
(19) United States
US 20070266394A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0266394A1
Odent et al. (43) Pub. Date: Nov. 15, 2007

(54) DEVICE AND A METHOD FOR
PROCESSING EVENTS AND ACTIONS

(76) Inventors: Stephane V. Odent, Enghien (BE);
Dimitri Van de Putte, Vorst (BE);
Dominique Vernier, Uccle (BE)

Correspondence Address:
CATERPILLAR/FINNEGAN, HENDERSON,
L.L.P.
901 New York Avenue, NW
WASHINGTON, DC 20001-4413 (US)

(21) Appl. No.: 10/589,260

(22) PCT Filed: Feb. 11, 2005

(86) PCT No.: PCT/EP05/50620

S 371(c)(1),
(2), (4) Date: Aug. 11, 2006

(30) Foreign Application Priority Data

Feb. 12, 2004 (US)... 10/779,343
Jul. 29, 2004 (EP).. O4103665.8

State Engine Editor . . .

Publication Classification

(51) Int. Cl.
G06F 9/46
U.S. C.

(2006.01)
(52) U.S. Cl. .. 71.9/316

(57) ABSTRACT

A device operating as a finite state machine and provided for
processing events and actions relating to at least one object
to be moved between an initial and a final state. The device
comprising a processing member connected to a memory.
The initial and final states are integrated into at least one
event-state-action diagram defining said finite state machine.
The event-state-action diagram has a matrix structure where
each event-state combination forms a matrix position.
Actions formed by transitions, processing actions, and timed
actions, are stored at the matrix positions. The processing
member is further provided for retrieving the actions and for
Supplying the retrieved actions to an action dispatcher in
order to execute the actions. The action dispatcher com
prises, for each action of said third set, an execution routine
provided for controlling the execution of the action.

ObjectType Editor
Entities.>Object types 'Object types ject typ

: Events
Actions - N

Times Actions ame Description State Diaqrams

Package
Shipping Order
Customer Service Task

Patent Application Publication Nov. 15, 2007 Sheet 1 of 12 US 2007/0266394A1

Y

YS

Manifested - - - - -D Cancelled

Delivered

In exception

to location

Delivered to user

State Engine
Editor

Event Cancel
Listener

O41
State Engine

Trigger Action
Despatcher

Event
message

State
Engine

Repository
Message Bus

A fg. 2

Patent Application Publication Nov. 15, 2007 Sheet 2 of 12 US 2007/0266394A1

Current State 1 State A State B incoming Event
New Sate: State C

Action 1 Action 7
Action 2 Timed Action 2

Timed Action 1
New State: State B

Action 3
Timed Action 2
Timed Action 3

New State. State D
Action 4
Action 5
Action 6

New State: State D
Action 5

Event a

Event b

Action 4
Action 5

Event C

New State: State D
Action 3
Action 5

Event d

New State: State D

| Til

Patent Application Publication Nov. 15, 2007 Sheet 3 of 12 US 2007/0266394A1

at . . . Element ; : Description -
Global element for the business

- process state engine repository
<ObjectTypes > Definition of object types

<ObjectType Xid-string> Unique Ref ID of the object type
(system generated)

<Name>string</Name> ame of the object type
<Description> string</Description>Description of the object type

</ObjectType) E

kBPSE)

<ObjectType Xid=string>

</ObjectTypes>

<Diagram Xid-FString> ni due Ref ID of the diagram (systeill
cenerated)

<Name>String</NaIted Name of the diagram
<Description> string</Description>Description of the diagram
<ObjectType Ref xid-string> Ref of the object type on which the

diagram applies

<Diagram Xid-string>

re. O <States>

generated)

<Description> String</Description>Description of the state
<Diagram Ref xid-string>

</State)
<State xid=string>

</States>

<Events>
KEvent xid=string> Unique Ref ID of the event (system

generated)
KName> string</Name> ame of the event
<Description>string</Description>Description of the event
<ObjectType Ref xid=string> Object type on which event is

applicable

</Event>

</Events>

Patent Application Publication Nov. 15, 2007 Sheet 4 of 12 US 2007/0266394A1

(Actions
<Action xid=string> Unidue Ref ID of the action

(system generated)
<Name> string</Name> ame of the action
KDescription>string</Description>Description of the action
KObjectType Ref xid=string> Object types on which action is

applicable (optional)
</Action>

</Actions
E

kTimedAction xid-String>

<Name> String</Name>
<Description> String</Description>Description of the timed action
<ObjectType Ref xid=string> Object types on which timed action

is applicable (optional)
<TimeOut> string</TimeOut> Time when action (s) will fire

(dd hh : Inum)
<Actions Action (s) that will fire when

time out expires
KAction xid=string /> Ref to the action to be fired

(System generated)
ame of the timed action

E. E.
</Titled Action> Fl

</Timed Actions

transition

transition belongs

transition
<Target Xid=string /> Ref to the target state of the targer ad-string - Eli target state of the

ransition occurs
<Action xid=string />

</Actions’
<Timed Actions Ref to timed actions to be scheduled

<TimedAction xid-string>
FT

</timedActions>
</Transitions>

k/BPSE I
A fg. 6 to

Patent Application Publication Nov. 15, 2007 Sheet 5 of 12 US 2007/0266394A1

Description -

lobal element for the event

<Header)
<Origin2 String</Originx Origin (system that generated

the message on the bus)
<MessagedateTimes string</MessagedateTime her the message was sent

(DD-MM-YYY HH ; MM:SS)
KEventTypex String</EventType) hat type of event
KEvent DateTimex string</Send DateTime- hen the orginal event was

created (DD-MM-YYY HH: MM: SS)
<Location> string</Location> here the event was created
<User-string</User ho created the event

<Reason> String</Reason>
<Methods string</Method>
<ObjectType-string</ObjectTypex Object type on which the event

applies
<ObjectIDX string</ObjectID)

<Object> Specific Object data associated
ith the event - format specific

<Object Data 12.... <Object DatalX

<Object DataNY... <Object DataNY
</Object>

Patent Application Publication Nov. 15, 2007 Sheet 6 of 12 US 2007/0266394A1

scription,
<Action Message) Global element for the action

Action header in for nation
Origin (system that generated
he message on the bus)
hen the Inessage was sent
(DD-MM-YYY HH: MM: SS)
hat type of action
hy the action was triggered

<Header)
<Origin > string</Origins

<Message DateTimes string</Message DateTime>

<ActionType> String</ActionType)
<Reason> String</Reason>
<ObjectTypex string</ObjectType) Object type on which the action

<ObjectID > string</ObjectID>

</Header >
KObject> Specific Object data associated

ith the event - format specific
to the object type

<Object Data 12.... <Object Datal) Object specific data

<Object DataNi>... <Object Data N> Object specific data
</Object>

</ActionMessage

Patent Application Publication Nov. 15, 2007 Sheet 7 of 12

Events
Actions
Times Actions
State Diagrams

. States

US 2007/0266394 A1

Name
Description

News:

State Engine Editor

Entities>Events
sassis

Object types
Events
Actions
Times Actions
State Diagrams
States

Description
Package
Shipping Order
Customer Service Task

Event Editor

Name
Description
Object type

Carrierntransit
CarrierPOD
CPSCann
Delivered User

Description
Package created
Carrier in transit
Carrier proof of delivery
Scan in by CP
Delivered to User

Object type
Package
Package
Package
Package
Package

Patent Application Publication Nov. 15, 2007 Sheet 8 of 12 US 2007/0266394 A1

State Engine Editor

Object types Entities>Actions
Events - Action Editor
ActionS
Times Actions Name
State Diagrams y
States Description

Object type

* ... News: i.e.

Name Description Object type

LOgEvent Log event
CarrierCollect Notify Carrier to collect Package
Notify User Send message to recipient Package

State Engine Editor
Efti. Diagrams." Repository
Object types Entities>TimedActions
Events rea- - - Timed Action Editor
Ctions --

State Diagrams
States Description

Object type

Timer (ddhh:mm)
Generic Actions

Object Specific
Actions

... New Delete :-

Name . . Description . Object type
DeUncollected Delivery package uncollected Package
Delivery Late Delivery delayed Package
RetUnCollected Return not collected by carrier Package

Patent Application Publication Nov. 15, 2007 Sheet 9 of 12 US 2007/0266394A1

State Encine Editor
e Diagrams Repository

Entities.>StateDiagrams
Events
Actions
Times Actions Name
State Diagrams
States

State Diagram Editor

Description
Object type

Description Object type
PkgDelivery Package Delivery flow Package
Pkgreturn Package return flow Package
PickProcess Package picking flow Order

State Encine Editor

E
Entities>States

Events
Actions
Times Actions Name
State Diagrams
States

State Editor

Description
State Diagram

-

Description State Diagram
Created Package created PkgDelivery
InTransit Package in transit PkgDelivery
Delivered CP Package delivered in CP PkgDelivery
Delivered User Package delivered to user PkgDelivery

State Engine Sctor

PkgDelivery
PkoReturn
PickProcess

Source State

None
Created
in Transit
Delivered CP
Delivered User

Repository
Diagrams>PkgDelivery>Created

Patent Application Publication Nov. 15, 2007 Sheet 10 of 12

Transition Editor

US 2007/0266394 A1

Triggering Event
Target State
Generic Actions

Object Specific
Actions

Generic
inted Actions

Object Specific
Timed Actions

Triggering Event Target State
Created
Carrierintransit
CaierPOD
CPSCann
Delivered User

Created
in Transit
DeliveredCP
DeliveredCP
Delivered User

Patent Application Publication Nov. 15, 2007 Sheet 11 of 12 US 2007/0266394 A1

41 A.
Object Triggering s Event event Action - Action

ansition

e

Related
Object

State
Diagram
Definition

-oc T r

3 8 46
Source Target

State

Memory of the device - N43

Runni ng
State

Diagram

Diagram
Diagram
Triggering

event

Diagram

Triggering event
Triggering event

Runtime and historical data

Patent Application Publication Nov. 15, 2007 Sheet 12 of 12 US 2007/0266394 A1

^ Subscribe to State Eigne- 20
(Event messages

w

Save the event in the Event 21
History table

- Y -

^For all State Diagram Definitions 25 A
e

-> relating to the object type of the 22
embodied object Instantiate new Running Stat
- Diagram for embodied object with Current State None

-1

- 23

ls there a No
< state diagram running for the Yes
s embodied object? tel- 24

-1 ls there a ><
1Transition with Source states

None with the Event as
Triggering event?

is there a
ransition associated

u1 with the Event for the
Currentstate of the

running State
Diagram?

26

No

lf Target State is different than the
Current State, update Current State

with Target State, cancel open
Timed Actions and save the Current

State in the State History table
|

Find and execute associated
Action(s) and

Save action(s) in Action
History table

28

Find associated Timed
Action(s) and intiate timer(s)
Save Timed Action(s) in

Timed Action History Table

Next State Diagram
Definition

29

30

A fg. 14

US 2007/0266394 A1

DEVICE AND A METHOD FOR PROCESSING
EVENTS AND ACTIONS

0001. The present invention relates to a device operating
as a finite state machine and provided for processing events
and actions relating to at least one object to be travelled
between an initial and a final state, said device comprising
a processing member connected to a memory. The invention
also relates to a method for processing events and actions.
0002. Such a device and process are for example known
as IBM FlexFlow (trademark of IBM), which is a workflow
system developed by IBM for interactive internet applica
tions. It is a state machine based workflow system, which
formally describes business processes with state charts. The
FlexFlow system uses these descriptions to directly control
the execution of e-commerce applications. Flexflow has a
visual modelling tool to design and modify business process
state diagrams. The visual tool generates an XML represen
tation of the process. This XML presentation is compiled
and loaded into the FlexFlow database used by the FlexFlow
engine. For FlexFlow, events are incoming messages and
actions corresponding to tasks which are executed at the
level of the application server. Flexflow has been integrated
in IBM's WebSphere Commerce suites to build web-appli
cations.

0003. The problem of the prior art device and method is
that the reality of processing events and actions is more
complex. The way to capture transition events is not
straightforward in a distributed environment. Indeed, events
are triggered at different places, by different people and by
different systems. Not all events are always properly gen
erated and they do not always occur in the correct order.
Most systems have difficulties to cope with this situation.
Workflow systems, which are used to automate business
processes, are not designed for handling Such an arbitrary
sequence of events. Transitions in workflow systems are
“explicit because they lack the state pattern, where transi
tions are “implicit'. Workflow systems usually expect to
receive events in a particular well-determined sequence with
explicit “wait states' until an event can occur. As long as the
expected event does not occur, all other events are queued
and the process stops.
0004 For example, in the case of the package delivery,
events can originate from different sources:
0005 a shipping application used in a warehouse:
0006 scanners used in the warehouse;
0007 handheld scanners used by the courier drivers:
0008 scanners used at the drop-off location:
0009 timer triggers in the central system;
0010 All these sources are distributed over a wide geo
graphic area and will typically communicate with the central
system over the Internet, with its imperfection.
0011. In reality it is important to make a distinction
between events and transitions, because not all events may
necessarily trigger a state transition. At the time at which
events are received by the central system, they might indeed
be obsolete, and the object to which the event relates, might
already be in a further state. The system needs thus to react
differently on events based on the current state of the
relevant object. In the example of the package delivery one

Nov. 15, 2007

could imagine that there is an action linked to the transition
“In transit->delivered to location' which consists in notify
ing the recipient via a messaging system. The event, which
triggers this transition, would be a scan event in a drop-off
location. For whatever reason the event may be delayed, for
instance because the scanner cannot synchronise. However,
the recipient may actually see his package and collect it
because he or she is visiting the location. Through a phone
call. Some operator in a service centre may update the status
of the package as “Delivered to user'. Subsequently, if the
scanner finally manages to synchronise, the central system
should not react on this event in the same way as if the state
of the package would be (“in Transit”). As the current state
is “Delivered to user there is no need to notify the end user.
0012. It is an object of the present invention to cope with
this complexity by providing a device and a method, which
enable to modify the behaviour of the objects by adding new
type of events, new states and new actions according to the
evolution of the business processes and systems generating
the events. The device or method according to the invention
should allow to branch anywhere in the process at any time
in Such a manner as to process events immediately, without
having to queue.

0013 The device or method according to the invention
has been developed to address problems of real time supply
chain event management, due to the specific nature of supply
chain processes. It has been built in Such a way as to solve
real-time event-driven business process management prob
lems where the business object to be monitored and con
trolled can be modelled by a finite state machine.
0014 For this purpose a device according to the present
invention is characterised in that said initial and final state
are integrated into at least one event-state-action diagram
defining said finite state machine, said memory having an
input connected to a state engine editor and being provided
for storing said diagram, said state engine editor having an
input for receiving object data, identifying said object and
said initial and final state, said object data comprising a first
set of states, a second set of events and a third set of actions,
said third set comprising a first Sub-set of processing actions,
a second Sub-set of timed actions provided to initiate each
time at least one predetermined action of said first Sub-set
after a predetermined time period has lapsed and a third
Sub-set of transition actions, said state engine editor being
provided for forming said diagram by matrix-wise structur
ing said states of said first set and said events of said second
set in order to create at positions within said matrix a
state-event combination, said State engine editor being fur
ther provided for attributing to at least one state-event
combination at least one of said actions of said third set, said
processing member having an input for receiving event
messages and being provided for converting a received
event-message into one of said events of said second set,
said processing member being also provided for monitoring
said states in order to recognise an actual state for said object
and for selecting within said state diagram upon receipt of
one of said event-messages a position within said diagram
corresponding to said actual state and said event obtained by
said converting, said processing member being further pro
vided for retrieving said actions located at said selected
position and for Supplying said retrieved actions to an action
dispatcher in order to execute said retrieved action, said
action dispatcher comprising for each action of said third set

US 2007/0266394 A1

an execution routine provided for controlling said execution
of said action. The use of an event-state-action diagram
defined in a finite state machine enables to work with
deterministic finite state machines thereby imposing a single
transition for a state-event combination. The matrix organi
sation not only permits to establish a combination between
the events and the states but also to attribute actions to such
a combination. Not only this provides an operational flex
ibility, but also enables to add events and states without
deviating from the diagram concept. Since the actions can be
processing actions as well as timed or transition actions, a
large flexibility is offered. Moreover, the timed actions allow
the finite state machine to reach a Subsequent or final State
even if some expected events are not received or not
received at an expected time. The use of event-state-action
diagrams further gives the processing member the possibil
ity to process event-messages by recognising the occurred
event in the received message and select, by using the actual
state, those actions attributed to the actual event-state com
bination.

0015. A first preferred embodiment of a device according
to the present invention is characterised in that said State
engine editor is provided for attributing to each state-event
combination, comprising said initial State, an action selected
among said third Sub-set. In Such a manner care is taken that
a transition from the initial state wilt be performed.
0016 A second preferred embodiment of a device
according to the present invention is characterised in that
said actions belonging to said third set and said events of
said second set are predetermined. In Such a manner care is
taken that for each action or each event there is an execution
routine.

0017 Preferably each diagram is identified by a descrip
tion thereof and a reference to the object to which it belongs.
This enables a more flexible processing.
0018. A third preferred embodiment of a device accord
ing to the present invention is characterised in that each
transition action of said third Sub-set comprises a reference
to an event of said second set, a source and a target state as
well as a reference to said diagram to which it belongs. The
presence of a target state enables the correct execution of the
state transition.

0019. A preferred embodiment of a method according to
the present invention is characterised in that said objects are
classified by object types, each object being identified by a
definition and a description of the object type to which it
belongs, and wherein a plurality of event-state-action dia
grams are formed for each object, each diagram correspond
ing to one of said object types, said monitoring further
comprising a selection of at least one of said diagrams based
on said object type. This enables to use several diagrams for
a same object.

0020. The invention will now be described in more
details with reference to the annexed drawings illustrating a
preferred embodiment of a device and a method according
to the present invention. In the drawings:
0021 FIG. 1 shows a package state diagram using a
standard ULM notation;

0022 FIG. 2 shows schematically an example of the
device according to the present invention;

Nov. 15, 2007

0023 FIG. 3 illustrates a finite state machine;
0024 FIG. 4 illustrates an example of an event-state
action diagram;
0.025 FIG. 5 illustrates an example of an XML definition
for an event-state-action diagram;
0026 FIGS. 6 to 12 illustrate examples of editors for
events, processing actions, timed actions, state diagrams,
states and event-action-state diagrams respectively;
0027 FIG. 13 illustrates a correlation in an entity rela
tionship diagram; and

0028 FIG. 14 illustrates by means of a flowchart a
method according to the present invention.
0029. In the drawings a same reference has been allotted
to a same or analogous element.
0030 The present invention relates to a device and
method for processing events, in particular business process
events, which occur in an arbitrary order. Following the
occurrence of an event, appropriate actions are triggered in
real time, based on the current state of the business object on
which the events apply. The method is based on a finite state
machine design pattern. From a macro point of view, the
method is nondeterministic i.e. the same events will not
necessarily lead to the same actions. Moreover, the device
allows dealing with changes in the business model, adding
new objects, new state diagrams, new events, new states,
new transitions and new actions as the situation evolves,
which is usually the case in business environments.
0031. A business process is usually described as a
sequence of steps and actions, with a clear start and an end.
The output of one step provides the input for the next step.
Different methods have been developed to model business
processes. Software tools have been developed to support
the information flows related to business processes. While
traditionally, enterprise applications were developed to Sup
port the actions taken and information processed with a
particular step in the process, it is only recently that methods
and tools have been developed to support the whole process
and the exchange of information between different enter
prise applications (example: transfer of information from the
ordering system to the billing system and Subsequently to
the accounting system). More specifically, workflow sys
tems allow to model graphically the different steps in the
process and to connect the output of one step with the input
of the next step in the process. These tools usually allow
Software coding to implement business logic and do data
manipulations.

0032. The inconvenience with workflow systems is that
the process flow has always to go through a predetermined
path connecting Subsequent steps to reach the end of the
process in a sequential and deterministic way. Each step in
the process is not aware of the whole process. A step receives
input from its predecessor, does some processing and pro
vides input to its successor. In reality, processes do not
always work this way and workflows are not always the
most natural way to represent business interactions between
individuals, organisations and systems.

0033. The aim of business processes is to manipulate or
transform a business object (like an order, a shipment, a
parcel or any business transaction), which is handed over

US 2007/0266394 A1

between different individuals, locations, organisations or
systems until completion of the transaction. The business
objects can be physical (e.g. a parcel) or electronic (e.g. an
electronic message). The behaviour of Such an object can be
modelled with a state diagram or a finite state machine.
During its lifecycle the object will go through different
states. Actions are linked to a particular state of the object.
As soon as an object arrives in a certain state, appropriate
actions can be taken.

0034. The challenge is to maintain the consistency
between the real physical state of the object and the virtual
state as maintained by the information system and to take the
actions linked to valid State transitions in an appropriate
way. During the lifecycle of the object, different agents on
remote systems will publish events on the actual or current
state of the object. Due to the nature of the distributed
network like the Internet, the published events do not always
arrive on time at the central information system. There may
be a delay between the moment at which the event occurred
and the moment it was received by the device. Events may
arrive in the wrong order and there may be many occur
rences of the same event. In other words, the generation of
events is non-deterministic.

0035) In order to explain the problem to be solved, a real
example from the parcel distribution industry will be taken.
Packages are shipped from a source, corresponding to an
initial state, to a destination, corresponding to a final state,
within a certain time frame. The shipment can be seen as a
business transaction with a package as a business object to
be monitored by the device according to the invention in
order to ensure the proper completion of the business
transaction and take appropriate actions where needed, like
notifying the expeditor that the package will be late or
notifying the recipient that the package has arrived. During
its transportation, the package will go through different
States.

0036) An example of a package state diagram is shown in
FIG. 1, using the standard UML (Unified Modelling Lan
guage) notation for finite state machines. The UML notation
uses the pairs “event/action' on the transition arrow to
describe the behaviour of the objects, the event triggers the
transition and the action results from it. A package is
“created’, for instance, when a tracking number has been
generated by a shipping application and a label printed. This
package can still be cancelled, as shown by the transition
“created->cancelled. Typically, at the end of the day or at
the end of a packaging cycle, the shipment will be con
firmed, a consignment note or manifest will be printed with
all the details of the packages to be shipped and a shipping
file will eventually be sent to the courier. The package is then
in the state “Manifested awaiting the courier to collect it.
Once the package has been collected it goes in the state “In
Transit', meaning that it is on its way. The package might
never arrive, arrive at a wrong destination (misrouting) or
simply arrive late. In this case, the package goes into an “In
exception' state. This might be a final state as the package
may really be lost. Normally the package will arrive at
destination, which could be a drop-off point. It will stay
there until the final recipient will come and collect it.
0037. In the present invention a state design pattern or
finite state machine is used for modelling the package
delivery process or the behaviour of a package object. If the

Nov. 15, 2007

method enables to follow the package delivery process flow
in real time, the method can also easily feed different
systems, which are involved in Such a process for monitor
ing and controlling purposes. For example:

0038 a track and trace web site showing the current state
of the package;
0039 a messaging system to notify a recipient indicating
that a package can be collected;
0040
0041 an alerting system to notify any exception in the
process (package late or misrouted);
0.042
0043. Such actions can be taken when a transition to a
Subsequent state occurs or after a time out within a certain
state (for example, package too long “In transit' or too long
in “Delivered to location').

a billing system to register billing records;

a data warehouse for service level calculations.

0044) The device and method according to the present
invention have been developed to address problems of a real
time Supply chain event management, due to the specific
nature of Supply chain processes, but have been built in Such
a way as to Solve real-time event-driven business process
management problems, where the business object to be
monitored and controlled can be modelled by a finite state
machine.

0045 FIG. 2 shows schematically an embodiment of a
device according to the present invention. The device com
prises a processing member 1 connected to a memory 2. The
latter is also connected to a state engine editor 11 comprising
an editing module 3, an XML formatter and a loader 5. The
processing member has an input connected to a message bus
6 provided for transferring event-messages. The processing
member comprises an event-receiving element 7 connected
to a state engine processor 8. An output of the state engine
processor 8 is connected to an action dispatcher 10 and a
further output of the state engine processor is connected to
a timed action generator 9, having a trigger signal output
connected to the action dispatcher.
0046) The state engine editor 11 is provided to create
event-state-action diagrams, which are related to object
types. The device allows to operate with several object types
and to create a diagram for each object type. It is also
possible to create several event-state-action diagrams per
object type. The processing member is provided to create,
even on runtime, actual event-state-action diagrams for
effective real objects and to process a plurality of diagrams
in real time. Each running diagram being associated to one
running object of which the actual state is monitored.
0047 The creation of such an event-state-action diagram

is realised by the state engine editor 11, which has an input
for receiving object data identifying the object to be pro
cessed as well as the initial and final state for that object.
Once the event-state-action diagram is created for the object
to be considered, it is stored in the memory 2. When the
diagram is stored in the memory it can be retrieved by the
processing member 1 in order to be processed. The process
ing member will react on event-messages circulating on the
message bus 6.
0048. The state engine processor 8 is built on the concept
of a finite state machine. This concept is illustrated with

US 2007/0266394 A1

reference to an example shown in FIG. 3. The finite state
machine of FIG. 3 comprises four states A, B, C and D of
which A is the initial state and D the final state, C and B
being intermediate states. The States are grouped in a first set
grouping a finite number of States. A transition from one
state to another is caused by an event. It should however be
noted that not each event will cause a transition. Different
events may cause the same transition, in case a different
behaviour (different actions) is desired based on the trigger
ing event. One event can only cause one transition from a
Source state to a target state. When an event occurs, even
tually a transition is made and actions are triggered. The
events are grouped in a second set grouping a finite number
of events. The actions are grouped in a third set grouping a
finite number of actions. The third set comprises a first
Sub-set of processing actions, such as for example sending
a receipt message. The third set further comprises a second
Sub-set of timed actions, which are actually timers triggering
action(s) upon expiration of a predetermined time period.
When the state of an object changes, all running timers (or
timed actions) of this object are cancelled. Finally the third
set comprises a third Sub-set of transition actions triggering
a transition from the actual state to the target state.

0049 FIG. 4 shows an event-state-action diagram based
on the example of FIG. 3. This model allows to define,
modify, monitor and control business processes in a very
efficient way. The method enables to easily create new state
machines, add or modify states, events and actions. Based on
the received object data identifying the object, the event
state-action diagram is formed by the state engine editor 11.
For this purpose the state engine editor 11 uses the matrix
set-up illustrated in FIG. 4. The received object data com
prise the events, selected among the second set and the states
selected among the first set. The events are organised
row-wise and the states column-wise. Consequently matrix
positions are created, which each time corresponds to a
state-event combination. The state engine editor is further
provided for attributing to at least one state-event combina
tion at least one of said actions of the third set. The
attribution of the actions is i.a. determined by the initial and
final state of the object, by the path to be traveled from the
initial to the final state as well as by the events, which could
OCCU.

0050. The use of the matrix set-up enables a flexible
build-up of the diagram because the number of rows and
columns is as if to say unlimited. Modifications are imple
mented by adding or deleting rows or columns or by
modifying the attributed events. Moreover the diagram
makes it possible to treat incoming events in an unrelated
order.

0051. In the example shown in FIGS. 3 and 4, it can be
seen how the state engine would behave in case it misses an
event. A normal flow of events could be state A to state C
with event a and then to state D with event c. Suppose that
state A is the actual state and that event a is missed. Upon
receipt of event c, the object will move to state D. The same
actions (actions 4 and 5) can be taken as if they would
originate from state C. An additional action (action 6) is then
taken, which could be for instance a warning message to
notify that event a has been missed. If the relevant object
later receives a notification of event a, it will not take the

Nov. 15, 2007

same actions associated with the transition, i.e. state A to
state C, as they are not relevant in the context of state D,
except for action 1.

0052. It should also be noted in the example that both,
event c and event d, will allow a transition from state A to
state D, but the associated actions are different. Therefore
they are considered as two different transitions within the
same State diagram.

0053 An example of an end use of such an application is
in a package delivery business. In such a business the state
of a package (the relevant object) may change before the
state engine receives or can react on an event. E.g., the
change of the state of a package to “ready for pick up' is an
event, which typically triggers an action to notify the cus
tomer. However, if before such a notice is sent, the state of
the package changes from “Ready for pick-up' to “Deliv
ered then the state engine determines not to send Such a
notice. Thus, the state engine responded to the same event
differently based on the actual state of the package.

0054 The state engine editor is preferably formed by a
graphical user interface (GUI) for creating and modifying
events-states-actions diagrams. It preferably generates an
XML description of the diagram, which can then be loaded
in the memory 2. FIG. 5 shows an XML definition for the
events-states-actions diagrams. The specification of this
XML file can be considered as a “Business Process State
Engine Language' or BPSEL, which has similarities with
other Business Modeling language, but is much simpler. As
can be seen in FIG. 5, the objects are classified by object
types. This classification enables to attribute specific dia
grams to each object type. For each object type a definition
is stored in the memory. A unique reference identifier is
attributed to each object type, as well as a name. A descrip
tion of the object types is also stored. All these data enable
a uniform definition of the object, thus leading to an efficient
processing. As can be further seen in FIG. 5 a definition is
also stored for the diagram. The diagram, the states, the
events, the actions, all have a unique reference identifier, a
name and a description. To each diagram there is also
attributed a reference of the object type on which the
diagram applies. To each state, there is also attributed a
reference of the diagram, to which the state belongs. The
timed actions all have a predetermined time period indicat
ing at which time they should trigger. The transition actions
have a reference to a triggering event, the source state and
diagram as well as a reference to the target state to be
reached upon occurrence of the transition.

0055 A further distinction can be made between two
types of actions:

0056 generic actions, which can be invoked for any type
of object. The code logic of these actions uses only the
parameters of the triggering event, and not a logic specific
to the object embodied in the event;
0057 object specific actions, which can only be invoked
from state machines relating to the same object type as the
embodied object.

0058. The implementation of these methods may use
logic, which is specific to the type of the embodied object.
An example of Such an object specific action is an action
referring to a tracking number of a parcel.

US 2007/0266394 A1

0059 For forming the diagrams, the state engine editor
will use the editors of which an example is given in the
FIGS. 6 to 12. The state engine editor allows to define and
modify all entities of the state machine. FIG. 6 shows the
basic screen of the editor as it appears in a standard HTML
browser.

0060. On the top there are three selections:
0061 definitions of basic entities, object types, events,
actions, timed actions, state diagrams and states;
0062 definition of diagrams, for each state and for each
event, transitions and actions to be performed;
0063 repository, save and load XML schema's in the
editor, and load the active schema into the memory.
0064. The screen layouts are self explanatory and directly
in line with the definition of the XML file in FIG. 5. The
object type screen is simply a declaration, and the indication
of the object classes and/or databases of the application
server. The designer can select an object type on the basis of
the received object data and attribute a name and a descrip
tion to the selected object type. The icons “new”, “update'
and “delete' provide to the designer the possibility either to
create a new object type or to update or amend existing
object types. A box is further provided for introducing a
predetermined amount of names and associated descriptions.
As is indicated in the FIGS. 6 to 12, FIG. 6 relates to object
types, FIG. 7 to events, FIG. 8 to actions, FIG. 9 to timed
actions, FIG. 10 to state diagrams, FIG. 11 to states and FIG.
12 to diagrams.

0065. It should be noted that events and object types are
closely linked to each other. Event messages will always
embody the associated object and will be applied only to the
running state machine diagrams associated with the embod
ied object. The name of the event and the embodied object
type serve as interface specification between the process
designers and the designers of the messaging system, trans
porting the event messages and/or the object classes and/or
databases of the application server. The name of the action
serves as interface specification between the process
designer and the designer of the method implementing the
action and running on the application server. The object type
is not mandatory for actions. If the object type is not
specified, the action can be applicable on all State machines,
for all type of objects.

0.066 Like actions, timed actions can be generic for all
object types or specific to one object type. A timed action
specifies a timeout variable and one or more generic or
object type specific actions, which will be invoked upon
expiration of the timer. The action list allows multiple
selections.

0067. The state diagram screen in the entities menu is for
the declaration of the state diagram names and the link to the
related object type. These declarations are needed to create
the states. The same object type may have different state
diagrams. The instantiation of an object may also have
different state machines running in parallel, but not neces
sarily. This will depend on the events causing the transitions.
The state machines, executing actions for the same object,
may have different triggering events. However, the different
running diagrams relating to a same object shall be different
from each other.

Nov. 15, 2007

0068 For each diagram selected in the upper left table of
FIG. 12, all possible states are displayed in the lower left
table. For the selected Source state, one can see all existing
triggering events on which the state machine needs to act
upon. It should be noted that not all possible events need to
be configured and that a state transition is not always
mandatory. The target state may be the same as the source
state. In the upper right panel (Transition Editor) one can
create, modify or delete transition by specifying, for each
origin state, the triggering event, the target state and one or
more generic or object specific actions and/or timed actions.
The actions lists allow multiple selections.

0069. The device according to the present invention is
provided for processing a plurality of diagrams relating to a
same object and also for processing a plurality of diagrams
for a plurality of objects. The use of object types will enable
the selection of a diagram, since the incoming event-mes
sage will comprise an indication of the object type.

0070 FIG. 13 illustrates an Entity-Relationship Diagram
(ERD) for processing an event-state-action diagram. The
ERD comprises a first part, which forms the memory content
and a second part formed by the runtime and historical data.
From this ERD it can be derived that an event (40) is always
related to one object type (41). In other words, if there is no
object type considered, no events can happen. A state
diagram definition (42) is always related to one object type
(41) and has at least one state (43) by default, which is
“none and corresponds to the initial state of the finite state
machine. An object type (41) may have more than one state
diagram definition (42). So for example in the case of a
parcel, one state diagram could be related to the billing of the
object and another state diagram could be related to the
travel path of the parcel. A state (43) is always related to a
state diagram definition (42). An action (44) is optionally
related to one object type (41). Without object type refer
ence, the action (44) is considered as a generic action, which
can be used in all state diagrams, regardless of the object
type. A timed action (45) is optionally related to one object
type (41). Without object type reference, the timed action is
considered as a generic action, which can be used in all state
diagrams, regardless of the object type. A timed action (45)
is linked to at least one action (44). The state engine editor
(3) will ensure consistency of object types (41) between
timed actions (45) and actions (44). A transition (46) is
always related to one state diagram definition (42), and is
always characterised by one triggering event, one source
state and one target state, which can be the same as the
Source state. Each record in the transition table corresponds
to one cell of the event-state-action diagram as described in
FIG. 5. A transition may have none or several associated
actions and timed actions.

0071. The part formed by the runtime and historical data
is not in the XML definition, but is used by the state engine
to maintain the instances of the running state machine and
log their associated events, state changes, actions and timed
actions:

0072)
0073)
0074)

0075)

Object (50)
Running State Diagram (51)

Event History (52)

State History (53)

US 2007/0266394 A1

0076 Action History (54)
0077. Timed Action History (55)
0078. The relations between these tables mirror the defi
nition tables kept in the memory of the device. One can see
that one object may have several running state diagrams (51;
each corresponding to a different state machine). A running
state diagram has always one current state, corresponding to
the possible states linked to the state diagram definition. An
event is always related to one object, which is embodied in
the event. State history, action history, timed action history
records are always related to one running state diagram and
one instance of a triggering event (Event History table). In
case an object type should have different state diagrams, the
same triggering event may be applicable to different running
state diagrams and hence generating different transitions
which will lead to different records in the state, action and
timed action history tables, all linked to the same triggering
event in the event history table.
0079 The device according to the present invention
allows alteration of existing state diagrams, even for state
machines with running instances. In order to support change
management, a version control mechanism has been intro
duced. In case a state diagram has changed, new reference
identifiers are generated for the entities where needed, so
that running instances are still linked to a previous version
and can continue to function normally until a final state is
reached. New instances will be linked to the new version of
the diagram.
0080. The operation of the device as well as the appli
cation of the method will now be further described with
reference to the FIGS. 13 and 14. For the operation of the
device, three elements need to be known and supplied to the
device:

0081 at least one object to be managed by the device
(known by its type and unique identifier)
0082 the events to which the device will subscribe
(known by their name and embodied objects)
0.083 the processing actions to be executed by the device
according to the rules defined in the editor (known by their
name and type, generic or object specific).

0084. Once these elements are supplied to the device, the
event-state-action diagram(s) is (are) formed and the pro
cessing of the events can start. For forming the event-state
action diagram(s) use is made of the State diagram definition
42. The matrix framework of the diagram is built up with the
supplied events and the different states to be occupied by the
embodied object during its traveling from the initial to the
final state. At those state-event combinations where actions
are required, the processing actions are attributed. The state
diagram definition 42 is only used during the diagram
build-up. Thereafter the running state diagram 51 is used
upon processing of the events and actions.
0085. Upon receipt (20) of an event-message traveling on
the message bus (6; FIG. 2) the processing member will save
(21) the event present in the event-message into the event
history table (52) with a link to the embodied object. The
embodied object is recognised by analysing the event
message, which comprises an identifier for the embodied
object. The object table (50) is filled with the embodied
objects, so that whenever an event message with an embod

Nov. 15, 2007

ied object occurs on the message bus, there is always a valid
record in the object table for the embodied object. If the
received event-message comprises an object, which is not
present in the object table, an error message will be gener
ated. The device will process (22) by means of a loop the
received event for each state diagram definition record
linked to the object type of the embodied object. In the loop
there will be checked (23) in the running state diagram table
if there is already a record with a reference to the current
state diagram definition of the loop and a reference to the
embodied object. If no record is found, the transition table
is searched (24) to find whether there is a record with a
reference to the current state diagram definition of the loop
and a reference to the event being processed by the device
and a reference to the source state “None'. If such a record
is found, a new record is created (25) in the table running
state diagram, with a link to the embodied object, a link to
the current state diagram definition of the loop and a link
(the current state) to the state “None' which is linked to the
same state diagram definition. If such a transition from
“None” with the processed event is not found, the device
will loop (30) to the next state diagram definition. In other
words during step 24 there is checked if a new running State
diagram has to be created for the embodied object.

0086 Once the state diagram for the embodied object is
found, the current state is also recognised since the device
memorises for each running diagram, the actual state
thereof. The actual state in combination with the received
event indicates a location in the matrix forming the diagram.
As described here before, at this matrix location the actions
to be executed, if any, are stored. If a transition action has to
be executed, the device will search (26) in the transition
table in order to find a record with a reference to the current
state diagram definition of the loop and, as triggering event,
a reference to the processed event and, as source state, a
reference to the same state as the current state of the running
state diagram corresponding to the current state diagram
definition of the loop and having a reference to the embodied
object. Such a transition record will always be unique, per
definition of the deterministic nature of the finite state
machine at design time. If such transition record is found,
the device will process one or more of the three action types,
depending on the actions indicated at the addressed matrix
location:

0087 state change and cancel related open timers, if the
target state is different from the source state (27);

0088 processing actions, which will execute the code of
the related pre-determined actions (28) by means of the
action dispatcher (10, FIG. 2). For this purpose, the action
dispatcher comprises for each action of the third set an
execution routine provided for controlling said execution of
said retrieved action(s):

0089 timed actions, which will initiate the timers (29).
0090. Every action is recorded in respectively the state,
action and time action history tables for further reference
and analysis.

0091. The device also comprises a scheduler (9, FIG. 2),
which will automatically execute the processing actions
linked to the timed actions after expiration of the timer as
specified in the timed action table.

US 2007/0266394 A1

1. A device operating as a finite state machine and
provided for processing events and actions relating to at
least one object to be moved between an initial and a final
state, said device comprising a processing member con
nected to a memory, wherein said initial and final state are
integrated into at least one event-state-action diagram defin
ing said finite state machine, said memory having an input
connected to a state engine editor and being provided for
storing said at least one diagram, said state engine editor
having an input for receiving object data, identifying said
object and said initial and final state, said object data
comprising a first set of States, a second set of events and a
third set of actions, said third set comprising a first Sub-set
of processing actions, a second Sub-set of timed actions
provided to initiate each time at least one predetermined
action of said first sub-set after a predetermined time period
has lapsed and a third Sub-set of transition actions, said State
engine editor being provided for forming said diagram
structured as a matrix of said states of said first set and said
events of said second set in order to create, at positions
within said matrix, a state-event combination, said State
engine editor being further provided for attributing to at least
one state-event combination at least one of said actions of
said third set, said processing member having an input for
receiving event-messages and being provided for converting
a received event-message into one of said events of said
second set, said processing member being also provided for
monitoring said states in order to recognize an actual state
for said object and for selecting within said state diagram,
upon receipt of one of said event-messages, a position within
said diagram corresponding to said actual state and said
event obtained by said converting, said processing member
being further provided for retrieving said actions located at
said selected position and for Supplying said retrieved
actions to an action dispatcher in order to execute said
retrieved action, said action dispatcher comprising for each
action of said third set an execution routine provided for
controlling said execution of said action.

2. A device as claimed in claim 1, wherein said state
engine editor is provided for attributing to each state-event
combination, comprising said initial State, an action selected
from among said third Sub-set.

3. A device as claimed in claim 1, wherein said state
engine editor is provided for attributing to each state-event
combination, comprising said final state, only actions
belonging to said first or second Sub-set.

4. A device as claimed in claim 1, wherein said actions
belonging to said third set are predetermined.

5. A device as claimed in claim 1, wherein said events
belonging to said second set are predetermined.

6. A device as claimed in claim 1, wherein each diagram
is identified by a description thereof and a reference to the
object to which it belongs.

7. A device as claimed in claim 1, wherein each state is
identified by a description thereof and a reference to the
diagram to which it belongs.

8. A device as claimed in claim 1, wherein each event is
identified by a description thereof and a reference to the
object to which it belongs.

9. A device as claimed in claim 1, wherein each action is
identified by a description thereof.

10. A device as claimed in claim 1, wherein said state
engine editor is provided for forming said diagrams with an
XML description.

Nov. 15, 2007

11. A device as claimed in claim 1, wherein each transition
action of said third Sub-set comprises a reference to an event
of said second set, a source and a target state as well as a
reference to said diagram to which it belongs.

12. A device as claimed in claim 1, wherein said first
Sub-set comprises a first class of generic actions and a
second class of specific actions identified by a reference to
the object to which it belongs.

13. A method for processing, within a finite state machine,
events and actions relating to at least one object to be moved
between an initial and a final state, wherein said method
comprises:

receiving object data identifying said at least one object
and said initial and final state, said object data com
prising a first set of states, a second set of events and
a third set of actions, said third set comprising a first
Sub-set of processing actions, a second Sub-set of timed
actions provided to initiate each time at least one
predetermined action of said first sub-set after a pre
determined time period has lapsed and a third sub-set of
transition actions;

forming at least one event-state-action diagram defined in
a final state machine pattern of said finite state machine
by structuring said states of said first set and said events
of said second set as a matrix in order to create at
positions within said matrix, each time, a state-event
combination;

integrating said initial and final state into said diagram:
attributing to at least one state-event combination at least

one of said actions of said third set;
receiving event-messages relating to said at least one

object and converting a received event-message into
one of said events of said second set;

recognizing said at least one object into said received
event-message;

monitoring said states in order to recognize an actual state
for said recognized object and selecting within said
state diagram upon receipt of one of said event-mes
Sages a position within said diagram corresponding to
said actual state and said event obtained by said con
Verting:

retrieving said actions located at said selected position
and executing said retrieved action by processing an
execution routine provided for controlling said execu
tion of said retrieved action.

14. A method as claimed in claim 13, wherein said at least
one object includes plural objects, said objects classified by
object types, each object being identified by a definition and
a description of the object type to which it belongs, and
wherein a plurality of event-state-action diagrams are
formed for each object, each diagram corresponding to one
of said object types, said monitoring further comprising a
selection of at least one of said diagrams based on said
object type.

15. A method as claimed in claim 14, wherein said object
types are predetermined.

16. A method as claimed in claim 13, wherein said at least
one object includes a plurality of objects, and for each of the
plurality of objects, at least one dedicated event-state-action
diagram is formed, said event-messages comprising an

US 2007/0266394 A1

object identifier, said monitoring further comprising a selec
tion of at least one of said diagrams based on said identified
object.

17. A method as claimed in claim 14, wherein said at least
one object includes a plurality of objects, and for each of the
plurality of objects, at least one dedicated event-state-action
diagram is formed, said event-messages comprising an
object identifier, said monitoring further comprising a selec
tion of at least one of said diagrams based on said identified
object.

18. A method for processing, within a finite state machine,
events and actions relating to at least one object to be moved
between an initial and a final state, wherein said method
comprises:

receiving object data identifying said at least one object
and said initial and final state, said object data com
prising a first set of states, a second set of events and
a third set of actions, said third set comprising a first
Sub-set of processing actions, a second Sub-set of timed
actions provided to initiate each time at least one
predetermined action of said first sub-set after a pre
determined time period has lapsed and a third sub-set of
transition actions;

forming at least one event-state-action diagram defined in
a final state machine pattern of said finite state machine
by structuring said states of said first set and said events
of said second set as a matrix in order to create at
positions within said matrix, each time, a state-event
combination;

integrating said initial and final state into said diagram;
attributing to at least one state-event combination at least

one of said actions of said third set;
receiving event-messages relating to said at least one

object and converting a received event-message into
one of said events of said second set;

recognizing said at least one object into said received
event-message;

Nov. 15, 2007

monitoring said states in order to recognize an actual state
for said recognized object and selecting within said
state diagram upon receipt of one of said event-mes
Sages a position within said diagram corresponding to
said actual state and said event obtained by said con
Verting:

retrieving said actions located at said selected position
and executing said retrieved action by processing an
execution routine provided for controlling said execu
tion of said retrieved action;

wherein said at least one object includes plural objects,
said objects classified by object types, each object
being identified by a definition and a description of the
object type to which it belongs, and wherein a plurality
of event-state-action diagrams are formed for each
object, each diagram corresponding to one of said
object types, said monitoring further comprising a
Selection of at least one of said diagrams based on said
object type;

wherein said object types are predetermined; and

wherein said at least one object includes a plurality of
objects, and for each of the plurality of objects, at least
one dedicated event-state-action diagram is formed,
said event-messages comprising an object identifier,
said monitoring further comprising a selection of at
least one of said diagrams based on said identified
object.

19. A device as claimed in claim 2, wherein said state
engine editor is provided for attributing to each state-event
combination, comprising said final state, only actions
belonging to said first or second Sub-set.

20. A device as claimed in claim 19, wherein said actions
belonging to said third set are predetermined.

