
(19) United States
US 20050093872A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0093872 A1
Paltashev et al. (43) Pub. Date: May 5, 2005

(54) METHOD FOR COMPRESSING DATA INA
BT STREAM ORBIT PATTERN

(76) Inventors: Timour Paltashev, Fremont, CA (US);
Boris Prokopenko, Milpitas, CA (US)

Correspondence Address:
THOMAS, KAYDEN, HORSTEMEYER &
RISLEY, LLP
100 GALLERIA PARKWAY, NW
STE 1750
ATLANTA, GA 30339-5948 (US)

(21) Appl. No.: 10/850,940

(22) Filed: May 21, 2004

Related U.S. Application Data

(60) Provisional application No. 60/515.841, filed on Oct.
29, 2003.

Graphics
Component

Publication Classification

1) Int. Cl. 5/37; G06T 1/20 51) Int. C.7 G09G 5/3
(52) U.S. Cl. .. 345/563

(57) ABSTRACT

One embodiment of the present invention is directed to a
method for a computer graphics System comprising com
pressing a plurality of groups of bits by shifting compressed
groups of bits into bit positions that are to be removed during
the compression, the logic being responsive to a mask,
wherein contents of the mask define variable amounts that
the plurality of bits are shifted during the compression.
Another embodiment is directed to a method for compress
ing a plurality of groups of bits to eliminate groups of bits
that are to be unaffected by a computation, performing the
computation, and thereafter decompressing corresponding
data after performing the computation to restore data cor
responding to previously eliminated groups of bits.

112

Logic for Providing
Variable-Length
Compression (bit

packing)

Logic for
Decompressing
(unpacking)

114

Patent Application Publication May 5, 2005 Sheet 1 of 14 US 2005/0093872 A1

HOST 10
(GRAPHICS API)

-12

-14
PARSER

VERTEX
SHADER

RASTERIZER

16

18

FIG. 1 (PRIOR ART)

Patent Application Publication May 5, 2005 Sheet 2 of 14 US 2005/0093872 A1

112

Logic for Providing
Variable-Length
Compression (bit

packing)

Graphics
Component

Logic for
Decompressing
(unpacking)

114

FIG.2

Patent Application Publication May 5, 2005 Sheet 3 of 14 US 2005/0093872 A1

Graphics Pipeline

Component 1
132

Logic for
Packing

Component 2

142

Logic for
Unpacking

Component n

FIG. 3

Patent Application Publication May 5, 2005 Sheet 4 of 14 US 2005/0093872 A1

Graphics Pipeline

Vertex &
Geometry Shader

Triangle Setup

Span/Tile
Generation

Tile Z-range Test

Pixel Z Test

176 178

Logic for Logic for
Packing Unpacking

Ny N/
Z-cache Z-Compressor

2 17 n 174
External

182 Memory
Logic for Interface

Pixel Packing

Pixel Shader

Alpha Test
188

Logic for
Pixel UnPacking

Patent Application Publication May 5, 2005 Sheet 5 of 14 US 2005/0093872 A1

Shared Multi
Threaded
Processor Tile-Based

Storage

224

282 A.

Alpha Test

Logic for
Pixel Unpacking

FIG. 5

Patent Application Publication May 5, 2005 Sheet 6 of 14 US 2005/0093872 A1

310 FIG. 6B

\(320 322

FIG. 6A N320

FIG. 6D

326

320

328

326

Patent Application Publication May 5, 2005 Sheet 7 of 14 US 2005/0093872 A1

356

Pixel Mask
for Tile n

Memory with Pixel
Data/Content for

Tillen

Compressed Pixel
Data/Content for

Tien

Logic for
Compressing

FIG. 7

366

Unpacked Pixel Data/Content

Mask/Control

Packer

Packed Pixel Data/Content

Patent Application Publication May 5, 2005 Sheet 8 of 14 US 2005/0093872 A1

is \ . . . NSAA A :SAA SSAA SSASA - RSSA - in \Si\SW is : in

CO

A.

C
ves

r

N.

O

N.C., N\\\\ is S.A.W. RSSA\,\ | iRSASA. . . RSSA - RSA \ . SS i.e. o
v- N

o
o C g

w V

US 2005/0093872 A1

e - no

097

Patent Application Publication May 5, 2005 Sheet 9 of 14

US 2005/0093872 A1 May 5, 2005 Sheet 10 of 14 Patent Application Publication

967
|ºld|| Zuq | sq |

|0||0||0|||||||||||||||||||||

US 2005/0093872 A1 Patent Application Publication May 5, 2005 Sheet 11 of 14

097

e -- e.

EZI, "?IH...ºooº |-oz,

US 2005/0093872 A1 May 5, 2005 Sheet 12 of 14

G?T?TETTEIGTIGTE: EG || ? || … Dae | sq | sq |
·- 0|| #7

Patent Application Publication

Patent Application Publication May 5, 2005 Sheet 13 of 14

510 MEMORY

Data (Pos 0) (Ps
Data (Pos 2) Data (Pos 3)
Data (Pos 4) Data (Pos 5)
Data (Pos 6) Data (Pos 7)
Data (Pos 8) Data (Pos 9)

Data CFs). Data (Pos 15) 514

COMPRESSION
LOGIC

Data (Festicos)

DECOMPRESSION - - - - - - - -

LOGIC

US 2005/0093872 A1

Patent Application Publication May 5, 2005 Sheet 14 of 14 US 2005/0093872 A1

E-Z E RE 32 A. E. :1A/EIA :1AA. I.-- i-AA. I. :1A/EIA -A/EIA
II. -:/EI 1AAI - A/EI - 1A/I - 1/5 / I - 1// I - ::1: 1 I -

n

c 2
H

US 2005/0093872 A1

METHOD FOR COMPRESSING DATA IN A BIT
STREAM OR BT PATTERN

CROSS-REFERENCE TO RELATED
APPLICATION

0001) The present invention claims the benefit of U.S.
provisional application Ser. No. 60/515,841, filed Oct. 29,
2003, and entitled “System And Method For Providing
Variable Length Compression Between Successive BitPosi
tions. In A Bit Stream Or Bit Pattern.” This provisional
application is hereby incorporated by reference in its
entirety.

FIELD OF THE INVENTION

0002 The present invention generally relates to graphics
Systems, and more particularly to an method for compress
ing data in a bit Stream or bit pattern.

BACKGROUND

0.003 AS is known, the art and science of three-dimen
Sional (“3-D) computer graphics concerns the generation,
or rendering, of two-dimensional (“2-D”) images of 3-D
objects for display or presentation onto a display device or
monitor, such as a Cathode Ray Tube (CRT) or a Liquid
Crystal Display (LCD). The object may be a simple geom
etry primitive Such as a point, a line Segment, a triangle, or
a polygon. More complex objects can be rendered onto a
display device by representing the objects with a Series of
connected planar polygons, Such as, for example, by repre
Senting the objects as a Series of connected planar triangles.
All geometry primitives may eventually be described in
terms of one vertex or a set of Vertices, for example,
coordinate (x, y, z) that defines a point, for example, the
endpoint of a line Segment, or a corner of a polygon.
0004) To generate a data set for display as a 2-D projec
tion representative of a 3-D primitive onto a computer
monitor or other display device, the vertices of the primitive
are processed through a Series of operations, or processing
Stages in a graphics-rendering pipeline. A generic pipeline is
merely a Series of cascading processing units, or Stages,
wherein the output from a prior Stage Serves as the input for
a Subsequent Stage. In the context of a graphics processor,
these Stages include, for example, per-vertex operations,
primitive assembly operations, pixel operations, texture
assembly operations, rasterization operations, and fragment
operations.
0005. In a typical graphics display System, an image
database (e.g., a command list) may store a description of
the objects in the scene. The objects are described with a
number of Small polygons, which cover the Surface of the
object in the same manner that a number of Small tiles can
cover a wall or other Surface. Each polygon is described as
a list of vertex coordinates (X, Y, Z in “Model” coordinates)
and Some specification of material Surface properties (i.e.,
color, texture, Shininess, etc.), as well as possibly the normal
vectors to the Surface at each vertex. For three-dimensional
objects with complex curved Surfaces, the polygons in
general must be triangles or quadralaterals, and the latter can
always be decomposed into pairs of triangles.
0006 A transformation engine transforms the object
coordinates in response to the angle of Viewing Selected by

May 5, 2005

a user from user input. In addition, the user may specify the
field of View, the size of the image to be produced, and the
back end of the viewing Volume So as to include or eliminate
background as desired.

0007 Once this viewing area has been selected, clipping
logic eliminates the polygons (i.e., triangles) which are
outside the viewing area and "clips' the polygons, which are
partly inside and partly outside the Viewing area. These
clipped polygons will correspond to the portion of the
polygon inside the viewing area with new edge(s) corre
sponding to the edge(s) of the Viewing area. The polygon
Vertices are then transmitted to the next Stage in coordinates
corresponding to the viewing Screen (in X, Y coordinates)
with an associated depth for each vertex (the Z coordinate).
In a typical System, the lighting model is next applied taking
into account the light Sources. The polygons with their color
values are then transmitted to a rasterizer.

0008 For each polygon, the rasterizer determines which
pixel positions are covered by the polygon and attempts to
write the associated color values and depth (Z value) into
frame buffer. The rasterizer compares the depth values (Z)
for the polygon being processed with the depth value of a
pixel, which may already be written into the frame buffer. If
the depth value of the new polygon pixel is Smaller, indi
cating that it is in front of the polygon already written into
the frame buffer, then its value will replace the value in the
frame buffer because the new polygon will obscure the
polygon previously processed and written into the frame
buffer. This proceSS is repeated until all of the polygons have
been rasterized. At that point, a Video controller displays the
contents of a frame buffer on a display a Scan line at a time
in raster order.

0009. With this general background provided, reference
is now made to FIG. 1, which shows a functional flow
diagram of certain components within a graphics pipeline in
a computer graphics System. It will be appreciated that
components within graphics pipelines may vary from SyS
tem, and may also be illustrated in a variety of ways. AS is
known, a host computer 10 (or a graphics API running on a
host computer) may generate a command list 12, which
comprises a Series of graphics commands and data for
rendering an “environment' on a graphics display. Compo
nents within the graphics pipeline may operate on the data
and commands within the command list 12 to render a
Screen in a graphics display.

0010. In this regard, a parser 14 may retrieve data from
the command list 12 and "parse' through the data to interpret
commands and pass data defining graphics primitives along
(or into) the graphics pipeline. In this regard, graphics
primitives may be defined by location data (e.g., x, y, z, and
w coordinates) as well as lighting and texture information.
All of this information, for each primitive, may be retrieved
by the parser 14 from the command list 12, and passed to a
vertex shader 16. As is known, the vertex shader 16 may
perform various transformations on the graphics data
received from the command list. In this regard, the data may
be transformed from World coordinates into Model View
coordinates, into Projection coordinates, and ultimately into
Screen coordinates. The functional processing performed by
the vertex shader 16 is known and need not be described
further herein. Thereafter, the graphics data may be passed
onto rasterizer 18, which operates as Summarized above.

US 2005/0093872 A1

0.011 Thereafter, a Z-test 20 is performed on each pixel
within the primitive being operated upon. AS is known, this
Z-test is performed by comparing a current Z-value (i.e., a
Z-value for a given pixel of the current primitive) in com
parison with a stored Z-value for the corresponding pixel
location. The stored Z-value provides the depth value for a
previously-rendered primitive for a given pixel location. If
the current Z-value indicates a depth that is closer to the
Viewer's eye than the Stored Z-value, then the current Z-value
will replace the Stored Z-value and the current graphic
information (i.e., color) will replace the color information in
the corresponding frame buffer pixel location (as determined
by the pixel shader 22). If the current Z-value is not closer
to the current viewpoint than the Stored Z-value, then neither
the frame buffer nor Z-buffer contents need to be replaced, as
a previously rendered pixel will be deemed to be in front of
the current pixel.
0012 Again, for pixels within primitives that are ren
dered and determined to be closer to the viewpoint than
previously-Stored pixels, information relating to the primi
tive is passed on to the pixel Shader 22 which determines
color information for each of the pixels within the primitive
that are determined to be closer to the current viewpoint.
Once color information is computed by the pixel shader 22,
the information is stored within the frame buffer 24.

0013 Although the foregoing has only briefly summa
rized the operation of the various processing components,
persons skilled in the art recognize that the processing on
graphics data is quite intense. Consequently, it is desired to
improve processing efficiency wherever possible.

SUMMARY OF THE INVENTION

0.014) Certain objects, advantages and novel features of
the invention will be set forth in part in the description that
follows and in part will become apparent to those skilled in
the art upon examination of the following or may be learned
with the practice of the invention. The objects and advan
tages of the invention may be realized and obtained by
means of the instrumentalities and combinations particularly
pointed out in the appended claims.

0.015. One embodiment of the present invention is
directed to a method for a computer graphics System com
prising compressing a plurality of groups of bits by shifting
compressed groups of bits into bit positions that are to be
removed during the compression, the logic being responsive
to a mask, wherein contents of the mask define variable
amounts that the plurality of bits are shifted during the
compression.

0016. Another embodiment is directed to a method for
compressing a plurality of groups of bits to eliminate groups
of bits that are to be unaffected by a computation, perform
ing the computation, and thereafter decompressing corre
sponding data after performing the computation to restore
data corresponding to previously eliminated groups of bits.

0.017. Other embodiments and variations of the invention
will be discribed in the detailed description that follows.

DESCRIPTION OF THE DRAWINGS

0.018. The accompanying drawings incorporated in and
forming a part of the Specification illustrate Several aspects

May 5, 2005

of the present invention, and together with the description
Serve to explain the principles of the invention. In the
drawings:

0019 FIG. 1 is a block diagram of a conventional
graphics pipeline, as is known in the prior art.
0020 FIG. 2 is a block diagram illustrating certain
elements of a graphics component constructed in accordance
with one embodiment of the invention.

0021 FIG. 3 is a block diagram illustrating elements of
an embodiment of the invention, as embodied in compo
nents within a graphics pipeline.
0022 FIG. 4 is a block diagram illustrating a graphics
pipeline having elements that are constructed in accordance
with an embodiment of the invention.

0023 FIG. 5 is a block diagram illustrating portions of a
graphic System constructed in accordance with another
embodiment of the present invention. See changes on FIG.
5.

0024 FIGS. 6A-6F illustrate steps of one embodiment
for generating a mask that may be used in embodiments in
the present invention.
0025 FIG. 7 is a block diagram illustrating components
of a graphic System for compressing data, in accordance
with an embodiment of the present invention.
0026 FIG. 8 is a block diagram illustrating components
of a System for compressing data in accordance with another
embodiment of the present invention.
0027 FIG. 9 is a diagram illustrating one embodiment of
a logic component for compressing Signals, bits, or positions
within a data Stream, in accordance with an embodiment of
the present invention.
0028 FIG. 10 is a block diagram illustrating a mecha
nism for generating Select Signal lines for the multiplexers
shown in FIG. 9, in accordance with an embodiment of the
present invention.
0029 FIG. 11 is a block diagram illustrating the creation
of a data Stream having compressed data, in accordance with
one embodiment of the present invention.
0030 FIGS. 12A and 12B are diagrams similar to FIGS.
10 and 9, respectively, illustrating the operation of the logic
elements of those figures with a hypothetical example.
0031 FIG. 13 is a block diagram illustrating certain
components of an embodiment of the present invention,
which operate to compress and decompress data.

0032 FIG. 14 is a block diagram similar to FIG. 9, but
illustrating logic for performing a decompression operation,
in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

0033 Having summarized various aspects of the present
invention, reference will now be made in detail to the
description of the invention as illustrated in the drawings.
While the invention will be described in connection with
these drawings, there is no intent to limit it to the embodi
ment or embodiments disclosed therein. On the contrary, the
intent is to cover all alternatives, modifications and equiva

US 2005/0093872 A1

lents included within the Spirit and Scope of the invention as
defined by the appended claims.
0034. It is noted that the drawings presented herein have
been provided to illustrate certain features and aspects of
embodiments of the invention. It will be appreciated from
the description provided herein that a variety of alternative
embodiments and implementations may be realized, consis
tent with the Scope and Spirit of the present invention.
0035. As summarized above, the present application is
directed to embodiments of Systems for providing variable
length compression between Successive bit positions (or
groups of bits) in a bit stream or a bit pattern. One embodi
ment of the invention includes logic elements referred to as
packers and unpackers, incorporated in hardware for com
puter graphic Systems. It should be appreciated that the
invention, however, is not limited to this embodiment or
environment. Implementations of embodiments of the
invention include one or more logic elements for compress
ing data (sometimes referred to as a packer) and one or more
logic elements for decompressing previously compressed
data (sometimes referred to as unpacker).
0.036 AS will be described further herein, there are sev
eral locations in a graphics System where features or aspects
of the invention may be implemented. Likewise, it will be
appreciated from the description herein that there are SyS
tems and environments in fields other than computer graph
ics where the concepts of the invention may be employed as
well.

0037. The bit compression, or pixel-packing, feature of
one embodiment may be implemented prior to performing a
pixel-Shading operation. AS the name implies, and as is
known, pixel Shading operations are performed on a per
pixel basis. However, for a variety of reasons, many pixels
of a given primitive may not require the pixel Shading
operation. For example, pixels of a primitive that are cov
ered by other primitives (e.g., as determined by a Z test)
need not have the pixel shading operation performed on
them. Such pixels may be identified and removed from the
bit Sequence, before being Sent to the pixel Shader. In this
regard, a bit Sequence may be compressed Such that only
pixels to be operated upon are Sent to the pixel Shader.

0038) Reference is made briefly to FIG. 2, which illus
trates certain basic components of an embodiment of the
invention. FIG. 2 includes a component labeled “graphics
component'110, which may designate or represent hardware
components in a graphics pipeline. Within this component,
logic 112 may be provided for providing variable-length
compression of a bit sequence (e.g., bit packing). Likewise,
companion logic 114 may be provided for decompression
(or unpacking) the bit Sequence after processing. This
embodiment of the invention may be implemented in SyS
tems that provide programmable processing for certain
functions, referred as GPU (Graphic Processing Units), such
as the pixel Shading, rather than using dedicated hardware
for performing this function. In Such a System, the elimina
tion of pixels that do not need to be processed, through the
pixel packing process described herein, greatly improves the
efficiency of the programmable GPU processor.

0039) Reference is made briefly to FIG. 3, which illus
trates (generically) certain components of a graphics pipe
line, which may implement features of embodiments of the

May 5, 2005

invention. AS illustrated, a host computer provides input to
a graphics pipeline in the form of primitive and geometry
data. This information and communication is well known,
and need not be described herein. AS is further known, the
graphics pipeline includes a Series of functional and/or
logical components that perform processing tasks on the
graphics information that is communicated from the host
computer. These components are illustrated in FIG. 3 as
component 1120, component 2130, . . . component N 140.
These components may take on a variety of different forms,
which may vary widely from implementation to implemen
tation, as graphics hardware is known to have widely
differing implementations. Generalizing, however, the front
end of the processor (component 1120) typically receives
primitive geometry information and performs certain geom
etry or vertex-based operations. These type of operations
include transformations, lighting, triangle Set-up, etc. In
Some embodiments, the front end of the graphics pipeline
may also include logic for performing a tessellation opera
tion, which breaks up primitives into Smaller primitives or
triangles. After the graphics pipeline front-end operations,
further processing Such as span and tile generation (triangle
rasterization), Z-test, pixel Shading, alpha test/alpha blend,
etc. may be performed. These operations are well known by
perSons skilled in the art, and therefore need not be
described herein.

0040. An embodiment of the present invention includes
logic 132 for packing that performs a packing operation on
a bit Sequence in internal components of the graphics
pipeline. In one embodiment, the packing operation is
usefully employed on pixel, rather than vertex, operations.
Furthermore, the logic for packing may be implemented in
more than one internal component. For example, in one
embodiment, the packing logic 132 may be provided before
performing a pixel Shading operation. Likewise, the packing
function may also be employed in a Z compressor (which
generates compressed Z information).
0041 Logic for unpacking 142 may also be provided
downstream of the packing logic 132. The unpacking opera
tion is the Substantial inverse of the packing operation, and
is preferably implemented using a similar, companion logic
Structure and method as the packing operation. Indeed, the
Same mask used in the packing operation is used in the
unpacking operation. Therefore, a description of the Struc
ture and operation of logic that performs the packing opera
tion is Sufficient to enable one skilled in the art to likewise
implement an unpacking operation.
0042 FIG. 4 illustrates certain of these components in
one embodiment of a graphics pipeline implementing pack
ing and unpacking functions.
0043 More specifically, FIG. 4 illustrates an embodi
ment of the present invention in which a graphics pipeline,
employing many conventional components, embodies cer
tain inventive features. For example, the command parser
162, Vertex and geometry shader 164, triangle Setup 166, and
the Span/tile generation 168 are well-known operations, and
need not be described herein. Also known is a Z-range test
170, in which a Z-test is performed on compressed Z-data.
Compressed Z-tests performed in this way may improve
efficiency by trivially accepting or trivially rejecting certain
primitives (or alternatively ranges of pixels) based upon
compressed Z-information. A similar, per-pixel, test may be
performed by the pixel Z-test block 180.

US 2005/0093872 A1

0044) A Z-cache 172 may be coupled to both blocks and
provide a high speed memory access for Z-data (e.g., higher
Speed retrieval and access than from the Z-buffer memory).
A Z-compressor 174 may also be provided. AS is known, Z
(or depth) data may be compressed for evaluation and
efficiency enhancements. In one embodiment of the inven
tion, however, the mechanism for compressing Z-informa
tion may embody elements for packing 176 and unpacking
178 Z-data. In this regard, and as will be described in more
detail below, a pixel mask (generated using depth informa
tion) may be utilized to define variable shift lengths, which
cause bits or data in a data Stream to be shifted So as to
overwrite data preceding the data being shifted. Prior to
performing this compression/shift operation, a determina
tion may be made as to pixel data that is not to be affected
by a computation (Such as the Z-range test).
0.045 AS is known, there are various ways to compress
Z-data. One Straightforward approach is, for a given tile (a
4x4 pixel tile, 8x8 tile, or other size tile) to save only the
minimum and maximum Z-values for that tile. In Such a
Situation, a 16-pixel tile would be compressed from Sixteen
down to two Z-values (the minimum and the maximum). The
Z-compressor 174 may generate a pixel mask of this 4x4 tile
by allocating a single bit to each tile position and recording
a one in the bit for a given tile position if that pixel is either
a minimum or maximum Z-value for that tile. ZeroS would
be recorded in all remaining bit positions. The logic for
packing 176 may then left-shift the pixel information asso
ciated with the pixel positions having mask values of one,
while removing all other pixel information. Only this com
pressed information, in one embodiment, is Sent to the block
170 for performing the Z-range test. Eliminating data that
would not be impacted by the calculation of the Z-range test
reduces the computations performed by that logic block, and
therefore improves its calculation efficiency.
0046) The graphics pipeline of FIG. 4 also illustrates
logic for performing a pixel packing operation 182, a pixel
shader 184, a block for performing an alpha test 186, and
logic for performing a pixel unpacking operation 188. The
pixel shader 184 and alpha test 186 blocks perform functions
that are known in the art, and need not be described herein.
AS the name implies, the pixel Shader 184 performs shading
operations on a per-pixel basis. For a given graphic primitive
that is being operated upon, or for a given tile in tile-based
operations, often a number of the pixels will ultimately not
be visible to a user (based on depth information, obstruction
by other objects between the current pixel and the view
point, etc.). For all Such pixels, the pixel Shading and alpha
test operations need not be performed. Therefore, it may be
desired to compress the pixel information So that only
information or data to be impacted by the computations
performed by the pixel Shader and/or alpha test operations
are passed through the pipeline to those logic blockS.
0047 The logic for pixel packing 182 may perform a
compression on the pixel data passed to it from above in the
graphics pipeline. The logic for pixel packing 182 may
operate Similar to the logic for packing 176, which was
Summarized above in connection with the Z-compressor 174.
AS will be described in more detail below, a mask (Such as
a pixel mask) may be formed, based upon depth information,
and used to control compression of the data. Specifically,
data that is to be used or impacted in performing pixel shader
and alpha test operations is compressed, while data not to be

May 5, 2005

affected by those operations or computations is removed
from the bit Stream before it is passed through the pipeline
to the pixel shader 184 and alpha test 186 logic blocks.
Ultimately, this removed data is restored by the logic for
pixel unpacking 188.

0048 Referring briefly to FIG. 5, a portion of the com
ponents illustrated in FIG. 4 is illustrated. Further, in FIG.
5, the embodiment is illustrated in a graphics pipeline having
a shared multi-threaded parallel processor that is available
for performing centralized processing operations for Several
of the logic components within the graphics pipeline. In this
embodiment, rather than each component or logic block in
the graphics pipeline being performed by dedicated hard
ware, certain processing functions may be communicated to
a centralized and Shared programmable processing resource
210 for execution. In one embodiment, the processing unit
may be implemented as a multi-threaded processor 210.
Such a processor may include Scheduling logic for managing
tasks that are communicated to it for processing. AS is
described further herein, the logic packing 282 may be
controlled by a Suitable mask 224 (Such as a pixel mask),
which may identify the bit (pixel) locations or positions that
should be preserved, as well as those that may be discarded
in the compression or packing operation. This mask 224 may
be stored in a Storage region 220 that is centrally accessible,
as it may be used by the logic for unpacking, So that the
original bit Sequence may be restored.

0049 From an operational or functional Standpoint, the
elements illustrated in FIG. 5 perform similar to the corre
sponding elements of FIG. 4. However, since the graphic
system of FIG. 5 includes a shared multi-threader processor
210, some of the operations that are performed in the
individual logic blocks may be centrally performed by the
processor 210. In Such an embodiment, the internal Structure
of the various logic blockS may differ slightly, even though
the functional aspect is the same (as that of FIG. 4).
0050 AS described in FIG. 4, pixel masks may be used
by the packers and unpackers (i.e., compressors and decom
pressors) for the data. FIG. 5 illustrates two such masks 222
and 224, which may be Stored, along with other data, in a
tile-based Storage area 220. Of course, the contents of a pixel
mask 222, for a given tile, for the Z-compressor may be
different than the content of the pixel mask 224 of the
corresponding tile for the pixel packer. Therefore, these
masks have been separately illustrated in FIG. 5.
0051. It should be appreciated that, in systems such as
that illustrated in FIG. 5, the benefits of the compression
performed in embodiments of the invention are significant.
That is, in an embodiment utilizing shared resources of a
multi-threaded processor 210, overall system efficiency is
Significantly enhanced if the efficiency of the multi-threaded
processor is enhanced. Without implementing the compres
sion of an embodiment of the invention, the pixel shader 284
may otherwise Send data for all pixels to be processed by the
processor 210. For pixels that are not to be visible on the
display, any processing performed on Such pixels in the pixel
Shading operation is effectively wasted processing. The
utilization of a shared resource, Such as the processor 210,
in performing this operation, prevents the processor from
processing other requests or performing tasks for other
elements within the pipeline. Therefore, the compression
performed by the logic for pixel packing 282 provides

US 2005/0093872 A1

Significant performance improvements of the processor 210,
as it operates in the System as a whole.

0.052 Reference is now made to FIG. 6, which illustrates
the generation of a mask of a type that may be utilized in
embodiments of the present invention, described hereinafter.
It should be appreciated that the illustration of FIGS. 6A-6F
are Significantly Simplified to facilitate the illustration of
certain aspects of embodiments of the invention. However,
the simplified illustration provided herein is sufficient for
perSons skilled in the art to implement more complex and
realistic examples.

0053) Referring first to FIG. 6A, a triangle primitive 320
is shown within the boundaries of a display 310. AS is well
known, a computer graphics display will typically render
thousands, and often hundreds of thousands, of primitives in
a single graphics display. Primitives are frequently broken
down to triangle primitives, Such as triangle 320. AS is
known, early (front end) components in a graphics pipeline
perform certain Setup and vertex-based operations on the
primitives. Span and tiled generation components will break
a primitive up into scan lines 322 (FIG. 6B) and tiles defined
by vertical lines 324 crossing the span lines 322 (FIG. 6C).
Squares on the tile are often grouped into tiles of 2x2, 4x4,
8x8, or other sized dimensions. FIG. 6D illustrates a tile 326
having a dimension of 4x4 pixels. The alignment of tile 326
is arbitrarily illustrated with reference to the triangle primi
tive 320. The portions of the triangle primitive 320 that fall
outside the 4x4 tile are discarded, and FIG. 6E illustrates the
tile 326 and the overlapping portion of the triangle primitive
320, shown in crosshatch 328. Each pixel may there after be
represented by a one or a Zero (single bit) to indicate whether
the primitive 320 occupies a predominate portion of a given
pixel or not. In this regard, it is observed (from FIG. 6D)
that five of the pixels of the tile 326 are completely covered
by the primitive. 320. These are the four pixels of the bottom
right hand corner of tile 326 and the pixel above the four.
Likewise, the four pixels along the left vertical edge of tile
326 are not covered at all by the primitive 320. The
remaining pixels have Some portion that are covered by the
primitive 320. Mechanisms to minimize aliasing or provide
blending of primitives whose boundaries fall acroSS pixels
are well known and need not be described herein. From a
relatively straightforward standpoint, a pixel mask 330 (see
FIG. 6F) may be created by placing a one (single bit) in the
pixel locations in which a majority of the pixel is covered by
the primitive 320. The result may be a pixel mask having
content Such as that illustrated in FIG. 6F.

0.054 While the foregoing presents one method for gen
erating a pixel mask, more complex methods may be (and
will likely be) implemented as well. For example, depth
information of other primitives that may fully or partially
overly a current primitive may be taken into consideration as
well. It will be appreciated, however, the present invention
is not limited to any particular method or methods for
generating a pixel mask, but that a variety of methods,
consistent with the Scope and Spirit of the present invention
may be implemented. In this regard, embodiments of the
invention that call for the generation of a pixel mask (or
other mask) contemplate a wide variety of methods for
generating Such masks.

0.055 Having set forth the foregoing, reference is now
made to FIG. 7, which is a block diagram illustrating one

May 5, 2005

embodiment of the present invention. Specifically, FIG. 7
illustrates a portion 350 of a graphic System for compressing
pixel data for Subsequent operations by elements within a
graphics pipeline or graphic System. AS previously illus
trated, graphics information is passed into a graphics pipe
line from a host. Certain Setup and vertex operations may be
performed, but graphics data is ultimately Stored in a
memory. After Span and tile operations have been per
formed, Such a memory may hold graphics data or content
for a plurality of tiles of pixels. FIG. 7 illustrates a memory
352 having pixel data or content for a given tile n. Of course,
the memory 352 may include data for other tiles as well.
Logic 354 is provided for compressing the content of the
graphics data for Subsequent operations or computations by
other components in the graphic System. The compression
logic utilizes a mask for performing the compression. In this
regard, the mask identifies pixel locations having data that is
not to be affected by a Subsequent operation or computation,
and therefore may be removed during the compression
operation. In the preferred embodiment, the mask is a pixel
mask.

0056. As further illustrated in FIG. 7, a pixel mask 356
is provided for tile n, which is to be compressed. In one
embodiment, the logic for compressing 354 generates an
output 358 containing the compressed pixel data or content
for tile n. In an alternative embodiment, the output of the
logic for compressing 354 may simply be an identification of
memory locations within the memory 352 of the data that is
to be operated upon (effectively decompressed data). The
processor or other operational element within the graphic
System that is to perform an operation upon the compressed
data may retrieve the data from the memory 352, if appro
priate.

0057. In one embodiment, the elements of FIG.7 may be
replicated to perform compression of multiple tiles of pixel
data. In another embodiment, the elements illustrated in
FIG. 7 may be scalable so as to store and manage the
compression of multiple tiles of pixel data.

0.058 Reference is now made to FIG. 8, which is a block
diagram of an alternative embodiment of the present inven
tion. In this embodiment, a mask (such as a pixel mask) is
used by a controller 362 to control the operation of a packer
364. The packer 364 performs a variable-length compres
Sion operation on unpacked pixel data 366 that is provided
to input the packer (or otherwise associated with the signals
provided to the input). The output of the packer 368 com
prises compressed or packed pixel data (or Signals associate
with the compressed or packed data). Consistent with the
Scope and Spirit of the present invention, there are a variety
of methods and architectures that may be implemented
within the components of FIG.8. FIGS. 9-11 below illus
trate one exemplary embodiment. However, it should be
understood, except as expressly recited in the appended
claims, the present invention should not be construed as
limited to the embodiment illustrated in the following fig
UCS.

0059 Reference is now made to FIG. 9, which is a
diagram that illustrates one potential implementation for
logic that performs a compression of data in accordance with
an embodiment of the invention. The logic 400 of FIG. 9
may be used to implement the packer 364 of the embodiment
of FIG. 8, as well as that logic for compressing 354 of the

US 2005/0093872 A1

embodiment of FIG. 7. With regard to this particular imple
mentation, FIGS. 9, 10, and 11 may be viewed collectively
to gain a more complete understanding of the manner in
which a mask may be used to variably compress data (or
groups of bits) in accordance with one embodiment.
0060. Beginning with FIG. 9, data to be compressed may
be provided in a latch, such as a tile data latch 410. In the
illustrated embodiment, there are 16 bit positions (bit 0
through bit 15) of the data that is to be compressed. A signal
output of each of these bit positions is connected to an input
of a multiplexer that is arranged in a first row of multiplex
erS. In one embodiment, each bit position of the tile latch
410 corresponds to (or is associated with) a bit position
within the mask (e.g., FIG. 6F) that is used to define the
compression for the data associated with the tile data latch
410. It should be appreciated that there are various ways that
data may be compressed using the Structure of the logic of
FIG. 9. For example, if each position defined within a mask
(e.g., FIG. 6F) corresponds to one or more bytes of data
(which in most embodiments it will), then the structure of
FIG. 9 may be replicated for each bit of information
corresponding to a given a tile position. By way of example,
if each position of the mask corresponds to a byte (8bits) of
data, then the structure of FIG. 9 may be effectively cas
caded eight layers deep. The bit 0 position of the tile data
latch 410 of the first layer may hold the least significant bit
of the byte of data within the data range to be compressed.
Likewise, the bit 0 position of the tile data latch 410 of the
second layer of the logic of FIG. 9 (Successive layers not
illustrated) may hold the next least significant bit of the data
corresponding to that mask location. Replicating the Struc
ture illustrated in FIG. 9 in this way allows groups of bits
to be compressed. As will be described below, all bits in a
group (e.g., all bits associated with a given bit position of the
tile data latch) are either retained or discarded in a com
pression operation. That is, if the bit of bit 0 position of the
first layer is not discarded through compression, then none
of the bits of the bit 0 position (of any layer) will be
discarded through compression. Likewise, if the bit of bit 0
position of the first layer is discarded through compression,
then all of the bits of the bit 0 position (of any layer) will be
discarded through compression.

0061 The structure of FIG. 9 may also be utilized in
alternative ways to achieve data compression. For example,
in embodiments where large amounts of data are associated
with each bit position of the tile data latch, replicating the
structure of FIG. 9 to accommodate every bit position of the
data may result in an undesirably large amount of hardware.
In Such an embodiment, the data that is Stored in the tile data
latch may be address data (or a pointer) that points to the
Start of a data record in memory (again multiple layers of the
logic structure of FIG.9 may be used). A priori information
about the data Stored at those memory locations would allow
Such an embodiment to be used. This would reduce the logic
required as a Smaller group of bits may be utilized to define
the address of data, that actually required for handling the
data itself.

0.062 For example, in a computer graphics System, there
may be a Significant amount of graphics data associated with
each pixel position. This graphics data may include color
information, Such as red, green, blue and alpha (R,G,B,A),
depth information (Z), texture information (U and V coor
dinates), etc. If a given pixel is not to be displayed, then all

May 5, 2005

of the corresponding information associated with that pixel
may be compressed to removed if from certain calculations
within the graphics pipeline.

0063) The operation of the structure of FIG. 9 will now
be described in the context of compressing Single bits of
data. Again, however, it should be recognized that the logic
of FIG. 9 may be readily replicated (or scaled) through
additional layers to compress groups of bits of data.

0064. The logic of FIG. 9 provides one structure for
variably compressing bits of data (or groups of bits of data)
based upon a mask, by Shifting data that is to be compressed
into bit positions of data that are to be removed. The
structure of FIG. 9 allows for very robust operation in this
regard, and the structure of FIG. 10 (described below)
provides the control of the various select lines of the
multiplexers used in FIG. 9. First describing the structure of
FIG. 9, the structure is realized using a plurality of rows of
multiplexers 402,404, 406, and 408. The multiplexers of the
a first row of multiplexers 402 have inputs that are connected
to Signal lines output from the various bit positions of the tile
data latch 410. Each successive row of multiplexers 404,
406, and 408 similarly have inputs that are connected to
outputs of multiplexers from the preceding row. Through
controlled Selection of the various multiplexer inputs, the
signal value of a given bit position of the tile data latch 410
may either be passed Straight through to a corresponding bit
position of the packet alignment data shifter 420, or alter
natively shifted any number of bit positions to the left. As an
example, Suppose the data value of bit position 11 of tile data
latch 410 is desired to be shifted to bit position 3 of the
packet alignment data shifter 420. This is accomplished by
controlling the select inputs for multiplexers 432, 434, 436,
and 438. Specifically, the control input of multiplexer 432 is
controlled to select (at its output) the signal value held in bit
position 11. Multiplexer 434 is controlled to select (as its
input) the output of multiplexer 432. Likewise, multiplexer
436 is controlled to select (as its input) the output of
multiplexer of 434. Finally, multiplexer 438 is controlled to
select the output of multiplexer 436.

0065. As can be verified by a ready inspection of the
drawing of FIG. 9, each multiplexer has two inputs and a
Single output. AS Viewed in the drawing, the 0 input is on the
left-hand Side of each multiplexer, and the 1 input is on the
right-hand Side of each multiplexer. Each multiplexer in the
first row 402 of multiplexers has as its “0” input the
corresponding bit position of the tile data latch 410. Each
multiplexer of the first row has as its “1” input, the bit
position of the tile data latch 410 one bit to the right of the
corresponding bit position. For ease of nomenclature, the
multiplexers of FIG. 9 can be viewed as a matrix, wherein
the multiplexers can be designated by the nomenclature R.C.,
where R designates the row number, and C designates the
column number. Therefore, the multiplexers of the first row
402 may be designated as multiplexers 0,0 (e.g., u0,0)
through 0.14. Likewise, the multiplexers of the second row
404 may be designated as multiplexers 1,0 through 1,13. The
multiplexers of the third row 406 of multiplexers may be
designated by numbers 2.0 through 2,11. Finally, the mul
tiplexers of the last row 408 may be designated by numbers
3.0 through 3.7. Due to the density of the elements shown in
FIG. 9, only a sampling of the multiplexers have been
designated in this way.

US 2005/0093872 A1

0.066 As illustrated, each successive row of multiplexers
has fewer than the preceding row. Further, each multiplexer
of the first row has its inputs connected to two adjacent bit
positions of the input data. Each multiplexer of the Second
row has its two inputs connected to the output of every other
multiplexer of the first row. Likewise, every multiplexer of
the third row 406 has its two inputs connected to outputs of
every fourth multiplexer in the second row. Finally, each
multiplexer of the fourth row 408 has its two inputs con
nected to every eighth multiplexer of the third row 406. With
the multiplexers being connected in this fashion, the Select
Signal lines in the multiplexers of the fourth row control a
shift of either Zero or eight bits (with reference to original bit
positions in the tile data latch 410), depending upon the
input Selected. Likewise, the multiplexers of the third row
406 control a shift of either Zero or four bits, depending upon
the input Selected. Similarly, the multiplexers of the Second
row 404 control a shift of either Zero or two bits, depending
upon the input Selected, and the multiplexers of the first row
402 control a shift of either Zero or one bit, depending upon
the input Selected.
0067. The previous example illustrated how multiplexers
432, 434, 436, and 438 may be controlled to shift bit 11 of
the tile data latch 410 into the bit 3 position of the packet
alignment data shifter 420. This comprised a shift of eight
bits. If the same data bit (bit position 11 of the tile data latch
410) were desired to be shifted seven positions (into the
fourth bit position of the packet alignment data shifter 420),
Such could be accomplished by select control of the Select
lines of the multiplexer 442, 444, 446, and 448. In this
regard, multiplexer 442 may be controlled to Select the input
connected to the eleventh bit position of the tile data latch
410. Similarly, multiplexer 444 may select the output of
multiplexer 442, while multiplexer 446 selects the output of
multiplexer 444, and multiplexer 448 selects the output of
multiplexer 446.

0068. It should be appreciated that the structure of the
logic of FIG. 9 is readily scalable for masks of various sizes
(e.g., data tile latches having differing numbers of bit
positions). For example, if the mask were sized as a 2x2
instead of a 4x4 mask, only three rows of multiplexers
would be required. These would effectively take the form of
the three rows of multiplexers shown on the right half of
FIG. 9. Similarly, if the logic of FIG. 9 were expanded to
accommodate an 8x8 mask, then an additional row of
multiplexers would be required. In this regard, the Structure
of FIG. 9 is readily scalable by a power of two to accom
modate different mask sizes.

0069. It should be appreciated that a key operational
aspect of the logic illustrated in FIG. 9 relates to the
generation of control Signals for controlling the proper
Selection of the various multiplexers. One way of generating
these control signals is illustrated in the diagram of FIG. 10.
AS previously described herein, certain embodiments of the
invention implement masks in the form of pixel masks or
tiles. Differing masks may be used on different tiles of
pixels, and indeed for different primitives. The embodiment
of FIG. 10 illustrates the generation of control signals for
the multiplexers of FIG. 9, in an embodiment using a 4x4
mask 452. The bit positions within each tile are assigned a
Sequence order. In this regard, the arrangement or assign
ments of a particular Sequence order is arbitrary, but should
be fixed and known for the various tiles. For all examples of

May 5, 2005

embodiments described in this application, the Sequence
order or arrangement in 4x4 masks are as illustrated in the
mask 453. That is, the top left position is the Zero position,
with the position immediately to the right being the one
position, the position immediately below the one position
being the two position, and So on as Specifically illustrated
in FIG. 10. Logic 460 is provided to determine or define the
per-pixel shift amount. In this regard, the logic 460 generates
the control signals for the multiplexers of FIG. 9. In one
embodiment, the various control values for controlling the
individual multiplexers may be generated by a ROM that is
hard coded with the bit values of the tile mask providing the
addressing inputs to the ROM. The multiplexing and control
structure shown in FIG. 9 can readily be verified as pro
Viding any appropriate level of Shift to any pixel-pixel slot.
Further, by ignoring or overriding all Zero values in the pixel
mask, a compression of the bit Sequence is achieved.
0070 Returning briefly to FIG. 9, in addition to being
arranged in rows, the various multiplexers are also arranged
in columns, denoted as CO through C14. The logic 460 of
FIG. 10 generates groups of outputs, which are the select
(control) lines for the multiplexers of various columns. AS
illustrated in FIG. 10, there are four signal lines for each of
columns C0 through C7, there are three signal lines for each
of columns C8 through C11, two signal lines for each of
columns C12 and C13, and one signal line for the multi
plexer of column C14 (since there is only one multiplexer in
that column).
0071. The logic or circuitry within the multiplexer con
trol logic 460 may be implemented in a variety of ways.
From a functional Standpoint, the value produced on the
Signal lines for a given column of multiplexer control signals
(e.g., C3) results from a computation of the Sum of all
preceding bit positions of the pixel mask 453. AS previously
described, each position of the pixel mask 453 is a single bit
(either a 0 or a 1). A Zero value in the mask indicates that the
data corresponding to that position is not to be impacted by
a Subsequent computation (or is otherwise to be removed in
the compression operation). In contrast, a logic one in a
particular position of the pixel mask indicates that the
corresponding data is to be impacted by a Subsequent
computation (or is not to be removed from the data com
pression operation). Therefore, when computing the Sum
mation for a given group of Signal lines for a column of
multiplexers (e.g., C3), the Summation of bit positions of the
preceding columns (bit positions 0, 1, and 2) are computed.
In keeping with this illustration, there are four multiplexers
in column 3, and the multiplexer control logic 460 generates
a four bit output (C3) for controlling those multiplexers,
based on the Summation of bit positions 0, 1, and 2. Of this
four-bit output, the most significant bit controls the multi
plexer of row 408, while the least significant bit controls the
select lines of the multiplexer in row 402.
0072 Reference is made briefly to FIGS. 12A and 12B,
which correspond to FIGS. 10 and 9 (respectively), pro
Viding an example of the operation of this embodiment for
a given pixel mask. AS illustrated, there are Six different
positions within the pixel mask in which the corresponding
data is to be preserved in the compression operation. This
corresponds to the data of mask positions 1, 4, 10, 12, 13,
and 14. The various multiplexer Select values are shown at
the outputs of the logic 460 for this example, and a number
(either 0 or 1) is denoted next to each multiplexer Select line,

US 2005/0093872 A1

to show the value that would be applied to each respective
Select line. Likewise, the input data (at the tile data latch
410) is generically denoted as D0 through D15. As illus
trated at the output of the packet alignment data shifter 420,
data values D1, D4, D10, D12, D13, and D14 have been
shifted into the six left most positions of the data shifter 420.
To facilitate this illustration, in FIG. 12B, data paths that are
unused for the transport of data in this particular example are
illustrated in dash lines. Likewise, multiplexers that are not
utilized for transporting data are illustrated in dash line, and
their control/select input is denoted with an X (don't care
value).
0073) Returning now to FIG. 10, also illustrated is mask
pointer generation logic 470 and its output 472. In the
context of a graphics System, the data corresponding to
numerous tiles for a Single display Screen will be com
pressed. The compression amount will vary from tile to tile
(depending upon the masks of the individual tiles), and as
will be described in more detail in connection with FIG. 11,
a System may denote, or otherwise mark, tile boundaries
within a data Stream. In the resulting data Stream, data values
(or groups of bits) corresponding to the compressed data (as
defined by the mask) will be present in the data stream. In
the example presented above (FIGS. 12A and 12B), the
particular tile mask had six legitimate data values to be
preserved in the final data Stream. Therefore, a mask pointer
is generated to mark the boundary of the data corresponding
to that tile. In one embodiment, the mask pointer generation
logic 470 may simply be a Summation of the individual
values of the tile mask 452. This value is also illustrated in
the example of FIG. 12A.
0074) Reference is now made to FIG. 11, which is to be
viewed in conjunction with FIGS. 9 and 10. In this regard,
a compressed data Stream for processing, in a graphic
System, will not end with the processing of data for a single
tile, but will occur many times for many tiles that comprise
a graphic display. FIG. 11 illustrates four Such Successive
tiles, each having differing mask values. The discussion of
FIGS. 9 and 10, along with the example presented in
conjunction with FIGS. 12A and 12B describe how a given
tile mask (or pixel mask) can be used to generate a com
pressed data value corresponding to that tile. Successive tile
masks are used to generate a compressed data Stream,
comprising data corresponding to the plurality of tiles. FIG.
11 illustrates how a tile mask 482 is converted into a linear
mask 483 (such as the pixel mask 453 of FIG. 10). Since the
mask 482 of tile i defines six legitimate data positions (or
pixel positions having legitimate corresponding data Val
ues), the mask pointer generation logic 470 may generate a
pointer having a value of Six. AS shown in the data Stream
490, the portion of the data stream corresponding to tile i
may have data values D0, D1, D4, D5, D7, and D8, and may
then have the insertion of a pointer 492 to denote the end of
tile i. Likewise, based upon the values presented in tile
i+1484, data values D2, D3, D8, D9, D10, D11, and D13
may be compressed into the data stream 490 followed by a
pointer 493. Since there are seven bit positions within the
mask 484 that are to be preserved (or retained through the
compression), there are seven corresponding data values
provided in the data stream 490. The pointer for this mask
may have a value of seven, which would be added to the
previous pointer value of six creating a value of thirteen. The
data and pointer generation value for Subsequent tiles may
be generated in a Similar fashion.

May 5, 2005

0075. In addition, in one embodiment of the present
invention, the data Stream is passed from component to
component in a graphic System through discrete-sized data
packets. In one embodiment, a data packet may comprise
Sixteen data values. If a packet boundary falls in the middle
of a tile, then a partial pointer may be inserted, as illustrated
in FIG. 11. In this regard, and continuing with: the descrip
tion, tile i+2 486 denotes Six mask positions that are to be
preserved through the compression process. These corre
spond to data values D2, D5, D7, D8, D12, and D13. As
illustrated in the data stream of 490, the data corresponding
to this tile is split between packet J and packet J-1. Accord
ingly, a partial pointer value 495 is inserted at the end of
packet J with a complete tile pointer 496 being inserted after
the third data value of packet J+1.

0.076 FIG. 11 has been provided merely to illustrate one
method or approach for implementing the management of
data values for Successive or multiple tile masks. It should
be appreciated that a variety of ways in which this aspect
may be implemented, consistent with the Scope and Spirit of
the present invention. In this regard, there are various ways
and mechanisms for implementing the functionality of the
pointers (e.g., mechanisms for demarcating tile boundaries
in the compressed data stream).
0077. Having described certain details regarding one
embodiment for implementing certain features, reference is
now made to FIG. 13, which is a block diagram illustrating
features of another embodiment of the present invention. In
this embodiment, a memory 510 provides storage for data
that corresponds to various positions within a mask. In the
context of a graphic System, each position of a pixel mask
may have corresponding data that includes color informa
tion, Such as RGB&A, as well as depth information, texture
information (U and V), and a variety of other attributes that
may be associated with pixels in a graphic System. The effect
and management of this type of information is well known
by perSons skilled in the art, and need not be separately
described herein. In this regard, it is Sufficient to note that for
each given pixel location, there may be a relatively large
quantity of data associated with that pixel. The memory 510
of FIG. 13 illustrates sixteen discrete areas of memory,
wherein each area contains multiple bytes of data, which
relate to various attributes of an associated pixel. Each
position of the mask 520 corresponds to an area of the
memory 510 containing data.

0078. In accordance with one embodiment of the inven
tion, compression logic 525 utilizes contents of the mask
520 to compress data stored within the memory 510. As
illustrated in FIG. 13, the mask 520 contains two positions
indicating valid data for that tile. The corresponding
memory areas of memory 510 have also been emphasized.
Therefore, after compression by the compression logic 525,
a reduced amount of data is generated as illustrated by 530.
This compressed data is then provided to a processor 540
that is configured to perform one or more computations on
the data 530. In this regard, computation logic 545 is
illustrated as being a part of the processor 540. This com
putation logic 545 has been denoted generically as Such, as
it may encompass a wide variety of different computations,
consistent with the Scope and Spirit of the invention. After
the computation is performed, decompression logic 550 is
provided to restore the data to its uncompressed form.

US 2005/0093872 A1

0079. In this regard, it is contemplated that the compu
tation 545 may impact only the data of memory areas 512
and 514. This data may be fed to the processor 540 for
computation and restored to the appropriate memory areas
by the decompression logic 550.
0080 AS previously noted, in addition to the actual data
(e.g., actual contents of memory 510) being compressed, the
compression logic could alternatively operate on addresses,
such that the processor 540 would be configured to receive
an identification of Starting addresses of the memory areas
512 and 514. The processor 540 could then retrieve (directly
from the memory 510) the relevant data, as appropriate, for
performing the computation 545.
0081. With regard to the decompression logic 550, if the
compression logic 525 is structured Similar to the logic
illustrated in FIG. 9, then a similar reciprocal structure may
be provided to perform the decompression. Such a structure
is illustrated in FIG. 14. A separate detailed discussion of
this figure is not deemed to be necessary, as the description
of the structure and operation of FIG. 9 is sufficient to
understand the operation of the structure 600 provided in
FIG. 14, being that the structure performs a reciprocal
operation. In this regard, the decompression logic 600
includes a plurality of multiplexers arranged in rows 602,
604, 606, and 608 and columns CO through C15. Each
multiplexer has a control input (e.g., u0, 1 controls input
selection of multiplexer 0,1). By controlling the values of
the plurality of multiplexer control inputs, the decompres
sion performed by the logic of FIG. 14 is controlled, in a
manner similar to that of FIG. 9.

0082 Having described the operation of various struc
tural embodiments, it will be appreciated that embodiments
of the invention are directed to various methods for per
forming a variable length compression. One embodiment is
directed to a method for a computer graphics System com
prising compressing a plurality of groups of bits by shifting
compressed groups of bits into bit positions that are to be
removed during the compression, the logic being responsive
to a mask, wherein contents of the mask define variable
amounts that the plurality of bits are shifted during the
compression. Another embodiment is directed to a method
for compressing a plurality of groups of bits to eliminate
groups of bits that are to be unaffected by a computation,
performing the computation, and thereafter decompressing
corresponding data after performing the computation to
restore data corresponding to previously eliminated groups
of bits.

0.083. It should be appreciated that there are a variety of
novel features embodied in the embodiments of this appli
cation. These include the variable-length compression of
information within a component of a graphics pipeline, the
architectural implementation of a packer using an array of
multiplexers, wherein the control input of each multiplexer
is uniquely controlled; a method of using a bit or pixel mask
for controlling compression levels in a packing function, etc.
0084. The foregoing description is not intended to be
exhaustive or to limit the invention to the precise forms
disclosed. Obvious modifications or variations are possible
in light of the above teachings. Further, the embodiment or
embodiments discussed were chosen and described to pro
vide the best illustration of the principles of the invention
and its practical application to thereby enable one of ordi

May 5, 2005

nary skill in the art to utilize the invention in various
embodiments and with various modifications as are Suited to
the particular use contemplated. All Such modifications and
variations are within the Scope of the invention as deter
mined by the appended claims when interpreted in accor
dance with the breadth to which they are fairly and legally
entitled.

What is claimed is:
1. A method for compressing data in a graphics System

comprising:

providing a mask identifying bits within a plurality of bits
that are not to be impacted by a computation; and

generating a compressed bit stream, wherein the bits that
are not to be impacted by the computation are not
included in the compressed bit Stream.

2. The method of claim 1, wherein the providing a mask
comprises providing a pixel mask corresponding to a tile of
pixels to be displayed on a display.

3. The method of claim 1, wherein further comprising
obtaining depth information from a Z-buffer and using the
depth information for generating information containing
within the provided mask.

4. The method of claim 1, wherein the generating further
comprises shifting individual bits by an amount equal to a
number of bit positions, preceding the current bit position,
that are unaffected by the computation.

5. A method for compressing a plurality of bits compris
Ing:

directing data to be compressed to a matrix of multiplex
ers, wherein the matrix of multiplexers are in a plurality
of rows with multiplexers in a first row have inputs
connected to Signals defining bits to be compressed and
multiplexers of Successive rows have inputs connected
to outputs of the multiplexers of the preceding row,
wherein each Successive row of multiplexers comprises
fewer multiplexers than the previous row, and

controlling data Select input signals for the plurality of
multiplexers such that individual bits of the plurality of
bits are shifted varying amounts, the shift amount being
determined by a mask.

6. The method of claim 5, wherein the controlling com
prises shifting individual bits of the plurality of bits by
varying amounts based on the contents of the mask, wherein
each additional shift value effectively causes a shifted bit to
overwrite a bit that is to be unaffected by a Subsequent
computation.

7. The method of claim 6, wherein the controlling is
configured to operate control logic to shift individual bits by
an amount equal to a number of bit positions, preceding the
current bit position, that are to be unaffected by the com
putation.

8. The method of claim 5, wherein the mask is a pixel
mask corresponding to a tile of pixels to be displayed on a
display.

9. A method for a computer graphics System comprising
compressing a plurality of groups of bits based on a pixel
mask, wherein contents of the pixel mask are derived by a
determination of corresponding groups of bits that are to be
unaffected by a computation, the contents of the pixel mask
defining variable amounts that the plurality of bits are
shifted during the compression.

US 2005/0093872 A1

10. The method of claim 9, wherein each position of the
pixel mask defines a shift amount for a group of bits.

11. The method of claim 10, wherein the content of each
position of the pixel mask is defined by a single bit, and the
shift amount for a group of bits is defined by a Summation
of preceding pixel mask positions whose contents indicate
corresponding pixels are not to be affected by a Subsequent
computation, wherein the positions of the pixel mask are
arranged in an order and the preceding pixel mask positions
are those that, as ordered, numerically precede a given
position.

12. A method comprising:
compressing a plurality of groups of bits to eliminate

groups of bits that are to be unaffected by a computa
tion;

performing the computation; and
decompressing corresponding data after performing the

computation to restore data corresponding to previ
ously eliminated groups of bits.

13. The method of claim 12, wherein computation is a
pixel Shading operation.

14. A method for a graphics System comprising:
providing a mask identifying positions within a plurality

of positions of a bit stream that are to be removed
during a compression operation; and

May 5, 2005

generating, based on the mask, a compressed bit Stream,
wherein the positions that to be removed are removed
by variably shifting contents of Successive positions by
an appropriate amount So as to overwrite contents of
positions that are to be removed.

15. The method of claim 14, wherein the mask is a pixel
mask corresponding to a tile of pixels to be displayed on a
display.

16. The method of claim 14, wherein the generating
comprises shifting individual bits of the bitstream by vary
ing amounts based on the contents of the mask, wherein each
additional shifted bits effectively overwrites bits that are to
be unaffected by the computation.

17. The method of claim 16, further comprising control
ling the generating to shift individual bits by an amount
equal to a number of bit positions, preceding the current bit
position, that are to be removed.

18. A method for a computer graphics System comprising
compressing a plurality of groups of bits by shifting com
pressed groups of bits into bit positions that are to be
removed during the compression, the logic being responsive
to a mask, wherein contents of the mask define variable
amounts that the plurality of bits are shifted during the
compression.

