发明名称
具有负重板的行星级的行星架

摘要
具有负重板的行星级的行星架，行星轮能安装在该负重板的两侧，其特征在于：将行星架与其负重板制作为一个整体件，该行星架与其负重板制作为一个整体件。该行星架不需要任何的螺栓、焊接或任意装置来将负重板连接到实际的行星架。负重板与实际行星架之间的连接比在已知的具有分离的负重板的行星架的模型中更坚硬。由于无需将负重板组装在行星架上，从而其中使用行星架的行星齿轮级的生产更快速且相关成本更低。
1. 一种行星架(9)的行星架(11)，所述行星架(11)具有负重板(15)，
行星轮(19、20)能安装在所述负重板的两侧(17、18)，其特征在于：将
所述行星架(11)与其负重板(15)制作为一个整体件。

2. 根据权利要求1所述的行星架(11)，其特征在于：所述行星架
是铸造的。

3. 根据权利要求2所述的行星架(11)，其特征在于：所述行星架
由球墨铸铁也称为球状石墨铸铁制成。

4. 根据权利要求3所述的行星架(11)，其特征在于：所述行星架
由奥贝球铁也称为 ADI 制成。

5. 根据权利要求4所述的行星架(11)，其特征在于：所述行星架
由具有最小 1000Mpa 的拉伸强度的奥贝球铁制成，所述奥贝球铁根据
Ferrocast ADI 标准也称为 F-ADI 1000，或者根据欧洲标准
DIN EN 15 64 称为 EN-GJS-1000-5。

6. 根据前述权利要求中任一项所述的行星架(11)，其特征在于：
所述行星架应用于风轮机(1)的齿轮单元(8)中。
具有负重板的行星级的行星架

技术领域

本发明涉及一种行星级的行星架，该行星架具有负重板，行星轮
能安装在该负重板的两侧。

更具体但不专门地，本发明涉及一种用于风轮机的上述类型的行
星架。

背景技术

公知的是在风轮机的技术中，具有一种构造越来越大的风轮机的
趋势。

由此，作出了许多尝试来减小风轮机的重量，因为重量越小，结
构上的力和张力就越小，因此运行成本明显降低。

在最新形式的风轮机中，很多努力放在集成所有的风轮机部件中，
从而获得更紧凑的设计。

例如，在以前的设计中，风轮机的转子轮毂通过轴承完全独立地
支撑在机架中。在这种情形下，转子轮毂被连接到完全独立的齿轮箱
的输入轴，在该齿轮箱中，转子轮毂的缓慢旋转转换成齿轮箱的输出
轴处的快速旋转，该输出轴通常连接到发电机。

由于转子叶片的重量和尺寸，在转子叶片的旋转期间，转子轮毂
经常不完全保持在中心，从而转子轮毂经受一些小的偏移。

如果转子轮毂和齿轮箱的输入轴彼此刚性连接，则这些偏移将导
致对齿轮箱的损坏。

这就是以前设计中的连接通常是相对柔软类型的原因。

在目前已知的更集成的设计中，转子轮毂直接连接到齿轮箱的输入轴，并且齿轮箱的轴承实际上支撑转子轮毂或者在相反的情形中，转子轮毂的轴承支撑齿轮箱的输入轴。

然而，因为在这些建筑设计中转子轮毂和齿轮箱的输入轴必须彼此刚性地连接，所以这些已知设计的缺点在于转子轮毂上的力以及所伴随的变形对齿轮箱具有直接的影响。

解决这些变形的已知方案是在行星架上使用负重板。

这种负重板设有轴，由此在负重板的两侧上，行星轮能够通过一对轴承安装在每个轴上。

公知的是在不明显地影响齿轮啮合的情况下，这种在行星架上具有负重板的行星齿轮允许行星架上的例如由于上述变形的少许不对准。

然而，这种具有负重板的行星架的构造在技术上是相当程度的挑战。

特别地，保持支撑行星轮的轴的负重板与行星架的连接是重要的并且很难实现。

经常此连接通过将负重板栓接在行星架上来实现。

这些已知的具有栓接负重板的行星架的缺点在于负重板在行星架
上的组装是复杂、耗时的并且需要许多高强度材料，这使该方案相当昂贵。

此外，负重板与行星架之间的螺栓连接在长时期的性能是未知的。

总是具有在一定量的时间之后螺栓变松的风险，从而需要对连接进行定期维护或检查。

这些微小移动能导致对部件的损坏。例如在特定情形中，它能导致部件的典型氧化。

发明内容

本发明的目的在于一种具有负重板的行星架，例如一种在风轮机中使用的行星架，该行星架不表现上述和其它缺点中的一个或多个。

为此目的，本发明涉及一种行星级的行星架，该行星架具有负重板，行星轮能安装在负重板的两侧，由此将行星架与其负重板制造为一个整体件。

根据本发明的这种行星架的优点在于不需要任何的螺栓、焊接或任意装置来将负重板连接到实际的行星架，因为行星架和负重板形成一个工件。

根据本发明的这种行星架的另一优点在于负重板与实际行星架之间的连接比在已知的具有分离的负重板的行星架的模型中更坚硬。

因此，利用根据本发明的行星架，避免了上述与在负重板和行星架之间使用例如螺栓连接相关的风险。

根据本发明的行星架的又一优点在于无需将负重板组装在行星架
上，从而其中使用行星架的行星齿轮级的生产更快速且相关成本更低。

按照根据本发明的行星架的优选实施例，行星架被铸造。

根据此实施例的行星架的优点在于：一旦制成用于铸造的模具，能快速地并且在不在车间中进一步加工的情况下生产很大量的这种与其负重板制作为整体件的行星架。

铸造的另一优点在于它是相对廉价的处理。

附图说明

为了更好地显示本发明的特征，在下文中，作为没有任何限制特性的示例，参照附图来描述根据本发明的行星架的实施例的一些优选形式，其中：

图 1 示意性示出了配备有齿轮单元的风轮机，该齿轮单元包括根据本发明的具有行星架的行星级；

图 2 在横截面中并以较大的比例示出了由图 1 中的 F2 指示的齿轮单元的部分；

图 3 示出了根据本发明的并由图 2 中的 F3 指示的行星架的透视图；以及

图 4 是示出根据本发明在行星架的处理步骤期间温度随时间的进展的典型曲线。

具体实施方式

图 1 中所示的典型风轮机 1 由静支撑结构 2 构成，短舱 3 可旋转地安装在该静支撑结构 2 上，这允许调节风轮机 1 对于风向的位置。

具有转子轮毂 5 和转子叶片 6 的转子 4 设置在在短舱 3 中，由此转子轮毂 5 通过齿轮单元 8 连接到发电机组 7。
如图2中更详细示出的，在此实施例中，齿轮单元8设有行星齿轮级9。

此行星齿轮级9的输入轴10连接到转子轮毂5，在此情形中，输入轴10通过行星齿轮级9的行星架11示出，而输出轴12直接或间接地通过齿轮单元8的其它部件连接到发电机组7（图中未示出）。

行星齿轮级9安装在连接到短舱3（未示出）的机架结构13中。

环形轮14例如通过螺栓或任意的连接装置刚性地连接到机架结构13。

行星架11相对于机架结构13或短舱3以可旋转的方式支撑。

通常，这通过支撑转子轮毂5的主轴承或一组轴承来实现，此轮毂5连接到行星架11。

此外，行星架11设有根据本领域技术状态已经公知的特定特征件，即负重板15。此负重板15又为多个行星轴16提供支撑。

因此，行星轴16从负重板15的两侧17和18延伸，从而一对行星轮19和20能安装在每个行星轴16上，每对的行星轮20和21位于负重板15的相对侧，分别在侧17和侧18。

每个行星轮19和20通过行星轮轴承21支撑在行星轴16上。

此外，输出轴12设有太阳轮22，该太阳轮22通过与行星轮19和20相互作用来保持输出轴12集中在行星级9的中心。

通常，输出轴12连接到第二行星级或第二平行级（未示出），由此
第二行星架设有轴承，所述轴承相对于机架 13 以可旋转的方式支撑输出轴 12。

公知的是在如图 2 的情形中，通过行星轮 21 和 22 一方面与静环形轮 14 以及另一方面与太阳轮 22 之间的相互作用，将行星架 11 在输入轴 10 处相对缓慢的旋转转换成太阳轮 22 在输出轴 12 处相对快速的旋转。

在风轮机 1 的情形中，这意味着由风引起的转子 4 的缓慢旋转被转换成输出轴 12 处的旋转，该旋转能将风从而能使发电机 7 恰当地发挥作用。

还公知的是利用图 2 的构造，通过将重板 15 连接到行星架 11 并且在转轴架 15 的两侧 17 和 18 上设置行星轮 18 和 19，能吸收由转子 4 的重量和/或转子 4 上的动载荷引起的齿轮单元 8 中的一定量的变形。

然而，如在引言中所提及的，在已知的具有重板的行星架中，实际的行星架 11 与重板 15 之间的连接经常通过将部件栓接在一起来实现，使得组装是耗时且昂贵的。

此外，不知道此螺杆连接在长时期的表现将会如何，由此总是存在某些螺杆将松开的风险。

另一风险在于在负载下总是存在于栓接部件之间的微小的相对移动将导致部件的氧化。

然而，根据本发明，将行星架 11 与其重板 15 制作为一个整体。
明显的是利用根据本发明的此种具有集成负重板 15 的行星架 11 比利用已知类型的具有负重板的行星架获得更加刚硬的结构，由此避免上述的负重板与行星架之间的连接松开以及由彼此微小的相对移动导致的这些部件氧化的风险。

此外，明显的是在根据本发明的行星架 11 和负重板 15 的情形中，不再需要组装，从而节省了时间和金钱。

图 3 以透视图示出了图 2 的行星架 11，其中能清楚地看到根据本发明，行星架 11 和负重板 15 形成为一个整体件。

行星轴 16 能安装在负重板 15 中的孔 23 中。

负重板 15 和行星架 11 通过作为整体件的组成部分的横梁 26 连接。

根据本发明的优选实施例，将行星架 11 与其负重板 15 铸造为一个整体件。

本发明的此实施例的优点在于生产非常简单。实际上，一旦制造了模具，就能非常快速、容易和较廉价地制造很多工件。

按照根据本发明的行星架 11 的又一更优选的实施例，行星架 11 及其负重板 15 由球墨铸铁也称为球状石墨铸铁制成。

典型的铸铁相当脆。这是由铸铁中碳的高含量导致的。当铸件固化时，此碳的一些沉淀为石墨片，该石墨片增加了裂缝的形成。

在球墨铸铁中，添加所谓的“球化剂”，如镁或铈。这些“球化剂”导致碳沉淀为石墨球而不是石墨片，从而阻碍了裂缝的形成并且金属更有韧性。
使用球墨铸铁的优点在于获得更坚固的整体件，该整体件具有良好的韧性和耐磨性以及与其强度相比的相当有限的重量。

为了更进一步增强行星架 11 和集成的负重板 15 的性能，根据本发明，还优选使用奥贝球铁，也称为 ADI。

奥贝球铁通过铸造为正常的球墨铸铁而获得，由此它随后经受等温淬火过程，该等温淬火过程显著地改进了它的机械性能，如抗拉强度、屈服强度、疲劳强度、冲击阻力、硬度等。

图 4 显示了在铸造后的等温淬火过程期间所发生的形的典型曲线。

因此，铸造金属首先快速达到大约 900 到 950℃的温度。在此温度下，获得铁和碳的稳定固溶体，即所谓的 γ相铁或奥氏体。

然后在几小时之后将金属突然冷却(淬火)到 220 与 450℃之间的温度，此时开始等温过程，在该等温过程期间，消除材料内的残余应力并允许少许重结晶，从而在损失最小强度的情况下提高韧性。

按照根据本发明的行星架的最优先实施例，行星架 11 由具有最小 1000MPa 抗拉强度的奥贝球铁制成，根据 Ferrocast ADI 标准也称为 F-ADI 1000 或者根据欧洲标准 DIN EN 15 64 称为 EN-GJS-1000-5。

明显的是通过将行星架 11 和负重板 15 铸造为一个整体件并随后经过等温淬火过程以便得到具有 1000MPa 抗拉强度的奥贝球铁，根据本发明的这种行星架 11 在行星架 11 与负重板之间具有非常刚硬的连接，该连接仍是足够柔韧的以便防止它在相当大的冲击下发生故障。
本发明决不局限于上文所述和附图中所示的实施例，而是在不偏离本发明的范围的情况下，这种行星架 11 可以不同的形状、材料和尺寸实现。
图1