Office de la Propriete Canadian CA 2419904 A1 2004/08/26

Intellectuell Intellectual P
du Canada Office P en 2 419 904
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2003/02/26 (51) Cl.Int.//Int.Cl.” GO6F 9/44 GO6F 1/7/00

(41) Mise a la disp. pub./Open to Public Insp.: 2004/08/26 (71) Demandeur/Applicant:
IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
SIROIS, ERIC A., CA;
CHEUNG, KIT MAN, CA;
KOHLMANN, PETER W., CA;
LIPFORD, GORDON D., CA;
MEZOFENYI, MARK, CA;
TASSI|, BELAI A., CA;

XU, THERESA, CA

(74) Agent: ROSEN, ARNOLD

(54) Titre : SERIALISATION ET DESERIALISATION D'OBJETS PROGRAMMES INDEPENDANTES DE LA VERSION
(54) Title: VERSION-INSENSITIVE SERIALIZATION AND DESERIALIZATION OF PROGRAM OBJECTS

102

L

Receive name of ——100
program object

. I 104
Create empty ﬂ/
persistent object

L | 106
Write program /
object D

S

108
| Read field name l/
—_— and
116 Move o next corresponding
field within data from
program object | program object

A

o Write field name 112
Default data? and data to

persistent abject

Yesx

114

End of
program
object?

Yos

No

(57) Abrége/Abstract:
A method for serializing and deserializing program objects that Is versioning sensitive. A program object Is serialized Into a
persistent object by saving only those data fields that contain non-default data. The persistent object is deserialized to be used

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2419904 A1 2004/08/26

(21) 2 419 904
(13) A1

(57) Abréege(suite)/Abstract(continued):

by a deserializing application by first creating a blank program object of the same version as the deserializing application and
then populating It with the non-default data stored in the persistent object. The version of the deserializing application need not
he the same as the version of the serializing application.

10

CA 02419904 2003-02-26

VERSION-INSENSITIVE SERIALIZATION AND DESERIALIZATION
OF PROGRAM OBJECTS

ABSTRACT

A method for serializing and deserializing program objects that is versioning sensitive. A
program object 1s serialized into a persistent object by saving only those data fields that
contain non-default data. The persistent object i1s deserialized to be used by a
deserializing application by first creating a blank program object ot the same version as
the deserializing application and then populating it with the non-defauit data stored in the

persistent object. The version of the deserializing application need not be the same as the

version of the serializing application.

CA9-2002-0089

10

15

20

25

30

CA 02419904 2003-02-26

VERSION-INSENSITIVE SERIALIZATION AND DESERIALIZATION
OF PROGRAM OBJECTS

FIELD OF THE INVENTION

This invention relates to the storage and retrieval of program objects used by
computer software products; and more specifically, the present invention relates to

version-insensitive serialization and deserialization of program objects.

BACKGROUND OF THE INVENTION

A common method of storing data contained 1n a program object for later use by a
computer software application is to serialize the data. Serialization involves reading the
data contained in the program object and writing 1t out to a persistent object, which is
often a flat file, stored on a storage media.

The creation of a persistent object allows subsequent sessions of an application to
retrieve the persistent object, deserialize 1t, and thereby reconstitute the program object.

A problem that often arises is that the deserializing application may be a different
version of the application than the serializing application. As applications change and
evolve over different versions, the structure and layout of particular classes of program
objects may be modified. In some cases, additional data fields, structures or objects may
be added to or dropped from class definitions as an application evolves. Accordingly,
one version of an application may create a program object (i.e. an instance of a particular
class) that contains different data fields than a similar object from the same class created
by a different version of the application.

This problem manifests itself in particular in networked applications wherein
multiple versions of a server application and client applications may be in use across the
network and the various versions of the applications may be attempting to access
persistent objects created by each other.

One solution has been to write the version number of the application into the
persistent object. This solution envisages that the deserializing application will read the
version number in the persistent object and will create a reconstituted program object

having a structure and semantics particular to that version. This solution requires that the

CA9-2002-0089 1

S

10

15

20

25

30

CA 02419904 2003-02-26

deserializing application maintains multiple code streams to deal with the various past
versions, and requires that the application adapt to the version of the serialized program
object, i.e. the application i1s version adaptive. The ability to accommodate serialized
program objects from earlier versions is often termed backward compatibility.
Conversely, the ability to accommodate sernialized program objects from later versions 1s
termed forward compatibility. The version adaptive solution has difficulty

accommodating forward compatibility.

SUMMARY OF THE INVENTION

The present invention provides a version-insensitive system and method to
address the versioning difficulties outlined above.

In one aspect, the present invention provides a method for reconstituting a
program object from a persistent object using a computer system, the persistent object
being stored on a storage media, the persistent object including a program object
identification and field information, the field information including at least one field
name and corresponding field data for each field name. The method includes the steps of
parsing the persistent object to obtain the program object 1dentification and to obtain the
field names and their corresponding field data, creating a blank program object based
upon the program object identification, the blank program object having a set ot fields,
each blank object field having a blank object field name and a blank object field data
location, wherein the blank object field data locations are initialized with detfault values,
and for each obtained field name from the persistent object, searching the blank program
object for a matching blank object field name, and if the matching blank object field
name is found, copying the corresponding field data for the obtained field name into the
blank object field location corresponding to the matching blank object tield name.

In another aspect, the present invention provides a method of serializing an 1initial
program object using a computer system, the initial program object including initial field
names and corresponding initial field data, the initial program object further including an
object identifier. The method includes the steps of creating a persistent object, writing a
program object identitication to the persistent object based upon the object 1dentifier, and,

for each initial field name, determining whether the corresponding imtial field data

CA9-2002-0089 2

10

15

20

25

30

CA 02419904 2003-02-26

includes non-default data, and, it the corresponding initial field data is non-default data,
writing the initial field name and the corresponding initial field data to the persistent
object.

In another aspect, the present invention provides a computer program product
having a computer readable medium tangibly embodying computer executable
instructions for directing a data processing system to reconstitute a program object from a
persistent object using a computer system, the persistent object being stored on a storage
media, the persistent object including a program object identification and held
information, the field information including at least one field name and corresponding
field data tor each field name. The computer executable instructions include computer
executable instructions for directing the data processing system to parse the persistent
object to obtain the program object identification and to obtain the field names and their
corresponding field data, computer executable instructions for directing the data
processing system. to create a blank program object based upon the program object
identification, the blank program object having a set of fields, each blank object field
having a blank object field name and a blank object field data location, wherein the blank
object field data locations are imitialized with default values, and computer executable
instructions for directing the data processing system to search the blank program object
for a matching blank object field name for each obtained field name form the persistent
object, and if the matching blank object field name is found, copy the corresponding tield
data for the obtained field name into the blank object field location corresponding to the
matching blank object field name.

In another aspect, the present invention provides a computer program product
having a computer readable medium tangibly embodying computer executable
instructions for directing a data processing system to serialize an initial program object
using a computer system, the initial program object including imitial field names and
corresponding 1nitial field data, the initial program object further including an object
identifier. The computer executable instructions include computer executable
instructions for directing the data processing system to create a persistent object,
computer executable instructions for directing the data processing system to write a

program object 1dentification to the persistent object based upon the object identifier, and

CA9-2002-0089 3

h

10

15

20

25

30

CA 02419904 2003-02-26

computer executable instructions for directing the data processing system to determine
whether the corresponding initial field data includes non-default data for each initial field
name, and, if the corresponding initial field data is non-default data, write the initial field
name and the corresponding nitial field data to the persistent object.

In yet another aspect, the present invention provides a data processing system for
reconstituting a program object from a persistent object using a computer system, the
persistent object being stored on a storage media, the persistent object including a
program object identification and field information, the field information including at
least one field name and corresponding field data for each field name. The data
processing system includes means for parsing the persistent object to obtain the program
object identification and to obtain the field names and their corresponding field data,
means for creating a blank program object based upon the program object identification,
the blank program object having a set of fields, each blank object field having a blank
object field name and a blank object field data location, wherein the blank object field
data locations are initialized with default values, and means for searching the blank
program object for a matching blank object tield name for each obtained field name from
the persistent object, and if the matching blank object field name 1s found, copying the
corresponding field data for the obtained field name into the blank object field location
corresponding to the matching blank object field name.

In yet another aspect, the present invention provides a data processing system for
serializing an initial program object using a computer system, the initial program object
including initial field names and corresponding initial field data, the initial program
object further including an object identifier. The data processing system includes means
for creating a persistent object, means for writing a program object identification to the
persistent object based upon the object identifier, and means for determining whether the
corresponding 1nitial field data includes non-default data for each initial field name, and,
if the corresponding initial field data is non-detault data, writing the 1nitial field name and
the corresponding initial field data to the persistent object.

In a further aspect, the present invention provides an article including a computer
readable signal bearing medium, and including means in the medium for directing a data

processing system to reconstitute a program object from a persistent object using a

CA9-2002-0089 4

10

15

20

235

30

CA 02419904 2003-02-26

computer system, the persistent object being stored on a storage media, the persistent
object 1ncluding a program object identification and field information, the field
information including at least one field name and corresponding field data for each field
name, the article including: means in the medium for parsing the persistent object to
obtain the program object identification and to obtain the field names and their
corresponding field data, means in the medium for creating a blank program object based
upon the program object 1dentification, the blank program object having a set of fields,
cach blank object field having a blank object field name and a blank object field data
location, wherein the blank object field data locations are initialized with default values,
and means 1n the medium for searching the blank program object for a matching blank
object field name for each obtained field name from the persistent object, and if the
matching blank object field name is found, copying the corresponding field data for the
obtained field name into the blank object field location corresponding to the matching
blank object field name.

In a further aspect, the present invention provides an article including a computer
readable signal bearing medium, and including means in the medium for directing a data
processing system to serialize an initial program object using a computer system, the
initial program object including initial field names and corresponding initial field data,
the mnitial program object further including an object identifier, the article including:
means in the medium for creating a persistent object, means in the medium for writing a
program object identification to the persistent object based upon the object identifier, and
means 1n the medium for determining whether the corresponding initial field data
includes non default data for each initial field name, and, if the corresponding initial field
data 1s non default data, writing the initial field name and the corresponding initial field
data to the persistent object.

Other aspects and features of the present invention will be apparent to those of
ordinary skill in the art from a review of the following detailed description when

considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

CA9-2002-0089 5

10

15

20

25

30

CA 02419904 2003-02-26

Reference will now be made, by way of example, to the accompanying drawings
which show an embodiment of the present invention, and 1n which:

Figure 1 shows a computer system upon which the present invention may be
implemented;

Figure 2 shows an embodiment of a serialization method for serializing a program
object, according to the present invention;

Figure 3 shows an embodiment of a deserialization method for reconstituting a
program object, according to the present invention;

Figure 4 shows, in diagrammatic form, a serializer module and a deserializer
module, according to the present invention, in a first exampile;

Figure 5 shows, in diagrammatic form, the serializer module and the deserializer
module, according to the present invention, 1in a second example;

Figure 6 shows, in diagrammatic form, the serializer module and the desenalizer
module, according to the present invention, in a third example; and

Figure 7 shows, in diagrammatic form, the serializer module and the deserializer
module, according to the present invention, in a fourth example.

Similar references are used in different figures to denote similar components or

features.

DESCRIPTION OF SPECIFIC EMBODIMENTS

The following detailed description of specific embodiments of the present
invention does not limit the implementation of the invention to any particular computer
programming language. The present invention may be implemented in any computer
programming language provided that the operating system provides the facilities to
support the requirements of the present invention. In one embodiment, the present
invention i1s implemented, at least partly, in the Java computer programming language.
Any limitations presented herein as a result of a particular type of operating system or
computer programming language are not intended as limitations of the present invention.

Reference is first made to Figure 1, which shows a computer system 10 upon
which the present invention may be implemented. The computer system 10 includes a

server 12 and three clients 14, 16, and 18 which are interconnected by a network 20. In

CA9-2002-00%9 6

10

15

20

23

30

CA 02419904 2003-02-26

one embodiment, the network 20 may be the Internet. The system 10 further includes a
storage media 22 connected to the network 20. The storage media 22 may be accessed by
the server 12 and the clients 14, 16, and 18. Any of the server 12, the clients 14, 16 and
18, and the storage media 22 may be located remotely from one another or may share a
location. The configuration of the computer system 10 is not intended as a limitation of
the present invention, as will be understood by those of ordinary skill in the art from a
review of the following detailed description.

The server 12 and the clients 14, 16, and 18, each include an application. There
are three versions of the application operating within the system 10: a version N 26, a
version N1 24, and a version N+1 28. The version N1 24 is a version of the application
that predates the version N 26, and the version N+1 28 1s a version of the application that
postdates the version N 26.

The storage media 22 contains a persistent object 30 that has been created by one
of the versions 24, 26, or 28 of the application during an active session and stored in
memory on the storage media 22. During a session, the application may have data stored
in a programming object which the application would like to have available for use in
subsequent sessions, i.e. it is desired that the programming object persist across sessions.
Accordingly, the application serializes the data in the programming object, writing 1t to
the persistent object 30, which is stored on the storage media 22. In a subsequent session,
the persistent object 30 may be deserialized by the application to reconstitute the
programming object from which the data was originally obtained.

[f the persistent object 30 was serialized by the version N 26 of the application,
then 1t may be deserialized by the version N 26 of the application 26 without difficulty.
However, in some cases a different version of the application, such as the version N1 24
or the version N+1 28, may attempt to deserialize a persistent object 30 created by the
version N 26 of the application. In this situation, the persistent object 30 may be missing
certain data elements that the deserializing application is expecting to find, or it may
contain certain data elements that the deserializing application does not recognize and
cannot handle. These problems can arise when different versions of the application use

different structures or semantics for the programming object.

CA9-2002-0089 7

10

15

20

25

30

CA 02419904 2003-02-26

The present invention provides a system and method of serializing and
deserializing programming objects so as to minimize the versioning problems that arise
without the requirement to maintain multiple code streams in each version of the
application to handle program objects originating from a different version of the
application.

Reference 1s now made to Figure 2, which shows a serialization method 100 of
creating the persistent object 30 (Fig. 1) according to the present invention. The
serialization method 100 may be performed by an active application with which there 1s
associated a program object. The program object contains data that the active application
wishes to preserve by creating and storing the persistent object. In one embodiment, the
serialization method 100 is implemented by a serializer module.

The serialization method 100 begins in step 102 when the serializer module
receives the program object.

At step 104, the senializer module creates an empty persistent object to which the
data in the program object can be serialized. In one embodiment, this includes opening a
file or allocating memory. In one embodiment, the persistent object 1s an XML
(eXtensible Markup Language) file.

The serializer module then writes program object 1dentification data to the empty
persistent object in step 106. The program object identification data includes identifying
data from which the application could later determine the type of program object that was
serialized. For example, the program object identification data may include the name of
the program object. In one embodiment, the name of the program object includes a class
name, the class name referring to a class that defines the structure of the program object.
The program object 1identification data may include a class name or packaging
information. In one embodiment, the serializer module refers to a lookup table to obtain
an identification code corresponding to the class and packaging information for the
program object and 1t stores the identification code in the persistent object.

In step 108, the serializer module begins reading through the program object to
locate initialized data fields. For each data field, the serializer module reads the field
name and the data stored in the field. In step 110, for each data field the senalizer

module evaluates whether the data stored in the field is default data. Each type of data

CA9-2002-0089 8

10

15

20

25

30

CA 02419904 2003-02-26

field has a default setting. For example, the default entry for an integer field may be
zero, the default entry for a Boolean field may be FALSE; and the default entry for a

float field may be 0.0. The default settings for particular fields are determined by the

programming language used in the embodiment of the invention. For instance, with the
Java programming language there are established default values for certain data types,
such as the default values given for the above examples. Other programming languages
may have other default values.

If the data stored in the field i1s not default data, then the serializer module
continues to step 112, where the serializer module writes the field name and the data
stored in the field to the persistent object. If the data is default data, then the serializer
module continues without writing the data to the persistent object. In either case, at step
114 the serializer module determines whether it has reached the end of the program
object, i.e. whether there are no further data fields to read. If there is further data, then at
step 116 the serializer module moves to the next data field in the program object and
loops back to step 110 to read the next data field.

Once the serializer module has reached the end of the data fields in the program
object, it exits the serialization method 100 from step 114. Just before exiting, the
serializer module may perform any clean up steps necessary to finish storing the
persistent object 30 upon the storage media 22 (Fig. 1), such as closing the file, or other
tasks.

Accordingly, the serializer module creates and stores the persistent object 30 by
reading through the program object and writing out field names and data only for
initialized data fields containing non-default data.

The senalization method 100 permits the serialization of nested data, such as
object references. With an object reference in particular, the serializer module saves the
object 1dentification, just as in step 106 with respect to the program object, and then saves
the data fields of the referenced object in the same manner as for the program object. The
data types that may be serialized include integers, Booleans, floats, object references,

arrays, character strings, and many other data types, as will be understood by those of

ordinary skill in the art.

CA9-2002-0089 9

10

15

20

30

CA 02419904 2003-02-26

Those of ordinary skill in the art will also recognize that the serialization method
100 may be implemented by first reading in all the data fields at step 108 and then
evaluating each field in step 110, or by reading one data field at a time 1n step 108 and
evaluating it in step 110 before looping back to step 108 to read the next data field. Other
implementations may also be possible without departing from the principal characteristics
of the serialization method 100.

Reference is now made to Figure 3, which shows a desenalization method 200 for
reconstituting a program object from the persistent object 30 (Fig. 1). The deserialization
method 200 may be performed by an active application which, in one embodiment,
includes a deserializer module. The deserializer module carries out the steps of the
deserialization method 200 to create a reconstituted program object from the persistent
object 30 (Fig.1).

The deserialization method 200 begins in step 202 when the deserializer module
is called. The deserializer module receives information sufficient to identify and retrieve
the persistent object 30 from the storage media 22. Based upon this information, the
deserializer module retrieves the persistent object 30 1n step 204.0nce it has the persistent
object 30, the deserializer module parses the persistent object 30 in step 206. The
persistent object 30 1s parsed so as to extract the program object identification data and
the data field information. This step may be performed in a single pass through the
persistent object 30, thereby creating a parsed persistent object, or it may be done
stepwise as the deserialization method 200 progresses. For instance, the persistent object
30 may only be parsed 1n step 206 as far as necessary to extract the program object
identification data in order to perform the next step.

Once the deserializer module has extracted the program object identification data
from the persistent object 30, in step 210 it attempts to recognize the program object.
The deserializer module i1s associated with a version of an application that includes a
variety of classes. The deserializer module attempts to match the program
object identification data from the persistent object 30, which may include a class name,
with the classes that the deserializing application can recognize. In one embodiment, the

program object identification data includes an identification code and the deserializer

CA9-2002-0089 [0

10

15

20

235

30

CA 02419904 2003-02-26

module refers to a lookup table that relates the identification code to a particular class of
program object.

If the deserializer module is unable to locate a known class corresponding to the
program object identification data, then, in step 212, the deserializer module generates an
error. The error may include a message to the deserializing application indicating that the
persistent object 30 is incompatible with the particular version of the application.

It the deserializer module is able to locate a known class corresponding to the
program object identification data, then, in steps 214 and 216, the deserializer module
creates a blank program object according to that class and ensures that all the data fields
in the blank program object are set to their default values. In other words, every data
field in the blank program object 1s nitialized to a default setting. Because the persistent
object 30 does not contain any data from the original program object if the data field had
contained a default value, the deserializer module first assumes that all the data fields are
set to their default values until 1t discovers that the persistent object 30 indicates
otherwise.

The blank program object created by the deserializer module in step 214 is a
program object defined by a class that may be of a different version than the class that
defined the original program object used to create the persistent object 30. It may be of
an earlier version or a later version. The deserializer module proceeds on the assumption
that 1t 1s creating a program object of the same version as the deserializing application. It
does not perform any versionspecific transformations to accommodate changes in the
class definition across versions. Accordingly, the version of the reconstituted program
object will always be the same as the version of the deserializing application.

After creation of the blank program object with data fields initialized to default
settings, in step 218 the deserializer begins reading data information from the persistent
object 30. In step 218, it reads the first field name found in the persistent object 30.
Then 1n step 220, the deserializer module attempts to find a matching field name in the
blank program object. If the serializing application and the deserializing application are
of the same version, then the deserializer module will always be able to match the field
name, since the program object will be identically defined by both applications. If,

however, the versions are different, the deserializing application may have a class

CA9-2002-0089 11

10

15

20

25

30

CA 02419904 2003-02-26

definition that 1s missing some of the data fields or that contains additional data fields.
Accordingly, the persistent object 30 may contain a field name not present in the blank
program object.

In step 222, the deserializer module evaluates whether a match is found, and, if
not, then 1t proceeds to step 224 where it generates an error. The error is logged in an
error file or structure, the deserializer module advances to the next field name, and the
deserialization method 200 continues at step 218.

In one embodiment, the error generation in step 224 may include sending a
message to the application that the persistent object 30 1s of an incompatible version and
cannot be deserialized. The error message may indicate that the persistent object 30
contains certain data which would be lost 1f deseralized, and the deserializing application
may have the power to override this error, causing the deserialization method 200 to
continue despite the loss of this data.

It the desertalizer module does locate a matching field name in the blank program
object, then from step 222 it proceeds to step 226, where it retrieves the field data in the
persistent object 30 corresponding to the field name. It writes this field data into the data
field location in the blank program object corresponding to the matched field name. In
this manner, the deserializer module populates the fields of the blank programming object
with the data stored in the persistent object 30 based upon matching the field names.

Following step 226, the deserializer module determines whether it has reached the
end of the persistent object 30, i.e. whether there are no further data fields stored in the
persistent object 30. If so, then the deserializer module has completed its deserialization
of the persistent object 30 and has created a reconstituted program object for use by the
application. If not, then the deserializer module steps through the persistent object 30 to
the next field name in step 230 and loops back to step 218 to repeat the process of reading
the field name and attempting to locate a match in the blank program object.

[f the deserializer module has completed its task, then upon exiting it may notify
the deserializing application of any errors encountered and logged in the error file or
structure in step 224. The deserializing application may determine whether or not the
reconstituted program object is recoverable in spite of the errors. In one embodiment, the

deserializing application may seek the user s input regarding whether or not to continue

CA9-2002-0089 12

10

15

20

25

30

CA 02419904 2003-02-26

in spite of the errors encountered. Proceeding in spite of the errors implies that any data
that was not deserialized due to the absence of any matching field names will be
discarded and lost. |

It will be appreciated by those of ordinary skill in the art that some of the steps of
the deserialization method 200 described above may be varied or reorganized, while
achieving the same function; namely, the creation of a blank program object having fields
which are initialized to default settings and then populated with data from the persistent
object, thereby creating a reconstituted program object of the same version as the
deserializing application.

Reference is now made to Figure 4, which shows, in diagrammatic form, a
serializer module 300 and a deserializer module 302, according to the present invention,
in a first example. The serializer module 300 is associated with a serializing application
304. The deserializer module 302 is associated with a deserializing application 305.
Both the serializing and deserializing application 304, 305 are version X of the
application.

During a first session, the serializing application 304 develops an initial program
object 306. The serializing application 304 includes a class definition for the initial
program object 306 that defines 1t as containing two fields of data, a first field 308 and a
second field 310. The first field 308 may, for example, be a Boolean field named . The
second field 310 may, for example, be an integer field named . The initial program
object 306 also includes a program object identification 307 by which the class of the
object may be identified. For instance, the name of the class may be Backup , and the
initial program object 306 may be a particular instance of the Backup class, and its
program object identification 307 may be Backup .

In the example depicted in Figure 4, the first field 308 in the initial program
object 306 is set to FALSE, and the second field 310 is set to 0, i.e. both fields 308, 310
contain detfault data. Accordingly, the first and second fields 308, 310 are not to be
serialized by the serializer module 300. In another examplé, the 1nitial program object
306 may contain data fields such as vectors, arrays or structures which may not be

initialized and, thus, contain no data. Uninitialized data fields will also not be serialized.

CA9-2002-0089 13

10

15

20

235

30

CA 02419904 2003-02-26

In accordance with the serialization method 100 (Fig. 2), the serializer module
300 reads the initial program object 306. In particular, 1t reads the program object
identification 307 and writes a program object ID 312 to the persistent object 30. The
program object ID 312 may be identical to the program object identification 307. In one
embodiment, the program object ID 312 is a shorthand numeric code derived from the
program object identification 307 based upon a lookup table. In this example, the
serializer module 300 does not write any further data to the persistent object 30 because
the first and second fields 308, 310 of the initial program object 306 do not contain any
non-default data.

At some time later, the deserializer module 302 retrieves the persistent object 30
created by the serializer module 300 and parses the persistent object 30 1n accordance
with the deserialization method 200 (Fig. 3) to obtain the program object ID 312. Based
upon the program object ID 312, the deserializer module 302 determines whether it
recognizes this type of object. If so, then the deserializer module 302 constructs a blank
program object 314 and initializes its data fields to the default settings. The deserializer
module 302 may include a list of classes of program objects defined and recognized by
the deserializing application 305 with which it is associated, in which case it can consuit
the list to determine if it reco gnizes the program object ID 312. If the program object ID
312 is not the same as the class name, then the deserializer module 302 may consult a
lookup table to translate the program object ID 312 to a class name, or the list of
recognized classes may include the program object IDs 312.

In this example, because the deserializing application 305 1s of the same version
X as the serializing application 304, it contains all the same class definitions and the
program object ID 312 is recognized by the deserializer module 302. Accordingly, the
deserializer module 302 creates the blank program object 314 based upon the version X
class definition corresponding to the program object ID 312. The blank program object
314 has the same first and second data fields 308, 310 as the initial program object 306.

The deserializer module 302 then scans through the persistent object 30 to look
for serialized field names. In this example, there are none. The persistent object 30 only
contains the program object ID 312, so the deserializer module 302 does not populate the

data fields of the blank program object 314 with any data. The blank program object 314

CA9-2002-0089 14

10

15

20

25

30

CA 02419904 2003-02-26

becomes a reconstituted program object 318 for use by the deserializing application 305.
The reconstituted program object 318 contains default data for both the first and second
fields 308, 310, just as did the initial program object 306.

Reference 1s now made to Figure 5, which shows, in diagrammatic form, -the
serializer module 300 and the deserializer module 302 according to the present invention,
in a second example. Once again, the serializing and deserializing applications 304, 305
are both of version X.

In this example, the mitial program object 306 contains a non-default value, i.e.
the integer 6, in the second field 310. Accordingly, the serializer module 300 writes the
second field 310 field name and the second tfield 310 data value to the persistent object
30.

The deserializer module 302 creates the blank program object 314, as before,
based upon the program object ID 312. It then reads the field name 1in the persistent
object 30 and attempts to find a matching field name in the blank program object 314.
Once 1t determines that the blank program object 314 has a matching field name , the
deserializer module 302 sets the corresponding data field location in the blank program
object 314 using the data value stored in the persistent object 30.

As a result, the deserializer module 302 creates the reconstituted program object
318 having a default value in the first field 308 and the non-default value 1n the second
field 310. The reconstituted program object 318 matches the initial program object 306.

Reference 1s next made to Figure 6, which shows, in diagrammatic form, the
serializer module 300 and the deserializer module 302 according to the present invention,
in a third example. In this example, the serializing application 304 is of version X and
the deserializing application 305 is of version Y. The version Y may be an earlier
version than the version X or it may be a later version.

A distinction between the version Y and the version X 1s that the version Y class
definition corresponding to the initial program object 306 includes a third field 320,
whereas the version X class definition only includes the first and second fields 308, 310.

Despite this change in the content of the class definition, the name of the class in both

version X and version Y is the same.

CA9-2002-0089 15

10

15

20

25

30

CA 02419904 2003-02-26

As in the second exampie, the initial program object 306 contains a non-default
value in the second field 310, which becomes serialized in the persistent object 30 by the
serializer module 300.

When the deserializer module 302 retrieves the persistent object 30 and reads the
program object ID 312 stored therein, it attempts to recognize the identity of the initial
program object 306 in the list of classes known to the deserializing application 303, i.e.
version Y. The deserializing application 305 recognizes a class of the same name, even
though the class has a slightly different definition that includes the third field 320.
Accordingly, when the deserializer module 302 creates the blank program object 314
based upon the version Y class definition, the blank program object 314 includes all three
fields 308, 310, and 320. These three fields 308, 310, and 320 are set to their default
values.

The deserializer module 302 then steps through the persistent object 30 looking
for field names. When it discovers the field name , it matches it with the field name 1n
the blank program object 314 and sets the corresponding data location using the non-
default data serialized into the persistent object 30.

The result of the deserialization is the creation of the reconstituted program object
318 having all three fields 308, 310, and 320, rendering the reconstituted program object
318 a version Y object, rather than a reconstituted version X object. Advantageously,
this permits the deserializing application 305 to assume that the reconstituted program
object 318 is an object of the same version, which allows the deserializing application
305 to forego maintaining multiple code streams to deal with objects of different
Versions.

It the version Y is an earlier version than version X, then the change in the class
definition in the example represents the removal of the third data field 320 during
evolution of the application. If the version Y is a later version than version X, then the
change represents the addition of the third data field 320 during evolution of the
application. In either case, the deserializer module 302 is able to create a version Y
object for use by the version Y deserializing application 305 from a serialized version X
initial program object 306. It does this by making the assumption that any data fields that

are not serialized in the persistent object 30 were not serialized because they contained

CA9-2002-0089 16

CA 02419904 2003-02-26

default data and not because they did not exist. The version of the initial program object
306 1s 1rrelevant to the deserializer module 302.

Reference is next made to Figure 7, which shows, in diagrammatic form, the

serializer module 300 and the deserializer module 302 according to the present invention,
5 in a fourth example. In this fourth example, the serializing application 304 is of version
Y, and the deserializing application 305 is of version X.

[n this example, all three fields 308, 310, and 320 of the initial program object
306 contain non-default data. Accordingly, when the serializer module 300 creates the
persistent object 30, it includes all three field names, , , and , and the non-default data

10 corresponding to each.

The deserializer module 302 retrieves the persistent object 30 and creates the
blank program object 314 corresponding to the program object ID 312. In this case, the
blank program object 314 is based upon the version X definition of the class
corresponding to the program object ID 312. The version X definition only includes the

15 first and second fields 308, 310.

The deserializer module 302 successfully allocates the data stored in the persistent
object 30 corresponding to the first and sccond field names and _ to the matching field
names in the blank program object 314. However, the deserializer module 302 1s unable
to locate a field name in the blank program object 314 corresponding to the field name _

20 1n the persistent object 30. As a result the deserializer module 302 generates an error
322. In one embodiment, the descrializing application 305 1s notified if such an error
occurs and the deserializing application 305 is given the option of overriding the error
and creating the reconstituted program object 318 despite the fact the data associated with
the field name will be lost.

25 The above problem arises when the initial object being serialized has data fields
that are not present in the object definition used by the deserializer module 302, and those
initial data fields contain non-default data. If the initial program object 306 featured
additional data fields because of an additional level of functionality in the serializing
application 304, but those data fields were not initialized or they contained default data

30 because the additional functionality was not being used, then the persistent object 30

would not contain data relating to those fields and the deserializer module 302 would be

CA9-2002-0089 17

S

10

15

CA 02419904 2003-02-26

able to create a reconstituted program object 318. Accordingly, in many cases, the
deserializer module 302 may be able to deserialize a stored persistent object 30 that was
created by an application having a class definition that includes extra data fields,
provided that the extra data fields only contained default information.

Although the present invention is described above in conjunction with particular
computer architecture, those of ordinary skill in the art will recognize that it may be
implemented upon a single computer or many computers. i{f more than one computer, the
computers may be interconnected by way of a network or multiple networks, including
the Internet, LANs, WANSs, or any other network. The persistent object 30 may be stored
on a local storage media or a remote storage media.

The present invention may be embodied in other specific torms without departing
from the spirit or essential characteristics thereof. Certain adaptations and modifications
of the invention will be obvious to those skilled in the art. Therefore, the above discussed
embodiments are considered to be illustrative and not restrictive, the scope of the
invention being indicated by the appended claims rather than the foregoing description,
and all changes which come within the meaning and range of equivalency of the claims

are therefore intended to be embraced therein.

CA9-2002-0089 18

10

15

20

25

30

CA 02419904 2003-02-26

CLAIMS

The embodiments of the invention in which an exclusive property or privilege is claimed

are defined as follows:

2.

A method for reconstituting a program object from a persistent object using a
computer system, said persistent object being stored on a storage media, said
persistent object including a program object identification and field information,
said field information including at least one field name and corresponding field
data for each field name, the method comprising the steps of:

(a) parsing said persistent object to obtain said program object identification
and to obtain said field names and their corresponding field data;

(b) creating a blank program object based upon said program object
identification, said blank program object having a set of fields, each blank object
field having a blank object field name and a blank object field data location,
wherein said blank object field data locations are initialized with default values;
and

(c) searching said blank program object for a matching blank object field
name for each obtained field name from said persistent object, and 1f said
matching blank object field name 1s found, copying said corresponding field data
for said obtained field name into said blank object field location corresponding to

said matching blank object field name.

The method claimed in claim 1, wherein said step of creating includes searching a

set of known program object IDs to find one of said known program object IDs that

matches the obtained program object identification.

3.

The method claimed in claim 2, further including a step of generating an error if

no known program object ID is located that matches the obtained program object

identification.

CA9-2002-0089 19

10

15

20

25

30

CA 02419904 2003-02-26

4. The method claimed in claim 1, wherein said persistent object includes a
serialization of an 1nitial program object and said program object identification includes a

class name for an initial class defining said initial program object.

5. The method claimed in claim 4, wherein said blank program object is defined by a
different class having said class name, wherein said different class and said initial

class are different versions of the same class.

6. The method claimed in claim 5, wherein said different class 1s an earlier version

of said same class than said 1nitial class.

7. The method claimed in claim 5, wherein said different class is a later version of

said same class than said initial class.

8. The method claimed in claim 1, wherein said corresponding field data includes

only non default values.

9. The method claimed in claim 8, wherein said default values and said non-default

values are defined by a programming language.

10. The method claimed in claim 8, wherein said default values include an integer

value of zero, a Boolean value of false, and a tloat value of zero.

11. The method claimed 1n claim 1, wherein said persistent object includes a file.
12. The method claimed in claim 11, wherein said file includes an XML file.
13. The method claimed in claim 1, further including a step of generating an error if

said matching blank object field name is not found.

CA9-2002-0089 20

10

15

20

25

30

CA 02419904 2003-02-26

14. The method claimed in claim 1, wherein, once all of said corresponding field data
1s copied into said blank program object, said blank program object is said reconstituted

program object, and further including a step of passing said reconstituted program object

to an application.

15. The method claimed in claim 1, further including, prior to said step of parsing, a

step of retrieving the persistent object from said storage media.

16. The method claimed in claim 1, wherein said persistent object 1s created by a
serializing application and said blank program object i1s created by a deserializing
application, wherein said serializing application and said deserializing application are

different versions of the same application.

17. The method claimed in claim 16, wherein said persistent object includes the
serialization of an initial program object, said initial program object is an object defined
by the version of said serializing application, and said blank program object 1s an object

defined by the version of said deserializing application.

18. The method claimed in claim 1, further including, prior to said step of parsing, a

step of serializing an 1nit1al program object to create said persistent object.

19. The method claimed in claim 18, wherein said initial program object includes
initial field names and corresponding initial field data, and said step of serializing
includes the steps of reading said initial field names and said corresponding initial field
data, and, for each initial field name, determining whether said corresponding initial field
data includes non-default data, and, if said corresponding initial field data is non-default

data, writing said initial field name and said corresponding initial field data to said

persistent object.

20. A method of serializing an initial program object using a computer system, said

initial program object including initial field names and corresponding initial field data,

CA9-2002-0089 21

10

15

20

25

CA 02419904 2003-02-26

said initial program object further including an object identifier, wherein said method
comprises the steps of:
(a) creating a persistent object;
(b) writing a program object identification to said persistent object based upon
said object 1dentifier; and
(c) determining whether said corresponding initial field data includes non-
default data for each initial field name, and, if said corresponding initial field
data is non-default data, writing said initial field name and said corresponding

initial field data to said persistent object.

21. The method claimed in claim 20, wherein said object identifier includes a class
name corresponding to a class definition from which said initial program object

was created.

22. The method claimed in claim 20, wherein said persistent object includes a file.

23. The method claimed in claim 22, wherein said file includes an XML file.

24. The method claimed in claim 20, wherein said non-default values are defined by a

programming language.

25. The method claimed in claim 20, further including the step of storing said

persistent object on a storage media.

26. A computer program product having a computer readable medium tangibly
embodying computer executable instructions for directing a data processing system to
reconstitute a program object from a persistent object using a computer system, said
persistent object being stored on a storage media, said persistent object including a
program object 1dentification and field information, said field information including at
least one field name and corresponding field data for each field name, the computer

executable instructions comprising:

CA9-2002-0089 22

10

15

20

30

CA 02419904 2003-02-26

(a) computer executable instructions for directing the data processing system
to parse said persistent object to obtain said program object identification and
to obtain said field names and their corresponding field data;

(b) computer executable instructions for directing the data processing system
to create a blank program object based upon said program object
identification, said blank program object having a set of fields, each blank
object field having a blank object field name and a blank object field data
location, wherein said blank object field data locations are initialized with
default values; and

(c) computer executable instructions for directing the data processing system
to search said blank program object for a matching blank object field name for
each obtained field name form said persistent object, and if said matching
blank object field name is found, copy said corresponding field data for said
obtained field name into said blank object field location corresponding to said

matching blank object field name.

27. The computer program product claimed in claim 26, wherein said computer
executable instructions for directing the data processing system to create include
directing the data processing system to search a set of known program object IDs to find
one of said known program object IDs that matches the obtained program object

1dentification.

28. The computer program product claimed in claim 27, further including computer
executable instructions for directing the data processing system to generate an error if no
known program object ID is located that matches the obtained program object

identification.

29. The computer program product claimed in claim 26, wherein said persistent
object includes a serialization of an initial program object and said program object
identification includes a class name for an initial class defining said initial program

object.

CA9-2002-0089 23

10

15

20

25

30

CA 02419904 2003-02-26

30. The computer program product claimed in claim 29, wherein said blank program
object is defined by a different class having said class name, wherein said different class

and said initial class are different versions of the same class.

31. The computer program product claimed in claim 30, wherein said different class

is an earlier version of said same class than said initial class.

32. The computer program product claimed in claim 30, wherein said different class

1S a later version of said same class than said initial class.

33. The computer program product claimed in claim 26, wherein said corresponding

field data includes only non-default values.

34. The computer program product claimed in claim 33, wherein said default values

and said non-default values are defined by a programming language.

35. The computer program product claimed in claim 33, wherein said default values

include an integer value of zero, a Boolean value of false, and a float value ot zero.

36. The computer program product claimed in claim 26, wherein said persistent

object includes a file.

37. The computer program product claimed in claim 36, wherein said file includes an
XML file.

38. The computer program product claimed in claim 26, further including computer
executable instructions for directing the data processing system to generate an error 1f

said matching blank object field name is not found.

CA9-2002-0089 24

10

15

20

25

30

CA 02419904 2003-02-26

39. The computer program product claimed in claam 26, wherein, once all of said
corresponding field data is copied into said blank program object, said blank program
object is said reconstituted program object, and further including computer executable
instructions directing the data processing system to pass said reconstituted program

object to an application.

40. The computer program product claimed in claim 26, further including computer
executable instructions for directing the data processing system to retrieve the persistent

object from said storage media.

41. The computer program product claimed in claim 26, wherein said persistent
object is created by a serializing application and said blank program object 1s created by a
deserializing application, wherein said serializing application and said deserializing

application are different versions of the same application.

42. The computer program product claimed in claim 41, wherein said persistent
object includes the serialization of an initial program object, said initial program object is
an object defined by the version of said serializing application, and said blank program

object is an object defined by the version of said deserializing application.

43, The computer program product claimed in claim 26, further including computer
executable instructions for directing the data processing system to serialize an initial

program object to create said persistent object.

44. The computer program product claimed in claim 43, wherein said initial program
object includes initial field names and corresponding initial field data, and said computer
executable instructions for directing the data processing system to serialize includes
instructions for directing the data processing system to read said initial field names and
said corresponding initial field data, and, for each initial field name, determine whether

said corresponding initial field data includes non default data, and, if said corresponding

CA9-2002-0089 25

10

15

20

25

30

CA 02419904 2003-02-26

initial field data is non-default data, write said initial field name and said corresponding

initial field data to said persistent object.

45, A computer program product having a computer readable medium tangibly
embodying computer executable instructions for directing a data processing system to
serialize an initial program object using a computer system, said initial program object
including initial field names and corresponding initial field data, said initial program
object further including an object identifier, wherein said computer executable
instructions comprise:

(a) computer executable instructions for directing the data processing system
to create a persistent object;

(b) computer executable instructions for directing the data processing system
to write a program object identification to said persistent object based upon
said object identifier; and

(¢) computer executable instructions for directing the data processing system
to determine whether said corresponding initial field data includes non-default
data for each initial field name, and, if said corresponding initial field data 1s
non-default data, write said initial field name and said corresponding initial

field data to said persistent object.
46. The computer program product claimed in claim 45, wherein said object 1dentifier

includes a class name corresponding to a class definition from which said initial program

object was created.

47. The computer program product claimed in claim 45, wherein said persistent

object includes a file.

48. The computer program product claimed in claim 47, wherein said file includes an
XML file.

CA9-2002-0089 26

(A

10

15

25

30

CA 02419904 2003-02-26

49. The computer program product claimed in claim 45, wherein said non-default

values are defined by a programming language.

50. The computer program product claimed in claim 45, further including computer
executable instructions for directing the data processing system to store said persistent

object on a storage media.

51. A data processing system for reconstituting a program object from a persistent
object using a computer system, said persistent object being stored on a storage media,
said persistent object including a program object identification and field information, said
field information including at least one field name and corresponding field data for each
field name, the data processing system comprising:

(a) means for parsing said persistent object to obtain said program object
identification and to obtain said field names and their corresponding field
data;

(b) means for creating a blank program object based upon said program object
identification, said blank program object having a set of fields, each blank
object field having a blank object field name and a blank object field data
location, wherein said blank object field data locations are initialized with
default values; and

(c) means for searching said blank program object for a matching blank object
field name for each obtained field name from said persistent object, and 1if said
matching blank object field name is found, copying said corresponding field
data for said obtained field name into said blank object field location

corresponding to said matching blank object field name.

52. The data processing system claimed in claim 51, wherein said means for creating
includes means for searching a set of known program object IDs to find one of said

known program object IDs that matches the obtained program object identification.

CA9-2002-0089 27

10

15

20

25

30

CA 02419904 2003-02-26

53. The data processing system claimed in claim 52, further including means for
generating an error if no known program object ID is located that matches the obtained

program object identification.

54. The data processing system claimed in claim 51, wherein said persistent object
includes a serialization of an initial program object and said program object 1dentitication

includes a class name for an initial class defining said initial program object.
55. The data processing system claimed in claim 54, wherein said blank program
object is defined by a different class having said class name, wherein said difterent class

and said initial class are different versions of the same class.

56. The method claimed in claim 535, wherein said different class is an earlier version

of said same class than said initial class.

57. The data probessing system claimed in claim 55, wherein said different class 1s a

later version of said same class than said initial class.

58. The data processing system claimed in claim 51, wherein said corresponding field

data includes only non-default values.

59. The data processing system claimed in claim 58, wherein said default values and

said non default values are defined by a programming language.

60. The data processing system claimed in claim 58, wherein said default values

include an integer value of zero, a Boolean value of false, and a float value of zero.

61. The data processing system claimed in claim 51, wherein said persistent object

includes a tile.

CA9-2002-0089 28

10

15

20

235

CA 02419904 2003-02-26

62. The data processing system claimed in claim 61, wherein said file includes an
XML file.
63. The data processing system claimed in claim 51, further including means for

generating an error if said matching blank object field name is not found.

64. The data processing system claimed in claim 51, wherein, once all of said
corresponding field data is copied into said blank program object, said blank program
object is said reconstituted program object, and further including means for passing said

reconstituted program object to an application.

65. The data processing system claimed in claim 51, further including means for

retrieving the persistent object from said storage media.

66. The data processing system claimed in claim 51, wherein said persistent object 1s
created by a serializing application and said blank program object is created by a
deserializing application, wherein said serializing application and said deserializing

application are different versions of the same application.

67. The data processing system claimed in claim 66, wherein said persistent object
includes the serialization of an initial program object, said initial program object 1s an
object defined by the version of said serializing application, and said blank program

object is an object defined by the version of said deserializing application.

68. The data processing system claimed in claim 51, further including means for

serializing an 1nitial program object to create said persistent object.

69. The data processing system claimed in claim 68, wherein said initial program
object includes initial field names and corresponding 1nitial field data, and said means for
serializing includes means for reading said initial field names and said corresponding

initial field data, and, for each initial field name, determining whether said corresponding

CA9-2002-0039 29

10

15

20

25

CA 02419904 2003-02-26

initial field data includes non-default data, and, if said corresponding initial field data 1s
non-default data, writing said initial field name and said corresponding initial field data to

said persistent object.

70. A data processing system for serializing an initial program object using a
computer system, said initial program object including initial field names and
corresponding initial field data, said initial program object further including an object
identifier, wherein said data processing system comprises:
(a) means for creating a persistent object;
(b) means for writing a program object identification to said persistent object
based upon said object identifier; and
(c) means for determining whether said corresponding initial field data
includes non default data for each initial field name, and, if said corresponding
initial field data is non default data, writing said initial field name and said

corresponding initial field data to said persistent object.

71. The data processing system claimed in claim 70, wherein said object 1dentifier
includes a class name corresponding to a class definition from which said imitial program

object was created.

72. The data processing system claimed in claim 70, wherein said persistent object

includes a file.

73. The data processing system claimed in claim 72, wherein said file includes an
XML file.
74. The data processing system claimed in claim 70, wheremn said non-detault values

are defined by a programming language.

75. The data processing system claimed in claim 70, further including means for

storing said persistent object on a storage media.

CA9-2002-0089 30

10

15

20

25

30

CA 02419904 2003-02-26

76. An article including a computer readable signal bearing medium, and including
means 1n the medium for directing a data processing system to reconstitute a program
object from a persistent object using a computer system, said persistent object being
stored on a storage media, said persistent object including a program object identification
and field information, said field information including at least one field name and
corresponding field data for each field name, said article comprising:

means in the medium for parsing said persistent object to obtain said
program object identification and to obtain said field names and their corresponding tield
data;

means in the medium for creating a blank program object based upon said
program object identification, said blank program object having a set of fields, each blank
object field having a blank object field name and a blank object field data location,
wherein said blank object field data locations are initialized with default values; and

means in the medium for searching said blank program object for a
matching blank object field name for each obtained field name from said persistent
object, and if said matching blank object field name is found, copying said corresponding
field data for said obtained field name into said blank object field location corresponding

to said matching blank object field name.

77. The article claimed in claim 76, wherein said means in the medium for creating
includes searching a set of known program object IDs to find one of said known program

object IDs that matches the obtained program object identification.

78. The article claimed in claim 77, wherein said article further comprises means in
the medium for generating an error if no known program object ID is located that

matches the obtained program object identification.
79. The article claimed in claim 76, wherein said persistent object includes a

serialization of an initial program object and said program object identification includes a

class name for an initial class defining said initial program object.

CA9-2002-0089 31

10

15

235

30

CA 02419904 2003-02-26

80. The article claimed in claim 79, wherein said blank program object is defined by a
different class having said class name, wherein said different class and said initial class

are different versions of the same class.

81. The article claimed in claim 80, wherein said different class is an earlier version

of said same class than said initial class.

82. The article claimed in claim 80, wherein said different class 1s a later version of
said same class than said initial class.
83. The article claimed in claim 76, wherein said corresponding field data includes

only non default values.

84. The article claimed in claim 83, wherein said default values and said non-detault

values are defined by a programming language.

85. The article claimed in claim 83, wherein said default values include an integer

value of zero, a Boolean value of false, and a float value ot zero.

86. The article claimed in claim 76, wherein said persistent object includes a file.

87. The article claimed in claim 86, wherein said file includes an XML file.

88. The article claimed in claim 76, further comprising means in the medium for

generating an error if said matching blank object field name is not found.

89. The article claimed in claim 76, wherein, once all of said corresponding field data
is copied into said blank program object, said blank program object 1s said reconstituted
program object, and wherein said method further includes a step of passing said

reconstituted program object to an application.

CA9-2002-0089 32

10

15

20

25

30

CA 02419904 2003-02-26

90. The article claimed in claim 76, wherein said article further comprises means in
the medium for retrieving the persistent object from said storage media prior to said step

of parsing.

91. The article claimed in claim 76, wherein said persistent object 1s created by a
serializing application and said blank program object is created by a deserializing
application, wherein said serializing application and said deserializing application are

different versions of the same application.

92. The article claimed in claim 91, wherein said persistent object includes the
serialization of an initial program object, said initial program object is an object defined
by the version of said serializing application, and said blank program object is an object

defined by the version of said deserializing application.

93. The article claimed in claim 76, wherein said article further comprises means in
the medium for serializing an initial program object to create said persistent object prior

to said step of parsing.

94, The article claimed in claim 93, wherein said initial program object includes
initial field names and corresponding initial field data, and said means in the medium for
serializing includes reading said initial field names and said corresponding initial field
data, and, for each initial field name, determining whether said corresponding initial field
data includes non-default data, and, if said corresponding initial field data 1s non-defauit
data, writing said initial field name and said corresponding initial field data to said

persistent object.

05. An article including a computer readable signal bearing medium, and including
means in the medium for directing a data processing system to serialize an initial program
object using a computer system, said initial program object including initial field names
and corresponding initial field data, said initial program object further including an object

identifier, said article comprising:

CA9-2002-0089 33

10

15

20

CA 02419904 2003-02-26

means 1n the medium for creating a persistent object;
means in the medium for writing a program object identification to said persistent object
based upon said object identifier; and

means 1n the medium for determining whether said corresponding 1nitial field data
includes non-default data for each initial field name, and, if said corresponding initial
field data is non-default data, writing said initial field name and said corresponding initial

field data to said persistent object.

96. The article claimed in claim 95, wherein said object identifier includes a class
name corresponding to a class definition from which said initial program object was
created.

97. The article claimed in claim 95, wherein said persistent object includes a file.

98. The article claimed in claim 97, wherein said file includes an XML file.

99. The article claimed in claim 96, wherein said non-default values are defined by a

programming language.

100. The article claimed in claim 96, wherein said article further comprises means in

the medium for storing said persistent object on a storage media.

CA9-2002-0089 34

CA 02419904 2003-02-26

10

14

CLIENT

/26

version

N

10

.

|

T/

SERVER

/26

version
N

CLIENT Lj
/ 28 ’

version ;
N+ 1

CLIENT

/24

L oversion
| N-1

Figure 1

M.

30
K,_J

| Persistent
Object

Storage Media

r_Eieceive name of

| program object

oty

1
r

) 4

penasshinlive

Create empty
| persistent object

!

aama

Write pragram
object 1D

e

—l

116

Move to next
field within
program object

!

A

\

\ 4

{

Read field name

r and

corresponding
data from

| program object

]

|

Default data?

CA 02419904 2003-02-26

102

(104

106
/

108
ve

No

Write field name /

and data to

ersistent object
P } |

Yes —

End of

No -
program

object?

Yes

(Exit)

Figure 2

114

112

CA 02419904 2003-02-26

| Deserializer
module cailed

Retneve 204

persnstent object

Parse permstent 200

object

Y

Recognize
object name?

212
_NO ﬁ Generate error l——(Exit)

| Create blépk 214
program object
v

Set fields to 216
default values S

| |
e bbb g

Read field name 218
| from persistent
| | object
v

" Seach blank
program object

230\{ Move to next] Lior hela name I

field within 222
persistent object N
— Match? —

7y L.og error
| o _ - - |

eyt

220

N

Yes

s PP AS k-

Wnte data from |

J

| to matching field |
in blank program
object

persistent object lt/226

Application
Version X

304

4

7
7

306
NS
PO, ™
507 1 508
}al FALSE | «—
ﬁl 0 <~
__ /310
7 300

Serializer Module

’

CA 02419904 2003-02-26

Application
Version X

: - 302

Deserializer Module

305~ |
———
t
|
i
!
!
]
f
|
i
]
i
!
i
}
|
: 308
|
}
E 310
:
314 E 207
A ; J
\
PO,
—+> o] FALSE | l
308 B o0)
310 HE B
P

7~ Persistent Object \

Figure 4

@ N
K 312 j -

304

l Application '

Version X

‘ 306
ek [
307 |
308
H FALSE A[<«
WL -
310
N Ve 300

Serializer Module

CA 02419904 2003-02-26

308

305 o
\' Application
Version X
e
: it
:
|
!
{
:
:
i
|
! 308 I PO, "\307
| N
E 310 |> |o| FALSE
! 1> | B 6
314 | 307 o] /
N\ }]1\ AN
PO | 1
— B 302
o| FALSE e
| B

Application
Version X

| Serializer Module

304

CA 02419904 2003-02-26

Application

VersionY

S TR
I STE—
: N
: |
: | ,
!
}
: | |
!
: - 318
. a _
: [—‘Po,D Y
f 308 hw
314\ . 307 \f’ .g. FALSE |
I 0 <
' J 4~ A | T
— ‘/[\) 2 0.0 <— 310
— , _ 320
o | 1 _FALSE] /}
B 0 | — -~ 302
o0 | |
310) ’ / |
A —
320 4 E Deserializer Module
“““““““““““ g
_/ 30
Persistent Object "\

.

JE

f304
Application
Version Y
/ > \ f 306
POS ™
307
308
al TRUE > 3l
,Bi 6 “™~
» | H 8.2 310
'
320\ /
v / 300

Serializer Module

312 -

a

CA 02419904 2003-02-26

305
\ Application
Version X
S aREREEED
;
t A
!
E
i
i
322
E (Error {
! A
1
314\ l 307
0 |
;// PO, / \
i |
~—» || FALSE
308 | |
> | B 0
314
_ Y,
Deserializer Module
R ittt -»
/' 30

Persistent Object

(0) [
182

- Y,

Figqure 7

| TRUE | i

302

i

Receive name of
program object

J,

102

Create empty
persistent object

104
Ve

!

Write program
object 1D

106
e

>

Move fo next
field within
program object

F

X

Read field name
and
corresponding
data from
program object

108
e

Default daia?

Write field name
and data to

persistent object

£nd of

NO

program
object?

112

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - abstract drawing

