a Vorbis
audio decompressor.

[0226] HOSTING SERVICE SERVER CENTER DISTRIBUTION

[0227] Light through glass, such as optical fiber, travels at some
fraction of the speed of light in a vacuum, and so an exact propagation
speed for light in optical fiber could be determined. But, in practice, allowing
time for routing delays, transmission inefficiencies, and other overhead, we
have observed that optimal latencies on the Internet reflect transmission
speeds closer to 50% the speed of light. Thus, an optimal 1000 mile round
trip latency is approximately 22ms, and an optimal 3000 mile round trip
latency is about 64ms. Thus, a single server on one US coast will be too far
away to serve clients on the other coast (which can be as far as 3000 miles
away) with the desired latency. However, as illustrated in Figure 13a, if the
hosting service 210 server center 1300 is located in the center of the US
(e.g., Kansas, Nebraska, etc.), such that the distance to any point in the
continental US is approximately 1500 miles or less, the round trip Internet
latency could be as low as 32 ms. Referring to Figure 4b, note that although
the worst-case latencies allowed for the user ISP 453 is 25ms, typically, we
have observed latencies closer to 10-15ms with DSL and cable modem
systems. Also, Figure 4b assumes a maximum distance from the user
premises 211 to the hosting center 210 of 1000 miles. Thus, with a typical
user ISP round trip latency of 15ms used and a maximum Internet distance
of 1500 miles for a round trip latency of 32ms, the total round trip latency
from the point a user actuates input device 421 and sees a response on
display device 422 is 1+1+15+32+1+16+6+8 = 80ms. So, the 80ms
response time can be typically achieved over an Internet distance of 1500
miles. This would allow any user premises with a short enough user ISP
latency 453 in the continental US to access a single server center that is
centrally located.

89

WO 2010/111096 PCT/US2010/027716

[0228] In another embodiment, illustrated in Figure 13b, the hosting
service 210 server centers, HS1-HS6, are strategically positioned around
the United States (or other geographical region), with certain larger hosting
service server centers positioned close to high population centers (e.g., HS2
and HS5). In one embodiment, the server centers HS1-HS6 exchange
information via a network 1301 which may be the Internet or a private
network or a combination of both. With multiple server centers, services can
be provided at lower latency to users that have high user ISP latency 453.
[0229] Although distance on the Internet is certainly a factor that
contributes to round trip latency through the Internet, sometimes other
factors come into play that are largely unrelated to latency. Sometimes a
packet stream is routed through the Internet to a far away location and back
again, resulting in latency from the long loop. Sometimes there is routing
equipment on the path that is not operating properly, resulting in a delay of
the transmission. Sometimes there is a traffic overloading a path which
introduces delay. And, sometimes, there is a failure that prevents the user’s
ISP from routing to a given destination at all. Thus, while the general
Internet usually provides connections fram ane point to another with a fairly
reliable and optimal route and latency that is largely determined by distance
(especially with long distance connections that result in routing outside of
the user’s local area) such reliability and latency is by no means guaranteed
and often cannot be achieved from a user’s premises to a given destination
on the general Internet.

[0230] In one embodiment, when a user client 415 initially connects to
the hosting service 210 to play a video game or use an application, the client
communicates with each of the hosting service server centers HS1-HS6
available upon startup (e.g., using the techniques described above). If the
latency is low enough for a particular connection, then that connection is
used. In one embodiment, the client communicates with all, or a subset, of

the hosting service server centers and the one with the lowest latency

90

WO 2010/111096 PCT/US2010/027716

connection is selected. The client may select the service center with the
lowest latency connection or the service centers may identify the one with
the lowest latency connection and provide this information (e.g., in the form
of an Internet address) to the client.

[0231] If a particular hosting service server center is overloaded
and/or the user’'s game or application can tolerate the latency to another,
less loaded hosting service server center, then the client 415 may be
redirected to the other hosting service server center. In such a situation, the
game or application the user is running would be paused on the server 402
at the user’s overloaded server center, and the game or application state
data would be transferred to a server 402 at another hosting service server
center. The game or application would then be resumed. In one
embodiment, the haosting service 210 would wait until the game or
application has either reached a natural pausing point (e.g., between levels
in a game, or after the user initiates a “save” operation in application) to do
the transfer. In yet another embodiment, the hosting service 210 would wait
until user activity ceases for a specified period of time (e.g., 1 minute) and
then would initiate the transfer at that time.

[0232] As described above, in one embodiment, the hosting service
210 subscribes to an Internet bypass service 440 of Figure 14 to attempt to
provide guaranteed latency to its clients. Internet bypass services, as used
herein, are services that provide private network routes from one point to
another on the Internet with guaranteed characteristics (e.g., latency, data
rate, etc.). For example, if the hosting service 210 was receiving large
amount of traffic from users using AT&T’s DSL service offering in San
Francisco, rather than routing to AT&T's San Francisco-based central
offices, the hosting service 210 could lease a high-capacity private data
connection from a service provider (perhaps AT&T itself or another provider)
between the San Francisco-based central offices and one or more of the
server centers for hosting service 210. Then, if routes from all hosting

91

WO 2010/111096 PCT/US2010/027716

service server centers HS1-HS6 through the general Internet to a user in
San Francisco using AT&T DSL result in too high latency, then private data
connection could be used instead. Although private data connections are
generally more expensive than the routes through the general Internet, so
long as they remain a small percentage of the hosting service 210
connections to users, the overall cost impact will be low, and users will
experience a more consistent service experience.

[0233] Server centers often have two layers of backup power in the
event of power failure. The first layer typically is backup power from
batteries (or from an alternative immediately available energy source, such a
flywheel that is kept running and is attached to a generator), which provides
power immediately when the power mains fail and keeps the server center
running. If the power failure is brief, and the power mains return quickly
(e.g., within a minute), then the batteries are all that is needed to keep the
server center running. But if the power failure is for a longer period of time,
then typically generators (e.g., diesel-powered) are started up that take over
for the batteries and can run for as long as they have fuel. Such generators
are extremely expensive since they must be capable of producing as much
power as the server center normally gets from the power mains.

[0234] In one embodiment, each of the hosting services HS1-HS5
share user data with one another so that if one server center has a power
failure, it can pause the games and applications that are in process, and
then transfer the game or application state data from each server 402 to
servers 402 at other server centers, and then will notify the client 415 of
each user to direct it communications to the new server 402. Given that
such situations occur infrequently, it may be acceptable to transfer a user to
a hosting service server center which is not able to provide optimal latency
(i.e., the user will simply have to tolerate higher latency for the duration of
the power failure), which will allow for a much wider range of options for

transferring users. For example, given the time zone differences across the

92

WO 2010/111096 PCT/US2010/027716

US, users on the East Coast may be going to sleep at 11:30PM while users
on the West Coast at 8:30PM are starting to peak in video game usage. If
there is a power failure in a hosting service server center on the West Coast
at that time, there may not be enough West Coast servers 402 at other
hosting service server centers to handle all of the users. In such a situation,
some of the users can be transferred to hosting service server centers on
the East Coast which have available servers 402, and the only consequence
to the users would be higher latency. Once the users have been transferred
from the server center that has lost power, the server center can then
commence an orderly shutdown of its servers and equipment, such that all
of the equipment has been shut down before the batteries (or other
immediate power backup) is exhausted. In this way, the cost of a generator
for the server center can be avoided.

[0235] In one embodiment, during times of heavy loading of the
hosting service 210 (either due to peak user loading, or because one or
more server centers have failed) users are transferred to other server
centers on the basis of the latency requirements of the game or application
they are using. So, users using games or applications that require low
latency would be given preference to available low latency server
connections when there is a limited supply.

[0236] HoSTING SERVICE FEATURES

[0237] Figure 15 illustrates an embodiment of components of a server
center for hosting service 210 utilized in the following feature descriptions.
As with the hosting service 210 illustrated in Figure 2a, the components of
this server center are controlled and coordinated by a hosting service 210
control system 401 unless otherwise qualified.

[0238] Inbound internet traffic 1501 from user clients 415 is directed
to inbound routing 1502. Typically, inbound internet traffic 1501 will enter the
server center via a high-speed fiber optic connection to the Internet, but any
network connection means of adequate bandwidth, reliability and low

93

WO 2010/111096 PCT/US2010/027716

latency will suffice. Inbound routing 1502 is a system of network (the
network can be implemented as an Ethernet network, a fiber channel
network, or through any other transport means) switches and routing servers
supporting the switches which takes the arriving packets and routes each
packet to the appropriate application/game (“app/game”) server 1521-1525.
In one embodiment, a packet which is delivered to a particular app/game
server represents a subset of the data received from the client and/or may
be translated/changed by other components (e.g., networking components
such as gateways and routers) within the data center. In some cases,
packets will be routed to more than one server 1521-1525 at a time, for
example, if a game or application is running on multiple servers at once in
parallel. RAID arrays 1511-1512 are connected to the inbound routing
network 1502, such that the app/game servers 1521-1525 can read and
write to the RAID arrays 1511-1512. Further, a RAID array 1515 (which may
be implemented as multiple RAID arrays) is also connected to the inbound
routing 1502 and data from RAID array 1515 can be read from app/game
servers 1521-1525. The inbound routing 1502 may be implemented in a
wide range of prior art network architectures, including a tree structure of
switches, with the inbound internet traffic 1501 at its root; in a mesh
structure interconnecting all of the various devices; or as an interconnected
series of subnets, with concentrated traffic amongst intercommunicating
device segregated from concentrated traffic amongst other devices. One
type of network configuration is a SAN which, although typically used for
storage devices, it can also be used for general high-speed data transfer
among devices. Also, the app/game servers 1521-1525 may each have
multiple network connections to the inbound routing 1502. For example, a
server 1521-1525 may have a network connection to a subnet attached to
RAID Arrays 1511-1512 and another network connection to a subnet

attached to other devices.

94

WO 2010/111096 PCT/US2010/027716

[0239] The app/game servers 1521-1525 may all be configured the
same, some differently, or all differently, as previously described in relation
to servers 402 in the embodiment illustrated in Figure 4a. In one
embodiment, each user, when using the hosting service is typically using at
least one app/game server 1521-1525. For the sake of simplicity of
explanation, we shall assume a given user is using app/game server 1521,
but multiple servers could be used by one user, and multiple users could
share a single app/game server 1521-1525. The user’s control input, sent
from client 415 as previously described is received as inbound Internet
traffic 1501, and is routed through inbound routing 1502 to app/game server
1521. App/game server 1521 uses the user’s control input as control input to
the game or application running on the server, and computes the next frame
of video and the audio associated with it. App/game server 1521 then
outputs the uncompressed video/audio 1529 to shared video compression
1530. App/game server may output the uncompressed video via any means,
including one or more Gigabit Ethernet connections, but in one embodiment
the video is output via a DVI connection and the audio and other
compression and communication channel state information is output via a
Universal Serial Bus (USB) connection.

[0240] The shared video compression 1530 compresses the
uncompressed video and audio from the app/game servers 1521-1525. The
compression maybe implemented entirely in hardware, or in hardware
running software. There may a dedicated compressor for each app/game
server 1521-1525, or if the compressors are fast enough, a given
compressor can be used to compress the video/audio from more than one
app/game server 1521-1525. For example, at 60fps a video frame time is
16.67mes. If a compressor is able to compress a frame in 1ms, then that
compressor could be used to compress the video/audio from as many as 16
app/game servers 1521-1525 by taking input from one server after another,
with the compressor saving the state of each video/audio compression

95

WO 2010/111096 PCT/US2010/027716

process and switching context as it cycles amongst the video/audio streams
from the servers. This results in substantial cost savings in compression
hardware. Since different servers will be completing frames at different
times, in one embodiment, the compressor resources are in a shared pool
1530 with shared storage means (e.g., RAM, Flash) for storing the state of
each compression process, and when a server 1521-1525 frame is
complete and ready to be compressed, a control means determines which
compression resource is available at that time, provides the compression
resource with the state of the server's compression process and the frame
of uncompressed video/audio to compress.

[0241] Note that part of the state for each server’'s compression
process includes information about the compression itself, such as the
previous frame’s decompressed frame buffer data which may be used as a
reference for P tiles, the resolution of the video output; the quality of the
compression; the tiling structure; the allocation of bits per tiles; the
compression quality, the audio format (e.g., stereo, surround sound, Dolby®
AC-3). But the compression process state also includes communication
channel state information regarding the peak data rate 941 and whether a
previous frame (as illustrated in Fig 9b) is currently being output (and as
result the current frame should be ignored), and potentially whether there
are channel characteristics which should be considered in the compression,
such as excessive packet loss, which affect decisions for the compression
(e.g., in terms of the frequency of | tiles, etc). As the peak data rate 941 or
other channel characteristics change over time, as determined by an
app/game server 1521-1525 supporting each user monitoring data sent from
the client 415, the app/game server 1521-1525 sends the relevant
information to the shared hardware compression 1530.

[0242] The shared hardware compression 1530 also packetizes the
compressed video/audio using means such as those previously described,
and if appropriate, applying FEC codes, duplicating certain data, or taking

96

WO 2010/111096 PCT/US2010/027716

other steps to as to adequately ensure the ability of the video/audio data
stream to be received by the client 415 and decompressed with as high a
quality and reliability as feasible.

[0243] Some applications, such as those described below, require the
video/audio output of a given app/game server 1521-1525 to be available at
multiple resolutions (or in other multiple formats) simultaneously. If the
app/game server 1521-1525 so notifies the shared hardware compression
1530 resource, then the uncompressed video audio 1529 of that app/game
server 1521-1525 will be simultaneously compressed in different formats,
different resolutions, and/or in different packet/error correction structures. In
some cases, some compression resources can be shared amongst multiple
compression processes compressing the same video/audio (e.g., in many
compression algorithms, there is a step whereby the image is scaled to
multiple sizes before applying compression. If different size images are
required to be output, then this step can be used to serve several
compression processes at once). In other cases, separate compression
resources will be required for each format. In any case, the compressed
video/audio 1539 of all of the various resolutions and formats required for a
given app/game server 1521-1525 (be it one or many) will be output at once
to outbound routing 1540. In one embodiment the output of the compressed
video/audio 1539 is in UDP format, so it is a unidirectional stream of
packets.

[0244] The outbound routing network 1540 comprises a series of
routing servers and switches which direct each compressed video/audio
stream to the intended user(s) or other destinations through outbound
Internet traffic 1599 interface (which typically would connect to a fiber
interface to the Internet) and/or back to the delay buffer 1515, and/or back to
the inbound routing 1502, and/or out through a private network (not shown)
for video distribution. Note that (as described below) the outbound routing
1540 may output a given video/audio stream to multiple destinations at

97

WO 2010/111096 PCT/US2010/027716

once. In one embodiment this is implemented using Internet Protocol (IP)
multicast in which a given UDP stream intended to be streamed to multiple
destinations at once is broadcasted, and the broadcast is repeated by the
routing servers and switches in the outbound routing 1540. The multiple
destinations of the broadcast may be to multiple users’ clients 415 via the
Internet, to multiple app/game servers 1521-1525 via inbound routing 1502,
and/or to one or more delay buffers 1515. Thus, the output of a given server
1521-1522 is compressed into one or multiple formats, and each
compressed stream is directed to one or multiple destinations.

[0245] Further, in another embodiment, if multiple app/game servers
1521-1525 are used simultaneously by one user (e.g., in a parallel
processing configuration to create the 3D output of a complex scene) and
each server is producing part of the resulting image, the video output of
multiple servers 1521-1525 can be combined by the shared hardware
compression 1530 into a combined frame, and from that point forward it is
handled as described above as if it came from a single app/game server
1521-1525.

[0246] Note that in one embodiment, a copy (in at least the resolution
or higher of video viewed by the user) of all video generated by app/game
servers 1521-1525 is recorded in delay buffer 1515 for at least some
number of minutes (15 minutes in one embodiment). This allows each user
to “rewind” the video from each session in order to review previous work or
exploits (in the case of a game). Thus, in one embodiment, each
compressed video/audio output 1539 stream being routed to a user client
415 is also being multicasted to a delay buffer 1515. When the video/audio
is stored on a delay buffer 1515, a directory on the delay buffer 1515
provides a cross reference between the network address of the app/game
server 1521-1525 that is the source of the delayed video/audio and the
location on the delay buffer 1515 where the delayed video/audio can be
found.

98

WO 2010/111096 PCT/US2010/027716

[0247] LIVE, INSTANTLY-VIEWABLE, INSTANTLY-PLAYABLE GAMES
[0248] App/game servers 1521-1525 may not only be used for
running a given application or video game for a user, but they may also be
used for creating the user interface applications for the hosting service 210
that supports navigation through hosting service 210 and other features. A
screen shot of one such user interface application is shown in Figure 16, a
“Game Finder” screen. This particular user interface screen allows a user to
watch 15 games that are being played live (or delayed) by other users. Each
of the “thumbnail” video windows, such as 1600 is a live video window in
motion showing the video from one user’'s game. The view shown in the
thumbnail may be the same view that the user is seeing, or it may be a
delayed view (e.g., if a user is playing a combat game, a user may not want
other users to see where she is hiding and she may choose to delay any
view of her gameplay by a period of time, say 10 minutes). The view may
also be a camera view of a game that is different from any user’s view.
Through menu selections (not shown in this illustration), a user may choose
a selection of games to view at once, based on a variety of criteria. As a
small sampling of exemplary choices, the user may select a random
selection of games (such as those shown in Figure 16), all of one kind of
games (all being played by different players), only the top-ranked players of
a game, players at a given level in the game, or lower-ranked players (e.g.,
if the player is learning the basics), players who are “buddies” (or are rivals),
games that have the most number of viewers, etc.

[0249] Note that generally, each user will decide whether the video
from his or her game or application can be viewed by others and, if so,
which others, and when it may be viewed by others, whether it is only
viewable with a delay.

[0250] The app/game server 1521-1525 that is generating the user
interface screen shown in Figure 16 acquires the 15 video/audio feeds by
sending a message to the app/game server 1521-1525 for each user whose

99

WO 2010/111096 PCT/US2010/027716

game it is requesting from. The message is sent through the inbound routing
1502 or another network. The message will include the size and format of
the video/audio requested, and will identify the user viewing the user
interface screen. A given user may choose to select “privacy” mode and not
permit any other users to view video/audio of his game (either from his point
of view or from another point of view), or as described in the previous
paragraph, a user may choose to allow viewing of video/audio from her
game, but delay the video/audio viewed. A user app/game server 1521-1525
receiving and accepting a request to allow its video/audio to be viewed will
acknowledge as such to the requesting server, and it will also notify the
shared hardware compression 1530 of the need to generate an additional
compressed video stream in the requested format or screen size (assuming
the format and screen size is different than one already being generated),
and it will also indicate the destination for the compressed video (i.e., the
requesting server). If the requested video/audio is only delayed, then the
requesting app/game server 1521-1525 will be so notified, and it will acquire
the delayed video/audio from a delay buffer 1515 by looking up the
video/audio’s location in the directory on the delay buffer 1515 and the
network address of the app/game server 1521-1525 that is the source of the
delayed video/audio. Once all of these requests have been generated and
handled, up to 15 live thumbnail-sized video streams will be routed from the
outbound routing 1540 to the inbound routing 1502 to the app/game server
1521-1525 generating the user interface screen, and will be decompressed
and displayed by the server. Delayed video/audio streams may be in too
large a screen size, and if so, the app/game server 1521-1525 will
decompress the streams and scale down the video streams to thumbnail
size. In one embodiment, requests for audio/video are sent to (and
managed by) a central “management” service similar to the hosting service
control system of Figure 4a (not shown in Figure 15) which then redirects
the requests to the appropriate app/game server 1521-1525. Moreover, in

100

WO 2010/111096 PCT/US2010/027716

one embodiment, no request may be required because the thumbnails are
‘pushed” to the clients of those users that allow it.

[0251] The audio from 15 games all mixed simultaneously might
create a cacophony of sound. The user may choose to mix all of the sounds
together in this way (perhaps just to get a sense of the “din” created by all
the action being viewed), or the user may choose to just listen to the audio
from one game at a time. The selection of a single game is accomplished by
moving the yellow selection box 1601 (appearing as a black rectangular
outline in the black-and-white rendering of Figure 16) to a given game (the
yellow box movement can be accomplished by using arrow keys on a
keyboard, by moving a mouse, by moving a joystick, or by pushing
directional buttons on another device such as a mobile phone). Once a
single game is selected, just the audio from that game plays. Also, game
information 1602 is shown. In the case of this game, for example, the
publisher logo (e.g., “EA” for “Electronic Arts”) and the game logo, “e.g.,
Need for Speed Carbon” and an orange horizontal bar (rendered in Figure
16 as a bar with vertical stripes) indicates in relative terms the number of
people playing or viewing the game at that particular moment (many, in this
case, so the game is “Hot”). Further “Stats” (i.e. statistics) are provided,
indicating that there are 145 players actively playing 80 different
instantiations of the Need for Speed Game (i.e., it can be played either by
an individual player game or multiplayer game), and there are 680 viewers
(of which this user is one). Note that these statistics (and other statistics) are
collected by hosting service control system 401 and are stored on RAID
arrays 1511-1512, for keeping logs of the hosting service 210 operation and
for appropriately billing users and paying publishers who provide content.
Some of the statistics are recorded due to actions by the service control
system 401, and some are reported to the service control system 401 by the
individual app/game server 1521-1525. For example, the app/game server
1521-1525 running this Game Finder application sends messages to the

101

WO 2010/111096 PCT/US2010/027716

hosting service control system 401 when games are being viewed (and
when they are ceased to be viewed) so that it may update the statistics of
how many games are in view. Some of the statistics are available for user
interface applications such as this Game Finder application.

[0252] If the user clicks an activation button on their input device, they
will see the thumbnail video in the yellow box zoom up while continuing to
play live video to full screen size. This effect is shown in process in Figure
17. Note that video window 1700 has grown in size. To implement this
effect, the app/game server 1521-1525 requests from the app/game server
1521-1525 running the game selected to have a copy of the video stream for
a full screen size (at the resolution of the user’s display device 422) of the
game routed to it. The app/game server 1521-1525 running the game
notifies the shared hardware compressor 1530 that a thumbnail-sized copy
of the game is no longer needed (unless another app/game server 1521-
1525 requires such a thumbnail), and then it directs it to send a full-screen
size copy of the video to the app/game server 1521-1525 zooming the
video. The user playing the game may or may not have a display device 422
that is the same resolution as that of the user zooming up the game.
Further, other viewers of the game may or may not have display devices
422 that are the same resolution as the user zooming up the game (and
may have different audio playback means, e.g., stereo or surround sound).
Thus, the shared hardware compressor 1530 determines whether a suitable
compressed video/audio stream is already being generated that meets the
requirements of the user requesting the video/audio stream and if one does
exist, it notifies the outbound routing 1540 to route a copy of the stream to
the app/game server 1521-1525 zooming the video, and if not compresses
another copy of the video that is suitable for that user and instructs the
outbound routing to send the stream back to the inbound routing 1502 and

the app/game server 1521-1525 zooming the video. This server, now

102

WO 2010/111096 PCT/US2010/027716

receiving a full screen version of the selected video will decompress it and
gradually scale it up to full size.

[0253] Figure 18 illustrates how the screen looks after the game has
completely zoomed up to full screen and the game is shown at the full
resolution of the user’s display device 422 as indicated by the image pointed
to by arrow 1800. The app/game server 1521-1525 running the game finder
application sends messages to the other app/game servers 1521-1525 that
had been providing thumbnails that they are no longer needed and
messages to the hosting service control server 401 that the other games are
no longer being viewed. At this point the only display it is generating is an
overlay 1801 at the top of the screen which provides information and menu
controls to the user. Note that as this game has progressed, the audience
has grown to 2,503 viewers. With so many viewers, there are bound to be
many viewers with display devices 422 that have the same or nearly the
same resolution (each app/game server 1521-1525 has the ability to scale
the video for adjusting the fitting).

[0254] Because the game shown is a multiplayer game, the user may
decide to join the game at some point. The hosting service 210 may or may
not allow the user to join the game for a variety of reasons. For example, the
user may have to pay to play the game and choose not to, the user may not
have sufficient ranking to join that particular game (e.g., it would not be
competitive for the other players), or the user’s Internet connection may not
have low enough latency to allow the user to play (e.g., there is not a latency
constraint for viewing games, so a game that is being played far away
(indeed, on another continent) can be viewed without latency concerns, but
for a game to be played, the latency must be low enough for the user to (a)
enjoy the game, and (b) be on equal footing with the other players who may
have lower latency connections). If the user is permitted to play, then
app/game server 1521-1525 that had been providing the Game Finder user
interface for the user will request that the hosting service control server 401

103

WO 2010/111096 PCT/US2010/027716

initiate (i.e., locate and start up) an app/game server 1521-1525 that is
suitably configured for playing the particular game to load the game from a
RAID array 1511-1512, and then the hosting service control server 401 will
instruct the inbound routing 1502 to transfer the control signals from the user
to the app/game game server now hosting the game and it will instruct the
shared hardware compression 1530 to switch from compressing the
video/audio from the app/game server that had been hosting the Game
Finder application to compressing the video/audio from the app/game server
now hosting the game. The vertical sync of the Game Finder app/game
service and the new app/game server hosting the game are not
synchronized, and as a result there is likely to be a time difference between
the two syncs. Because the shared video compression hardware 1530 will
begin compressing video upon an app/game server 1521-1525 completing a
video frame, the first frame from the new server may be completed sooner
than a full frame time of the old server, which may be before the prior
compressed frame completing its transmission (e.g., consider transmit time
992 of Figure 9b: if uncompressed frame 3 963 were completed half a frame
time early, it would impinge upon the transmit time 992). In such a situation
the shared video compression hardware 1530 will ignore the first frame from
the new server (e.g., like Frame 4 964 is ignored 974), and the client 415 will
hold the last frame from the old server an extra frame time, and the shared
video compression hardware 1530 will begin compressing the next frame
time video from the new app/game server hosting the game. Visually, to the
user, the transition from one app/game server to the other will be seamless.
The hosting service control server 401 will then notify app/game game
server 1521-1525 that had been hosting the Game Finder to switch to an
idle state, until it is needed again.

[0255] The user then is able to play the game. And, what is
exceptional is the game will play perceptually instantly (since it will have
loaded onto the app/game game server 1521-1525 from a RAID array 1511-

104

WO 2010/111096 PCT/US2010/027716

1512 at gigabit/second speed), and the game will be loaded onto a server
exactly suited for the game together with an operating system exactly
configured for the game with the ideal drivers, registry configuration (in the
case of Windows), and with no other applications running on the server that
might compete with the game’s operation.

[0256] Also, as the user progresses through the game, each of the
segments of the game will load into the server at gigabit/second speed (i.e.,
1 gigabyte loads in 8 seconds) from the RAID array 1511-1512, and
because of the vast storage capacity of the RAID array 1511-1512 (since it
is a shared resource among many users, it can be very large, yet still be
cost effective), geometry setup or other game segment setup can be pre-
computed and stored on the RAID array 1511-1512 and loaded extremely
rapidly. Moreover, because the hardware configuration and computational
capabilities of each app/game server 1521-1525 is known, pixel and vertex
shaders can be pre-computed.

[0257] Thus, the game will start up almost instantly, it will run in an
ideal environment, and subsequent segments will load almost instantly.
[0258] But, beyond these advantages, the user will be able to view
others playing the game (via the Game Finder, previously described and
other means) and both decide if the game is interesting, and if so, learn tips
from watching others. And, the user will be able to demo the game instantly,
without having to wait for a large download and/or installation, and the user
will be able to play the game instantly, perhaps on a trial basis for a smaller
fee, or on a longer term basis. And, the user will be able to play the game on
a Windows PC, a Macintosh, on a television set, at home, when traveling,
and even on a mobile phone, with a low enough latency wireless connection
(although latency will not be an issue for just spectating). And, this can all be
accomplished without ever physically owning a copy of the game.

[0259] As mentioned previously, the user can decide to not allow his
gameplay to be viewable by others, to allow his game to be viewable after a

105

WO 2010/111096 PCT/US2010/027716

delay, to allow his game to be viewable by selected users, or to allow his
game to be viewable by all users. Regardless, the video/audio will be stored,
in one embodiment, for 15 minutes in a delay buffer 1515, and the user will
be able to “rewind” and view his prior game play, and pause, play it back
slowly, fast forward, etc., just as he would be able to do had he been
watching TV with a Digital Video Recorder (DVR). Although in this example,
the user is playing a game, the same “DVR” capability is available if the user
is using an application. This can be helpful in reviewing prior work and in
other applications as detailed below. Further, if the game was designed with
the capability of rewinding based on utilizing game state information, such
that the camera view can be changed, etc., then this “3D DVR” capability will
also be supported, but it will require the game to be designed to support it.
The “DVR” capability using a delay buffer 1515 will work with any game or
application, limited of course, to the video that was generated when the
game or application was used, but in the case of games with 3D DVR
capability, the user can control a “fly through” in 3D of a previously played
segment, and have the delay buffer 1515 record the resulting video and
have the game state of the game segment recorded. Thus, a particular “fly-
through” will be recorded as compressed video, but since the game state will
also be recorded, a different fly-through will be possible at a later date of the
same segment of the game.

[0260] As described below, users on the hosting service 210 will each
have a User Page, where they can post information about themselves and
other data. Among of the things that users will be able to post are video
segments from game play that they have saved. For example, if the user
has overcome a particularly difficult challenge in a game, the user can
‘rewind” to just before the spot where they had their great accomplishment
in the game, and then instruct the hosting service 210 to save a video
segment of some duration (e.g., 30 seconds) on the user’s User Page for
other users to watch. To implement this, it is simply a matter of the

106

WO 2010/111096 PCT/US2010/027716

app/game server 1521-1525 that the user is using to playback the video
stored in a delay buffer 1515 to a RAID array 1511-1512 and then index that
video segment on the user’'s User Page.

[0261] If the game has the capability of 3D DVR, as described above,
then the game state information required for the 3D DVR can also be
recorded by the user and made available for the user’s User Page.

[0262] In the event that a game is designed to have “spectators” (i.e.,
users that are able to travel through the 3D world and observe the action
without participating in it) in addition to active players, then the Game Finder
application will enable users to join games as spectators as well as players.
From an implementation point of view, there is no difference to the hosting
system 210 to if a user is a spectator instead of an active player. The game
will be loaded onto an app/game server 1521-1525 and the user will be
controlling the game (e.g., controlling a virtual camera that views into the
world). The only difference will be the game experience of the user.

[0263] MuLTIPLE USER COLLABORATION

[0264] Another feature of the hosting service 210 is the ability to for
multiple users to collaborate while viewing live video, even if using widely
disparate devices for viewing. This is useful both when playing games and
when using applications.

[0265] Many PCs and mobile phones are equipped with video
cameras and have the capability to do real-time video compression,
particularly when the image is small. Also, small cameras are available that
can be attached to a television, and it is not difficult to implement real-time
compression either in software or using one of many hardware compression
devices to compress the video. Also, many PCs and all mobile phones have
microphones, and headsets are available with microphones.

[0266] Such cameras and/or microphones, combined with local
video/audio compression capability (particularly employing the low latency
video compression techniques described herein) will enable a user to

107

WO 2010/111096 PCT/US2010/027716

transmit video and/or audio from the user premises 211 to the hosting
service 210, together with the input device control data. When such
technigues are employed, then a capability illustrated in Figure 19 is
achievable: a user can have his video and audio 1900 appear on the screen
within another user’'s game or application. This example is a multiplayer
game, where teammates collaborate in a car race. A user’s video/audio
could be selectively viewable / hearable only by their teammates. And, since
there would be effectively no latency, using the techniques described above
the players would be able to talk or make motions to each other in real-time
without perceptible delay.

[0267] This video/audio integration is accomplished by having the
compressed video and/or audio from a user’s camera/microphone arrive as
inbound internet traffic 1501. Then the inbound routing 1502 routes the
video and/or audio to the app/game game servers 1521-1525 that are
permitted to view/hear the video and/or audio. Then, the users of the
respective app/game game servers 1521-1525 that choose to use the video
and/or audio decompress it and integrate as desired to appear within the
game or application, such as illustrated by 1900.

[0268] The example of Figure 19 shows how such collaboration is
used in a game, but such collaboration can be an immensely powerful tool
for applications. Consider a situation where a large building is being
designed for New York city by architects in Chicago for a real estate
developer based in New York, but the decision involves a financial investor
who is traveling and happens to be in an airport in Miami, and a decision
needs to be made about certain design elements of the building in terms of
how it fits in with the buildings near it, to satisfy both the investor and the
real estate developer. Assume the architectural firm has a high resolution
monitor with a camera attached to a PC in Chicago, the real estate
developer has a laptop with a camera in New York, and the investor has a
maobile phone with a camera in Miami. The architectural firm can use the

108

WO 2010/111096 PCT/US2010/027716

hosting service 210 to host a powerful architectural design application that is
capable of highly realistic 3D rendering, and it can make use of a large
database of the buildings in New York City, as well as a database of the
building under design. The architectural design application will execute on
one, or if it requires a great deal of computational power on several, of the
app/game servers 1521-1525. Each of the 3 users at disparate locations will
connect to the hosting service 210, and each will have a simultaneous view
of the video output of the architectural design application, but it will be will
appropriately sized by the shared hardware compression 1530 for the given
device and network connection characteristics that each user has (e.g., the
architectural firm may see a 2560x1440 60fps display through a 20Mbps
commercial Internet connection, the real estate developer in New York may
see a 1280x720 60fps image over a 6 Mbps DSL connection on his laptop,
and the investor may see a 320x180 60fps image over a 250Kbps cellular
data connection on her maobile phone. Each party will hear the voice of the
other parties (the conference calling will be handled by any of many widely
available conference calling software package in the app/game server(s)
1521-1525) and, through actuation of a button on a user input device, a user
will be able to make video appear of themselves using their local camera. As
the meeting proceeds, the architects will be able to show what the build
looks like as they rotate it and fly by it next to the other building in the area,
with extremely photorealistic 3D rendering, and the same video will be
visible to all parties, at the resolution of each party’s display device. It won'’t
matter that none of the local devices used by any party is incapable of
handling the 3D animation with such realism, let alone downloading or even
storing the vast database required to render the surrounding buildings in
New York City. From the point of view of each of the users, despite the
distance apart, and despite the disparate local devices they simply will have
a seamless experience with an incredible degree of realism. And, when one

party wants their face to be seen to better convey their emotional state, they

109

WO 2010/111096 PCT/US2010/027716

can do so. Further, if either the real estate develop or the investor want to
take control of the architectural program and use their own input device (be
it a keyboard, mouse, keypad or touch screen), they can, and it will respond
with no perceptual latency (assuming their network connection does not
have unreasonable latency). For example, in the case of the mobile phone,
if the mobile phone is connected to a WiFi network at the airport, it will have
very low latency. But if it is using the cellular data networks available today
in the US, it probably will suffer from a noticeable lag. Still, for most of the
purposes of the meeting, where the investor is watching the architects
control the building fly-by or for talking of video teleconferencing, even
cellular latency should be acceptable.

[0269] Finally, at the end of the collaborative conference call, the real
estate developer and the investor will have made their comments and
signed off from the hosting service, the architectural firm will be able to
‘rewind” the video of the conference that has been recorded on a delay
buffer 1515 and review the comments, facial expressions and/or actions
applied to the 3D model of the building made during the meeting. If there are
particular segments they want to save, those segments of video/audio can
be moved from delay buffer 1515 to a RAID array 1511-1512 for archival
storage and later playback.

[0270] Also, from a cost perspective, if the architects only need to use
the computation power and the large database of New York City for a 15
minute conference call, they need only pay for the time that the resources
are used, rather than having to own high powered workstations and having
to purchase an expensive copy of a large database.

[0271] VIDEO-RICH COMMUNITY SERVICES

[0272] The hosting service 210 enables an unprecedented
opportunity for establishing video-rich community services on the Internet.
Figure 20 shows an exemplary User Page for a game player on the hosting
service 210. As with the Game Finder application, the User Page is an

110

WO 2010/111096 PCT/US2010/027716

application that runs on one of the app/game servers 1521-1525. All of the
thumbnails and video windows on this page show constantly moving video
(if the segments are short, they loop).

[0273] Using a video camera or by uploading video, the user (whose
username is “KILLHAZARD”) is able to post a video of himself 2000 that
other users can view. The video is stored on a RAID array 1511-1512. Also,
when other users come to KILLHAZARD's User Page, if KILLHAZARD is
using the hosting service 210 at the time, live video 2001 of whatever he is
doing (assuming he permits users viewing his User Page to watch him) will
be shown. This will be accomplished by app/game server 1521-1525 hosting
the User Page application requesting from the service control system 401
whether KILLHAZARD is active and if so, the app/game server 1521-1525
he is using. Then, using the same methods used by the Game Finder
application, a compressed video stream in a suitable resolution and format
will be sent to the app/game server 1521-1525 running the User Page
application and it will be displayed. If a user selects the window with
KILLHAZARD’s live gameplay, and then appropriately clicks on their input
device, the window will zoom up (again using the same methods as the
Game Finder applications, and the live video will fill the screen, at the
resolution of the watching user’s display device 422, appropriate for the
characteristics of the watching user’s Internet connection.

[0274] A key advantage of this over prior art approaches is the user
viewing the User Page is able to see a game played live that the user does
not own, and may very well not have a local computer or game console
capable of playing the game. It offers a great opportunity for the user to see
the user shown in the User Page “in action” playing games, and it is an
opportunity to learn about a game that the viewing user might want to try or
get better at.

[0275] Camera-recorded or uploaded video clips from KILLHAZARD's
buddies 2002 are also shown on the User Page, and underneath each video

111

WO 2010/111096 PCT/US2010/027716

clip is text that indicates whether the buddy is online playing a game (e.g.,
six_shot is playing the game “Eragon” (shown here as Game4) and
MrSnuggles99 is Offline, etc.). By clicking on a menu item (not shown) the
buddy video clips switch from showing recorded or uploaded videos to live
video of what the buddies who are currently playing games on the hosting
service 210 are doing at that moment in their games. So, it becomes a
Game Finder grouping for buddies. If a buddy’s game is selected and the
user clicks on it, it will zoom up to full screen, and the user will be able to
watch the game played full screen live.

[0276] Again, the user viewing the buddy’s game does not own a
copy of the game, nor the local computing/game console resources to play
the game. The game viewing is effectively instantaneous.

[0277] As previously described above, when a user plays a game on
the hosting service 210, the user is able to “rewind” the game and find a
video segment he wants to save, and then saves the video segment to his
User Page. These are called “Brag Clips™". The video segments 2003 are
all Brag Clips 2003 saved by KILLHAZARD from previous games that he
has played. Number 2004 shows how many times a Brag Clip has been
viewed, and when the Brag Clip is viewed, users have an opportunity to rate
them, and the number of orange (shown here as black outlines) keyhole-
shaped icons 2005 indicate how high the rating is. The Brag Clips 2003 loop
constantly when a user views the User Page, along with the rest of the video
on the page. If the user selects and clicks on one of the Brag Clips 2003, it
zooms up to present the Brag Clip 2003, along with DVR controls to allow
the clip to be played, paused, rewound, fast-forwarded, stepped through,
etc.

[0278] The Brag Clip 2003 playback is implemented by the app/game
server 1521-1525 loading the compressed video segment stored on a RAID
array 1511-1512 when the user recorded the Brag Clip and decompressing
it and playing it back.

112

WO 2010/111096 PCT/US2010/027716

[0279] Brag Clips 2003 can also be “3D DVR” video segments (i.e., a
game state sequence from the game that can be replayed and allows the
user to change the camera viewpoint) from games that support such
capability. In this case the game state information is stored, in addition to a
compressed video recording of the particular “fly through” the user made
when the game segment was recorded. When the User Page is being
viewed, and all of the thumbnails and video windows are constantly looping,
a 3D DVR Brag Clip 2003 will constantly loop the Brag Clip 2003 that was
recorded as compressed video when the user recorded the “fly through” of
the game segment. But, when a user selects a 3D DVR Brag Clip 2003 and
clicks on it, in addition to the DVR controls to allow the compressed video
Brag Clip to be played, the user will be able to click on a button that gives
them 3D DVR capability for the game segment. They will be able to control a
camera “fly through” during the game segment on their own, and, if they
wish (and the user who owns the user page so allows it) they will be able to
record an alternative Brag Clip “fly through” in compressed video form will
then be available to other viewers of the user page (either immediately, or
after the owner of the user page has a chance to the review the Brag Clip).
[0280] This 3D DVR Brag Clip 2003 capability is enabled by activating
the game that is about to replay the recorded game state information on
another app/game server 1521-1525. Since the game can be activated
almost instantaneously (as previously described) it is not difficult to activate
it, with its play limited to the game state recorded by the Brag Clip segment,
and then allow the user to do a “fly through” with a camera while recording
the compressed video to a delay buffer 1515. Once the user has completed
doing the “fly through” the game is deactivated.

[0281] From the user’s point of view, activating a “fly through” with a
3D DVR Brag Clip 2003 is no more effort than controlling the DVR controls
of a linear Brag Clip 2003. They may know nothing about the game or even

113

WO 2010/111096 PCT/US2010/027716

how to play the game. They are just a virtual camera operator peering into a
3D world during a game segment recorded by another.

[0282] Users will also be able to overdub their own audio onto Brag
Clips that is either recorded from microphones or uploaded. In this way,
Brag Clips can be used to create custom animations, using characters and
actions from games. This animation technique is commonly known as
“machinima”.

[0283] As users progress through games, they will achieve differing
skill levels. The games played will report the accomplishments to the service
control system 401, and these skill levels will be shown on User Pages.
[0284] INTERACTIVE ANIMATED ADVERTISEMENTS

[0285] Online advertisements have transitioned from text, to still
images, to video, and now to interactive segments, typically implemented
using animation thin clients like Adobe Flash. The reason animation thin
clients are used is that users typically have little patience to be delayed for
the privilege of having a product or service pitched to them. Also, thin clients
run on very low-performance PCs and as such, the advertiser can have a
high degree of confidence that the interactive ad will work properly.
Unfortunately, animation thin clients such as Adobe Flash are limited in the
degree of interactivity and the duration of the experience (to mitigate
download time and to be operable on almost all user devices, including low-
performance PCs and Macs without GPUs or high-performance CPUs).
[0286] Figure 21 illustrates an interactive advertisement where the
user is to select the exterior and interior colors of a car while the car rotates
around in a showroom, while real-time ray tracing shows how the car looks.
Then the user chooses an avatar to drive the car, and then the user can
take the car for a drive either on a race track, or through an exotic locale
such as Monaco. The user can select a larger engine, or better tires, and
then can see how the changed configuration affects the ability of the car to

accelerate or hold the road.

114

WO 2010/111096 PCT/US2010/027716

[0287] Of course, the advertisement is effectively a sophisticated 3D
video game. But for such an advertisement to be playable on a PC or a
video game console it would require perhaps a 100MB download and, in the
case of the PC, it might require the installation of special drivers, and might
not run at all if the PC lacks adequate CPU or GPU computing capability.
Thus, such advertisements are impractical in prior art configurations.
[0288] In the hosting service 210, such advertisements launch almost
instantly, and run perfectly, no matter what the user’s client 415 capabilities
are. So, they launch more quickly than thin client interactive ads, are vastly
richer in the experience, and are highly reliable.

[0289] STREAMING GEOMETRY DURING REAL-TIME ANIMATION

[0290] RAID array 1511-1512 and the inbound routing 1502 can
provide data rates that are so fast and with latencies so low that it is
possible to design video games and applications that rely upon the RAID
array 1511-1512 and the inbound routing 1502 to reliably deliver geometry
on-the-fly in the midst of game play or in an application during real-time
animation (e.g., a fly-through with a complex database.)

[0291] With prior art systems, such as the video game system shown
in Figure 1, the mass storage devices available, particularly in practical
home devices, are far too slow to stream geometry in during game play
except in situations where the required geometry was somewhat
predictable. For example, in a driving game where there is a specified
roadway, geometry for buildings that are coming into view can be
reasonable well predicted and the mass storage devices can seek in
advance to the location where the upcoming geometry is located.

[0292] But in a complex scene with unpredictable changes (e.g., in a
battle scene with complex characters all around) if RAM on the PC or video
game system is completely filled with geometry for the objects currently in

view, and then the user suddenly turns their character around to view what

115

WO 2010/111096 PCT/US2010/027716

is behind their character, if the geometry has not been pre-loaded into RAM,
then there may be a delay before it can be displayed.

[0293] In the hosting service 210, the RAID arrays 1511-1512 can
stream data in excess of Gigabit Ethernet speed, and with a SAN network, it
is possible to achieve 10 gigabit/second speed over 10 Gigabit Ethernet or
over other network technologies. 10 gigabits/second will load a gigabyte of
data in less than a second. In a 60fps frame time (16.67ms), approximately
170 megabits (21MB) of data can be loaded. Rotating media, of course,
even in a RAID configuration will still incur latencies greater than a frame
time, but Flash-based RAID storage will eventually be as large as rotating
media RAID arrays and will not incur such high latency. In one embodiment,
massive RAM write-through caching is used to provide very low latency
access.

[0294] Thus, with sufficiently high network speed, and sufficiently low
enough latency mass storage, geometry can be streamed into app/game
game servers 1521-1525 as fast as the CPUs and/or GPUs can process the
3D data. So, in the example given previously, where a user turns their
character around suddenly and looks behind, the geometry for all of the
characters behind can be loaded before the character completes the
rotation, and thus, to the user, it will seem as if he or she isin a
photorealistic world that is as real as live action.

[0295] As previously discussed, one of the last frontiers in
photorealistic computer animation is the human face, and because of the
sensitivity of the human eye to imperfections, the slightest error from a
photoreal face can result in a negative reaction from the viewer. Figure 22
shows how a live performance captured using Contour™ Reality Capture
Technology (subject of co-pending applications: “Apparatus and method for
capturing the motion of a performer,” Ser. No. 10/942,609, Filed September
15, 2004; “Apparatus and method for capturing the expression of a
performer,” Ser. No. 10/942,413 Filed September 15, 2004; “Apparatus and

116

WO 2010/111096 PCT/US2010/027716

method for improving marker identification within a motion capture system,”
Ser. No. 11/066,954, Filed February 25, 2005; “Apparatus and method for
performing motion capture using shutter synchronization,” Ser. No.
11/077,628, Filed March 10, 2005; “Apparatus and method for performing
motion capture using a random pattern on capture surfaces,” Ser. No.
11/255,854, Filed October 20, 2005; “System and method for performing
motion capture using phosphor application techniques,” Ser. No.
11/449,131, Filed June 7, 2006; “System and method for performing motion
capture by strobing a fluorescent lamp,” Ser. No. 11/449,043, Filed June 7,
2006; “System and method for three dimensional capture of stop-motion
animated characters,” Ser. No. 11/449,127, Filed June 7, 2006°, each of
which is assigned to the assignee of the present CIP application) results in a
very smooth captured surface, then a high polygon-count tracked surface
(i.e., the polygon motion follows the motion of the face precisely). Finally,
when the video of the live performance is mapped on the tracked surface to
produce a textured surface, a photoreal result is produced.

[0296] Although current GPU technology is able to render the number
of polygons in the tracked surface and texture and light the surface in real-
time, if the polygons and textures are changing every frame time (which will
produce the most photoreal results) it will quickly consume all the available
RAM of a modern PC or video game console.

[0297] Using the streaming geometry techniques described above, it
becomes practical to continuously feed geometry into the app/game game
servers 1521-1525 so that they can animate photoreal faces continuously,
allowing the creation of video games with faces that are almost
indistinguishable from live action faces.

[0298] INTEGRATION OF LINEAR CONTENT WITH INTERACTIVE FEATURES
[0299] Motion pictures, television programming and audio material
(collectively, “linear content”) is widely available to home and office users in
many forms. Linear content can be acquired on physical media, like CD,

117

WO 2010/111096 PCT/US2010/027716

DVD and Blu-ray media. It also can be recorded by DVRs from satellite and
cable TV broadcast. And, it is available as pay-per-view (PPV) content
through satellite and cable TV and as video-on-demand (VOD) on cable TV.
[0300] Increasingly linear content is available through the Internet,
both as downloaded and as streaming content. Today, there really is not
one place to go to experience all of the features associated with linear
media. For example, DVDs and other video optical media typically have
interactive features not available elsewhere, like director's commentaries,
‘making of” featurettes, etc. Online music sites have cover art and song
information generally not available on CDs, but not all CDs are available
online. And Web sites associated with television programming often have
extra features, blogs and sometimes comments from the actors or creative
staff.

[0301] Further, with many motion pictures or sports events, there are
often video games that are released (in the case of motion pictures) often
together with the linear media or (in the case of sports) may be closely tied
to real-world events (e.g., the trading of players).

[0302] Hosting service 210 is well suited for the delivery of linear
content in linking together the disparate forms of related content. Certainly,
delivering motion pictures is no more challenging than delivering highly
interactive video games, and the hosting service 210 is able to deliver linear
content to a wide range of devices, in the home or office, or to mobile
devices. Figure 23 shows an exemplary user interface page for hosting
service 210 that shows a selection of linear content.

[0303] But, unlike most linear content delivery system, hosting service
210 is also able to deliver related interactive components (e.g., the menus
and features on DVDs, the interactive overlays on HD-DVDs, and the Adobe
Flash animation (as explained below) on Web sites). Thus, the client device
415 limitations no longer introduce limitations as to which features are
available.

118

WO 2010/111096 PCT/US2010/027716

[0304] Further, the hosting system 210 is able to link together linear
content with video game content dynamically, and in real-time. For example,
if a user is watching a Quidditch match in a Harry Potter movie, and decides
she would like to try playing Quidditch, she can just click a button and the
movie will pause and immediately she will be transported to the Quidditch
segment of a Harry Potter video game. After playing the Quidditch match,
another click of a button, and the movie will resume instantly.

[0305] With photoreal graphics and production technology, where the
photographically-captured video is indistinguishable from the live action
characters, when a user makes a transition from a Quidditch game in a live
action movie to a Quidditch game in a video game on a hosting service as
described herein, the two scenes are virtually indistinguishable. This
provides entirely new creative options for directors of both linear content and
interactive (e.g., video game) content as the lines between the two worlds
become indistinguishable.

[0306] Utilizing the hosting service architecture shown in Fig. 14 the
control of the virtual camera in a 3D movie can be offered to the viewer. For
example, in a scene that takes place within a train car, it would be possible
to allow the viewer to control the virtual camera and look around the car
while the story progresses. This assumes that all of the 3D objects (“assets”)
in the car are available as well as an adequate a level of computing power
capable of rendering the scenes in real-time as well as the original movie.
[0307] And even for non-computer generated entertainment, there are
very exciting interactive features that can be offered. For example, the 2005
motion picture “Pride and Prejudice” had many scenes in ornate old English
mansions. For certain mansion scenes, the user may pause the video and
then control the camera to take a tour of the mansion, or perhaps the
surrounding area. To implement this, a camera could be carried through the
mansion with a fish-eye lens as it keeps track of its position, much like prior
art Apple, Inc. QuickTime VR is implemented. The various frames would

119

WO 2010/111096 PCT/US2010/027716

then be transformed so the images are not distorted, and then stored on
RAID array 1511-1512 along with the movie, and played back when the user
chooses to go on a virtual tour.

[0308] With sports events, a live sports event, such as a basketball
game, may be streamed through the hosting service 210 for users to watch,
as they would for regular TV. After users watched a particular play, a video
game of the game (eventually with basketball players looking as photoreal
as the real players) could come up with the players starting in the same
position, and the users (perhaps each taking control of one player) could
redo the play to see if they could do better than the players.

[0309] The hosting service 210 described herein is extremely well-
suited to support this futuristic world because it is able to bring to bear
computing power and mass storage resources that are impractical to install
in a home or in most office settings, and also its computing resources are
always up-to-date, with the latest computing hardware available, whereas in
a home setting, there will always be homes with older generation PCs and
video games. And, in the hosting service 210, all of this computing
complexity is hidden from the user, so even though they may be using very
sophisticated systems, from the user’s point of view, it is a simple as
changing channels on a television. Further, the users would be able to
access all of the computing power and the experiences the computing
power would bring from any client 415.

[0310] MuLTIPLAYER GAMES

[0311] To the extent a game is a multiplayer game, then it will be able
communicate both to app/game game servers 1521-1525 through the
inbound routing 1502 network and, with a network bridge to the Internet (not
shown) with servers or game machines that are not running in the hosting
service 210. When playing multiplayer games with computers on the general
Internet, then the app/game game servers 1521-1525 will have the benefit of
extremely fast access to the Internet (compared to if the game was running

120

WO 2010/111096 PCT/US2010/027716

on a server at home), but they will be limited by the capabilities of the other
computers playing the game on slower connections, and also potentially
limited by the fact that the game servers on the Internet were designed to
accommodate the least common denominator, which would be home
computers on relatively slow consumer Internet connections.

[0312] But when a multiplayer game is played entirely within a hosting
service 210 server center, then a world of difference is achievable. Each
app/game game server 1521-1525 hosting a game for a user will be
interconnected with other app/game game servers 1521-1525 as well as any
servers that are hosting the central control for the multiplayer game with
extremely high speed, extremely low latency connectivity and vast, very fast
storage arrays. For example, if Gigabit Ethernet is used for the inbound
routing 1502 network, then the app/game game servers 1521-1525 will be
communicating among each other and communicating to any servers
hosting the central control for the multiplayer game at gigabit/second speed
with potentially only 1ms of latency or less. Further, the RAID arrays 1511-
1512 will be able to respond very rapidly and then transfer data at
gigabit/second speeds. As an example, if a user customizes a character in
terms of look and accoutrements such that the character has a large amount
of geometry and behaviors that are unique to the character, with prior art
systems limited to the game client running in the home on a PC or game
console, if that character were to come into view of another user, the user
would have to wait until a long, slow download completes so that all of the
geometry and behavior data loads into their computer. Within the hosting
service 210, that same download could be over Gigabit Ethernet, served
from a RAID array 1511-1512 at gigabit/second speed. Even if the home
user had an 8Mbps Internet connection (which is extremely fast by today’s
standards), Gigabit Ethernet is 100 times faster. So, what would take a
minute over a fast Internet connection, would take less than a second over
Gigabit Ethernet.

121

WO 2010/111096 PCT/US2010/027716

[0313] Top PLAYER GROUPINGS AND TOURNAMENTS

[0314] The Hosting Service 210 is extremely well-suited for
tournaments. Because no game is running in a local client, there is no
opportunity for users to cheat (e.g., as they might have in a prior art
tournament by modifying the copy of the game running on their local PC to
give them an unfair advantage). Also, because of the ability of the output
routing 1540 to multicast the UDP streams, the Hosting Service is 210 is
able to broadcast the major tournaments to thousands or more of people in
the audience at once.

[0315] In fact, when there are certain video streams that are so
popular that thousands of users are receiving the same stream (e.g.,
showing views of a major tournament), it may be more efficient to send the
video stream to a Content Delivery Network (CDN) such as Akamai or
Limelight for mass distribution to many client devices 415.

[0316] A similar level of efficiency can be gained when a CDN is used
to show Game Finder pages of top player groupings.

[0317] For major tournaments, a live celebrity announcer can be used
to provide commentary during certain matches. Although a large number of
users will be watching a major tournament, and relatively small number will
be playing in the tournament. The audio from the celebrity announcer can be
routed to the app/game game servers 1521-1525 hosting the users playing
in the tournament and hosting any spectator-mode copies of the game in the
tournament, and the audio can be overdubbed on top of the game audio.
Video of a celebrity announcer can be overlaid on the games, perhaps just
on spectator views, as well.

[0318] ACCELERATION OF WEB PAGE LOADING

[0319] The World Wide Web and its primary transport protocol,
Hypertext Transfer Protocol (HTTP), were conceived and defined in an era
where only businesses had high speed Internet connections, and the

consumers who were online were using dialup modems or ISDN. At the

122

WO 2010/111096 PCT/US2010/027716

time, the “gold standard” for a fast connection was a T1 line which provided
1.5Mbps data rate symmetrically (i.e., with equal data rate in both
directions).

[0320] Today, the situation is completely different. The average home
connection speed through DSL or cable modem connections in much of the
developed world has a far higher downstream data rate than a T1 line. In
fact, in some parts of the world, fiber-to-the-curb is bringing data rates as
high as 50 to 100Mbps to the home.

[0321] Unfortunately, HTTP was not architected (nor has it been
implemented) to effectively take advantage of these dramatic speed
improvements. A web site is a collection of files on a remote server. In very
simple terms, HTTP requests the first file, waits for the file to be
downloaded, and then requests the second file, waits for the file to be
downloaded, etc. In fact, HTTP allows for more than one “open connection”,
i.e., more than one file to be requested at a time, but because of agreed-
upon standards (and a desire to prevent web servers from being
overloaded) only very few open connections are permitted. Moreover,
because of the way Web pages are constructed, browsers often are not
aware of multiple simultaneous pages that could be available to download
immediately (i.e., only after parsing a page does it become apparent that a
new file, like an image, needs to be downloaded). Thus, files on website are
essentially loaded one-by-one. And, because of the request-and-response
protocol used by HTTP, there is roughly (accessing typical web servers in
the US) a 100ms latency associated with each file that is loaded.

[0322] With relatively low speed connections, this does not introduce
much of a problem because the download time for the files themselves
dominates the waiting time for the web pages. But, as connection speeds
grow, especially with complex web pages, problems begin to arise.

[0323] In the example shown in Figure 24, a typical commercial
website is shown (this particular website was from a major athletic shoe

123

WO 2010/111096 PCT/US2010/027716

brand). The website has 54 files on it. The files include HTML, CSS, JPEG,
PHP, JavaScript and Flash files, and include video content. A total of
1.5MBytes must be loaded before the page is live (i.e., the user can click on
it and begin to use it). There are a number of reasons for the large number
of files. For one thing, it is a complex and sophisticated webpage, and for
another, it is a webpage that is assembled dynamically based on the
information about the user accessing the page (e.g., what country the user
is from, what language, whether the user has made purchases before, etc.),
and depending on all of these factors, different files are downloaded. Still, it
is a very typical commercial web page.

[0324] Figure 24 shows the amount of time that elapses before the
web page is live as the connection speed grows. With a 1.5Mbps connection
speed 2401, using a conventional web server with a convention web
browser, it takes 13.5 seconds until the web page is live. With a 12Mbps
connection speed 2402, the load time is reduced to 6.5 seconds, or about
twice as fast. But with a 96Mbps connection speed 2403, the load time is
only reduced to about 5.5 seconds. The reason why is because at such a
high download speed, the time to download the files themselves is minimal,
but the latency per file, roughly 100ms each, still remains, resulting in 54
files * 100ms = 5.4 seconds of latency. Thus, no matter how fast the
connection is to the home, this web site will always take at least 5.4 seconds
until it is live. Another factor is the server-side queuing; every HTTP request
is added in the back of the queue, so on a busy server this will have a
significant impact because for every small item to get from the web server,
the HTTP requests needs to wait for its turn.

[0325] One way to solve these issues is to discard or redefine HTTP.
Or, perhaps to get the website owner to better consolidate its files into a
single file (e.g., in Adobe Flash format). But, as a practical matter, this
company, as well as many others has a great deal of investment in their web
site architecture. Further, while some homes have 12-100Mbps connections,

124

WO 2010/111096 PCT/US2010/027716

the majority of homes still have slower speeds, and HTTP does work well at
slow speed.

[0326] One alternative is to host web browsers on app/game servers
1521-1525, and host the files for the web servers on the RAID arrays 1511-
1512 (or potentially in RAM or on local storage on the app/game servers
1521-1525 hosting the web browsers. Because of the very fast interconnect
through the inbound routing 1502 (or to local storage), rather than have
100ms of latency per file using HTTP, there will be de minimis latency per
file using HTTP. Then, instead of having the user in her home accessing the
web page through HTTP, the user can access the web page through client
415. Then, even with a 1.5Mbps connection (because this web page does
not require much bandwidth for its video), the webpage will be live in less
than 1 second per line 2400. Essentially, there will be no latency before the
web browser running on an app/game server 1521-1525 is displaying a live
page, and there will be no detectable latency before the client 415 displays
the video output from the web browser. As the user mouses around and/or
types on the web page, the user’s input information will be sent to the web
browser running on the app/game server 1521-1525, and the web browser
will respond accordingly.

[0327] One disadvantage to this approach is if the compressor is
constantly transmitting video data, then bandwidth is used, even if the web
page becomes static. This can be remedied by configuring the compressor
to only transmit data when (and if) the web page changes, and then, only
transmit data to the parts of the page that change. While there are some
web pages with flashing banners, etc. that are constantly changing, such
web pages tend to be annoying, and usually web pages are static unless
there is a reason for something to be moving (e.g., a video clip). For such
web pages, it is likely the case the less data will be transmitted using the

hosting service 210 than a conventional web server because only the actual

125

WO 2010/111096 PCT/US2010/027716

displayed images will be transmitted, no thin client executable code, and no

large objects that may never be viewed, such as rollover images.

[0328] Thus, using the hosting service 210 to host legacy web pages,

web page load times can be reduced to the point where opening a web page

is like changing channels on a television: the web page is live effectively

instantly.
[0329] FACILITATING DEBUGGING OF GAMES AND APPLICATIONS
[0330] As mentioned previously, video games and applications with

real-time graphics are very complex applications and typically when they are
released into the field they contain bugs. Although software developers will
get feedback from users about bugs, and they may have some means to
pass back machine state after crashes, it is very difficult to identify exactly
what has caused a game or real-time application to crash or to perform
improperly.

[0331] When a game or application runs in the hosting service 210,
the video/audio output of the game or application is constantly recorded on a
delay buffer 1515. Further, a watchdog process runs on each app/game
server 1521-1525 which reports regularly to the hosting service control
system 401 that the app/game server 1521-1525 is running smoothly. If the
watchdog process fails to report in, then the server control system 401 will
attempt to communicate with the app/game server 1521-1525, and if
successful, will collect whatever machine state is available. Whatever
information is available, along with the video/audio recorded by the delay
buffer 1515 will be sent to the software developer.

[0332] Thus, when the game or application software developer gets
notification of a crash from the hosting service 210, it gets a frame-by-frame
record of what led up to the crash. This information can be immensely

valuable in tracking down bugs and fixing them.

126

WO 2010/111096 PCT/US2010/027716

[0333] Note also, that when an app/game server 1521-1525 crashes,
the server is restarted at the most recent restartable point, and a message is
provided to the user apologizing for the technical difficulty.

[0334] RESOURCE SHARING AND COST SAVINGS

[0335] The system shown in Figures 4a and 4b provide a variety of
benefits for both end users and game and application developers. For
example, typically, home and office client systems (e.g., PCs or game
consoles) are only in use for a small percentage of the hours in a week.
According to an October 5, 2006 press release by the Nielsen Entertainment
“Active Gamer Benchmark Study” (http://www.prnewswire.com/cgi-
bin/stories.pl?ACCT=104&STORY=/wwwy/story/ 10-05-
2006/0004446115&EDATE=) active gamers spend on average 14 hours a
week playing on video game consoles and about 17 hours a week on
handhelds. The report also states that for all game playing activity (including
console, handheld and PC game playing) Active Gamers average 13 hours
a week. Taking into consideration the higher figure of console video game
playing time, there are 24*7=168 hours in a week, that implies that in an
active gamer’s home, a video game console is in use only 17/168=10% of
the hours of a week. Or, 90% of the time, the video game console is idle.
Given the high cost of video game consoles, and the fact that manufacturers
subsidize such devices, this is a very inefficient use of an expensive
resource. PCs within businesses are also typically used only a fraction of
the hours of the week, especially non-portable desktop PCs often required
for high-end applications such as Autodesk Maya. Although some
businesses operate at all hours and on holidays, and some PCs (e.g.,
portables brought home for doing work in the evening) are used at all hours
and holidays, most business activities tend to center around 9AM to 5PM, in
a given business’ time zone, from Monday to Friday, less holidays and break
times (such as lunch), and since most PC usage occurs while the user is
actively engaged with the PG, it follows that desktop PC utilization tends to

127

WO 2010/111096 PCT/US2010/027716

follow these hours of operation. If we were to assume that PCs are utilized
constantly from 9AM to 5PM, 5 days a week, that would imply PCs are
utilized 40/168=24% of the hours of the week. High-performance desktop
PCs are very expensive investments for businesses, and this reflects a very
low level of utilization. Schools that are teaching on desktop computers may
use computers for an even smaller fraction of the week, and although it
varies depending upon the hours of teaching, most teaching occurs during
the daytime hours from Monday through Friday. So, in general, PCs and
video game consoles are utilized only a small fraction of the hours of the
week.

[0336] Notably, because many people are working at businesses or at
school during the daytime hours of Monday through Friday on non-holidays,
these people generally are not playing videoc games during these hours, and
so when they do play video games it is generally during other hours, such as
evenings, weekends and on holidays.

[0337] Given the configuration of the hosting service shown in Figure
4a, the usage patterns described in the above two paragraphs result in very
efficient utilization of resources. Clearly, there is a limit to the number of
users who can be served by the hosting service 210 at a given time,
particularly if the users are requiring real-time responsiveness for complex
applications like sophisticated 3D video games. But, unlike a video game
console in a home or a PC used by a business, which typically sits idle most
of the time, servers 402 can be re-utilized by different users at different
times. For example, a high-performance server 402 with high performance
dual CPUs and dual GPUs and a large quantity of RAM can be utilized by a
businesses and schools from 9AM to 5SPM on non-holidays, but be utilized
by gamers playing a sophisticated video game in the evenings, weekends
and on holidays. Similarly, low-performance applications can be utilized by
businesses and schools on a low-performance server 402 with a Celeron
CPU, no GPU (or a very low-end GPU) and limited RAM during business

128

WO 2010/111096 PCT/US2010/027716

hours and a low-performance game can utilize a low-performance server
402 during non-business hours.

[0338] Further, with the hosting service arrangement described
herein, resources are shared efficiently among thousands, if not millions, of
users. In general, online services only have a small percentage of their total
user base using the service at a given time. If we consider the Nielsen video
game usage statistics listed previously, it is easy to see why. If active
gamers play console games only 17 hours of a week, and if we assume that
the peak usage time for game is during the typical non-work, non-business
hours of evenings (5-12AM, 7*5 days=35 hours/week) and weekend (8AM-
12AM, 16*2=32 hours/week), then there are 35+32=65 peak hours a week
for 17 hours of game play. The exact peak user load on the system is
difficult to estimate for many reasons: some users will play during off-peak
times, there may be certain day times when there are clustering peaks of
users, the peak times can be affected by the type of game played (e.g.,
children’s games will likely be played earlier in the evening), etc. But, given
that the average number of hours played by a gamer is far less than the
number of hours of the day when a gamer is likely to play a game, only a
fraction of the number of users of the hosting service 210 will be using it at a
given time. For the sake of this analysis, we shall assume the peak load is
12.5%. Thus, only 12.5% of the computing, compression and bandwidth
resources are used at a given time, resulting in only 12.5% of the hardware
cost to support a given user to play a given level of performance game due
to reuse of resources.

[0339] Moreover, given that some games and applications require
more computing power than others, resources may be allocated dynamically
based on the game being played or the applications executed by users. So,
a user selecting a low-performance game or application will be allocated a
low-performance (less expensive) server 402, and a user selecting a high-
performance game or applications will be allocated a high-performance

129

WO 2010/111096 PCT/US2010/027716

(more expensive) server 402. Indeed, a given game or application may have
lower-performance and higher-performance sections of the game or
applications, and the user can be switched from one server 402 to another
server 402 between sections of the game or application to keep the user
running on the lowest-cost server 402 that meets the game or application’s
needs. Note that the RAID arrays 405, which will be far faster than a single
disk, will be available to even low-performance servers 402, that will have
the benefit of the faster disk transfer rates. So, the average cost per server
402 across all of the games being played or applications being used is much
less than the cost of the most expensive server 402 that plays the highest
performance game or applications, yet even the low-performance servers
402, will derive disk performance benefits from the RAID arrays 405.

[0340] Further, a server 402 in the hosting service 210 may be
nothing more than a PC motherboard without a disk or peripheral interfaces
other than a network interface, and in time, may be integrated down to a
single chip with just a fast network interface to the SAN 403. Also, RAID
Arrays 405 likely will be shared amongst far many more users than there are
disks, so the disk cost per active user will be far less than one disk drive. All
of this equipment will likely reside in a rack in an environmentally-controlled
server room environment. If a server 402 fails, it can be readily repaired or
replaced at the hosting service 210. In contrast, a PC or game console in
the home or office must be a sturdy, standalone appliance that has to be
able to survive reasonable wear and tear from being banged or dropped,
requires a housing, has at least one disk drive, has to survive adverse
environment conditions (e.g., being crammed into an overheated AV cabinet
with other gear), requires a service warranty, has to be packaged and
shipped, and is sold by a retailer who will likely collect a retail margin.
Further, a PC or game console must be configured to meet the peak
performance of the most computationally-intensive anticipated game or
application to be used at some point in the future, even though lower

130

WO 2010/111096 PCT/US2010/027716

performance games or application (or sections of games or applications)
may be played most of the time. And, if the PC or console fails, itis an
expensive and time-consuming process (adversely impacting the
manufacturer, user and software developer) to get it repaired.

[0341] Thus, given that the system shown in Figure 4a provides an
experience to the user comparable to that of a local computing resource, for
a user in the home, office or school to experience a given level of computing
capability, it is much less expensive to provide that computing capability
through the architecture shown in Figure 4a.

[0342] ELIMINATING THE NEED TO UPGRADE

[0343] Further, users no longer have to worry about upgrading PCs
and/or consoles to play new games or handle higher performance new
applications. Any game or applications on the hosting service 210,
regardless of what type of server 402 is required for that game or
applications, is available to the user, and all games and applications run
nearly instantly (e.g.., loading rapidly from the RAID Arrays 405 or local
storage on a servers 402) and properly with the latest updates and bug fixes
(i.e., software developers will be able to choose an ideal server configuration
for the server(s) 402 that run(s) a given game or application, and then
configure the server(s) 402 with optimal drivers, and then over time, the
developers will be able to provide updates, bug fixes, etc. to all copies of the
game or application in the hosting service 210 at once). Indeed, after the
user starts using the hosting service 210, the user is likely to find that games
and applications continue to provide a better experience (e.g., through
updates and/or bug fixes) and it may be the case that a user discovers a
year later that a new game or application is made available on the service
210 that is utilizing computing technology (e.g., a higher-performance GPU)
that did not even exist a year before, so it would have been impossible for
the user to buy the technology a year before that would play the game or run
the applications a year later. Since the computing resource that is playing

131

WO 2010/111096 PCT/US2010/027716

the game or running the application is invisible to the user (i.e., from the
user's perspective the user is simply selecting a game or application that
begins running nearly instantly—much as if the user had changed channels
on a television), the user’s hardware will have been “upgraded” without the
user even being aware of the upgrade.

[0344] ELIMINATING THE NEED FOR BACKUPS

[0345] Another major problem for users in businesses, schools and
homes are backups. Information stored in a local PC or video game console
(e.g., in the case of a console, a user’'s game achievements and ranking)
can be lost if a disk fails, or if there is an inadvertent erasure. There are
many applications available that provide manual or automatic backups for
PCs, and game console state can be uploaded to an online server for
backup, but local backups are typically copied to another local disk (or other
non-volatile storage device) which has to be stored somewhere safe and
organized, and backups to online services are often limited because of the
slow upstream speed available through typical low-cost Internet
connections. With the hosting service 210 of Figure 4a, the data that is
stored in RAID arrays 405 can be configured using prior art RAID
configuration techniques well-known to those skilled in the art such that if a
disk fails, no data will be lost, and a technician at the server center housing
the failed disk will be notified, and then will replace the disk, which then will
be automatically updated so that the RAID array is once again failure
tolerant. Further, since all of the disk drives are near one another and with
fast local networks between them through the SAN 403 it is not difficult in a
server center to arrange for all of the disk systems to be backed up on a
regular basis to secondary storage, which can be either stored at the server
center or relocated offsite. From the point of view of the users of hosting
service 210, their data is simply secure all the time, and they never have to
think about backups.

[0346] AccEess 1o DEMoS

132

WO 2010/111096 PCT/US2010/027716

[0347] Users frequently want to try out games or applications before
buying them. As described previously, there are prior art means by which to
demo (the verb form of “demo” means to try out a demonstration version,
which is also called a “demo”, but as a houn) games and applications, but
each of them suffers from limitations and/or inconveniences. Using the
hosting service 210, it is easy and convenient for users to try out demos.
Indeed, all the user does is select the demo through a user interface (such
as one described below) and try out the demo. The demo will load almost
instantly onto a server 402 appropriate for the demo, and it will just run like
any other game or application. Whether the demo requires a very high
performance server 402, or a low performance server 402, and no matter
what type of home or office client 415 the user is using, from the point of
view of the user, the demo will just work. The software publisher of either
the game or application demo will be able to control exactly what demo the
user is permitted to try out and for how long, and of course, the demo can
include user interface elements that offer the user an opportunity to gain
access to a full version of the game or application demonstrated.

[0348] Since demos are likely to be offered below cost or free of
charge, some users may try to use demos repeated (particularly game
demos, which may be fun to play repeatedly). The hosting service 210 can
employ various techniques to limit demo use for a given user. The most
straightforward approach is to establish a user ID for each user and limit the
number of times a given user ID is allowed to play a demo. A user,
however, may set up multiple user IDs, especially if they are free. One
technique for addressing this problem is to limit the number of times a given
client 415 is allowed to play a demo. If the client is a standalone device, then
the device will have a serial number, and the hosting service 210 can limit
the number of times a demo can be accessed by a client with that serial
number. If the client 415 is running as software on a PC or other device,
then a serial number can be assigned by the hosting service 210 and stored

133

WO 2010/111096 PCT/US2010/027716

on the PC and used to limit demo usage, but given that PCs can be
reprogrammed by users, and the serial number erased or changed, another
option is for the hosting service 210 to keep a record of the PC network
adapter Media Access Control (MAC) address (and/or other machine
specific identifiers such as hard-drive serial numbers, etc.) and limit demo
usage to it. Given that the MAC addresses of network adapters can be
changed, however, this is not a foolproof method. Another approach is to
limit the number of times a demo can be played to a given IP address.
Although IP addresses may be periodically reassigned by cable modem and
DSL providers, it does not happen in practice very frequently, and if it can be
determined (e.g., by contacting the ISP) that the IP is in a block of IP
addresses for residential DSL or cable modem accesses, then a small
number of demo uses can typically be established for a given home. Also,
there may be multiple devices at a home behind a NAT router sharing the
same |P address, but typically in a residential setting, there will be a limited
number of such devices. If the IP address is in a block serving businesses,
then a larger number of demos can be established for a business. But, in the
end, a combination of all of the previously mentioned approaches is the best
way to limit the number of demos on PCs. Although there may be no
foolproof way that a determined and technically adept user can be limited in
the number of demos played repeatedly, creating a large number of barriers
can create a sufficient deterrent such that it's not worth the trouble for most
PC users to abuse the demo system, and rather they will use the demos as
they were intended to be used: to try out new games and applications.
[0349] BENEFITS TO SCHOOLS, BUSINESSES AND OTHER INSTITUTIONS
[0350] Significant benefits accrue particularly to businesses, schools
and other institutions that utilize the system shown in Figure 4a. Businesses
and schools have substantial costs associated with installing, maintaining
and upgrading PCs, particularly when it comes to PCs for running high-
performance applications, such a Maya. As stated previously, PCs are

134

WO 2010/111096 PCT/US2010/027716

generally utilized only a fraction of the hours of the week, and as in the
home, the cost of PC with a given level of performance capability is far
higher in an office or school environment than in a server center
environment.

[0351] In the case of larger businesses or schools (e.g., large
universities), it may be practical for the IT departments of such entities to set
up server centers and maintain computers that are remotely accessed via
LAN-grade connections. A number of solutions exist for remote access of
computers over a LAN or through a private high bandwidth connection
between offices. For example, with Microsoft's Windows Terminal Server, or
through virtual network computing applications like VNG, from RealVNGC,
Ltd., or through thin client means from Sun Microsystems, users can gain
remote access to PCs or servers, with a range of quality in graphics
response time and user experience. Further, such self-managed server
centers are typically dedicated for a single business or school and as such,
are unable to take advantage of the overlap of usage that is possible when
disparate applications (e.g., entertainment and business applications) utilize
the same computing resources at different times of the week. So, many
businesses and schools lack the scale, resources or expertise to set up a
server center on their own that has a LAN-speed network connection to
each user. Indeed, a large percentage of schools and businesses have the
same Internet connections (e.g., DSL, cable modems) as homes.

[0352] Yet such organizations may still have the need for very high-
performance computing, either on a regular basis or on a periodic basis. For
example, a small architectural firm may have only a small number of
architects, with relatively modest computing needs when doing design work,
but it may require very high-performance 3D computing periodically (e.g.,
when creating a 3D fly-through of a new architectural design for a client).
The system shown in Figure 4a is extremely well suited for such
organizations. The organizations need nothing more than the same sort of

135

WO 2010/111096 PCT/US2010/027716

network connection that are offered to homes (e.g., DSL, cable modems)
and are typically very inexpensive. They can either utilize inexpensive PCs
as the client 415 or dispense with PCs altogether and utilize inexpensive
dedicated devices which simply implement the control signal logic 413 and
low-latency video decompression 412. These features are particularly
attractive for schools that may have problems with theft of PCs or damage to
the delicate components within PCs.

[0353] Such an arrangement solves a number of problems for such
organizations (and many of these advantages are also shared by home
users doing general-purpose computing). For one, the operating cost (which
ultimately must be passed back in some form to the users in order to have a
viable business) can be much lower because (a) the computing resources
are shared with other applications that have different peak usage times
during the week, (b) the organizations can gain access to (and incur the cost
of) high performance computing resources only when needed, (c) the
organizations do not have to provide resources for backing up or otherwise
maintaining the high performance computing resources.

[0354] ELIMINATION OF PIRACY

[0355] In addition, games, applications, interactive movies, etc, can
no longer be pirated as they are today. Because each game is stored and
executed at the hosting service 210, users are not provided with access to
the underlying program code, so there is nothing to pirate. Even if a user
were to copy the source code, the user would not be able to execute the
code on a standard game console or home computer. This opens up
markets in places of the world such as China, where standard video gaming
is not made available. The re-sale of used games is also not possible
because there are no copies of a games distributed to users.

[0356] For game developers, there are fewer market discontinuities
as is the case today when new generations of game consoles or PCs are
introduced to the market. The hosting service 210 can be gradually updated

136

WO 2010/111096 PCT/US2010/027716

with more advanced computing technology over time as gaming
requirements change, in contrast to the current situation where a completely
new generation of console or PC technology forces users and developers to
upgrade and the game developer is dependent on the timely delivery of the
hardware platform to the user (e.g. in the case of the PlayStation 3, its
introduction was delayed by more than a year, and developers had to wait
until it was available and significant numbers of units were purchased).
[0357] STREAMING INTERACTIVE VIDEO

[0358] The above descriptions provide a wide range of applications
enabled by the novel underlying concept of general Internet-based, low-
latency streaming interactive video (which implicitly includes audio together
with the video as well, as used herein). Prior art systems that have provided
streaming video through the Internet only have enabled applications which
can be implemented with high latency interactions. For example, basic
playback controls for linear video (e.g. pause, rewind, fast forward) work
adequately with high latency, and it is possible to select among linear video
feeds. And, as stated previously, the nature of some video games allow
them to be played with high latency. But the high latency (or low
compression ratio) of prior art approaches for streaming video have severely
limited the potential applications of streaming video or narrowed their
deployments to specialized network environments, and even in such
environments, prior art techniques introduce substantial burdens on the
networks. The technology described herein opens the door for the wide
range of applications possible with low-latency streaming interactive video
through the Internet, particularly those enabled through consumer-grade
Internet connections.

[0359] Indeed, with client devices as small as client 465 of Figure 4c¢
sufficient to provide an enhanced user experience with an effectively
arbitrary amount of computing power, arbitrary amount of fast storage, and

extremely fast networking amongst powerful servers, it enables a new era of

137

WO 2010/111096 PCT/US2010/027716

computing. Further, because the bandwidth requirements do not grow as the
computing power of the system grows (i.e., because the bandwidth
requirements are only tied to display resolution, quality and frame rate),
once broadband Internet connectivity is ubiquitous (e.g., through widespread
low-latency wireless coverage), reliable, and of sufficiently high bandwidth to
meet the needs of the display devices 422 of all users, the question will be
whether thick clients(such as PCs or mobile phones running Windows,
Linux, OSX, etc.,) or even thin clients (such as Adobe Flash or Java) are
necessary for typical consumer and business applications.

[0360] The advent of streaming interactive video results in a
rethinking of assumptions about the structure of computing architectures. An
example of this is the hosting service 210 server center embodiment shown
in Figure 15. The video path for delay buffer and/or group video 1550 is a
feedback loop where the multicasted streaming interactive video output of
the app/game servers 1521-1525 is fed back into the app/game servers
1521-1525 either in real-time via path 1552 or after a selectable delay via
path 1551. This enables a wide range of practical applications (e.g. such as
those illustrated in Figures 16, 17 and 20) that would be either impossible or
infeasible through prior art server or local computing architectures. But, as a
more general architectural feature, what feedback loop 1550 provides is
recursion at the streaming interactive video level, since video can be looped
back indefinitely as the application requires it. This enables a wide range of
application possibilities never available before.

[0361] Another key architectural feature is that the video streams are
unidirectional UDP streams. This enables effectively an arbitrary degree of
multicasting of streaming interactive video (in contrast, two-way streams,
such as TCP/IP streams, would create increasingly more traffic logjams on
the networks from the back-and-forth communications as the number of
users increased). Multicasting is an important capability within the server
center because it allows the system to be responsive to the growing needs

138

WO 2010/111096 PCT/US2010/027716

of Internet users (and indeed of the world’s population) to communicate on a
one-to-many, or even a many-to-many basis. Again, the examples
discussed herein, such as Figure 16 which illustrates the use of both
streaming interactive video recursion and multicasting are just the tip of a
very large iceberg of possibilities.

[0362] NON-TRANSIT PEERING

[0363]In one embodiment, the hosting service 210 has one or more peering
connections to one or more Internet Service Providers (ISP) who also
provide Internet service to users, and in this way the hosting service 210
may be able to communicate with the user through a non-transit route that
stays within that ISP’s network. For example, if the hosting service 210 WAN
Interface 441 directly connected to Comcast Cable Communications, Inc.’s
network, and the user premises 211 was provisioned with broadband
service with a Comcast cable modem, a route between the hosting service
210 and client 415 may be established entirely within Comcast’s network.
The potential advantages of this would include lower cost for the
communications (since the IP transit costs between two or more ISP
networks might be avoided), a potentially more reliable connection (in case
there were congestion or other transit disruptions between ISP networks),
and lower latency (in case there were congestion, inefficient routes or other
delays between ISP networks).

[0364]In this embodiment, when the client 415 initially contacts the hosting
service 210 at the beginning of a session, the hosting service 210 receives
the IP address of the user premises 211. It then uses available IP address
tables, e.g., from ARIN (American Registry for Internet Numbers), to see if
the IP address is one allocated to a particular ISP connected to the hosting
service 210 that can route to the user premises 211 without IP transit to
through another ISP. For example, if the IP address was between 76.21.0.0
and 76.21.127.255, then the IP address is assigned to Comcast Cable

Communications, Inc. In this example, if the hosting service 210 maintains

139

WO 2010/111096 PCT/US2010/027716

connections to Comcast, AT&T and Cox ISPs, then it selects Comcast as
the ISP most likely to provide an optimal route to the particular user.

[0365] VIDEO COMPRESSION USING FEEDBACK

[0366] In one embodiment, feedback is provided from the client
device to the hosting service to indicate successful (or unsuccessful) tile
and/or frame delivery. The feedback information provided from the client is
then used to adjust the video compression operations at the hosting service.
[0367] For example, Figures 25a-b illustrate one embodiment of the
invention in which a feedback channel 2501 is established between the
client device 205 and the hosting service 210. The feedback channel 2501
is used by the client device 205 to send packetized acknowledgements of
successfully received tiles/frames and/or indications of unsuccessfully
received tiles/frames.

[0368] In one embodiment, after successfully receiving each
tile/frame, the client transmits an acknowledgement message to the hosting
service 210. In this embodiment, the hosting service 210 detects a packet
loss if it does not receive an acknowledgement after a specified period of
time and/or if it receives an acknowledgement that the client device 205 has
received a subsequent tile/frame than one that had been sent. Alternatively,
or in addition, the client device 205 may detect the packet loss and transmit
an indication of the packet loss to the hosting service 210 along with an
indication of the tiles/frames affected by the packet loss. In this
embodiment, continuous acknowledgement of successfully delivered
tiles/frames is not required.

[0369] Regardless of how a packet loss is detected, in the
embodiment illustrated in Figures 25a-b, after generating an initial set of |-
tiles for an image (not shown in Figure 25a), the encoder subsequently
generates only P-tiles until a packet loss is detected. Note that in Figure
25a, each frame, such as 2510 is illustrated as 4 vertical tiles. The frame
may be tiled in a different configuration, such as a 2x2, 2x4, 4x4, etc., or the

140

WO 2010/111096 PCT/US2010/027716

frame may be encoded in its entirety with no tiles (i.e. as 1 large tile). The
foregoing examples of frame tiling configurations are provided for the
purpose of illustration of this embodiment of the invention. The underlying
principles of the invention are not limited to any particular frame tiling
configuration.

[0370] Transmitting only P-tiles reduces the bandwidth requirements of the
channel for all of the reasons set forth above (i.e., P-tiles are generally
smaller than I-tiles). When a packet loss is detected via the feedback
channel 2501, new I-tiles are generated by the encoder 2500, as illustrated
in Figure 25b, to re-initialize the state of the decoder 2502 on the client
device 205. As illustrated, in one embodiment, the I-tiles are spread across
multiple encoded frames to limit the bandwidth consumed by each individual
encoded frame. For example, in Figure 25, in which each frame includes 4
tiles, a single I-tile is transmitted at a different position within 4 successive
encoded frames.

[0371] The encoder 2500 may combine the techniques described with
respect to this embodiment with other encoding techniques described
herein. For example, in addition to generating I-tiles in response to a
detected packet loss the encoder 2500 may generate I-tiles in other
circumstances in which I-tiles may be beneficial to properly render the
sequence of images (such as in response to sudden scene transitions).
[0372] Figure 26a illustrates another embodiment of the invention
which relies on a feedback channel 2601 between the client device 205 and
the hosting service 210. Rather than generating new I-tiles/frames in
response to a detected packet loss, the encoder 2600 of this embodiment
adjusts the dependencies of the P-tiles/frames. As an initial matter, it should
be noted that the specific details set forth in this example are not required
for complying with the underlying principles of the invention. For example,
while this example will be described using P-tiles/frames, the underlying
principles of the invention are not limited to any particular encoding format.

141

WO 2010/111096 PCT/US2010/027716

[0373] In Figure 26a, the encoder 2600 encodes a plurality of
uncompressed tiles/frames 2605 into a plurality of P-tiles/frames 2606 and
transmits the P-tiles/frames over a communication channel (e.g., the
Internet) to a client device 205. A decoder 2602 on the client device 205
decodes the P-tiles/frames 2606 to generate a plurality of decompressed
tiles/frames 2607. The past state(s) 2611 of the encoder 2600 is stored
within a memory device 2610 on the hosting service 210 and the past
state(s) 2621 of the decoder 2602 is stored within a memory device 2620 on
the client device 205. The “state” of a decoder is a well known term of art in
video coding systems such as MPEG-2 and MPEG-4. In one embodiment,
the past “state” stored within the memories comprises the combined data
from prior P-tiles/frames. The memories 2611 and 2621 may be integrated
within the encoder 2600 and decoder 2602, respectively, rather than being
detached from the encoder 2600 and decoder 2602, as shown in Figure
26a. Moreover, various types of memory may be used including, by way of
example and not limitation, random access memory.

[0374] In one embodiment, when no packet loss occurs, the encoder
2600 encodes each P-tile/frame to be dependent on the previous P-
tile/frame. Thus, as indicated by the notation used in Figure 26a, P-
tile/frame 4 is dependent on P-tile/frame 3 (identified using the notation 43);
P-tile/frame 5 is dependent on P-tile/frame 4 (identified using the notation
54); and P-tile/frame 6 is dependent on P-tile/frame 5 (identified using the
notation 6s). In this example, P-tile/frame 43 has been lost during
transmission between the encoder 2600 and the decoder 2602. The loss
may be communicated to the encoder 2600 in various ways including, but
not limited to, those described above. For example, each time the decoder
2606 successfully receives and/or decodes a tile/frame, this information may
be communicated from the decoder 2602 to the encoder 2600. If the
encoder 2600 does not receive an indication that a particular tile/frame has
been received and/or decoded after a period of time, then the encoder 2600

142

WO 2010/111096 PCT/US2010/027716

will assume that the tile/frame has not been successfully received.
Alternatively, or in addition, the decoder 2602 may notify the encoder 2600
when a particular tile/frame is not successfully received.

[0375] In one embodiment, regardliess of how the lost tile/frame is
detected, once it is, the encoder 2600 encodes the next tile/frame using the
last tilefframe known to have been successfully received by the decoder
2602. In the example shown in Figure 26a, tiles/frames 5 and 6 are not
considered “successfully received” because they cannot be properly
decoded by the decoder 2602 due to the loss of tile/frame 4 (i.e., the
decoding of tile/frame 5 depends on tile/frame 4 and the decoding of
tile/frame 6 depends on tile/frame 5). Thus, in the example shown in Figure
26a, the encoder 2600 encodes tile/frame 7 to be dependent on tile/frame 3
(the last successfully received tile/frame) rather than tile/frame 6 which the
decoder 2602 cannot properly decode. Although not illustrated in Figure
264, tile/frame 8 will subsequently be encoded to be dependent on tile/frame
7 and tile/frame 9 will be encoded to be dependent on tile/frame 8, assuming
that no additional packet losses are detected.

[0376] As mentioned above, both the encoder 2600 and the decoder
2602 maintain past encoder and decoder states, 2611 and 2621, within
memories 2610 and 2620, respectively. Thus, when encoding tile/frame 7,
the encoder 2600 retrieves the prior encoder state associated with tile/frame
3 from memory 2610. Similarly, the memory 2620 associated with decoder
2602 stores at least the last known good decoder state (the state associated
with P-tile/frame 3 in the example). Consequently, the decoder 2602
retrieves the past state information associated with tile/frame 3 so that
tile/frame 7 can be decoded.

[0377] As a result of the techniques described above, real-time, low
latency, interactive video can be encoded and streamed using relatively
small bandwidth because no I-tiles/frames are ever required (except to
initialize the decoder and encoder at the start of the stream). Maoreover,

143

WO 2010/111096 PCT/US2010/027716

while the video image produced by the decoder may temporarily include
undesirable distortion resulting from lost tile/frame 4 and tiles/frames 5 and 6
(which cannot be properly decoded due to the loss of tile/frame 4), this
distortion will be visible for a very short duration. Moreover, if tiles are used
(rather than full video frames), the distortion will be limited to a particular
region of the rendered video image.

[0378] A method according to one embodiment of the invention is
illustrated in Figure 26b. At 2650, a tile/frame is generated based on a
previously-generated tile/frame. At 2651, a lost tile/frame is detected. In
one embodiment, the lost tile/frame is detected based on information
communicated from the encoder to the decoder, as described above. At
2652, the next tile/frame is generated based on a tile/frame which is known
to have been successfully received and/or decoded at the decoder. In one
embodiment, the encoder generates the next tile/frame by loading the state
associated with the successfully received and/or decoded tile/frame from
memory. Similarly, when the decoder receives the new tile/frame, it
decodes the tile/frame by loading the state associated with the successfully
received and/or decoded tile/frame from memory.

[0379]In one embodiment the next tile/frame is generated based upon the
last tile/frame successfully received and/or decoded at the encoder. In
another embodiment, the next tile/frame generated is an | tile/frame. In yet
another embodiment, the choice of whether to generate the next tile/frame
based on a previously successfully received tile/frame or as an | frame is
based on the how many tile/frames were lost and/or the latency of the
channel. In a situation where a relatively small number (e.g., 1 or 2)
tile/frames are lost and the round-trip latency is relatively low (e.g. 1 or 2
frame times), then it may be optimal to generate a P tile/frame since the
difference between the last successfully received tile/frame and the newly
generated one may be relatively small. If several tile/frames are lost or the
round-trip latency is high, then it may be optimal to generate an | tile/frame

144

WO 2010/111096 PCT/US2010/027716

since the difference between the last successfully received tile/frame and
the newly generated one may be large. In one embodiment, a tile/frame
loss threshold and/or a latency threshold value is set to determine whether
to transmit an | tile/frame or a P tile/frame. If the number of lost tiles/frames
is below the tile/frame loss threshold and/or if the round trip latency is below
the latency threshold value, then a new | tile/frame is generated; otherwise,
a new P tile/frame is generated.

[0380]In one embodiment, the encoder always attempts to generate a P
tile/frame relative to the last successfully received tile/frame, and if in the
encoding process the encoder determines that the P tile/frame will likely be
larger than an | tile/frame (e.g. if it has compressed 1/8™ of the tile/frame
and the compressed size is larger than 1/8" of the size of the average |
tile/frame previously compressed), then the encoder will abandon
compressing the P tile/frame and will instead compress an | tile/frame.
[0381]If lost packets occur infrequently, the systems described above using
feedback to report a dropped tile/frame typically results in a very slight
disruption in the video stream to the user because a tile/frame that was
disrupted by a lost packet is replaced in roughly the time of one round trip
between the client device 205 and hosting service 210 assuming the
encoder 2600 compresses the tile/frame in a short amount of time. And,
because the new tile/frame that is compressed is based upon a later frame
in the uncompressed video stream, the video stream does not fall behind the
uncompressed video stream. But, if a packet containing the new tile/frame
also is lost, then this results in a delay of least two round trips to yet again
request and send another new tile/frame, which in many practical situations
will result in a noticeable disruption to the video stream. As a consequence,
it is very important that the newly-encoded tile/frame sent after dropped
tile/frame is successfully sent from the hosting service 210 to the client
device 205.

145

WO 2010/111096 PCT/US2010/027716

[0382]In one embodiment, forward-error correction (FEC) coding
techniques, such as those previously described and illustrated in Figures
11a, 11b, 11c and 11d, are used to mitigate the probability of losing the
newly-encoded tile/frame. If FEC coding is already being used when
transmitting tiles/frames, then a stronger FEC code is used for the newly-
encoded tile/frame.

[0383]One potential cause of dropped packets is a sudden loss in channel
bandwidth, for example, if some other user of the broadband connection at
the user premises 211 starts using a large amount of bandwidth. If a newly-
generated tile/frame also is lost due to dropped packets (even if FEC is
used), then in one embodiment when hosting service 210 is notified by client
415 that a second newly encoded tile/frame is dropped, video compressor
404 reduces the data rate when it encodes a subsequent newly encoded
tile/frame. Different embodiments reduce the data rate using different
techniques. For example, in one embodiment, this data rate reduction is
accomplished by lowering the quality of the encoded tile/frame by increasing
the compression ratio. In another embodiment, the data rate is reduced by
lowering the frame rate of the video (e.g. from 60fps to 30fps) and
accordingly slowing the rate of data transmission. In one embodiment, both
technigues for reducing the data rate are used (e.g., both reducing the frame
rate and increasing the compression ratio). If this lower rate of data
transmission is successful at mitigating the dropped packets, then in
accordance the channel data rate detection and adjustment methods
previously described, the hosting service 210 will continue encoding at a
lower data rate, and then gradually adjust the data rate upward or downward
as the channel will allow. The continuous receipt of feedback data related to
dropped packets and/or latency allow the hosting service 210 to dynamically
adjust the data rate based on current channel conditions.

[0384] STATE MANAGEMENT IN AN ONLINE GAMING SYSTEM

146

WO 2010/111096 PCT/US2010/027716

[0385] One embodiment of the invention employs techniques to
efficiently store and port the current state of an active game between
servers. While the embodiments described herein are related to online
gaming, the underlying principles of the invention may be used for various
other types of applications (e.g., design applications, word processors,
communication software such as email or instant messaging, etc). Figure
27a illustrates an exemplary system architecture for implementing this
embodiment and Figure 27b illustrates an exemplary method. While the
method and system architecture will be described concurrently, the method
illustrated in Figure 27b is not limited to any particular system architecture.
[0386] At 2751 of Figure 27b, a user initiates a new online game on a
hosting service 210a from a client device 205. In response, at 2752, a
‘clean” image of the game 2702a is loaded from storage (e.g., a hard drive,
whether connected directly to a server executing the game, or connected to
a server through a network) to memory (e.g., RAM) on the hosting service
210a. The “clean” image comprises the runtime program code and data for
the game prior to the initiation of any game play (e.g., as when the game is
executed for the first time). The user then plays the game at 2753, causing
the “clean” image to change to a non-clean image (e.g., an executing game
represented by “State A” in Figure 27a). At 2754, the game is paused or
terminated, either by the user or the hosting service 210a. At 2755, state
management logic 2700a on the hosting service 210a determines the
differences between the “clean” image of the game and the current game
state (“State A”). Various known techniques may be used to calculate the
difference between two binary images including, for example, those used in
the well known “diff” utility available on the Unix operating system. Of
course, the underlying principles of the invention are not limited to any
particular techniques for difference calculation.

[0387] Regardless of how the differences are calculated, once they
are, the difference data is stored locally within a storage device 2705a

147

WO 2010/111096 PCT/US2010/027716

and/or transmitted to a different hosting service 210b. If transmitted to a
different hosting service 210b, the difference data may be stored on a
storage device (not shown) at the new hosting service 210b. In either case,
the difference data is associated with the user’'s account on the hosting
services so that it may be identified the next time the user logs in to the
hosting services and initiates the game. In one embodiment, rather than
being transmitted immediately, the difference data is not transmitted to a
new hosting service until the next time the user attempts to play the game
(and a different hosting service is identified as the best choice for hosting
the game).

[0388] Returning to the method shown in Figure 27b, at 2757, the
user reinitiates the game from a client device, which may be the same client
device 205 from which the user initially played the game or a different client
device (not shown). Inresponse, at 2758, state management logic 2700b
on the hosting service 210b retrieves the “clean” image of the game from a
storage device and the difference data. At 2759, the state management
logic 2700b combines the clean image and difference data to reconstruct the
state that the game was in on the original hosting service 210a (“State A”).
Various known techniques may be used to recreate the state of a binary
image using the difference data including, for example, those used in the
well known “patch” utility available on the Unix operating system. The
difference calculation techniques used in well known backup programs such
as PC Backup may also be used. The underlying principles of the invention
are not limited to any particular techniques for using difference data to
recreate a binary image.

[0389] In addition, at 2760, platform-dependent data 2710 is
incorporated into the final game image 2701b. The platform-dependent data
2710 may include any data which is unique to the destination server
platform. By way of example, and not limitation, the platform-dependent
data 2710 may include the Medium Access Control (MAC) address of the

148

WO 2010/111096 PCT/US2010/027716

new platform, the TCP/IP address, the time of day, hardware serial numbers
(e.g., for the hard drive and CPU), network server addresses (e.g.,
DHCP/Wins servers), and software serial number(s) / activation code(s)
(including Operating System serial number(s) / activation code(s)).

[0390] Other platform-dependent data related to the client/user may
include (but is not limited to) the following:

[0391] 1. The user's screen resolution. When the user resumes the
game, the user may be using a different device with a different resolution.
[0392] 2. The user's controller configuration. When game resumes,
the user may have switched from a game controller to a keyboard/mouse.
[0393] 3. User entitlements, such as whether a discount rate has
expired (e.g., if the user was playing the game during a promotional period
and is now playing during a normal period at higher cost) or whether the
user or device has certain age restrictions (e.g., the parents of the user may
have changed the settings for a child so the child is not allowed to see
mature material, or if the device playing the game (e.g., a computer at a
public library) has certain restrictions on whether mature material can be
displayed).

[0394] 4. The user's ranking. The user may have been allowed to play
a multiplayer game in a certain league, but because some other users had
exceeded the user’s ranking, the user may have been downgraded to a
lesser league.

[0395] The foregoing examples of platform-dependent data 2710 are
provided for the purpose of illustration of this embodiment of the invention.
The underlying principles of the invention are not limited to any particular set
of platform-dependent data.

[0396] Figure 28 graphically illustrates how the state management
logic 2700a at the first hosting service extracts difference data 2800 from the
executing game 2701a. The state management logic 2700b at the second
hosting service then combines the clean image 2702b with the difference

149

WO 2010/111096 PCT/US2010/027716

data 2800 and platform-dependent data 2710 to regenerate the state of the
executing game 2701b. As shown generally in Figure 28, the size of the
difference data is significantly smaller than the size of the entire game image
2701a and, consequently, a significant amount of storage space and
bandwidth is conserved by storing/transmitting only difference data.
Although not shown in Figure 28, the platform-dependent data 2700 may
overwrite some of the difference data when it is incorporated into the final
game image 2701b.

[0397] While an online video gaming implementation is described
above, the underlying principles of the invention are not limited to video
games. For example, the foregoing state management techniques may be
implemented within the context of any type of online-hosted application.

[0398] TECHNIQUES FOR MAINTAINING A CLIENT DECODER

[0399] In one embodiment of the invention, the hosting service 210
transmits a new decoder to the client device 205 each time the user
requests connect to hosting service 210. Consequently, in this embodiment,
the decoder used by the client device is always up-to-date and uniquely
tailored to the hardware/software implemented on the client device.

[0400] As illustrated in Figure 29, in this embodiment, the application
which is permanently installed on the client device 205 does not include a
decoder. Rather, itis a client downloader application 2903 which manages
the download and installation of a temporary decoder 2900 each time the
client device 205 connects to the hosting service 210. The downloader
application 2903 may be implemented in hardware, software, firmware, or
any combination thereof. In response to a user request for a new online
session, the downloader application 2903 transmits information related to
the client device 205 over a network (e.g., the Internet). The information

may include identification data identifying the client device and/or the client

150

WO 2010/111096 PCT/US2010/027716

device’s hardware/software configuration (e.g., processor, operating system,
etc).

[0401] Based on this information, a downloader application 2901 on
the hosting service 210 selects an appropriate temporary decoder 2900 to
be used on the client device 205. The downloader application 2901 on the
hosting service then transmits the temporary decoder 2900 and the
downloader application 2903 on the client device verifies and/or installs the
decoder on the client device 205. The encoder 2902 then encodes the
audio/video content using any of the techniques described herein and
transmits the content 2910 to the decoder 2900. Once the new decoder
2900 is installed, it decodes the content for the current online session (i.e.,
using one or more of the audio/video decompression techniques described
herein). In one embodiment, when the session is terminated, the decoder
2900 is removed (e.g., uninstalled) from the client device 205.

[0402] In one embodiment the downloader application 2903
characterizes the channel as the temporary decoder 2900 is being
downloaded by making channel assessments such as the data rate
achievable on the channel (e.g. by determining how long it takes for data to
download), the packet loss rate on the channel, and the latency of the
channel. The downloader application 2903 generates channel
characterization data describing the channel assessments. This channel
characterization data is then transmitted from the client device 205 to the
hosting service downloader 2901, which uses the channel characterization
data to determine how best to utilize the channel to transmit media to the
client device 205.

[0403] The client device 205 typically will send back messages to the
hosting service 205 during the downloading of the temporary decoder 2900.
These messages can include acknowledgement messages indicating
whether packets were received without errors or with errors. In addition, the
messages provide feedback to the downloader 2901 as to the data rate

151

WO 2010/111096 PCT/US2010/027716

(calculated based on the rate at which packets are received), the packet
error rate (based on the percentage of packets reported received with
errors), and the round-trip latency of the channel (based on the amount of
time that it takes before the downloader 2901 receives feedback about a
given packet that has been transmitted).

[0404] By way of example, if the data rate is determined to be 2 Mbps,
then the downloader may choose a smaller video window resolution for the
encoder 2902 (e.g. 640x480 at 60fps) than if the data rate is determined to
be 5 Mbps (e.g. 1280x720 at 60fps). Different forward error correction
(FEC) or packet structures may be chosen, depending on the packet loss
rate.

[0405] If the packet loss is very low, then the compressed audio and
video may be transmitted without any error correction. If the packet loss is
medium, then the compressed audio and video may be transmitted with
error correction coding techniques (e.g., such as those previously described
and illustrated in Figures 11a, 11b, 11c and 11d). If the packet loss is very
high, it may be determined that an audiovisual stream of adequate quality
cannot be transmitted, and the client device 205 may either notify the user
that the hosting service is not available through the communications channel
(i.e. the “link™), or it may try to establish a different route to the hosting
service that has a lower packet loss (as described below).

[0406] If the latency is low, then the compressed audio and video can
be transmitted with low latency and a session can be established. If the
latency is too high (e.g. higher than 80ms) then, for games which require low
latency, the client device 205 may either notify the user that the hosting
service is not available through the link, that a link is available but the
response time to user input will be sluggish or "laggy," or that the user can
try to establish a different route to the hosting service that has a lower
latency (as described below).

152

WO 2010/111096 PCT/US2010/027716

[0407] The Client Device 205 may try to connect to the Hosting
Service 210 through another route through the network (e.g. the Internet) to
see if impairments are reduced (e.g. the packet loss is lower, the latency is
lower, or even if the data rate is higher). For example, the Hosting Service
210 may connect to the Internet from multiple locations geographically (e.g.,
a hosting center in Los Angeles and one in Denver), and perhaps there is
high packet loss due to congestion in Los Angeles, but there is not
congestion in Denver. Also, the Hosting Service 210 may connect to the
Internet through multiple Internet service providers (e.g. AT&T and
Comcast).

[0408] Because of congestion or other issues between the client
device 205 and one of the service providers (e.g. AT&T), packet loss and/or
high latency and/or constrained data rate may result. However, if the Client
Device 205 connects to the hosting service 210 through another service
provider (e.g., Comcast), it may be able to connect without congestion
problems and/or lower packet loss and/or lower latency and/or higher data
rate. Thus, if the client device 205 experiences packet loss above a
specified threshold (e.g., a specified number of dropped packets over a
specified duration), latency above a specified threshold and/or a data rate
below a specified threshold while downloading the temporary decoder 2900,
in one embodiment, it attempts to reconnect to the hosting service 210
through an alternate route (typically by connecting to a different IP address
or different domain name) to determine if a better connection can be
obtained.

[0409] If the connection is still experiencing unacceptable impairments
after alternative connection options are exhausted, then it could be that the
client device 205's local connection to the Internet is suffering from
impairments, or that it is too far away from the hosting service 210 to
achieve adequate latency. In such a case the client device 205 may notify
the user that the Hosting Service is not available through the link or that it is

153

WO 2010/111096 PCT/US2010/027716

only available with impairments, and/or the only certain types of low-latency
games/applications are available.

[0410] Since this assessment and potential improvement of the link
characteristics between the Hosting Service 210 and the Client Device 205
occurs while the temporary decoder is being downloaded, it reduces the
amount of time that the client device 205 would need to spend separately
downloading the temporary decoder 2900 and assessing the link
characteristics. Nonetheless, in another embodiment, the assessment and
potential improvement of the link characteristics is performed by the client
device 205 separately from downloading the temporary decoder 2900 (e.g.,
by using dummy test data rather than the decoder program code). There
are number of reasons why this may be a preferable implementation. For
example, in some embodiments, the client device 205 is implemented
partially or entirely in hardware. Thus, for these embodiments, there is no

software decoder per se necessary to download.

[0411] COMPRESSION USING STANDARDS-BASED TILE SIZES

[0412] As mentioned above, when tile-based compression is used,
the underlying principles of the invention are not limited to any particular tile
size, shape, or orientation. For example, in a DCT-based compression
system such as MPEG-2 and MPEG-4, tiles may be the size of macroblocks
(components used in video compression which typically represent a block of
16 by 16 pixels). This embodiment provides a very fine level of granularity
for working with tiles.

[0413] Moreover, regardless of tile size, various types of tiling
patterns may be used. For example, Figure 30 illustrates an embodiment in
which multiple I-tiles are used in each R frame 3001-3004. A rotating
pattern is used in which I-tiles are dispersed throughout each R frame so
that a full I-frame is generated every four R frames. Dispersing the I-tiles in

154

WO 2010/111096 PCT/US2010/027716

this manner will reduce the effects of a packet loss (limiting the loss to a
small region of the display).

[0414] The tiles may also be sized to an integral native structure of
the underlying compression algorithm. For example, if the H.264
compression algorithm is used, in one embodiment, tiles are set to be the
size of H.264 “slices.” This allows the techniques described herein to be
easily integrated the context of various different standard compression
algorithms such as H.264 and MPEG-4. Once the tile size is set to a native
compression structure, the same techniques as those described above may
be implemented.

[0415] TECHNIQUES FOR STREAM REWIND AND PLAYBACK OPERATIONS
[0416] As previously described in connection with Figure 15, the
uncompressed video/audio stream 1529 generated by an app/game server
1521-1525 may be compressed by shared hardware compression 1530 at
multiple resolutions simultaneously resulting in multiple compressed
video/audio streams 1539. For example, a video/audio stream generated by
app/game server 1521 may be compressed at 1280x720x60fps by the
shared hardware compression 1530 and transmitted to a user via outbound
routing 1540 as outbound Internet traffic 1599. That same video/audio
stream may be simultaneously scaled down to thumbnail size (e.g. 200x113)
by the shared hardware compression 1530 via path 1552 (or through delay
buffer 1515) to app/game server 1522 to be displayed as one thumbnail
1600 of a collection of thumbnails in Figure 16. When thumbnail 1600 is
zoomed through intermediate size 1700 in Figure 17 to size 1800
(1280x720x60fps) in Figure 18, then rather than decompressing the
thumbnail stream, app/game server 1522 can decompress a copy of the
1280x720x60fps stream being sent to the user of app/game server 1521,
and scale the higher resolution video as it is zoomed from thumbnail size to
1280x720 size. This approach has the advantage of reutilizing the 1280x720
compressed stream twice. But it has several disadvantages: (a) the

155

WO 2010/111096 PCT/US2010/027716

compressed video stream sent to the user may vary in image quality if the
data throughput of the user’s Internet connection varies resulting in a
varying image quality viewed by the “spectating” user of app/game server
1522, even if that user’s Internet connection does not vary, (b) app/game
server 1522 will have to use processing resources to decompress the entire
1280x720 image and then scale that image (and likely apply a resampling
filter) to display much smaller sizes (e.g. 640x360) during the zoom, (¢) if
frames are dropped due to limited Internet connection bandwidth and/or
lost/corrupted packets, and the spectating user “rewinds” and “pauses” the
video recorded in the delay buffer 1515, the spectating user will find the
dropped frames are missing in the delay buffer (this will be particularly
apparent if the user “steps” frame-by-frame), and (d) if the spectating user
rewinds to find a particular frame in the video recorded in the delay buffer,
then the app/game server 1522 will have to find an | frame or | tiles prior to
the sought frame in the video stream recorded in the delay buffer, and then
decompress all of the P framest/tiles until the desired frame is reached. This
same limitations would not only apply to users “spectating” the video/audio
stream live, but users (including the user that generated the video/audio
stream) viewing an archived (e.g. “Brag Clip”) copy of the video/audio
stream.

[0417] An alternative embodiment of the invention addresses these issues
by compressing the video stream in more than one size and/or structure.
One stream (the "Live" stream) is compressed optimally to stream to the end
user, as described herein, based on the characteristics of the network
connection (e.g. data bandwidth, packet reliability) and the user’s local client
capabilities (e.g., decompression capability, display resolution). Other
streams (referred to herein as "HQ" streams) are compressed at high
quality, at one or more resolutions, and in a structure amenable to video
playback, and such HQ streams are routed and stored within the server
center 210. For example, in one embodiment, the HQ compressed streams

156

WO 2010/111096 PCT/US2010/027716

are stored on a RAID disk array 1515 and are used to provide functions
such as pause, rewind, and other playback functions (e.g., “Brag Clips”
which may be distributed to other users for viewing).

[0418] As illustrated in Figure 31a, one embodiment of the invention
comprises an encoder 3100 capable of compressing a video stream in at
least two formats: one which periodically includes I-Tiles or |-Frames 3110
and one which does not include I-Tiles or I-Frames 3111, unless necessary
due to a disruption of the stream or because an I-Tile or I-Frame is
determined to likely be smaller than an I-Tile or I-Frame (as described
above). For example, the “Live” stream 3111 transmitted to the user while
playing a video game may be compressed using only P-Frames (unless I-
Tiles or I-Frames are necessary or smaller as described above). |n addition,
the encoder 3100 of this embadiment concurrently compresses the Live
video stream 3111 in a second format which, in one embodiment,
periodically includes I-Tiles or |I-Frames (or similar type of image format).
[0419] While the embodiments described above employ I-Tiles, I-
Frames, P-Tiles and P-Frames, the underlying principles of the invention are
not limited to any particular compression algorithm. For example, any type
of image format in which frames are dependent on previous or subsequent
frames may be used in place of P-Tiles or P-Frames. Similarly, any type of
image format which is not dependent on previous or subsequent frames
may be substituted in place of the I-Tiles or |-Frames described above.
[0420] As mentioned above, the HQ Stream 3110 includes periodic |-
Frames (e.g., in one embodiment, every 12 frames or s0). This is significant
because if the user ever wants to quickly rewind the stored video stream to
a particular point, I-Tiles or |-Frames are required. With a compressed
stream of only P-Frames (i.e. without the first frame of the sequence being
an |-Frame), it would be necessary for the decoder go back to the first frame
of the sequence (which might be hours long) and decompress P frames up
to the point to which the user wants to rewind. With an |-Frame every 12

157

WO 2010/111096 PCT/US2010/027716

frames stored in the HQ stream 3110, the user can decide to rewind to a
particular spot and the nearest preceding |-Frame of the HQ stream is no
more than 12 frames prior to the desired frame. Even if the decoder
maximum decode rate is real-time (e.g. 1/60" of a second for a 60
frame/sec stream), then 12 (frames)/60 (frames/sec) = 1/5 second away
from an I-Frame. And, in many cases, decoders can operate much faster
than real-time so, for example, at 2x real-time a decoder could decode 12
fames in 6 frames, which is just 1/10™ of a second delay for a “rewind”.
Needless to say, that even a fast decoder (e.g. 10x real-time) would have an
unacceptable delay if the nearest preceding |-Frame were a large number of
frames previous to a rewind point (e.g. it would take 1 hour/10=6 minutes to
do a “rewind”). In another embodiment, periodic I-Tiles are used, and in this
case when the user seeks to rewind the decoder will find the nearest
preceding I-Tile prior to the rewind point, and then commence decoding of
that tile from that point until all tiles are decoded through to the rewind point.
Although periodic I-Tiles or I-Frames result in less efficient compression
than eliminating I-Frames entirely, the hosting service 210 typically has
more than enough locally available bandwidth and storage capacity to
manage the HQ stream.

[0421]In another embodiment the encoder 3100 encodes the HQ stream
with periodic |-Tile or I-Frames, followed by P-Tiles or P-Frames, as
previously described, but also preceded by B-Tiles or B-Frames. B-Frames,
as described previously are frames that precede an I-Frame and are based
on frame differences from the I-Frame working backwards in time. B-Tiles
are the tile counterpart, preceding an |-Tile and based on frame differences
working backwards from the I-Tile. In this embodiment, if the desired rewind
point is a B-Frame (or contains B-Tiles), then the decoder will find the
nearest succeeding |-Frame or |-Tile and decode backwards in time until the
desired rewind point is decoded, and then as video playback proceeds from
that point forward, the decoder will decode B-Frames, |-Frames and P-

158

WO 2010/111096 PCT/US2010/027716

Frames (or their tile counterparts) in successive frames going forward. An
advantage of employing B-Frames or B-Tiles in addition to | and P types is
that, often higher quality at a given compression ratio can be achieved.
[0422]In yet another embodiment, the encoder 3100 encodes the HQ
stream as all I-Frames. An advantage of this approach is that every rewind
point is an I-Frame, and as a result, no other frames need to be decoded in
order to reach the rewind point. A disadvantage is the compressed data rate
will be very high compared to |, P or |, P, B stream encoding.

[0423]Other video stream playback actions (e.g. fast or slow rewind, fast or
slow forward, etc.), typically are much more practically accomplished with
periodic |I-Frames or |-Tiles (alone or combined with P and/or B
counterparts), since in each case the stream is played back in a different
frame order than frame-by-frame forward in time, and as a result, the
decoder needs to find and decode a particular, often arbitrary, frame in the
sequence. For example, in the case of very fast-forward (e.g. 100x speed),
each successive frame displayed is 100 frames after the prior frame. Even
with a decoder that runs at 10x real-time and decodes 10 frames in 1 frame
time, it would still be 10x too slow to achieve 100x fast-forward. Whereas,
with periodic I-Frames or I-Tiles as described above, the decoder is able to
seek the nearest applicable I-Frame or I-Tiles to the frame it needs to
display next and only decode the intervening frames or tiles to the point of
the target frame.

[0424]In another embodiment I-Frames are encoded in the HQ stream at a
consistent periodicity (e.g. always each 8 frames) and the speed multipliers
made available to the user for fast forward and rewind that are faster than
the |-Frame rate are exact multiples of the I-Frame periodicity. For example,
if the I-Frame periodicity is 8 frames, then the fast-forward or rewind speeds
made available to the user might be 1X, 2X, 3X, 4X, 8X, 16X, 64X and 128X
and 256X. For speeds faster than the I-Frame periodicity, the decoder will
first jump ahead to the closest I-Frame that is the number of frames ahead

159

WO 2010/111096 PCT/US2010/027716

at the speed (e.qg., if the currently displayed frame is 3 frames prior to an |-
Frame, then at 128X, the decoder would jump to a frame 128+3 frames
ahead), and then for each successive frame the decoder would jump the
exact number of frames as the chosen speed (e.g. at the chosen speed of
128X, the decoder would jump 128 frames) which would land exactly on an
I-Frame each time. Thus, given that all speeds faster than the I-Frame
periodicity are exact multiples of the |-Frame periodicity, the decoder will
never need to decode any preceding or following frames to seek the desired
frame, and only will have to decode one I-Frame per displayed frame. For
speeds slower than the I-Frame periodicity (e.g. 1X, 2X, 3X, 4X), or for
speeds faster that are non-multiples of the I-Frame periodicity, for each
frame displayed, the decoder seeks whichever frames require the least
additional newly decoded frames to display the desired frame, be it an
undecoded I-Frame or an already-decoded frame still available in decoded
form (in RAM or other fast storage), and then decode intervening frames, as
necessary, until the desired frame is decoded and displayed. For example,
at 4X fast forward, in an |,P encoded sequence with 8X |-Frame periodicity,
if the current frame is a P-frame that is 1 frame following an I-frame, then the
desired frame to be displayed is 4 frames later, which would be the 5™ P-
Frame following the preceding I-frame. If the currently displayed frame
(which had just been decoded) is used as a starting point, the decoder will
need to decode 4 more P-frames to display the desired frame. if the
preceding |-Frame is used, the decoder will need to decode 6 frames (the I-
Frame and the succeeding 5 P-Frames) in order to display the desired
frame. (Clearly, in this case, it is advantageous to use the currently
displayed frame to minimize the additional frames to decode.). Then, the

1% P-Frame

next frame to be decoded, 4 frames ahead, would be the
following an |-Frame. In this case, if the currently decoded frame were used
as a starting point, the decoder would need to decode 4 more frames (2 P-

Frames, an |-Frame and a P-Frame). But, if the next I-Frame were used

160

WO 2010/111096 PCT/US2010/027716

instead, the decoder would only need to decode the I-Frame and the
successive P-Frame. (Clearly, in this case, it is advantageous to use the
next I-frame as a starting point to minimize the additional frames to decode.)
Thus, in this example, the decoder would alternate between using the
currently decoded frame as a starting point and using a subsequent I-Frame
as a starting point. As a general principal, regardless of the HQ video stream
playback mode (fast-forward, rewind or step) and speed, the decoder would
start with whichever frame, be it an I-Frame or a previously decoded frame,
requires the least number of newly decoded frames to display the desired
frame for each successive frame displayed for that playback mode and
speed.

[0425] As illustrated in Figure 31b, one embodiment of the hosting
service 210 includes stream replay logic 3112 for managing user requests to
replay the HQ stream 3110. The stream replay logic 3112 receives client
requests containing video playback commands (e.g., pause, rewind,
playback from a specified point, etc), interprets the commands, and decodes
the HQ stream 3110 from the specified point (either starting with either an |-
Frame or previously decoded frame, as appropriate, and then proceeding
forward or backward to the specified point). In one embodiment, a decoded
HQ stream is provided to an encoder 3100 (potentially the self-same
encoder 3100, if capable of encoding more than one stream at once, or a
separate encoder 3100) so that it may be recompressed (using the
techniques described herein) and transmitted to the client device 205. The
decoder 3102 on the client device then decodes and renders the stream as
described above.

[0426] In one embodiment, the stream replay logic 3112 does not
decode the HQ stream and then cause the encoder 3100 to re-encode the
stream. Rather, it simply streams the HQ stream 3110 directly to the client
device 205 from the specified point. The decoder 3102 on the client device
205 then decodes the HQ stream. Because the playback functions

161

WO 2010/111096 PCT/US2010/027716

described herein do not typically have the same low-latency requirements as
playing a real-time video game (e.g. if the player is simply reviewing prior
gameplay, not actively playing), the added latency typically inherent in the
usually higher-quality HQ stream may result in an acceptable end user
experience (e.g., with higher latency but higher-quality video).

[0427] By way of example, and not limitation, if the user is playing a
video game, the encoder 3100 is providing a Live stream of essentially all P-
frames optimized for the user’s connection and local client (e.g.,
approximately 1.4Mbps at a 640 x 360 resolution). At the same time, the
encoder 3100 is also compressing the video stream as an HQ stream 3110
within the hosting service 310 and storing the HQ stream on a local Digital
Video Decoder RAID array at, for example, 1280 x 720 at 10 Mbps with |-
frames every 12 frames. If the user hits a "Pause" button, then game will be
paused on the client’s last decoded frame and the screen will freeze. Then if
the user hits a "Rewind" button, the stream replay logic 3112 will read the
HQ stream 3110 from the DVR RAID starting from the closest I-frame or
available already-decoded frame, as described above. The stream replay
logic 3112 will decompress the intervening P or B frames, as necessary, re-
sequence the frames as necessary so that the playback sequence is
backwards at the desired rewind speed, and then resize (using prior art
image scaling techniques well-known in the art) the desired decoded
intended to be displayed from 1280 x 720 to 640 x 360, and the Live stream
encoder 3100 will re-compress the re-sequenced stream at 640 x360
resolution and transmit it to the user. If the user pauses again, and then
single-steps through the video to watch a sequence closely, the HQ stream
3110 on the DVR RAID will have every frame available for single stepping
(even though the original Live stream may have dropped frames for any of
the many reasons described herein). Further, the quality of the video
playback will be quite high at every point in the HQ stream, whereas there
may be points in the Live stream where, for example, the bandwidth had

162

WO 2010/111096 PCT/US2010/027716

been impaired, resulting in a temporary reduction in compressed image
quality. While impaired image quality for a brief period of time, or in a
moving image, may be acceptable for the user, if the user stops at a
particular frame (or single-steps slowly) and studies frames closely, impaired
quality may not be acceptable. The user is also provided with the ability to
fast forward, or jump to a particular spot, by specifying a point within the HQ
stream (e.g., 2 minutes prior). All of these operations would be impractical
in their full generality and at high quality with a Live video stream that was P-
frame-only or rarely (or unpredictably) had I-Frames.

[0428]In one embodiment, the user is provided with a video window (not
shown) such as a Apple QuickTime or Adobe Flash video window with a
"scrubber"” (i.e., a left-right slider control) that allows the user to sweep
forward and backward through the video stream, as far back as the HQ
stream has stored the video. Although it appears to the user as if he or she
is “scrubbing” through the Live stream, in fact he or she is scrubbing through
the stored HQ stream 3110, which is then resized and recompressed as a
Live stream. In addition, as previously mentioned, if the HQ stream is
watched by anyone else at the same time, or the user at a different time, it
can be watched a higher (or lower) resolution than the Live stream’s
resolution while the HQ stream is simultaneously encoded, and the quality
will be as high as the quality of the viewer’s Live stream, potentially up to the
quality of the HQ stream.

[0429]Thus, by simultaneously encoding both the Live stream (as described
herein in an appropriate manner for its low-latency, bandwidth and packet
error-tolerance requirements) and an HQ stream with its high-quality, stream
playback action requirements, the user is thereby provided with desired
configuration of both scenarios. And, in fact, it is effectively transparent to
the user that there are two different streams being encoded differently. From
the user’s perspective, the experience is highly responsive with low-latency,
despite running on an highly variable and relatively low bandwidth Internet

163

WO 2010/111096 PCT/US2010/027716

connection, yet the Digital Video Recording (DVR) functionality is very high
quality, with flexible actions and flexible speeds.

[0430]

[0431] As a result of the techniques described above, the user receives the
benefits of both Live and HQ video stream during online gameplay or other
online interaction, without suffering from any of the limitations of either a
Live stream or an HQ stream.

[0432]Figure 31c illustrates one embodiment of a system architecture for
performing the above operations. As illustrated, in this embodiment, the
encoder 3100 encodes a series of “Live” streams 3121L, 3122L, and 3125L
and a corresponding series of “HQ” streams 3121H1-H3, 3122H1-H3, and
3125H1-H83, respectively. Each HQ stream H1 is encoded at full resolution,
while each encoder H2, and H3 scales to the video stream to a smaller size
prior to encoding. For example, if the video stream were 1280x720
resolution, H1 would encode at 1280x720 resolution, while H2 could scale to
640x360 and encode at that resolution and H3 could scale to 320x180 and
encode at that resolution. Any number of simultaneous Hn scaler/encoders
could be used, providing multiple simultaneous HQ encodings at a variety of
resolutions.

[0433] Each of the Live streams operate in response to channel feedback
signals 3161, 3162, and 3165 received via an inbound Internet connection
3101, as described above (see, e.g., the discussion of feedback signals
2501 and 2601 in Figures 25-26). The Live streams are transmitted out
over the Internet (or other network) via outbound routing logic 3140. The
Live compressors 3121L-3125L include logic for adapting the compressed
video streams (including scaling, dropping frames, etc.) based on channel
feedback.

[0434]The HQ streams are routed by inbound routing logic 3141 and 1502
to internal delay buffers (e.g., RAID array 3115) or other data storage
devices via signal path 3151 and/or are fed back via signal path 3152 into

164

WO 2010/111096 PCT/US2010/027716

app/game servers and encoder 3100 for additional processing. As
described above, the HQ streams 3121Hn-3125 Hn are subsequently
streamed to end users upon request (see, e.g., Figure 31b and associated
text).

[0435]In one embodiment, the encoder 3100 is implemented with the shared
hardware compression logic 1530 shown in Figure 15. In another
embodiment some, or all of the encoders and scalers are individual
subsystems. The underlying principles of the invention are not limited to any
particular sharing of scaling or compression resources or hardware/software
configuration.

[0436]An advantage of the configuration of Figure 31c is that App/Game
Servers 3121-3125 that require smaller that full-size video windows will not
need to process and decompress a full-size window. Also, App/Game
Services 3121-3125that require in-between window sizes can receive a
compressed stream that is near the desired window size, and then scale up
or down to the desired window size. Also, if multiple App/Game Servers
3121-3125 request the same size video stream from another App/Game
Server 3121-3125, Inbound Routing 3141 can implement IP multicast
techniques, such as those well-known in the art, and broadcast the
requested stream to multiple App/Game Servers 3121-3125 at once, without
requiring an independent stream to each App/Game Server making a
request. If an App/Game server receiving a broadcast changes the size of a
video window, it can switch over to the broadcast of a different video size.
Thus, an arbitrarily large number of users can simultaneously view a
App/Game Server video stream, each with the flexibility of scaling their
video windows and always getting the benefit of a video stream scaled
closely to the desired window size.

[0437]0ne disadvantage with the approach shown in Figure 31c is that in
many practical implementations of the Hosting Service 210, there is never a
time when all of the compressed HQ streams, let alone all of the sizes of all

165

WO 2010/111096 PCT/US2010/027716

of the compressed HQ streams, are viewed at once. When encoder 3100 is
implemented as a shared resource (e.g. a scaler/compressor, either
implemented in software or hardware), this wastefulness is mitigated. But,
there may be practical issues in connecting a large number of
uncompressed streams to a common shared resource, due to the bandwidth
involved. For example, each 1080p60 stream is almost 3 Gbps, which is far
in excess of even Gigabit Ethernet. The following alternate embodiments
address this issue.

[0438]Figure 31d shows an alternative embodiment of the Hosting Service
210 in which each App/Game Server 3121-3125 has two compressors
allocated to it: (1) a Live stream compressor 3121L-3125L, that adapts the
compressed video stream based on Channel Feedback 3161-3165, and (2)
an HQ stream compressor that outputs a full-resolution HQ stream, as
described above. Notably, the Live compressor is dynamic and adaptive,
utilizing two-way communications with the client 205, while the HQ stream
is non-adaptive and one-way. Other differences between the stream is the
Live stream quality may vary dramatically, depending on the channel
conditions and the nature of the video material. Some frames may be of
poor quality, and there may be dropped frames. Also, the Live stream may
be almost entirely P-frames or P-tiles, with I-frames or I-tiles appearing
infrequently. The HQ stream typically will be much higher data rate than the
Live Stream, and it will provide consistent high-quality, without dropping any
frames. The HQ stream may be all I-frames, or may have frequent and/or
regular I-frames or I-tiles. The HQ stream may also include B-frames or B-
tiles.

[0439]In one embodiment, Shared video scaling and recompression 3142
(detailed below) selects only certain HQ video streams 3121H1-3125H1 to
be scaled and recompressed at one or more different resolutions, before
sent to Inbound Routing 3141 for routing as previously described. The other
HQ video streams are either passed through at their full size to Inbound

166

WO 2010/111096 PCT/US2010/027716

Routing 3141 for routing as previously described, or not passed through at
all. In one embodiment the decision on which HQ streams are scaled and
recompressed and/or which HQ streams are passed through at all is
determined based on whether there is a App/Game Server 3121-3125 that
is requesting that particular HQ stream at the particular resolution (or a
resolution close to the scaled or full resolution). Through this means, the
only HQ streams that are scaled and recompressed (or potentially passed
through at all) are HQ streams that are actually needed. In many
applications of Hosting Service 210, this results in a dramatic reduction of
scaling and compression resources. Also, given that every HQ stream is at
least compressed at its full resolution by compressors 3121H1-3125H1, the
bandwidth needed to be routed to and within Shared video scaling and
recompression 3142 is dramatically reduced than if it would be accepted
uncompressed video. For example, a 3GBps uncompressed 1080p60
stream could be compressed to 10Mbps and still retain very high quality.
Thus, with Gigabit Ethernet connectivity, rather than be unable to carry even
one uncompressed 3Gbps video stream, it would be possible to cary dozens
of 10Mbps video streams, with little apparent reduction in quality.
[0440]Figure 31f shows details of Shared video scaling and recompression
3142, along with a larger number of HQ video compressors HQ 3121H1-
3131H1. Internal routing 3192, per requests for particular video streams
scaled to particular sizes from the App/Game Servers 3121-3125, selects
typically a subset of compressed HQ streams from HQ video compressors
HQ 3121H1-3131H1. A stream within this selected subset of streams is
routed either through a Decompressor 3161-3164 if the stream requested is
to be scaled, or routed on Non-scaled Video path 3196 if the stream
requested is at full resolution. The streams to be scaled are decompressed
to uncompressed video by Decompressors 3161-3164, then each scaled to
the requested size by Scalers 3171-3174, then each compressed by
Compressor 3181-3184. Note that if a particular HQ stream is requested at

167

WO 2010/111096 PCT/US2010/027716

more than one resolution, then Internal Routing 3192 multicasts that stream
(using IP multicasting technology that is well-known by practitioners in the
art) to one or more Decompressors 3161-3164 and (if one a requested size
if full resolution) to Outbound Routing 3193. All of the requested streams,
whether scaled (from Compressors 3181-3184) or not (from Internal Routing
3192), are then sent to Outbound Routing 3193. Routing 3193 then sends
each requested stream to the App/Game Server 3121-3125 that requested
it. In one embodiment, if more than one App/Game server requests the
same stream at the same resolution, then Outbound Routing 3193
multicasts the stream to all of the App/Game servers 3121-3125 that are
making the request.

[0441]In the presently preferred embodiment of the Shared video scaling
and recompression 3142, the routing is implemented using Gigabit Ethernet
switches, and the decompression, scaling, and compression is implemented
by discrete specialized semiconductor devices implementing each function.
The same functionality could be implemented with a higher level of
integration in hardware or by very fast processors.

[0442]Figure 31e shows another embaodiment of Hosting Service 210,
where the function of Delay Buffer 3115, previously described, is
implemented in a Shared video delay buffer, scaling and decompression
subsystem 3143. The details of subsystem 3143 is shown in Figure 31g.
The operation of subsystem 3143 is similar to that of subsystem 3142
shown in Figure 31f, except 3191 first selects which HQ video streams are
to be routed, per requests from App/Game Servers 3121-3125, and then,
the HQ streams that are requested to be delayed are routed through Delay
Buffer 3194, implemented as a RAID Array in the presently preferred
embodiment (but could be implemented in any storage medium of sufficient
bandwidth and capacity), and streams that are not requested to be delayed
are routed through Non-delayed Video path 3195. The output of both the
Delay Buffer 3194 and Non-delayed Video 3195 is then routed by Internal

168

WO 2010/111096 PCT/US2010/027716

Routing 3192 based on whether requested streams are to be scaled or not
scaled. Scaled streams are routed through Decompressors 3161-3164,
Scalers 3171-3174 and Compressors 3181-3184 to Outbound Routing
3193, and Non-scaled Video 3196 also is sent to Outbound Routing 3193,
and then Outbound Routing 3193 then sends the video in unicast or
multicast mode to App/Game Servers in the same manner as previously
described in subsystem 3142 of Figure 31f.

[0443]Another embodiment of video delay buffer, scaling and
decompression subsystem 3143 is shown in Figure 31h. In this
embodiment, an individual Delay Buffer HQ 3121D-HQ 3131D is provided
for each HQ stream. Given the rapidly declining cost of RAM and Flash
ROM, which can be used to delay an individual compressed video stream,
this may end up being less expensive and/or more flexible than having a
shared Delay Buffer 3194. Or, in yet another embodiment, a single Delay
Buffer 3197 (shown in dotted line) can provide delay for all of the HQ
streams individually in a high-performance collective resource (e.g. very fast
RAM, Flash or disk). In either scenario, each Delay Buffer HQ 3121D-3131D
is able to variably delay a stream from the HQ video source, or pass the
stream through undelayed. In another embodiment, each delay buffer is able
to provide multiple streams with different delay amounts. All delays or non-
delays are requested by App/Game Services 3121-3125. In all of these
cases Delayed and Non-Delayed Video streams 3198 are sent to Internal
Routing 3192, and proceeds through the rest of the subsystem 3143 as
previously described relative to Figures 31g.

[0444]In the preceding embodiments relative to the various Figures 31n
note that the Live stream utilizes a two-way connection and is tailored for an
particular user, with minimal latency. The HQ streams utilize one-way
connections and are both unicast and multicast. Note that while the
multicast function is illustrated in these Figures as a single unit, such as

could be implemented in a Gigabit Ethernet switch, in a large scale system,

169

WO 2010/111096 PCT/US2010/027716

the multicast function would likely be implemented through a tree of multiple
switches. Indeed, in the case of a video stream from a top-ranked video
game player, it may well be the case that the player’'s HQ stream is watched
by millions of users simultaneously. In such a case, there would likely be a
large number of individual switches in successive stages broadcasting the
multicasted HQ stream.

[0445]For both diagnostic purposes, and so as to provide feedback to the
user (e.g. to let the user know how popular his gameplay performance is), in
one embodiment, the hosting service 210 would keep track of how many
simultaneous viewers there are of each App/Game Server 3121-3125’s
video stream. This can be accomplished by keeping a running count of the
number of active requests by App/Game servers for a particular video
stream. Thus, a gamer who has 100,000 simultaneous viewers will know
that his or her gameplay is very popular, and it will create incentive for
gameplayers to do a better performance and attract viewers.When there is
very large very viewership of video streams (e.g. of a championship video
game match), it may be desirable for commentators to speak during the
video game match such that some or all users watching the multicast can
hear their commentary.

[0446]Applications and Games running on the App/Game servers will be
provided with an Application Program Interface (API) in which the App
and/or Game can submit requests for particular video streams with particular
characteristics (e.g. resolution and amount of delay). Also, these APIs,
submitted to an operating environment running on the App/Game Server, or
to a Hosting Service Control System 401 of Figure 4a may reject such
requests for a variety of reasons. For example, the video stream requested
may have certain licensing rights restrictions (e.g. such that it can only be
viewed by a single viewer, not broadcast to others), there may be
subscription restrictions (e.g. the viewer may have to pay for the right to
view the stream), there may be age restrictions (e.g. the viewer may have to

170

WO 2010/111096 PCT/US2010/027716

be 18 to view the stream), there may be privacy restrictions (e.g. the person
using the App or playing the game may limit viewing to just a selected
number or class of viewers (e.g. his or her “friends”), or may not allow
viewing at all), and there may be restrictions requiring the material is
delayed (e.g. if the user is playing a stealth game where his or her position
might be revealed). There are any number of other restrictions that would
limit viewing of the stream. In any of these cases, the request by the
App/Game server would be rejected with a reason for the rejection, and in
one embodiment, with alternatives by which the request would be accepted
(e.g. stating what fee must be paid for a subscription).

[0447]1HQ video streams that are stored in Delay Buffers in any of the
preceding embodiments may be exported to other destinations outside of
the Hosting Service 210. For example, a particularly interesting video stream
can be requested by an App/Game server (typically by the request of a
user), to be exported to YouTube. In such a case, the video stream would
be transmitted through the Internet in a format agreed-upon with YouTube,
together with appropriate descriptive information (e.g. the name of the user
playing, the game, the time, the score, etc.). This could be implemented by
multicasting in a separate stream the commentary audio to all of the
Game/App Servers 3121-3125 requesting such commentary. The
Game/App Servers would merge the audio of the commentary, using audio
mixing techniques well-known by practitioners in the art, into the audio
stream sent to the user premises 211. There could well be multiple
commentators (e.g. with different viewpoints, or in different languages), and
users could select among them.

[0448]In a similar manner, separate audio streams could be mixed in or
serve as replacement for the audio track of particular video streams (or
individual streams) in the Hosting Service 210, either mixing or replacing
audio from video streaming in real-time or from a Delay Buffer. Such audio

could be commentary or narration, or it could provide voices for characters

171

WO 2010/111096 PCT/US2010/027716

in the video stream. This would enable Machinima (user-generation
animations from video game video streams) to be readily created by users.
[0449]The video streams described throughout this document are shown as
captured from the video output of App/Game servers, and then being
streamed and/or delay and being reused or distributed in a variety of ways.
The same Delay Buffers can be used to hold video material that has come
from non-App/Game server sources and provide the same degree of
flexibility for playback and distribution, with appropriate restrictions. Such
sources include live feeds from television stations (either over-the-air, or
non-over-the-air, such as CNN, and either for-pay, such as HBO, or free).
Such sources also include pre-recorded movies or television shows, home
movies, advertisements and also live video teleconference feeds. Live feeds
would be handled like the live output of a Game/App Server. Pre-recorded
material would be handled like the output of a Delay Buffer.

[0450] In one embodiment, the various functional modules illustrated
herein and the associated steps may be performed by specific hardware
components that contain hardwired logic for performing the steps, such as
an application-specific integrated circuit (“ASIC”) or by any combination of
programmed computer components and custom hardware components.
[0451] In one embodiment, the modules may be implemented on a
programmable digital signal processor (‘DSP”) such as a Texas Instruments’
TMS320x architecture (e.g., a TMS320C6000, TMS320C5000, . . . etc).
Various different DSPs may be used while still complying with these
underlying principles.

[0452] Embodiments may include various steps as set forth above.
The steps may be embodied in machine-executable instructions which
cause a general-purpose or special-purpose processor to perform certain
steps. Various elements which are not relevant to these underlying
principles such as computer memory, hard drive, input devices, have been
left out of some or all of the figures to avoid obscuring the pertinent aspects.

172

WO 2010/111096 PCT/US2010/027716

[0453] Elements of the disclosed subject matter may also be provided
as a machine-readable medium for storing the machine-executable
instructions. The machine-readable medium may include, but is not limited
to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs,
EEPROMSs, magnetic or optical cards, propagation media or other type of
machine-readable media suitable for storing electronic instructions. For
example, the present invention may be downloaded as a computer program
which may be transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of data signals embodied in a
carrier wave or other propagation medium via a communication link (e.g., a
modem or network connection).

[0454] It should also be understood that elements of the disclosed
subject matter may also be provided as a computer program product which
may include a machine-readable medium having stored thereon instructions
which may be used to program a computer (e.g., a processor or other
electronic device) to perform a sequence of operations. Alternatively, the
operations may be performed by a combination of hardware and software.
The machine-readable medium may include, but is not limited to, floppy
diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, magnet or optical cards, propagation media or
other type of media/machine-readable medium suitable for storing electronic
instructions. For example, elements of the disclosed subject matter may be
downloaded as a computer program product, wherein the program may be
transferred from a remote computer or electronic device to a requesting
process by way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., @a modem or network
connection).

[0455] Additionally, although the disclosed subject matter has been
described in conjunction with specific embodiments, numerous modifications

and alterations are well within the scope of the present disclosure.

173

WO 2010/111096 PCT/US2010/027716

Accordingly, the specification and drawings are to be regarded in an

illustrative rather than a restrictive sense.

174

WO 2010/111096 PCT/US2010/027716

CLAIMS
What is claimed:

1. A computer-implemented method for performing video
compression comprising:

encoding a plurality of video frames or portions thereof according to a
first encoding format;

transmitting the plurality of encoded video frames or portions to a
client device;

receiving feedback information from the client device, the feedback
information usable to determine whether data contained in the video frames
or portions has not been successfully received and/or decoded;

in response to detecting that a video frame or portion thereof has not
been successfully received and/or decoded, encoding a video frame or
portion thereof according to a second encoding format; and

transmitting the video frames or portions thereof to the client device.

2. The method as in claim 1 wherein each video frame or portion
encoded according to the first encoding format is dependent on a prior video
frame or portion, respectively, and wherein each video frame or portion
encoded according to the second encoding format is not dependent on a
prior video frame or portion, respectively.

3. The method as in claim 2 wherein the frames or portions thereof
comprise P-frames or P-tiles, respectively, when encoded according to the
first encoding format and wherein the frames or portions thereof encoded
comprise I-frames or I-tiles, respectively, when encoded according to the

second encoding format.

175

WO 2010/111096 PCT/US2010/027716

4. The method as in claim 1 wherein the feedback information
comprises an indication that the frames or portions thereof have been

successfully received and/or decoded at the client device.

5. The method as in claim 1 wherein the feedback information
comprises an indication that the frames or portions thereof have not been

successfully received and/or decoded at the client device.

6. The method as in claim 1 wherein the video frames comprise
images of a video game being played at the client device.

7. The method as in claim 1 further comprising:

decoding the encoded video frames or portion thereof at the client
device; and

displaying images associated with each of the video frames or
portions thereof on a display on the client device.

8. A system comprising a memory for storing program code and a
processor for processing the program code to perform the operations of:

encoding a plurality of video frames or portions thereof according to a
first encoding format;

transmitting the plurality of encoded video frames or portions to a
client device;

receiving feedback information from the client device, the feedback
information usable to determine whether data contained in the video frames
or portions has not been successfully received and/or decoded;

in response to detecting that a video frame or portion thereof has not
been successfully received and/or decoded, encoding a video frame or
portion thereof according to a second encoding format; and

transmitting the video frames or portions thereof to the client device.

176

WO 2010/111096 PCT/US2010/027716

9. The system as in claim 8 wherein each video frame or portion
encoded according to the first encoding format is dependent on a prior video
frame or portion, respectively, and wherein each video frame or portion
encoded according to the second encoding format is not dependent on a
prior video frame or portion, respectively.

10. The system as in claim 9 wherein the frames or portions thereof
comprise P-frames or P-tiles, respectively, when encoded according to the
first encoding format and wherein the frames or portions thereof encoded
comprise I-frames or I-tiles, respectively, when encoded according to the
second encoding format.

11. The system as in claim 8 wherein the feedback information
comprises an indication that the frames or portions thereof have been
successfully received and/or decoded at the client device.

12. The system as in claim 8 wherein the feedback information
comprises an indication that the frames or portions thereof have not been
successfully received and/or decoded at the client device.

13. The system as in claim 8 wherein the video frames comprise

images of a video game being played at the client device.

14. The system as in claim 8 comprising additional program code to
cause the processor to perform the operations of:

decoding the encoded video frames or portion thereof at the client
device; and

displaying images associated with each of the video frames or
portions thereof on a display on the client device.

177

WO 2010/111096 PCT/US2010/027716

15. A machine-readable medium having program code stored
thereon which, when executed by a machine, causes the machine to
perform the operations of:

encoding a plurality of video frames or portions thereof according to a
first encoding format;

transmitting the plurality of encoded video frames or portions to a
client device;

receiving feedback information from the client device, the feedback
information usable to determine whether data contained in the video frames
or portions has not been successfully received and/or decoded;

in response to detecting that a video frame or portion thereof has not
been successfully received and/or decoded, encoding a video frame or
portion thereof according to a second encoding format; and

transmitting the video frames or portions thereof to the client device.

16. The machine-readable medium as in claim 15 wherein each
video frame or portion encoded according to the first encoding format is
dependent on a prior video frame or portion, respectively, and wherein each
video frame or portion encoded according to the second encoding format is

not dependent on a prior video frame or portion, respectively.

17. The machine-readable medium as in claim 16 wherein the frames
or portions thereof comprise P-frames or P-tiles, respectively, when
encoded according to the first encoding format and wherein the frames or
portions thereof encoded comprise |-frames or I-tiles, respectively, when

encoded according to the second encoding format.

178

WO 2010/111096 PCT/US2010/027716

18. The machine-readable medium as in claim 15 wherein the
feedback information comprises an indication that the frames or portions

thereof have been successfully received and/or decoded at the client device.

19. The machine-readable medium as in claim 15 wherein the
feedback information comprises an indication that the frames or portions
thereof have not been successfully received and/or decoded at the client
device.

20. The machine-readable medium as in claim 15 wherein the video

frames comprise images of a video game being played at the client device.

21. The machine-readable medium as in claim 15 comprising
additional program code to cause the machine to perform the operations of:

decoding the encoded video frames or portion thereof at the client
device; and

displaying images associated with each of the video frames or
portions thereof on a display on the client device.

179

PCT/US2010/027716

WO 2010/111096

1/55

(Wy Joud)
1 '©Id

90l
18(jojuey
ales %
SOL
:O:O@:COO
SOmON
o0l
ol
Nd9INdD oL
elpayy
7 y eando
JONUOW/ALAHALAS

SUNAIIA;
SF\

vy

anl(] preH

PCT/US2010/027716

2/55

WO 2010/111096

1

|

i

I

soineq sligo | |
| "

i

907
lelBiU|

uolY
B|jpduon

ole
aoneg buysoH

O3PIA
AsusyeT-mon

4
$ Aefoy| sjool JusUIoD

Zee

i
1
i
'
i
3
1
1
1
1
| ¢ @4 uonduosgng
|
1
i
1
i
1
i
]
1
i

ALQH 10 Joyuop
¥ v
aﬂ
—_— . siadojera(]
LLZ seslald Jesn uoneoijddy
|||||||||||||||||||||||||| - 10 alues)

PCT/US2010/027716

WO 2010/111096

3/55

so1Aeq] BIIGOI
AT

90z
JERRE]

uonay
Isjjonuon

3

\
S0¢

o8pIA
Aouaye-mo7

¢ 924 uonduosgng

¥
au1ALeg Bunson

BunsoH

) Iy
sjoo|, jusuosy

) 4

0zz
siadojens(]
uanesi|ddy
o sules)

PCT/US2010/027716

WO 2010/111096

4/55

g ‘b4

@) swny

A

€0€
aley eleq
paiinbay

lllllll

¢0€ 9y eleQg
XE|N 3|qe|leAy v

L0g
aley eleq
Xe paley

arey eleq

PCT/US2010/027716

5/55

WO 2010/111096

ey Ol

1 4
 — “ |
_ Gl waiiD ' |
: @30 10 suIoH 1 :
]
1 ¥ 1
i —_— 1 —
| Ziy ' ! 70 ¥
! uoissaldwosaq |et— — —i—] LCISS01dLI0D 0BPIA < _
" oopiA Aousye-moT ' Oly I Aouspe-moT £0¥
" — | JsuIRiu| " . NYS
: e]| “ 2507~ :
! olboT |4~ T seublsjphuog
i jeubig . N :
1 1 ~— —
. jouay “ UoRIBULOD) 1 g@ow\i ~ R 207
“ Iy P-4 /1T 1 seubig [oquod sloheg
i ; Joswoy 1
] Py !
: seubls -y | Lov
" [eauen ! welsig jenuen)
i : . ao1niag BunsoH
i . 1
" @] :
i ¥4 1 ! —_ 6
! sa1As(] 1nduy b ' 0lg 83IMag bURsoH
! . L m e — e ——————————— J
1 22 ALQH Jo Jopuoly .
! ¥
" 1

Tz sesiweid JasM

PCT/US2010/027716

WO 2010/111096

6/55

av Ol

\zy a0BlSIU| SUILEMO] @
zoira(]) oy "B} rneo e
1aNIB0sURL] 1801 @
N VN e “ IBNBOSUBI | XBIAA @
a__m_\,.n_)wm " | WePOW ISU/RIGR) @ \
Zer ALOH T sl “ \\ "
gagle 5 _ T ——»{ B0
10 10110 e, — i %w) Buingy
ery LY JoMa] |[a! = |
o s lelad TV | [iOMALIBO — Iy
L hw_ﬁﬁwﬁmm %1 coja [€] puspeey [ot 20BLISIY| “ — —
i NYAA SCC _ NYAA 1 voy ooy
_ ENTES) < Josseldulog [« janiag
“ 1 OPIA
117 SosiWald 4250 1 “
_ ! 017 991nieg Bunson
16y
mE.wz. >
sjeubis GGy
[caues mm,%wz
- N __ e __ - Buiinoy Jajleny janeg
mEM.T) . ‘,mc.::oz i} 48] Jeen eI m&%w B _ mEWmHT
co_mmMMU__.wacmD sos|UiRld 495 co_mmmLEoo uonendwon
: TOPIA awel

PCT/US2010/027716

WO 2010/111096

7155

69
ssoIAa(] Indu| Yooyenig

oojen|g
o
(Uonssuuo) 1wzl

leuieyy
JBAD 1amod

ALQH/AS 10 Jojuoly a
Sor

mﬂ., Ho)Uop o]) ;
nding | T)

Wat
- \‘W INGH 0} 1usep3
- saniiqeden
- Agjdsiq

PCT/US2010/027716

WO 2010/111096

8/55

6.¥
seoie Indu| ggn 1o yiooenig

ALQH/AS 40 JoHUOK

P¥ OId

yooranmg

\\M

€9
ALOH
HIOUON ©}

oIpNY//08pIA
B ——
R
¥or
sal|iqede)
Aejdsi(]

S0BLIs| [BI9USL)

Slv
JuslIy

\

/

M e

ugy

v
uonosULIoT

Jouisu|
i~

PCT/US2010/027716

WO 2010/111096

9/55

067 INOH

9t senljigede)
Ae(dsig

ot "bi4

88t
il (s1qu0A 63)
Josseidwodeq
olpny opny
2114
ﬂ%n_w:wo (voe'H B9)
lossaidwodeq
O3PIA 08pIA

14174
yioojenig

66t
lemod

t

\ 4

1 osrsng

214
NdO [oduod

$

VA 4
yseld

v

18Y
aoeloU|
leuleyig

[

L6t
Jawaylg

PCT/US2010/027716

WO 2010/111096

10/55

Jt "Bi4

}

661

867

oMo 4= ,amod 0@

817

aoeloU|
leuleyig

[

0

96 dSN
6 68t 88y
G661 0v.I01S o_mc<" . (siquop 'B9) | [*1:17 141
nano Josseidwoseq [V asn yioojen|g
761 [2110](opny oipny
4 F
€6 0BPIA L i
SNSOAIOY) g 80 98t
26 09PIN-S €= |ncino (roziibe) | § ¥ | IR
61 [-IA(e 03pIA _ommwhmvdqowo - 4 o08b sng 7 Y v
061 [INOH ’
v v
ot saliqeden > €8t rA:id
Aeidsiq NdO 1011u0D HIM
9lv
yseld

L6t
Jawaylg

PCT/US2010/027716

WO 2010/111096

11/55

«tm. Jo1id)
G "bi4
owe.4/salgy 06 63
>
- N
€1s cls LIS
.............. owel awel awel
passaidwon passaidwo passaldwon
€09 c0s L0S
.............. owel owel awel4
passaidwooun passaidwooun passaidwooun
S— A
——

awel-/gx 006 “B'3

0cs
01607
uoissaldwon

PCT/US2010/027716

WO 2010/111096

12/55

(1€ Jo1Ld)

eg b1
129 A 049 v £19 219 119
(9 094~) oL~ (@ 91-) (a1 91~) (ay 091~)
owel | dwe.id g swBly o aweld d aweld |
f
F §
h
19G 096 €06 208 10G
awel sweld | soe---- awel awel awel
passaidwooun passaidwooun passaidwooun passaidwooun passaidwooun
N— I
— e —

awe.l4/gy 006 63

029
21607
uoissaldwon

PCT/US2010/027716

WO 2010/111096

13/55

@) swnL

q9 bi4

A

veo
| aed Bleq
Wweans 09pIA

Le9
aley eleq

¢c9 diey eleQ
Xe|\ 9|qe|leAy

€g9 saweld |
10} palinbay a8y BlEQ

XeN paley

aley eleq

PCT/US2010/027716

WO 2010/111096

14/55

@) swnL

29 b1y

A

v€9
aley eleQq

— Wea.S 09pIA

Lec9
aley eleq

/

9€9
Mead
awel{ 4

Vo
¢c9 Siey eleg /

XeN o|ge|leAy V_WMM

owel4 4

N/

€£9 Solel |
1o} paiinbay a1eYy BlEQ

XeN paley

aley eleq

PCT/US2010/027716

WO 2010/111096

15/55

0LL
aweli{ Y

mrﬁ_ vrﬁ_ mrﬁ_ Nrn_

:n_ o—n_ mn_ wn_

‘d|°d |°d | 'd

& [%d|'d |°d

e/ ‘bi4

€L
awel4 Y

clL
sweid Y

L
aweld Y

mrﬁ_ vrﬁ_ mrﬁ_ Nrﬁ_

mvn_ .vvn_ mrn_ N—ﬁ_

mrn_ vrn_ mvn_ an_

..n_ o_.n_ mn_ wﬁ_

:n_ o—ﬁ_ mn_ wn_

:n_ o—n_ mn_ wn_

‘d 1% |%d | "d

‘d |°d |5d | 'd

‘d |°d |5d | 'd

a1l |'d|°

dd |t |°

dl%d |'d |

SL{vE|EL]|Cl

FL|{OL|[6 |8

L 19|86 |+
clec |+ |0
09
awel
passaidwooun

-

ror

SLIVE|EL|CH

SL|vE| EL|CH

S vL|EL|Cl

uoissaidwon
O3pIA

L |OL| 6 |8

FL|OL[6 |8

FHL|OL[6 | 8

Kouse1-moT

L 9§ |+ L |19 |G |¥F L |9 |6 |+
€clec|H]|O celec|+]O €| e N 0
€0L coL L0L
awel alwelq swel4
passaidwooun passaidwooun passaidwosun

f

SOl L,
obew

Z

PCT/US2010/027716

WO 2010/111096

16/55

082
aweli{ Y

q/ 'bi4

€€L
awel4 Y

(492
sweid Y

LeL
aweld Y

‘d [°d |°d | 'd ‘d1°% |°d | "4 ‘d |°d |°d |"d ‘d |°d |°d | 'd
9 1% |'d | °d dld| | 9 |°%d|'d|°d d[%d |'d |
A A A y
// 174017
uoissaidwon
0BpIA
A -
BERERE s lols [+ s lols [+ . lols|v OUSIET-MOT]
clel|l+]o elz |t]o elz |+]o elz|+rdo /,V
0. £2. zeL (Y] «SOILL,
awel swel aWel awel (m@mE_
passaidwooun passalsdwooun passaidwooun passaidwooun

PCT/US2010/027716

WO 2010/111096

17155

8 "bi4
(48] LL8
sweld Yy sweld Yy
- N~ N
/mow t 7 cog
1447
208 L08 uoissaidwon
swel{ | - auwel4 O3pIA
passaiduiooun passaidwooun Aouale-mon
~— _
e

aweid/gx 006 “6'3

PCT/US2010/027716

WO 2010/111096

18/55

L6
aley eleq Yead >

o6 ey
elR(Yeed Xz

€6 oley
el Yesd X&

eg6 "b14
(1) swi
ve6
aley eleq
PR—
|||||||||||||||||| | _ wesalls O8pIA
T zz6 oy ERQ
S L Xe|\ o|ge|ieny
aley eleq
- Vg6
yead Xy

6 9ley
eleq yead Xy

PCT/US2010/027716

WO 2010/111096

19/55

q6 bi4

166 966 G66 £66 c66 166
sw jwix (sfead X¥) ol nuwx awf Hwx (Mead xg) ewn jwx swn Wy - ewn jwx
<+— < +— <« < <
/186 986 G686 £86 286 186
0} awel4 9 owel4 G awel4 g awel4 g awely | awel
passaid passaid passald passaid pessaid pessaid
-won -won -won -won -won -won
3 K 3 K 3
6.6 8.6 116 .6
paJoub| palouB) paioub) paioub)
0.6 696 896 196 996 G596 96 €96 296 196
0l sweld | 6owWely g awel /L dwel4 9 owel4 G awelH ¥ OWEJS £ awel4 2 awely | awel
passaid passaid passaid passaid passaid passald passaid passaid passaid passaid
-wooun -woosun -wooun -wooun -wooun -woosun -woosun -woosun -wosun -wooun
+—>

puodas ,09/1

140]7
uoissaidwon
O3pPIA
Aouare1-mon

PCT/US2010/027716

WO 2010/111096

20/55

L6
aley ereq yesd >

¢t6 °ley
eleq yead xg

€6 Sty
EleQ Yedd X¢

vreoed
BlR(] Yead X{

26 "bI4

€66
Mead xe
pauajie|d

GG6
yead X

ypsuslie|d

v€6
aley eleq
Weal}S 09pIA

T 226 ey BRQ

XB|\ 9|ge|leAy

sley eleq

PCT/US2010/027716

21/55

(selL 4 10 s8I | “B8)

WO 2010/111096

S9|lL
egL "Bl \\ /

Far T TP T T T P~ o ik A i
1 81 i Ll 9L Sl | vl u | €L Rm‘m« clL t é.r._. :
00l 0oL €001 c00l L0OL
1Md IMd IMd IMd IMd

PCT/US2010/027716

WO 2010/111096

22/55

qoL ‘614

vor
uoissaldwon) 0spIA
Aouaie-moT

A

oLoL
216077 Bupjoed 1L

PCT/US2010/027716

WO 2010/111096

23/55

oLl b4

....... Q ZLLL opny

Q OLLL olpny

/ €011

// LLLEL

o3d o34
qLL b4 2ot
A
7 - -
[I
....... \\\ €0LL OIIL | 7N’ @ 00LL oL |
/\“ \/\\m /
apon Hw_ﬂwmtoo SoLt LOLL
Jouig Eméco“_ oIl | ﬁw%m_mwgﬂoio%u_o_%wﬁwo (D34) @poD uonoauoy
: JoJI3 pJemiod o |
er| b4 Noted
A

\
....... @ €OLL 9L |

T Q 00LL 2L
7

\

vOLL
9pOD) UOI031I0D
loug plemio4 9] |

\

LOLL
(D34) 8poD uoIP81I0D
10113 pIemIod a|i |

PCT/US2010/027716

WO 2010/111096

24/55

pLL bi4

7.

22l s[eubig |oauo0)

7

0ZLL sjeubig jouo)

/mw_._.

OEE!

/_.N_.w

O34

PCT/US2010/027716

2L b4 () awnL

25/55

WO 2010/111096

\ &. N“ Nm Nm N& Nm Nm hm N& MMVONH—V- 4/
1021
DS s e o i e 8§ i L e A | B s s 5100 ~
s S g S S S S S 90¢c1
d d i d d d d d 0109 -
el.b g v L]) L ¥ ¥ L G0clL]
9 s, |v 210D rov
d|d|'d uoissaidwon
I I 09PIA
ey llerfle Mle |l e [le Ile, lle, voclL e Aousie-moT
9021 Bt I I | Al | 2100
awe.l
passaldwon
AN C S 2 2 2y 2 2 €0clL A\
2l L Ly Ly L L b Ly r{rA4" A\ €| ¢ b 0
Gocl
awel
| o, 0, o, |l o, 0, 0, 0, 0, 102l b\ passaidwooun
wrr S

SNdO 8103-pEND BN

WO 2010/111096 PCT/US2010/027716

26/55

Hosting
Service
1300

FIG. 13a

PCT/US2010/027716

PCT/US2010/027716

WO 2010/111096

28/55

vl Ol

L0 20BJISIU| BUIEMO @
soIne(] Indu) (o “Bo)uene) @
. JBNIBOSUE]| 18G4 @
2N @ I jeneosuBl] XENIM @
SUIIaMOd @ I Wwapoy| TSQ/RIGRD @
i @ ! I
2z ALAH e | \\ “ 50w
a [T Toh w60
10 Jojuopy w_w_wu — “ Www . Bunnoy
Chy ! e eROL (130 J— Wy !
alpe] [YNASINOY |atle momvmmé uf*=] puopesy [l Ol¥ aoepal| | —
i [BaUSY .l._l _OmmmaEOU o 1BKIDG
| - DSPEA
—_— 1 — & 1
LLZ sesiwslg sesn | _ Ory I
! S01M9S * I [1Z elhleg Buysol
SsedAg 1aUsU| [k2 S35 BUISOH
15y
sul] ~ >
sieudig GGy
[ORUT SUI |~
" . . - Bunoy Bjusy) 18aIsg
o mﬁ mg,ﬁ: ms@_ = © =
SWg-| ~ Bunoy ,n_m,L_ o8 Hmc..hme_ m_\mm.w_\c wE@%W [
ugisseIduIons(] SeSIWBI Jesn Losseidwon uanendLon
O9PIA T OBPIA auel

PCT/US2010/027716

29/55

WO 2010/111096

0GG1 smaip dnoir) Jo/pue sayng Aejeg
10} OIpNYy//03pPIA 1c1

“ sest Jayng Aejeq
: JETNEISI IR
: 4 = < swen/ddy |
(V)] ™
m 2 .S c B
| 2 835 5 3 o GLSL Aey lvy
; 10 m. < a3 oL . 3
m - S D 873 . e LoS 1
; 2 o3 m. m <) = olyeI] 18UIdU|
= > o) © 9 = punoqu|
I 66GL f 2 T O 55 2
iRl 19UIBIU| - o > ccsl 5
! punoginO = g enes |l S gup
: IS = = ueo/ddy [* m
: 3 - = o 2ISL AUy alvy
_ °
i D ¢
“ 3 .
m m Lesl
: jenes |
e owenyddy | <>
m LLGL Aedy Qivy

012 901A18S BulisoH
10 JUBWIPOQWIT JBILBY) JOAIDS

PCT/US2010/027716

WO 2010/111096

30/55

9L OId

£d3Hsngnd
ZANVD

gd3IHsnand
SINVO

cHaHsIIaNd
EINYD

Pd2HSI18Nd
FINVD

€Y3HsINaNnd LHaHSHIeNd

SIWWD LIAVD

e —.”L.Wh"&.(\h”. —p AT
Wﬁf, 7 \n. ﬁx!//ffx..ﬁ\ml/.

—
P m— R

==

o

TN
740

S ST T i
u_ .,“Vinh__l; d ,,.‘_\\hvm\\‘,w

=

cyaHsNand
CINVD

2oaxy A~ s
o ..ht.rﬂg .mw [Fre
£Y3HSNANd PUaHSIgNd

£3NVD TINYD

e

SUIHSINENd
LAWVD
//zv_H_uzﬂ
["] ,
=
4 i
e

SANVD

£43HSNANd
SINYD

FH3IHSIIAN
PANYD

gdansITand ZHaHSNAaNG

LANYD ZINYD 13NV

= iy \N\\\ Y Ka[il..fw\mc ! N St \
ll..l.l ..q..nf - I\ 2 ~ g ll/id 1\ \\\\\ X
ey | e | Rl | S

u\.z\hu\w‘ @//fﬂn

LATALHION SHOMILN 009 "08 (24T pRRIICIseE

LANIALNIDE SIS DG T ise Boiner peaeuss € S310ANA
SUIMIIA 083 ‘PINVD 08 NI SUIAYTd SPL € SIvIS
CH CIIEERIOTTIIIE < Z3nve € Zd3HSIENd

LY

HEARHAWO0L AINIOR 130 IND0OET 8 AQIR58N0A 1427

FH4OH¥d AN

ALINAWWOD

m,m_Om_.;.\W&kwma_.r SAEN /N_MDZ.E VO

ANITNG AN

dQLMSII INIING

SIAIAOW mz_nvm

w?&m aNme N
pY N\

7
LO9l 009l cosl

Ll 'Ol

PCT/US2010/027716

31/55

Zd3aHSEand guIHSIEand cHaHsNand PHIAHS TGN £4¥3aHsIaNd daHsand
WD 6IWYD 13D [E11h 4] mme.sdw vME(ﬁ.
,.FIM\I-I_../V 7 —— Lo e prm—— — ..l«hhu _/.!J. i
=~ l= n@
|| e _\f\\:
k ..Wa ~¢ [= \A \\ -

cH3aHSIaNd £U3HSI1SNd
SO €ANYS

¢d3aHenand
LE)
R
s :!JIIIIll_ _
X A

LdaHsnand
P3NV

£43a-sIT8Nd
SINVD SNV

KANHARNION SIDMBIA T

CH3IHSITENd

EHTH GNDL GINOF IS 30908 2 ACKNG HA0A a1y 3HCHd AN ALINAWINOD SIADOIVEIS P 8dIL SN H3ANI Wéd.@

INITNO. AN SIADW INIMNO JOLHME3A IANITHNO DNIAY S m_Z_A_X D

WO 2010/111096

\
00/1

WO 2010/111096 PCT/US2010/027716

FIG. 18

1801

N8|, /77T 1]
- 74 77 =

LIS\ 777 /) 1] 11—
2L/ 1)\
=/7 “\\

1800
A

U] — — —

Nem—

PCT/US2010/027716

WO 2010/111096

33/55

%ﬁ 9RE e

- .

3
%
.
= 1 2 3
A e
3 | F §
C——————— | } b7 y

NSO e

SN

L
nil

_ | oY
|

—

QLRI | 7

nEln |
T T)

£05'z € FAoNIIany €45 4§ ONDINYY

S3IIAaNg € IN40uUd AN <€

\ NV £ 2HIHETTENd € SFWYD

/
108l

PCT/US2010/027716

WO 2010/111096

34/55

L0z 0002

\ /

r«ﬂéﬁuﬂ s 1\ P ,l

it

“BuUo.Je Moe| pue sael JNo Inolepdeer Aepo)
BURLIBE 1) S S2USLUSY IO} JEC SUY RalSmo | o

HesinoA1of nofple U yo:sewss 1j0g i
W DLue

Buesponis|.
(2 RS 3 == =

(IS T

DOUOELIGO X1

CS1INIMNOD

W 851 01 yer IBARTRINN0 -] _ EEEAr Qmﬁ\ Z¥H 4 9 _v:

A2D0)JUS LB UMY L N

WA Tr T [R Et
st napom_ i
[ENIR=E) algtels]

4 8IDVSSYN

SHOLYM ~LDTTA3 SHIIWAM <103 W
FANTD AL ENTE

yLUb: .)

EUEYED). 193€ 311105 5Heh

o

DAIFE
63y D
ma:owc_, 0" IHIN

Y=

Tl =40
mmmwam::Q
N D

SAMNIIA >_2 1Y 338

SIZRUBLICE B BLYY
1.Sd Wd 200 L1 SOTIAR &L

AQ palIILEIS 100
St} pife eLEy

It NOA BIIRY SSOG Js8xoIe
814151 8H8) SI4]L0.ALA BU| Ty
LEd Wd 5L 10438 vl

SINIWOW NIL JOL | 3NV 3NN

ZHIHSNENd € gTAYS

TIAYD LNIEEND
YNVLANOW ‘NVINSZOE NOILYOQ]
2 =30V

£UIHSTE
LLEZAV S

x,‘..,,L_.“_Io_/ﬁR
¢35

TSAWYN IHVL S HOA

NN

LAHVZVHTIIA

AT T T

/ \ \ &difno Dimm‘M//

hY LM090T e | 5Qa |

A idigaL | sawvefaanvy | S3LMoAvE | WALSAS AaNg | 539wgsIw | 31150%d | SWOH

/ md_ug/ yZDES_%O\ SFOAIVYLS 2 8dlL

SAGN /WEDZE YD

m UIkS.M “mso—z NN JdOLMSIA INITHO Oz_yﬂmz_._zo D

€00¢C G00e

PCT/US2010/027716

WO 2010/111096

35/55

GBI JBYIRST QUOIS < JOUB KT JBAJIS Jo)Mad < Lpueig 485 AN

ded ayoue puid ¢
‘SUOHHG JNCA 9SOUYD 7
OALIP S8 [SNJIA B ONBL Lpuelg seD "L

0L AW

ALINNAHAIOTY

SINICIIVELE Y SdiL SMIN

H3ANId FNVD

FNITNO- AN

SAIANOW INFTNG

dOLMEIE INIIND

ONINYD ININO Sy

PCT/US2010/027716

WO 2010/111096

36/35

@0BLING pauIMXS]

zc ‘b4

s0BLNG paxdel]

aoeng paumded

SOUBLLIOMDY SAIT

PCT/US2010/027716

WO 2010/111096

37/55

| ’n |

|

&

o)

d

"
i

A
/

SN 7,
///

|

N

SIDWBG IV 4
S42lUYL &

sSauld ¢ sHods €
108U fenRds €
Aseuey plig-og R
SOUBUOY €
S{EDISNP % SIS €

3 W juapuadepu) €
S
S z . 100K &€
el At | et = -
- " R Y = ueigse g Res €
=4 o % Hirgiim S Rl
ud..\ﬁ%\m. Iy ubIBIo
\ \\. \.l. : Alenuids g yied €
— — = === —= = ¥ = e €
— e _— [~ —~ Aigpusuinood €
W i = nl = ¢ ul/lF 5 4
w;...uJ 0 [XE /,_Mr :I W v | uf L USHELIUY 7 BUILY €
&= % YT Al = |E | SN P sinjusARY 7 UoNIY <
N s | [g i I i @ N 2UNUBAPY B ORIV
N e | |2 [B2 vy | e
SONLLLIS SAN3lML 001 4Ol SNOILVYONIWAOOI Y NOOS ONINOGD SIUNID
ANINNG. AW SIACGKH MZ_._ZONV ACIMSTIT ANNMNG ONIAYD INING:

PCT/US2010/027716

WO 2010/111096

38/55

(sdqy) poads uonoauuon

0l 09 05 oF 0

19AI8S [BUOIJUSAUOYD

selAgING | ‘Aousle| swoQ L@ SOl ¥G)
awl| peo sbed

abed al |1} spuooag

puoo9s | >

PCT/US2010/027716

WO 2010/111096

39/55

esz "bi4

LLGC
14 BLIEBI
peposeQ
g
e
oLse
F 3s0 awel
1ox0rd paloslep
IR e d || d m s
i ! !
[| H |
2052 i 9 d || d ! 00s2 1t
J8poos 0 t i 18p0oU
pooeq Hppim 1 4 | poou3 <z
il d 4 d || d | 1
i m f
! 10SZ YoeqPes m

G0¢ 901A8Q USIID

o1z @oinieg BunsoH

PCT/US2010/027716

WO 2010/111096

40/55

LLGC
awel

pepooseq

qse ‘bi4

$s0| J19yoed
paloslep 0] esuodsal
Ul JUSS $9|11-| MEN

c0se
Japooa(

a

a

Z

00sC
18p00UT

T

.~

ﬁ

G0¢ 901A8Q USIID

10G2 Xoegpes

o1z @oinieg BunsoH

PCT/US2010/027716

41/55

WO 2010/111096

egz "bi4

€0z 801A8Q 1U8lO 012 80188 Bunsoy

! 0292 m ! 0192 m
! AIOWBN “ i Aloway !
T ee T A T
Ve (s)ere1S Jepooaq | m peloslep _ “ (s)erels Jopoou | m
! 1sBd m ! 10| $s0| 1oyoed K Ised m !
m aiaiaiaiats il 1 palewely eye g ueyl [iniuintbelniintelninlntnisint !
! : layrel g oji/ewel) H i
' m uo Juspuadap m m
m m |
m m m m
_ c092 m 3 ¥ S £ m 009¢ m
L 4 € “ 18p0%sq N H S 9H L |« “ 18poouT N 8 6 | 0L | LL
m o Y b !
" “ 9092 “ “
“ m sejl | /sowe. 4 ' m
1002 : ' passeidwon m [“
“ H ' 1 G09¢
se|l] /sewel i “ “ m $9|1] /sewe.
pesseidwodeq | ! 1092 Xoeqpeed “ ! passaidwooun

PCT/US2010/027716

WO 2010/111096

42/55

q9c bi14

i

cs9¢
paAl@day A||n1SSe0ong aLIBI4/a]IL
uo Juepuade(sweld/a|l] 1XON SlelausL)

4

1992
polvled dWel /9|l L 1807

T

0S92
aWeJ-/s8ll| Snoinald uo luspuada(
awel-/e|l] eleiauaL)

lyvis

PCT/US2010/027716

WO 2010/111096

43/55

e/g b4

-uou pue abew ues|d

BuiqLIosep uoiBLLION|

¥
qL0ze
v
alelS PalonJIsu0oal)
aWEL)
pa1INdaxg
q00s¢
BIRp Juspuadep ewobeuey |e¢
-wliope|d + ebew alels
sweb Buinoexg
N YV
| BleQ juepuedeq
iy -uojleld)

c0c
.. P someq wein
A
m Y
' eLoLe
i ecQ.Lz ebeiolg (v ore1g)
obew ues|o ! \ BWES
! e —— Buiinoaxg
useMlaq SeduBIBYIP i
—_—
i
; ©00.2
: JuswobeUE e
' olels
i

PCT/US2010/027716

WO 2010/111096

44/55

Af

q/eg b4

1922
9lElS BWEL) palealoay
Wwoi4 sWexr) she|d Jesn

\ﬁ

0942
Bleq uspuadaq
-wiopeld sresodiodu|

T

6642
BlRQ 80UdId}iq pur abew|
ues|D Wol4 ebew| swexr) slesioey

T

8G/2
BlE(Q 90UaJalIq
pue abew| ues|D aasuley

T

1S/.¢
peleNIuIgY SWE.L) suluQ

9G/¢
pallWsUR)] Jo/puUe
poI0]g BIRQ 80UBIBIIA

i

GGl2C
paujwsleQ
91elS BWERY) JUdLIND PUB dWEeY) |0
abeLU| URS|D) UsBMIBg SBoUBIBLI]

T

vG.2
PBIBUIWIS | 10 pasned awer)

\—/

€62
awer) she|d 1esn

T

PAT XA
PaPEBOT Bwex) Jo abew| ues|D

T

AN

162
awen) aulluQ MaN Selelliu| Jeasn

lyvis

PCT/US2010/027716

WO 2010/111096

45/55

008¢
BlEQ —<
sousJlelg

A

q10.e
(v elels)
swen
q00.2
Bunnoex3 ewoebeuew
9lelS

E T e—

qecoLe
QwEx) Jo
obew| ues|n,

—
CCe——— | ~a
RN

8c ‘bi4

e00.Le
wawabruepy

OlElS

N 0LLe
m eleq Juspuadeq
’ -wiogeld

Y

eLoze
(v ere1s)

awer)
Buninoaxg

—L T)
T 1]

008c
Ll Tleg
eousIBIg

IR

ecoLe

awex) Jo
abew| Uesn,

PCT/US2010/027716

WO 2010/111096

62 bid4

01607 Jepo2eq

b P
Lo 0a6z o 2062
i 1 Jepooeq e+ 0062 0162 1UBIUOD PBPOd3 <—— opoous
11 Aesodwel 7 “
Lo b !
" L TR b “ A
0 ; H ' ' v
©Q i i i
m £062 m ; 1062
1senbey Jesn “ JapeouUMoQ ! “ J8PEOIUMOQ]
m T m —>
! “ UOIIBLLIOJUI US| : 7y
m m Buipnoul JUBJUD 10} 1senbay i
i ' i
' GOg 9d1A8(Jusl ' "
[Aw N. ||||| m_::_.O.:-n “ 0062
i

PCT/US2010/027716

WO 2010/111096

47/55

o€ "bi4
v00€ €00€ 200€ LOOE
sweld Yy sweld Y aweld Yy swe.ld Yy
m—n_ 3_ mrn_ Nrn_ mrn_ wrn_ m—_ N_.n_ mFl in_ m—n_ NF_ mr_ 3& an_ N—n_
:n_ o—n_ mn_ w_ :_ o—n_ mn_ wn_ :n_ or_ mn_ wn_ Cn_ o—n_ m_ wn_
‘A% | °I|"d ‘d % |°d | " ‘(% [°d |"d ‘d| % |%d |"d
I {°d|'d|°d 1% |'d|°d d|d| M| dld|d |

PCT/US2010/027716

WO 2010/111096

48/55

wea.}s 08pIA
pessaidwooag

coLe
lapodaQ

G0¢ 9218 WIBIID

eLg 'bi4

oLLE

«~BdIS OH,
asn 8o1n188 BulisoH

[ewisiu] 10} paziundQ
wealls pessaldwod)

00Le WesliS 08pIA

LLLE
LWEeals e,
UOISSIWSUB.]

aAIn Jo} pazindo
wes.s passaidwon

passaidwoosun

i
1
i
Tapooug H
1
1
1

012 921n18S BunsoH

PCT/US2010/027716

WO 2010/111096

49/55

weaJlg 08pIA
passeldwooaq

[A1] 5
Jopooe(

G0¢ 90lA9(1UBIID

qiLg ‘b14

(1]9
Sawel4-| UM
weslls pesseldwod)

r445

1 1
\m 21607 Aejdey m
: weans m

SOWe. -] INOUIM
weals pessaidwon

€LLE
spueww o) Aejdey
[Y —— e IIIIIII J
<] ooLe m
LLLE o fepooua

012 @o1nes BunsoH

o€ "bid4
smalp dnour) 1o/pue tayng Aejaq
10} OIpNYy//03PIA

1GLE

PCT/US2010/027716

WO 2010/111096

50/55

GclLe
! jenes |
_ owenyddy [
< m
: L GOT€ JPeqpos] [PUUBUD
- ! i
S 3 ! -2
o ™ ' L 2T °
« “ P82 .
&) =2 H | m.d
oljel | = m g m :
. 3 Qo “ =
owo < 2 2| |
punoqing | o o [“ zeIe
5 a ! : jenes |
...lw Q AIT IHZZIEOH | swenyddy |
% < - Tezicon [
H i 2O 1€ Yoeqgpasd [euuey)
¢ i i
“ LgLE
! jenes |
_ swenyddy |
< m
01 901A18S BUSOH “ 00LE JOP0OUT m TSTE oeqpss [UUEUD

10 JUBLUIPOQLUT JBJUBY) JBAIBS

Inbound Routing 1502

layng AejeQq

GLLE Aeuy Qivyd

10LE

3

U0I109UU0Y) 1aUI3IU|
punoqu

e CLLE Aeuy Qlvy
[]
[]

LLLE Aey dlvy

PCT/US2010/027716

WO 2010/111096

51/55

olel]
I

punoqinp

3142

pLE "bi4

SMmalA dnolr) Jo/pue layng AejaQ

<

Inbound Routing 3141

Shared video scaling

and recompression

41 k>

Jecle oAl

Outbound Routing 3140

<

012 901n18S BunsoH

JO lUBLIPOQUWIT JBJUBY) JOAIBS

__ TICLE BAIN _LAI

10} OIpNY//03PIA
aclLe
AIEA' lenes |
_wEmO\Qq< D
[szigonn [l .
L GOt Soeqpoe] PUE)
80
T [
o}
3
c>
o
[AARS

awen)/ddy

(¥4 R

awern)/ddy

v

€

191 € Yoeqpes |suueyd

Inbound Routing 1502

I1GLE

layng AejeQq

GLLE Aeuy Qlvy
LOLE

3

UOI103UUO0Y) 18Uy
punoquy

ZLLE Aewy Qivy

LLLE Aeuy Aivd

PCT/US2010/027716

WO 2010/111096

52/55

<=

olel |
EET]

punoqINQ

Outbound Routing 3140

smalp dnolo) Jo/pue Jeyng Aejeq

104 OIpNY//08PIA

3143

<

Inbound Routing 3141

Shared video delay buffer,

scaling and recompression

| |

[szic on [l
L

2CLE BAIT

012 @d1neg BunsoH
JO JusLIpoquIg J8juag Jarles

__ THCLE BAIT _LAI

LHZZLE OH

GzlLe
sweoddy |
GOIE Yoeqpeo [puueyy
8o
T [}
£2 .
)
52 .
c>
-]
44 k3
lanos o
mEm@\Qa< D
| |

LgLE

awen)/ddy

|

A 4

<

191 € Moeqpas4 |suueyD

Inbound Routing 1502

csle

oLe

A

uoI}oaUUOY) 1auUIdU|

punoqu|

ZLLe Aeny Aivy

LL1e Aely Alvy

PCT/US2010/027716

WO 2010/111096

JLE "Bi4

53/55

961 08PIA
pe[ess-uoN

<

-

<
™
9 ‘
-
m
(@)
= - ¥91€
= 12:15% 1743
nUu Jossaidwion A 19[B0S - J0ssa.idwoos -
c
© €81¢€ €LLE €91¢
= €= jossoidwon [Jeeog - 10S58.dWo08(-
o
= 28le cLlE 291e
mUu am J0ssa1dwon - Ja[eos - lossaidwooeqg -

< 18LE LLLE 191 ¢

J0ssa1dwon - 18[e0g - Jossaidwoosq

Z2v L€ uoissaldwooal pue ‘Buleds
‘Joynq ABjOp 00PIA PaIRYS JO S|ikleg

Internal Routing 3192

IHIELE OH

LHOELE OH

IH621€ OH

LH8ZI€ OH

IH.21€ OH

LHOZIE OH

IHSCLE OH

LH¥ELE OH

LHECLE OH

LHZZLE DH

IHI2IE DH

R R L

PCT/US2010/027716

WO 2010/111096

54/55

961€ 0S9PIA
po|BOS-UoN

<

I

<
™
9 ‘
-
(22}
(@)
= - 9l€
= ¥81¢€ yZARY 91
w Jossaidwon - J9|BoS - Jossaidwooe(g -
o
jo] €81L¢ €L1E _A €91¢
m = losseudwon - JETICIolS lossaidwoosqg -
Q
O
= c8lLe cl91€ c9le
m R lossaidwon - 19808 - Jossaidwodeq i

- I8LE AR 191€

Josseidwon - 1o[e2S - Jossaidwodseq -

Internal Routing 3192

G6LE OBPIN
paAe|op-UON

A A A A

Tttt

€¥ | € uolssaidwoosl pue ‘Buleos
‘Jaynq Aejap 08pIA pateys Jo s|ielaq

Jayng Aejag

v6LE Aeuly QIvy

1114

Inbound Routing 3191

IHI€LE OH

IHoELE OH

IHé6ZLE OH

IHSZLE OH

IH.CLE OH

IH9ZLE OH

IHSZLE OH

FH¥ZLE OH

FHETZLE OH

LHZZ1LE OH

IHI2IE OH

BB LT

PCT/US2010/027716

WO 2010/111096

yig b4

i
] 9616 08PIA
i pa[eds-UON
! <
m <
m <
1|
| o ¢
0 1| v
wilm
5 1
v ! | O
iE= p 81E viie 7918
| = 14
H w J1osse.dwon - 19[B0S - 10ssaidwooeq -
| e
o €8IE ELIE _A €91€
5 €= 0ss01dwoD - 19[e0g 108s81dwooaq -
@]
=2 28le 2i91€ 2916
m €= J0sseidwon - 18/20S - Jossaidwoseq €™
P 18LE LLLE 191E <
J0s8s01dwon - 18[B0S - J0ssa1dwodeq

£ £ uoisseidwooal pue ‘Buieos
“JaJinq AB|ap 08PIA PaIBYS |0 S|IB1a(]

Internal Routing 3192

861 € OBPIA
pake|op-UON pue psielaqg

A A 4

A

| aleteoOH FHLELE OH

“ aosie OH HOELE DH _
“ aezis OH IH6ZLE DH _
“ aszie OH LH8Z1E OH _
" azeis oH IHZZLE OH _
" ageis OH IH9ZLE DH _
" asels oH IHSZIE OH _
" areis OH FHYZLE OH _
" aseis oH FHEZLE OH _
" azz1Le DH LHZZLE DH _
[aizieon IH1ZLE DH

/61€
layng AejeQg

	DESCRIPTION
	CLAIMS
	DRAWINGS

