

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 May 2011 (12.05.2011)

(10) International Publication Number
WO 2011/055189 A2

(51) International Patent Classification:

A47J 31/36 (2006.01)

(72) Inventors; and

(75) Inventors/Applicants (for US only): BIANCHI, Roberto [IT/IT]; Piazzale S. Paolo 21, I-24128 Bergamo (IT). EL-LUL-BLAKE, Jacob [US/US]; 1900 16th Avenue S, Seattle, WA 98144 (US).

(21) International Application Number:

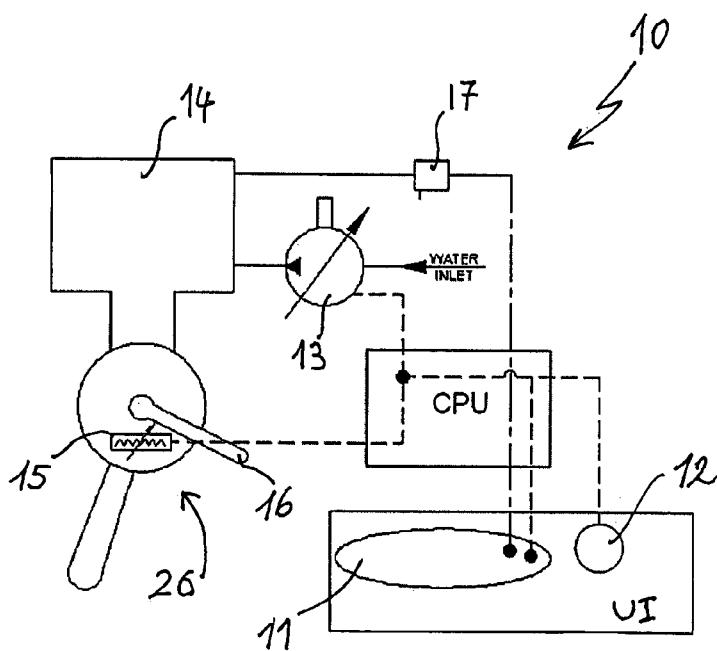
PCT/IB2010/002718

(74) Agent: MARTINI, Riccardo; Viale Montegrappa 278/E, I-59100 Prato (IT).

(22) International Filing Date:
25 October 2010 (25.10.2010)

(25) Filing Language: Italian

(26) Publication Language: English


(30) Priority Data:
PO2009U000011 23 October 2009 (23.10.2009) IT
12/760,555 14 April 2010 (14.04.2010) US
PO2010A000004 15 April 2010 (15.04.2010) IT

(71) Applicant (for all designated States except US): LA MARZOCCO S.R.L. [IT/IT]; Via Angiolo Tavanti 16, I-50134 Firenze (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: IMPROVED METHOD AND MACHINE FOR PREPARING ESPRESSO COFFEE

(57) Abstract: In an improved method and machine for espresso coffee there are provided one or more operating units (10) each of which comprises a boiler, a pump, a heating unit, a group (26) for aroma extraction and dispensing of the espresso coffee brew, including related conduits. Each unit (10) is equipped with a system for controlling and adjusting the espresso coffee brewing parameters, in particular the water pressure.

Fig. 3

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *of inventorship (Rule 4.17(iv))*

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*

IMPROVED METHOD AND MACHINE FOR PREPARING ESPRESSO COFFEE

DESCRIPTION

The present application claims the priority of Italian applications no. PO2009U000011 and no. PO2010A000004 and of US application no. 12/760555, which applications are 5 hereby incorporated by reference in their entirety.

Technical Field

The present invention relates to an improved method and machine for preparing espresso coffee. In particular, the invention relates to a method and to a machine for espresso coffee where the pressure, and in case the temperature, can be changed during coffee 10 brewing.

Prior Art

As is known, brewing espresso coffee requires that a certain amount of water at around 90°C be forced through a coffee pod at a nominal pressure of around 9 bar. 15 It is also known that the quality of the espresso is greatly influenced by pressure and temperature. In fact, the physical properties of coffee vary depending on the variety. It follows, therefore, that the parameters for an optimal brew differ for each coffee variety. Prior art machines are ordinarily equipped with a pump driven by an electrical, alternating current motor. Typically the pump is equipped with means for setting the water outlet pressure at the required value. Therefore the pressure cannot be adjusted at 20 the user's will during coffee brewing.

Moreover, the temperature is usually controlled by a heat exchanger, an electromechanical thermostat or an electronic PID temperature controller. At best, these systems provide consistent temperature stability but cannot implement repeatable and customizable temperature profiles.

Disclosure of the Invention

This invention has for an aim to overcome the above mentioned shortcomings by providing a method and a machine for preparing an espresso coffee where the brewing parameters, in particular water pressure, can be controlled and adjusted by the user. 30 This aim is achieved with a method and a machine according to the accompanying claims.

Experts in the art will better appreciate the technical advantages of the invention from the following description with reference to the accompanying drawings, which illustrate a preferred non-limiting embodiment of it.

Brief Description of the Drawings

5 In the drawings:

- Figure 1 is a partial front view of an espresso coffee machine according to the invention;
- Figure 2 is a schematic working diagram of one of the operating units of the machine;
- Figure 3 shows a schematic representation of the components of a preferred 10 embodiment of the operating unit of Figure 2;
- Figure 4 shows three different pressure profiles obtainable with a machine according to the invention.

Preferred Embodiment of the Invention

With reference to Figure 1, an espresso coffee machine consists of one or more 15 operating units 10, each of which comprises a pump and a boiler (both not shown) connected by related conduits to a group 26 for aroma extraction and dispensing of the espresso coffee brew.

According to the invention, as better explained below, each unit 10 is also provided with a user interface (UI), comprising a display 11 and one or more command buttons 12, 20 and a manual actuator 16 of the pump. For ergonomic reason the manual actuator 16 is preferably located on the brewing group 26.

As illustrated in Figure 2 each unit 10 is equipped with a system for controlling and adjusting the espresso coffee brewing parameters.

The system comprises a control processing unit (CPU), f.i. a microprocessor-based 25 printed circuit board assembly, connected to a pressure control module 22, to a temperature control module 24, in one exemplary embodiment, and to a user interface (UI).

Through the user interface, the user can adjust the extraction pressure – and in case the 30 temperature – in real time. This is an evident advantage because it allows the user to optimize the brewing parameters according to each different coffee blend used.

Figure 3 shows a preferred embodiment of a unit 10 comprising a boiler 14 and a group 26 for aroma extraction *per se* known. Advantageously the unit 10 also comprises:

- a variable speed DC motor pump 13,
- a rheostat 15 manually operated by means of the lever (actuator) 16 mounted on the 5 brewing group 26;
- a pressure transducer 17 for measuring the supply pressure of the water.

The control unit (CPU) comprises a memory and a USB port for connection to an external memory device.

In a first operating mode, the pressure is manually adjusted acting with the lever 16 on 10 the rheostat 15 which changes, through the control processing unit, the speed of the pump 13.

In this operating mode the user can change the pressure as he likes also during brewing of the espresso.

In a second operating mode, different pressure profiles are stored in the control 15 processing unit and called up by the user. A desired pressure profile is selected by the user through the command button 12. The pump 13 is then activated acting on the rheostat 15 through the lever 16. The CPU drives the output of the associated control module – i.e. adjusts the speed of the pump 13 – in such a way as to reproduce the programmed pressure curve.

20 The different profiles of pressure can be stored in the memory of the CPU by recording the profiles obtained in the manually operated mode. Alternatively, predefined profiles can be downloaded from an external memory device through the USB port.

It is also possible to transfer a recorded profile from the CPU to a PC, vary its shape and reload the new profile into the machine.

25 Three different pressure profiles obtainable according to the invention are shown in Figure 3.

In a further preferred embodiment of the invention, the user can also control the extraction temperature in real time. The temperature profile can therefore be optimized for a particular coffee variety and easily selected through the user interface. In this case 30 too, the CPU can be used to store different temperature profiles to be sent to the

associated control module.

The embodiment described above is provided purely by way of an example and it will be understood that other equivalent embodiments are imaginable without departing from the scope of protection of the invention.

CLAIMS

1. An improved espresso coffee machine comprising one or more operating units (10) each of which comprises a boiler, a pump, a heating unit, a group (26) for aroma extraction and dispensing of the espresso coffee brew, including related conduits, 5 characterized in that each unit (10) is equipped with a system for controlling and adjusting the espresso coffee brewing parameters.
2. The machine according to claim 1, characterized in that it comprises means for modulating the espresso coffee brew extraction pressure.
3. The machine according to claim 1 or 2, characterized in that it comprises a variable 10 speed DC motor pump (13) and manual actuating means (15,16) for adjusting water outlet pressure during coffee brewing.
4. The machine according to any of the foregoing claims, characterized in that it comprises means for modulating the espresso coffee brew extraction temperature.
5. The machine according to any of the foregoing claims, characterized in that it 15 comprises a central processing unit (CPU) connected to a pressure control module (22), to an eventual temperature control module (24) and to a user interface (UI), the central processing unit (CPU) having a port (I/O) for connection to an external memory device.
6. The machine according to claim 5, characterized in that different pressure profiles are stored in the central processing unit and can be called up by the user and reproduced by 20 the pressure control module.
7. The machine according to claim 5 or 6, characterized in that different temperature profiles are stored in the central processing unit and can be called up by the user and reproduced by the temperature control module.
8. A method for preparing espresso coffee in a machine comprising at least an operating 25 unit (10) where a boiler and a pump feed with hot water under pressure a group (26) for aroma extraction and dispensing of the espresso coffee brew, characterized in that water pressure is varied during coffee brewing.
9. The method according to claim 8, characterized in that the variation of water pressure is obtained manually varying the speed of the pump.

10. The method according to claim 9, characterized by the fact of storing into a memory unit the different pressure profiles obtained by varying the water pressure during several coffee supplies .
11. The method according to claim 8, characterized in that the variation of water pressure is obtained by varying the pump speed in function of predetermined pressure profiles stored in a memory unit.
5

1/2

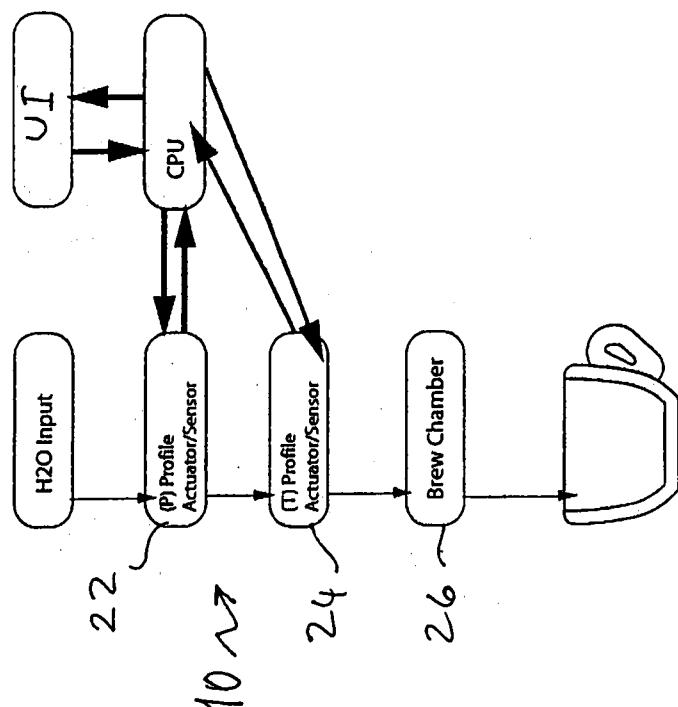


Fig. 2

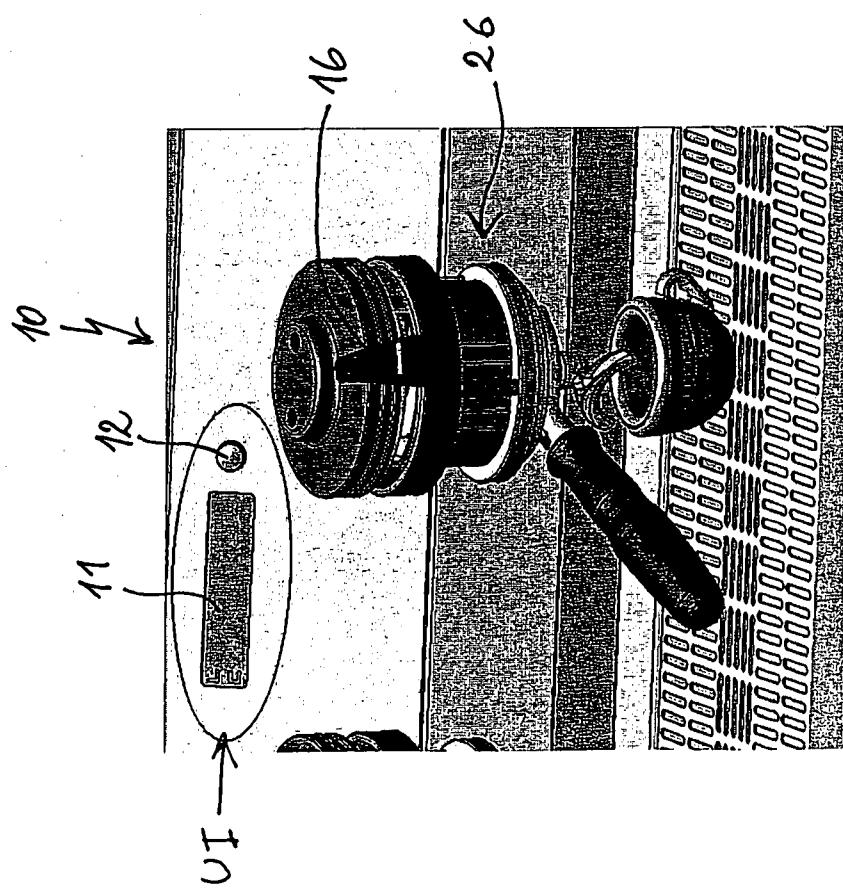


Fig. 1

2/2

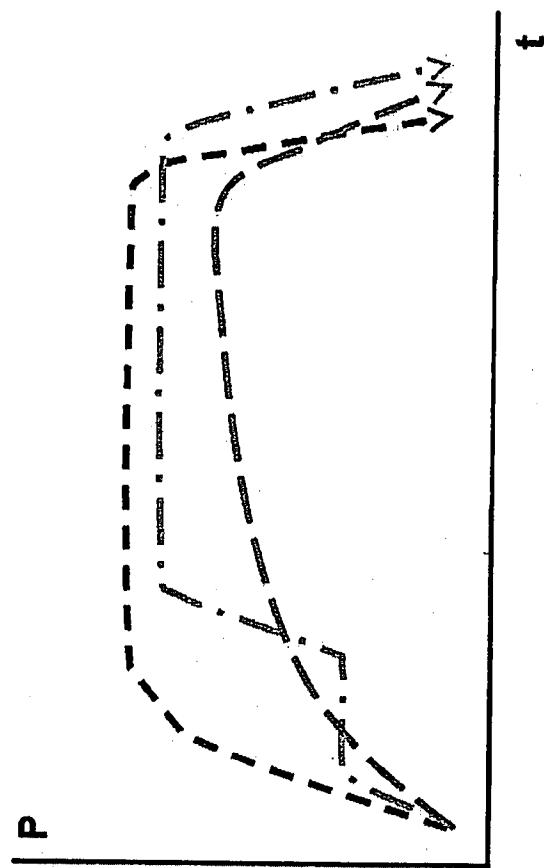


Fig. 4

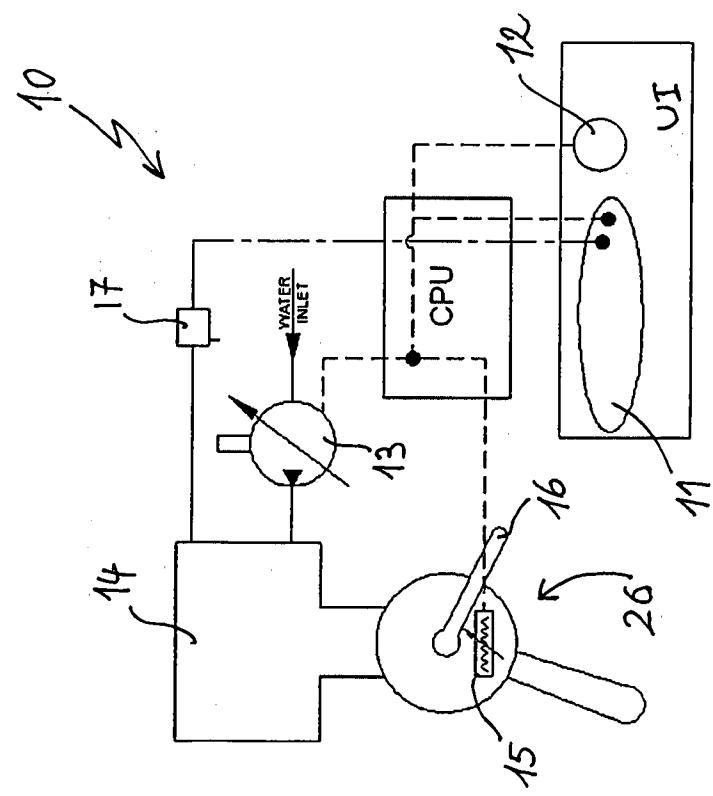


Fig. 3