发明名称：印刷头组件、丝网印刷系统和方法

摘要

本发明提供一种用于通过印刷丝网（105）将印刷介质（PM）印刷在工件（W）上的印刷头组件（119）。该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网件。该组件包括在使用中可动地支承在第一和第二导引机构（117）中的相应导引机构上的第一和第二滑架（141）；和以相邻且平行的关系安装到滑架上且位于所述滑架之间的第一和第二印刷头单元（143, 145），其中印刷头单元各包括安装在相应滑架上的第一和第二印刷头致动器和支承件（151），该支承件在印刷头致动器之间延伸从而可通过该印刷头致动器竖直运动并且在使用中支承印刷部件。
1. 一种用于通过印刷丝网将印刷介质印刷在工件上的印刷头组件，该印刷丝网包括在其中具有由印刷孔构成的图案的丝网件，该印刷头组件包括在使用中可动地支承在第一和第二导引机构中的相应导引机构上的第一和第二滑架，和

以相间且平行的关系安装到所述滑架且位于所述滑架之间的第一和第二印刷头单元，其中所述印刷头单元各包括安装在相应的滑架上的第一和第二印刷头致动器和支承件，该支承件在所述印刷头致动器之间延伸从而可通过所述印刷头致动器垂直运动并且在使用中支承印刷部件。

2. 根据权利要求1所述的印刷头组件，其特征是，所述导引机构包括水平导引机构，优选是线性轴承。

3. 根据权利要求1或2所述的印刷头组件，其特征是，每个印刷头单元的印刷头致动器可操作以提供受控的向下力到相应的支承件上，从而当印刷部件附接到该支承件时可将一下受控的向下力施加到该印刷部件上。

4. 根据权利要求3所述的印刷头组件，其特征是，所述受控的向下力在从0到15N的范围内，优选具有约1%以内的精度。

5. 根据权利要求3或4所述的印刷头组件，其特征是，该印刷头致动器包括低摩擦致动器。

6. 根据权利要求5所述的印刷头组件，其特征是，该印刷头致动器包括低摩擦气动致动器。

7. 根据权利要求3至6中任一项所述的印刷头组件，其特征是，每个印刷头致动器包括缸体、可动地设置在该缸体中且包括附接到该支承件的一端的附接构件的浮式活塞和至少一个流体端口，流体压力施加到该至少一个流体端口以升高或降低该浮式活塞。

8. 根据权利要求1至7中任一项所述的印刷头组件，其特征是，每个印刷头单元还包括优选是线性轴承的垂直导引机构，其垂直地引导相应的支承件，从而基本上没有水平力分量被传递到相应的印刷头致动器。

9. 根据权利要求1至8中任一项所述的印刷头组件，其特征是，所述支承件包括大体上呈U形的构件。

10. 根据权利要求9所述的印刷头组件，其特征是，该U形支承件限定出当横向看时基本上无障碍的开口。

11. 根据权利要求9或10所述的印刷头组件，其特征是，所述支承件包括第一和第二托架构件以及在所述托架构件的相对的下端之间延伸的水平杆件，所述托架构件连接到所述第一和第二印刷头致动器中相应的印刷头致动器且邻近于该印刷头致动器的相应内侧竖直延伸。

12. 根据权利要求1至11中任一项所述的印刷头组件，其特征是，每个印刷头单元包括止挡调节机构，其用于设定相应的印刷头致动器的竖直运动的上止点和下止点。

13. 根据权利要求12所述的印刷头组件，其特征是，该止挡调节机构包括在该支承件的每一端上的第一和第二止挡调节器，优选螺纹调节器，其中第一止挡调节器设定相应的印刷头致动器的竖直运动的下止点，且第二止挡调节器设定相应的印刷头致动器的竖直运动的上止点。

14. 根据权利要求13所述的印刷头组件，其特征是，该第二止挡调节器可脱离接合，以
允许相应的支承件被升高以充分离开所述印刷丝网，从而有利于移走印刷丝网。

15. 根据权利要求1至14中任一项所述的印刷头组件，其特征是，所述印刷头单元的支承件间隔布置，从而允许印刷介质从上方在它们之间导入。

16. 根据权利要求1至15中任一项所述的印刷头组件，其特征是，该第一印刷头单元的支承件具有附接到其上的刮墨刀，且该第二印刷头单元的支承件具有附接到其上的覆墨刀，并且该两个组件可沿相反方向的印刷行程和返回行程中运动，从而在该印刷行程中，该第一印刷头单元的印刷头致动器被控制以使得刮墨刀与丝网件工作接触并且施加印刷所需的向下力到该丝网件，并且该第二印刷头单元的印刷头致动器被控制以使得覆墨刀升高到不工作位置；且在该返回行程中，该第一印刷头单元的印刷头致动器被控制以升高刮墨刀到不工作位置，且该第二印刷头单元的印刷头致动器被控制以降低覆墨刀到恰好离开所述丝网件的位置，从而在该丝网件的表面施加的印刷介质膜。

17. 根据权利要求1至15中任一项所述的印刷头组件，其特征是，所述印刷头单元的每个支承件具有附接到其上的刮墨刀，并且该印刷头组件可以在相反方向的第一和第二印刷行程中运动，从而在第一印刷行程中，该第一印刷头单元的印刷头致动器被控制以使得附接到其上的刮墨刀与丝网件工作接触并且施加印刷所需的向下力到该丝网件上，且该第二印刷头单元的印刷头致动器被控制以升高附接到其上的刮墨刀以恰好离开该丝网件，并且在第二印刷行程中，该第一印刷头单元的印刷头致动器被控制以升高附接到其上的刮墨刀以恰好离开该丝网件的位置，且第二印刷头单元的印刷头致动器被控制以降附接到其上的刮墨刀与丝网件工作接触并且施加印刷所需的向下力到该丝网件。

18. 一种丝网印刷系统，其包括：

- 支承印刷丝网并包括第一和第二导引机构的支承框架；

根据权利要求1至17中任一项所述的印刷头组件，其被支承在所述导引机构上并位于所述导引机构之间，从而可移动以通过印刷丝网将印刷介质印刷到在该印刷丝网下被支承的工件上；和

用于在相反的第一和第二方向上沿着导引机构驱动该印刷头组件的驱动单元。

19. 根据权利要求18所述的丝网印刷系统，其特征是，该支承框架在平面视图中呈矩形并且包括在其相对侧中的每一侧上的第一和第二框架支承元件，该第一和第二框架支承元件接纳并支承该印刷丝网的相对侧。

20. 一种通过印刷丝网将印刷介质丝网印刷到工件上的方法，该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网件，该方法包括如下步骤：

- 提供印刷头组件，该印刷头组件包括：可动地支承在第一和第二导引机构中相应导引机构上的第一和第二滑架；和以相邻且平行的关系安装到所述滑架且位于所述滑架之间的第一和第二印刷头单元，其中每个印刷头单元包括安装在相应的滑架上的第一和第二印刷头致动器和支承件，该支承件在印刷头致动器之间延伸从而通过该印刷头致动器可竖直运动；

将所述刮墨刀或覆墨刀形式的印刷部件附接到所述印刷头单元的支承件；和

操作该印刷头组件以在该印刷丝网下被支承的工件上印刷。

21. 根据权利要求20所述的方法，其特征是，该导引机构包括水平导引机构，优选是线性轴承。
22. 根据权利要求 20 或 21 所述的方法，其特征是，每个印刷头单元的印刷头印刷部件
附接到该支承件时能将一受控的向向下施加到该印刷部件上。

23. 根据权利要求 22 所述的方法，其特征是，所述受控的向向下力在从 0 到 15N 的范围内，优选具有约 1% 以内的精度。

24. 根据权利要求 20 至 23 中任一项所述的方法，其特征是，印刷头致动器包括低摩擦
致动器。

25. 根据权利要求 24 所述的方法，其特征是，印刷头致动器包括低摩擦气动致动器。

26. 根据权利要求 20 至 25 中任一项所述的方法，其特征是，每个印刷头致动器包括缸
体、可动地设置在该缸体中且包括附接到该支承件的一端的附接构件的浮式活塞和至少一个
流体端口，流体压力施加到所述流体端口以升高或降低该浮式活塞。

27. 根据权利要求 20 至 26 中任一项所述的方法，其特征是，每个印刷头单元还包括优选是线性轴承的坚直导引机构，其坚直地引导相应的支承件，从而基本上没有水平力分量
被传递到相应的印刷头致动器。

28. 根据权利要求 20 至 27 中任一项所述的方法，其特征是，所述支承件包括大体上呈
U形的构件。

29. 根据权利要求 28 所述的方法，其特征是，该U形构件限定出当横向看时基本上无障碍的开口。

30. 根据权利要求 28 或 29 所述的方法，其特征是，所述支撑件包括第一和第二托架构
件以及在所述托架构件的相对的下端之间延伸的水平杆件，所述托架构件连接到所述第一
和第二印刷头致动器中相应的印刷头致动器且邻近于该印刷头致动器的相应内侧坚直延
伸。

31. 根据权利要求 20 至 30 中任一项所述的方法，其特征是，每个印刷头单元包括止挡
调节机构，其用于设定相应的印刷头致动器的坚直运动的上止点和下止点。

32. 根据权利要求 31 所述的方法，其特征是，该止挡调节机构包括在该支承件的每一
端上的第一和第二止挡调节器，优选是螺纹调节器，且该方法还包括如下步骤：
调节第一止挡调节器以设定相应的印刷头致动器的坚直运动的下止点，和调节第二止
挡调节器以设定相应的印刷头致动器的坚直运动的上止点。

33. 根据权利要求 32 所述的方法，其特征是，该方法还包括如下步骤：
使该第二止挡调节器脱离接合以允许相应的支承件被升高以充分离开印刷丝网，从而
有利于移走印刷丝网。

34. 根据权利要求 20 至 33 中任一项所述的方法，其特征是，所述印刷头单元的支承件
间隔布置，并且该方法还包括如下步骤：
将印刷介质从上方和支承件之间引入。

35. 根据权利要求 20 至 34 中任一项所述的方法，其特征是，该第一印刷头单元的支承
件具有附接到其上的刮墨刀，且该第二印刷头单元的支承件具有附接到其上的覆墨刀，且
该印刷头组件操作步骤包括如下步骤：
控制该第一印刷头单元的印刷头致动器以使该刮墨刀与丝网件工作接触并且施加印
刷所需的向下力到该丝网件上；

控制该第二印刷头单元的印刷头致动器以升高覆墨刀到不工作位置；
沿第一方向驱动该刷头组件在丝网件的表面上运动以将印刷介质沉积物印刷在支承在该印刷丝网下的工件上；
控制该刷头单元的刷头致动器以升高刮墨刀到不工作位置；
控制该第二刷头单元的刷头致动器以降低覆墨刀到恰好离开丝网件的位置；

沿相反的第二方向驱动该刷头组件在丝网件的表面上运动从而将印刷介质膜施加到丝网件的表面上。

36. 根据权利要求 20 至 34 中任一项所述的方法，其特征是，该第一和第二刷头单元的每个支承件各具有附接到其上的刮墨刀，所述刮墨刀一起限定出腔室，并且该刷头组件操作步骤包括如下步骤：
控制第一刷头单元的刷头致动器以使得附接于其上的刮墨刀与丝网件工作接触并且施加印刷所需的向下力到该丝网件；
控制第二刷头单元的刷头致动器以升高附接于其上的刮墨刀以恰好离开丝网件；
沿第一方向驱动该刷头组件在丝网件的表面上运动以将印刷介质的沉积物印刷在支承在该印刷丝网下的工件上；
控制该第一刷头单元的刷头致动器以升高附接于其上的刮墨刀到恰好离开丝网件的位置；
控制该第二刷头单元的刷头致动器以降低附接于其上的刮墨刀与丝网件工作接触并且将印刷所需的向下力施加到该丝网件上；和
沿相反的第二方向驱动该刷头组件在丝网件的表面上运动以将印刷介质的沉积物印刷到在该印刷丝网下被支承的工件上。

37. 根据权利要求 37 所述的方法，其特征是，该方法还包括如下步骤：
保持刮墨刀之间的腔室具有一定体积的印刷介质，使得该印刷介质至少通过该腔室延伸而与每个刮墨刀都接触。

38. 根据权利要求 37 所述的方法，其特征是，该方法还包括如下步骤：
保持刮墨刀之间的腔室基本上填满印刷介质。

39. 根据权利要求 20 至 38 中任一项所述的方法，其特征是，该印刷介质是流体材料，优选是液态墨。

40. 根据权利要求 20 至 38 中任一项所述的方法，其特征是，该印刷介质粘稠材料，优选是焊膏。

41. 一种用于通过印刷丝网将印刷介质印刷在工件上的刷头组件，该印刷丝网包括具有由其中的多个刷孔构成的图案的丝网件，该刷头组件包括可安装到第一和第二滑架并位于它们之间的刷头单元，其中该刷头单元包括可安装到相应滑架上的第一和第二刷头致动器和支撑件；该支撑件在所述刷头致动器之间延伸从而可通过所述刷头致动器垂直运动并且在使用中支承印刷部件。

42. 根据权利要求 41 所述的刷头组件，其特征是，该导引机构包括水平导引机构，优选是线性轴承。

43. 根据权利要求 41 或 42 所述的刷头组件，其特征是，该刷头致动器可操作以提
44. 根据权利要求 43 所述的印刷头组件, 其特征是, 该受控的向下力在从 0 到 15N 的范围内, 优选具有约 1% 以内的精度。

45. 根据权利要求 43 或 44 所述的印刷头组件, 其特征是, 所述印刷头致动器包括低摩擦致动器。

46. 根据权利要求 45 所述的印刷头组件, 其特征是, 所述印刷头致动器包括低摩擦气动致动器。

47. 根据权利要求 43 至 46 中任一项所述的印刷头组件, 其特征是, 每个印刷头致动器包括缸体、可动地设置在该缸体中且包括附接到刷头组件一端的附接构件的浮式活塞和至少一个流体端口, 流体压力施加到该至少一个流体端口以升高或降低该浮式活塞。

48. 根据权利要求 41 至 47 中任一项所述的印刷头组件, 其特征是, 该印刷头单元还包括优选是线性轴承的竖直导引机构, 其竖直引导支承件, 从而基本上没有水平力分量被传递到印刷头致动器上。

49. 根据权利要求 41 至 48 中任一项所述的印刷头组件, 其特征是, 该支承件包括大体上呈 U 形的构件。

50. 根据权利要求 49 所述的印刷头组件, 其特征是, 该 U 形支承件限定出当横向看时基本上无障碍的开口。

51. 根据权利要求 49 或 50 所述的印刷头组件, 其特征是, 该支承件包括第一和第二托架构件, 和在该托架构件的相对的下端之间延伸的水平杆件, 所述托架构件联接到相应的印刷头致动器以及所述印刷头致动器的相应内部竖直延伸。

52. 根据权利要求 41 至 51 中任一项所述的印刷头组件, 其特征是, 该印刷头单元包括止挡调节机构, 其用于设定所述印刷头致动器的竖直运动的上止点和下止点。

53. 根据权利要求 52 所述的印刷头组件, 其特征是, 该止挡调节机构包括在支承件的每一端上的第一和第二止挡调节器, 优选是螺纹调节器, 其中该第一止挡调节器设定所述印刷头致动器的竖直运动的下止点且该第二止挡调节器设定所述印刷头致动器的竖直运动的上止点。

54. 根据权利要求 53 所述的印刷头组件, 其特征是, 该第二止挡调节器可脱离接合以允许所述支承件被升高以充分避开印刷丝网, 从而有利于移走印刷丝网。

55. 一种丝网印刷系统, 其包括:

- 支承印刷丝网且包括第一和第二导引机构的支承框架;

根据权利要求 51 至 54 中任一项所述的印刷头组件, 其被支承在所述导引机构上并位于所述导引机构之间, 从而能够运动以通过印刷丝网将印刷介质印刷到在该印刷丝网上被支承的工件上; 和

用于在相反的第一和第二方向之一上沿着导引机构驱动所述印刷头组件的驱动单元。

56. 根据权利要求 55 所述的丝网印刷系统, 其特征是, 该支承框架在平面视图中呈矩形并且包括在其相对侧的每一侧处的第一和第二框架支承构件, 该第一和第二框架支承构件接纳并支承印刷丝网的相对侧。

57. 一种通过印刷丝网将印刷介质丝网印刷在工件上的方法, 该印刷丝网包括具有由
其中的多个印刷孔构成的图案的网纹件，该方法包括如下步骤：

提供印刷头组件，该印刷头组件包括：可动地支承在第一和第二导引机构中相应的导
引机构上的第一和第二滑架，和安装到所述滑架并位于它们之间的印刷头单元，其中该印
刷头单元包括安装在相应的滑架上的第一和第二印刷头致动器和支承件，该支承件在印刷
头致动器之间延伸从而可通过该印刷头致动器垂直运动；

将印刷部件附接到该印刷头组件的支承件上；和

操作该组件从而在印刷网纹下被支承的工件上进行印刷。

58. 根据权利要求 57 所述的方法，其特征是，该导引机构包括水平导引机构，优选是线
性轴承。

59. 根据权利要求 57 或 58 所述的方法，其特征是，该印刷头致动器可操作以提供施加
到支承件的受控的向下力，从而当印刷部件附接到支承件时能将一受控的向下力施加到该
印刷部件上。

60. 根据权利要求 59 所述的方法，其特征是，该受控的向下力在从 0 到 15N 的范围内，
优选具有约 1% 以内的精度。

61. 根据权利要求 20 至 23 中任一项所述的方法，其特征是，该印刷头致动器包括低摩
擦致动器。

62. 根据权利要求 24 所述的方法，其特征是，该印刷头致动器包括低摩擦气动致动器。

63. 根据权利要求 57 至 62 中任一项所述的方法，其特征是，每个印刷头致动器包括缸
体，可动地设置在该缸体中且包括附接到支承件一端的附接件的浮体活塞和至少一个流
休端口，流体压力施加到该至少一个流体端口以升高或降低该浮体活塞。

64. 根据权利要求 57 至 63 中任一项所述的方法，其特征是，该印刷头单元还包括优选
是线性轴承的坚直导引机构，其坚直地引导支承件，从而基本上没有水平力分量被传递到
印刷头致动器上。

65. 根据权利要求 57 至 64 中任一项所述的方法，其特征是，该支承件包括大体上呈 U
形的构件。

66. 根据权利要求 65 所述的方法，其特征是，该 U 形构造限定出当横向看时基本上无障
碍的开口。

67. 根据权利要求 65 或 66 所述的方法，其特征是，该支承件包括第一和第二托架构件
和在该托架构件的相对的下端之间延伸的水平杆件，所述托架构件联接到第一和第二印刷
头致动器中相应的印刷头致动器且邻近于该印刷头致动器的相应内侧竖直延伸。

68. 根据权利要求 57 至 67 中任一项所述的方法，其特征是，每个印刷头单元包括止挡
调节机构，其用于设定印刷头致动器的竖直运动的上止点和下止点。

69. 根据权利要求 68 所述的方法，其特征是，该止挡调节机构包括在支承件每一端上
的第一和第二止挡调节器，优选是螺纹调节器，该方法还包括如下步骤：

调整该第一止挡调节器以设定所述印刷头致动器的竖直运动的下止点，和调整第二止
挡调节器以设定所述印刷头致动器的坚直运动的上止点。

70. 根据权利要求 69 所述的方法，其特征是，还包括如下步骤：

使第二止挡调节器脱离接合以允许所述支承件被升高以充分离开印刷网纹，从而有利
于移走印刷网纹。
71. 一种用于通过印刷丝网将印刷介质印刷到在工件上的印刷头组件，该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网件，该印刷头组件包括可安装到第一和第二滑架并位于它们之间的印刷头单元，其中该印刷头单元包括在所述滑架之间延伸并且在使用中支承印刷部件的支承件，且该支承件包括大体上呈U形的构件。

72. 根据权利要求71所述的方法，其特征是，该支承件限定出当横向看时基本上无障碍的开口。

73. 根据权利要求71或72所述的方法，其特征是，该引导机构包括水平引导机构；优选是线性轴承。

74. 根据权利要求71至73中任一项所述的方法，其特征是，所述印刷头单元还包括可安装在相应的滑架上的第一和第二印刷头致动器，且该支承件在印刷头致动器之间延伸从而可通过所述印刷头致动器垂直运动。

75. 根据权利要求74所述的方法，其特征是，该印刷头致动器可操作以提供受控的向下力到支承件，从而当印刷部件附接到支承件时能够将一受控的向下力施加到该印刷部件上。

76. 根据权利要求75所述的方法，其特征是，该受控的向下力在从0到15N的范围中，且优选具有约1%以内的精度。

77. 根据权利要求74至76中任一项所述的方法，其特征是，该印刷头致动器包括低摩擦致动器。

78. 根据权利要求77所述的方法，其特征是，该印刷头致动器包括低摩擦气动致动器。

79. 根据权利要求74至78中任一项所述的方法，其特征是，每个印刷头致动器包括缸体，可动地设置在该缸体中且包括附接到支承件一端的附接构件的浮式活塞，和至少一个流体端口，流体压力被施加到该至少一个流体端口以升高或降低该浮式活塞。

80. 根据权利要求74至79中任一项所述的方法，其特征是，该印刷头单元还包括优选是线性轴承的竖直引导机构，其竖直地引导支承件从而基本上没有水平力分量传递到印刷头致动器。

81. 根据权利要求74至80中任一项所述的方法，其特征是，该支承件包括第一和第二托架构件和在该托架构件的相对的下端之间延伸的水平杆件，所述托架构件联接到相应的印刷头致动器且邻近于所述印刷头致动器的相应内侧竖直延伸。

82. 根据权利要求74至81中任一项所述的方法，其特征是，该印刷头单元还包括止挡调节机构，其用于设定印刷头致动器的竖直运动的上止点和下止点。

83. 根据权利要求82所述的方法，其特征是，该止挡调节机构包括在支承件各端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定该印刷头致动器的下止点，且第二止挡调节器设定该印刷头致动器的上止点。

84. 根据权利要求83所述的方法，其特征是，第二止挡调节器能脱离接合以允许支承件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

85. 一种丝网印刷系统，其包括：

支承印刷丝网且包括第一和第二导引机构的支承框架；

根据权利要求71至84中任一项所述的印刷头组件，其被支承在所述导引机构上并位于所述导引机构之间，从而可移动以通过印刷丝网将印刷介质印刷到在印刷丝网下被支承
的工件上；和
用于在相反的第一和第二方向之一上沿着导引机构驱动该刷头组件的驱动单元。
86. 根据权利要求 85 所述的丝网印刷系统，其特征是，该支承框架在平面视图中呈矩
形且包括在其相对侧的每一侧处的第一和第二框架支承元件，该第一和第二框架支承元件
接纳并支承印刷丝网的相对侧。
87. 一种丝网印刷系统，其包括：
支承印刷丝网且包括在其相对侧上的第一和第二导引机构的支承框架；和
印刷头组件，其被支承在所述导引机构上并位于所述导引机构之间，从而可移动以通
过印刷丝网将印刷介质印制到在印刷丝网下被支承的工件上，该印刷头组件包括可安装修
到第一和第二滑架并位于它们之间的印刷头单元，其中印刷头单元包括支承件，且该支承件
包括在滑架之间延伸且在使用中支承印刷部件的支承元件，且在工作位置，该支承元件的
主要部分位于该支承框架的上表面之下。
88. 根据权利要求 87 所述的丝网印刷系统，其特征是，该支承框架在平面视图中呈矩
形且包括在其相对侧上的第一和第二框架支承元件，该第一和第二框架支承元件接纳并支
承印刷丝网的相对侧。
89. 根据权利要求 87 或 88 所述的丝网印刷系统，其特征是，还包括：用于在相反的第一
和第二方向之一上沿导引机构驱动该刷头组件的驱动单元。
90. 根据权利要求 87 至 89 中任一项所述的丝网印刷系统，其特征是，该支承件限定出
当横向看时基本无障碍的开口。
91. 根据权利要求 87 至 90 中任一项所述的丝网印刷系统，其特征是，该导引机构包括
水平导引机构，优选是线性轴承。
92. 根据权利要求 87 至 91 中任一项所述的丝网印刷系统，其特征是，印刷头单元还包
括可安装在相应的滑架上的第一和第二印刷头致动器，且该支承件在所述印刷头致动器之
间延伸，从而其能通过所述印刷头致动器竖直移动。
93. 根据权利要求 92 所述的丝网印刷系统，其特征是，所述印刷头致动器可操作以提
供受控的向下力到支承件，从而当印刷部件附接到支承件时能将一受控的向下力施加到该
印刷部件上。
94. 根据权利要求 93 所述的丝网印刷系统，其特征是，该受控的向下力在从 0 到 15N 的
范围中，优选具有约 1% 以内的精度。
95. 根据权利要求 92 至 94 中任一项所述的丝网印刷系统，其特征是，该印刷头致动器
包括低摩擦致动器。
96. 根据权利要求 95 所述的丝网印刷系统，其特征是，该印刷头致动器包括低摩擦气
动致动器。
97. 根据权利要求 92 至 96 中任一项所述的丝网印刷系统，其特征是，每个印刷头致动
器包括缸体、可动地设置在该缸体中且包括附接到支承件的一端的附接构件的浮式活塞和
至少一个流体端口，流体压力被施加到该至少一个流体端口以升高或降低该浮式活塞。
98. 根据权利要求 92 至 97 中任一项所述的丝网印刷系统，其特征是，该印刷头单元还
包括优选是线性轴承的竖直导引机构，其竖直地引导支承件从而基本上没有水平力分量传
递到所述印刷头致动器。
99. 根据权利要求 92 至 98 中任一项所述的丝网印刷系统，其特征是，该支撑件包括第一和第二托架构件和在该托架构件的相对的下端之间延伸的水平杆件，所述托架构件联接到相应的印刷头致动器且邻近于所述印刷头致动器的内侧竖直延伸。

100. 根据权利要求 92 至 99 中任一项所述的丝网印刷系统，其特征是，该印刷头单元还包括止挡调节机构，其用于设定印刷头致动器的竖直运动的上止点和下止点。

101. 根据权利要求 100 所述的丝网印刷系统，其特征是，该止挡调节机构包括在支撑件各端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定所述印刷头致动器的下止点，且第二止挡调节器设定所述印刷头致动器的上止点。

102. 根据权利要求 101 所述的丝网印刷系统，其特征是，该第二止挡调节器能脱离接合以允许支撑件被升高以充分离开印刷丝网，从而有利于移动印刷丝网。
印刷头组件、丝网印刷系统和方法

【0001】本申请是申请号为200980117372.X、申请日为2009年3月13日,名为“印刷头组件、丝网印刷系统和方法”的、具有国际申请号PCT/CN2009/000677的进入中国国家阶段申请的分案申请。

技术领域
【0002】本发明涉及用于通过印刷丝网将印刷介质例如液体墨或焊膏印刷在工件上的印刷头组件,这些工件包括例如用于太阳能或燃料电池应用的或精细的基材。且所述印刷丝网包括对应于要被印在工件上的沉积物图案的多个印刷孔构成的图案;本发明还涉及结合有该印刷头组件的丝网印刷系统和丝网印刷方法。

背景技术
【0003】现今已开发出多种多样的丝网印刷系统和印刷头用于将印刷介质印刷到工件上。
【0004】图1和图2示出了利用呈墨机构形式的印刷头的典型丝网印刷系统。
【0005】该丝网印刷系统包括支承印刷丝网5的刚性支承框架3;在印刷丝网5的相对两侧安装到支承框架3上的一对平行间隔布置的线性轴承7,7;印刷滑架9,其包括支承在线性轴承7,7上的台架11,和安装到台架11上的印刷头组件15,该印刷头组件15可操作地通过印刷丝网5中的印刷孔图案将印刷介质印刷到在印刷丝网下支承的工件上;和用于沿着线性轴承7,7往复驱动印刷滑架9的驱动单元17,该驱动单元包括驱动马达19和与该印刷滑架9连接的齿形传动带21。
【0007】印刷头组件15的操作在图2(a)和图2(b)中示出。如图2(a)所示,其中通过第一刮墨机构23在第一方向D1上进行印刷,该第一致动器31被操作以驱动第一刮墨机构23向下与印刷丝网5接触并且克服弹簧联接机构的偏压而升高驱动机构27,从而将预定的向下偏压力施加到第一刮墨机构23,且第二致动器33被操作以向上驱动第二刮墨机构25,从而第二刮墨机构25的下边缘被升高离开第一刮墨机构23的前端面,从而使第一刮墨机构23沿第一印刷方向D1获得向前的畅通空间,这是允许在第一刮墨机构23的前面碾压印刷介质所必须的。类似地,如图2(b)所示,通过第二刮墨机构25在另一第二方向D2上进行印刷,第二致动器33被操作以向下驱动第二刮墨机构25与印刷丝网5接触并且克服弹簧联接机构的偏压而升高驱动机构27,从而将预定的向下偏压力施加到第二刮墨机构25,并且第一致动器31被操作以向上驱动第一刮墨机构23,从而第一刮墨机构23的下边缘被升高以离开第二刮墨机构25的前端面从而使第二刮墨机构25沿第二印刷方向D2获得向
前的畅通空间，这是允许在第二刮墨机构 25 的前面锁压印刷介质所必须的。

[0008] 当前丝网印刷系统已可以非常成功地工作，然而本发明的发明人意识到这些丝网印刷系统还存在大量的缺点，尤其是在将液态墨印刷在可弯曲的和精细的工件方面。具体来说，提供所需刚性而必须的大体积台架 11 和安装在台架 11 上的驱动机构 27 的重量限制了印刷头组件 15 的运动速度并因此限制了生产率，还引起在每个印刷行程的开始和末尾出现振动，这种振动对于将液态墨印刷到可弯曲的和精细的工件上来说是尤其有害的。另外，大体积台架 11 限制了对印刷丝网 5 的观察。


[0010] 这些封闭式印刷头现今已经可以非常成功地工作，尤其是在将焊膏印刷到印刷电路板方面，但是对于新的应用场合，尤其是在采用可弯曲的和精细的基材且需要印刷液态墨的太阳能和燃料电池的生产方面，存在这些现有丝网印刷头不能满足的需要。

发明内容

[0011] 因此，本发明的目的是提供用于将印刷介质印刷在工件上的另一种印刷头组件，它的至少一个实施例允许在可弯曲的和精细的工件上印刷并且还允许印刷流体印刷介质，例如液态墨。

[0012] 在一个方案中，本发明提供一种用于通过印刷丝网将印刷介质印刷到工件上的印刷头组件，该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网件，该组件包括：在使用中可动地支承在第一和第二导向机构上的相应一个上的第一和第二滑架；和以相邻且平行的关系安装在滑架上且位于所述滑架之间的第一和第二印刷头单元，其中印刷头单元各自包括安装在相应滑架上的第一和第二印刷头动器，以及支承件，该支承件在印刷头动器之间延伸从而可通过所述印刷头动器竖直运动并且其在使用中支承印刷部件。

[0013] 在一个实施例中，导引机构包括水平引导机构，优选是线性轴承。

[0014] 在一个实施例中，每个印刷头单元的印刷头动器可操作以提供受控的施加到相应的支承件的向下力，从而当附接到支承件时使得能将该受控的向下力施加到印刷部件。

[0015] 在一个实施例中，受控的向下力在从 0 到 15N（牛顿）的范围中，优选具有约 1% 以内的精度。

[0016] 在一个实施例中，印刷头动器包括低摩擦致动器。

[0017] 在一个实施例中，印刷头动器包括低摩擦气动致动器。

[0018] 在一个实施例中，每个印刷头动器包括缸体、可动地设置在该缸体中且包括附接到支承件的一端的附接构件的浮式活塞、和至少一个流体端口，流体压力施加到该至少一个流体端口以升高或降低浮式活塞。

[0019] 在一个实施例中，每个印刷头单元还包括优选是线性轴承的竖直导向机构，其竖直地引导相应的支承件，从而基本上没有水平力分量被传递到相应的印刷头致动器上。

[0020] 在一个实施例中，支承件包括大体上呈 U 形的构件。

[0021] 在一个实施例中，该 U 形支承件限定出当横向看时基本上无障碍的开口。
在一个实施例中，支撑件包括第一和第二托架构件以及在所述托架构件的相对的下端之间延伸的水平杆件，所述托架构件连接到相应的第一和第二印刷头致动器的相应的一个且邻近于该印刷头致动器的相应侧直延伸。

在一个实施例中，每个印刷头单元包括止挡调节机构，其用于设定相应的印刷头致动器的竖直运动的上止点和下止点。

在一个实施例中，止挡调节机构包括在支撑件的每端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定了相应的印刷头致动器的竖直运动的下止点且第二止挡调节器设定了相应的印刷头致动器的竖直运动的上止点。

在一个实施例中，第二止挡调节器可脱离接合以允许相应的支撑件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

在一个实施例中，印刷头单元的支撑件间隔布置，从而允许印刷介质从上方在它们之间导入。

在一个实施例中，第一印刷头单元的支撑件具有附接其上的刮墨刀，且第二印刷头单元的支撑件具有附接到其上的覆墨刀，并且该组件可以在相反方向的印刷行程和返回行程中运动，从而在印刷行程中，第一印刷头单元的印刷头致动器被控制以使得刮墨刀与丝网件工作接触并且施加印刷所需的向下力到丝网件，并且第二印刷头单元的印刷头致动器被控制以使得覆墨刀升高至不工作位置；且在返回行程中，第一印刷头单元的印刷头致动器被控制以升高刮墨刀到不工作位置，且第二印刷头单元的印刷头致动器被控制以降低覆墨刀到恰好离开丝网件的工作位置，从而施加印刷介质到丝网件的表面。

在另一实施例中，印刷头单元的支撑件各具有附接到其上的刮墨刀，并且该组件可以在相反方向的第二印刷头单元在第一和第二印刷头单元的印刷头致动器被控制以使得附接到其上的刮墨刀与丝网件工作接触并且施加印刷所需的向下力到丝网件上，且第二印刷头单元的印刷头致动器被控制以升高附接到其上的刮墨刀以恰好避开丝网件，并且在第二印刷行程中，第一印刷头单元的印刷头致动器被控制以升高附接到其上的刮墨刀到恰好离开丝网件的位置，且第二印刷头单元的印刷头致动器被控制以降低附接到其上的刮墨刀而与丝网件接触并且施加印刷所需的向下力到丝网件。

在另一方案中，本发明提供一种丝网印刷系统，其包括：支撑印刷丝网并包括第一和第二导引机构的支撑框架；支撑在导引机构上并位于所述导引机构之间从而可移动以通过印刷丝网将印刷介质印刷到在该印刷丝网下支撑的工件的上述组件；和用于在相反的方向中的第一和第二方向之上沿着导引机构驱动该组件的驱动单元。

在一个实施例中，该支撑框架在平面视图中呈矩形并且包括在其相对侧的每一侧上的第一和第二框架支撑元件，该第一和第二框架支撑元件接纳并支撑印刷丝网的相对侧。

在另一方案中，本发明提供一种通过印刷丝网将印刷介质丝网印刷到工件上的方法，该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网片，该方法包括如下步骤：提供印刷头组件，该印刷头组件包括：可动地支撑在第一和第二导引机构的相应一个上的第一和第二滑架，和以相对且平行的关系安装到滑架上且于所述滑架之间的一个或第二印刷头单元，其中所述印刷头单元各包括安装在相应滑架上的第一和第二印刷头致动
器，以及支承件。该支承件在印刷头致动器之间延伸从而可通过印刷头致动器竖直运动；将呈刮墨刀或覆墨刀形式的印刷部件附接到印刷头单元的支承件；和操作该组件以在印刷丝网下被支承的工件上进行印刷。

[0032] 在一个实施例中，该导引机构包括水平导引机构，优选是线性轴承。

[0033] 在一个实施例中，每个印刷头单元的所述印刷头致动器可操作地提供施加到各支承件的受控的向下力，从而使得能将该受控的向下力施加到连接到该支承件的印刷部件。

[0034] 在一个实施例中，受控的向下力在从0到15N的范围内，优选具有约1%以内的精度。

[0035] 在一个实施例中，印刷头致动器包括低摩擦致动器。

[0036] 在一个实施例中，印刷头致动器包括低摩擦气动致动器。

[0037] 在一个实施例中，印刷头致动器各包括缸体、可动地设置在该缸体中且包括附接到支承件的一端的附接构件的浮式活塞，和至少一个流体端口，流体压力施加到该至少一个流体端口以升高或降低浮式活塞。

[0038] 在一个实施例中，每个印刷头单元还包括优选是线性轴承的竖直导引机构，其竖直地引导相应的支承件，从而基本上没有水平力分量被传递到相应的印刷头致动器上。

[0039] 在一个实施例中，支承件包括大体上呈U形的构件。

[0040] 在一个实施例中，该U形构件限定出当横向看时基本上无障碍的开口。

[0041] 在一个实施例中，支承件包括第一和第二托构件，和在该托构件的相对的下端之间延伸的水平杆件，所述托构件连接到相应的第一和第二印刷头致动器中相应的印刷头致动器且邻近于所述印刷头致动器的相对内侧竖直延伸。

[0042] 在一个实施例中，每个印刷头单元包括止挡调节机构，其用于设定相应的印刷头致动器的竖直运动的上止点和下止点。

[0043] 在一个实施例中，止挡调节机构包括在支承件的每一端上的第一和第二止挡调节器，优选是螺旋调节器，且该方法还包括如下步骤：调节第一止挡调节器以设定相应的印刷头致动器的竖直运动的下止点，和调节第二止挡调节器以设定相应的印刷头致动器的竖直运动的上止点。

[0044] 在一个实施例中，该方法还包括如下步骤：使第二止挡调节器脱离接合以允许相应的支承件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

[0045] 在一个实施例中，印刷头单元的支承件间隔布置，并且该方法还包括如下步骤：从上方并在支承件之间引入印刷介质。

[0046] 在一个实施例中，第一印刷头单元的支承件具有附接到其上的刮墨刀，且第二印刷头单元的支承件具有附接到其上的覆墨刀，且该印刷头组件操作步骤包括如下步骤：控制第一印刷头单元的印刷头致动器以使该刮墨刀与丝网件工作接触并且施加印刷所需的向下力到丝网件上；控制第二印刷头单元的印刷头致动器以升高覆墨刀到不工作位置；沿第一方向驱动该组件在丝网件的表面上运动或以将印刷介质沉积物印刷到在该印刷丝网下被支承的工件上；控制第一印刷头单元的印刷头致动器以升高刮墨刀到不工作位置；控制第二印刷头单元的印刷头致动器以降低覆墨刀到恰好离开丝网件的工作位置；和沿相反的第二方向驱动该组件在丝网件的表面上运动以从工作表面施加印刷介质膜到丝网件的表面上。

[0047] 在另一个实施例中，该第一和第二印刷头单元的支承件各具有附接到其上的刮墨
刀，所述刮墨刀一起限定出腔室，并且该印刷头组件操作步骤包括如下步骤：控制第一印刷头单元的印刷头致动器以使得附接于其上的刮墨刀与丝网件工作接触并且施加印刷所需
的向下力到丝网件；控制第二印刷头单元的印刷头致动器以升高附接于其上的刮墨刀以恰
好离开丝网件；沿第一方向驱动该组件在丝网件的表面上运动以将印刷介质的沉积物印刷
到支承在该印刷丝网下的工件上；控制第一印刷头单元的印刷头致动器以升高附接于其上
的刮墨刀到恰好离开丝网件的位置；控制第二印刷头单元的印刷头致动器以降低附接于其
上的刮墨刀与丝网件工作接触并且施加印刷所需的向下力到丝网件上；和沿相反的第二方
向驱动该组件在丝网件的表面上运动以将印刷介质的沉积物印刷到支承在该印刷丝网下
的工件上。

[0048] 在一个实施例中，该方法还包括如下步骤：保持刮墨刀之间的腔室具有一定体积
的印刷介质，使得该印刷介质在与每个刮墨刀都接触的情况下至少横过该腔室延伸。

[0049] 在另一实施例中，该方法还包括如下步骤：保持刮墨刀之间的腔室基本上填满印
刷介质。

[0050] 在一个实施例中，该印刷介质是流体材料，优选是液态墨。

[0051] 在另一实施例中，该印刷介质是粘稠材料，优选是焊膏。

[0052] 在又一方案中，本发明提供了一种用于通过印刷丝网将印刷介质印刷在工件上的
印刷头组件，该印刷丝网包括具有由其多个印刷孔构成的图案的丝网件，该组件包括
可安装到第一和第二滑架并位于它们之间的印刷头单元，其中该印刷头单元包括可安装到
相应的滑架上的第一和第二印刷头致动器，以及支承件，该支承件在该印刷头致动器之间
延伸从而可通过该印刷头致动器竖直运动并且在使用中支承印刷部件。

[0053] 在一个实施例中，导引机构包括水平导引机构，优选是线性轴承。

[0054] 在一个实施例中，印刷头致动器可操作地提供施加到支承件的受控的向下力，从
而当接到支承件时使得能将该受控的向下力施加到印刷部件。

[0055] 在一个实施例中，受控的向下力在从0到15N的范围内，优选具有约1%以内的精
度。

[0056] 在一个实施例中，印刷头致动器包括低摩擦致动器。

[0057] 在一个实施例中，印刷头致动器包括低摩擦旋动致动器。

[0058] 在一个实施例中，该印刷头致动器包括缸体，可动地设置在该缸体内且包括附接
到支承件的一端的附接构件的浮式活塞，和至少一个流体端口，流体压力施加到该至少一
个流体端口以升高或降低浮式活塞。

[0059] 在一个实施例中，该印刷头单元还包括优选是线性轴承的竖直导引机构，其竖直
地引导支承件，从而基本上没有水平力分量被传递到印刷头致动器上。

[0060] 在一个实施例中，支承件包括大体上呈U形的构件。

[0061] 在一个实施例中，该U形支承件限定出当横向看时基本上无障碍的开口。

[0062] 在一个实施例中，支承件包括第一和第二托架构件和在该托架构件的相对的下端
之间延伸的水平杆件，所述托架构件连接到相应的印刷头致动器且邻近于所述印刷头致动
器的相应内侧竖直延伸。

[0063] 在一个实施例中，每个印刷头单元包括止挡调节机构，其用于设定印刷头致动器
的竖直运动的上止点和下止点。
在一个实施例中，该止挡调节机构包括在支承件的每一端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定了相应的印刷头致动器的坚直运动的下止点且第二止挡调节器设定了相应的印刷头致动器的坚直运动的上止点。

在一个实施例中，第二止挡调节器可脱离接合以允许相应的支承件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

在另一方案中，本发明提供一种丝网印刷系统，其包括：支承印刷丝网且包括第一和第二导引机构的支承框架；所述组件被支承在导引机构上并位于所述导引机构之间，从而能够运动以通过印刷丝网将印刷介质印制到支承在该印刷丝网上工件上；用于在相反的第一和第二方向之一上沿着导引机构驱动该组件的驱动单元。

在一个实施例中，该支承框架在平面视图中呈矩形并且包括在其相对侧的每一侧处的第一和第二框架支承构件，该第一和第二框架支承构件用于接纳和支承印刷丝网的相对侧。

在又一方案中，本发明提供一种通过印刷丝网将印刷介质丝网印刷在工件上的方法，该印刷丝网包括具有由其中的多个印刷孔构成的图案的丝网，该方法包括如下步骤：提供印刷头组件，该印刷头组件包括：可动地支承在第一和第二导引机构中的相应导引机构上的第一和第二滑架；和安装至所述滑架上且位于它们之间的印刷头单元，其中该印刷头单元包括安装在相应的滑架上的第一和第二印刷头致动器，以及支承件，该支承件在印刷头致动器之间延伸从而可通过所述印刷头致动器竖直运动；将印刷部件附接到印刷头单元的支承件；和操作该组件从而在被支承在印刷丝网下的工件上印刷。

在一个实施例中，导引机构包括水平导引机构，优选是线性轴承。

在一个实施例中，印刷头致动器可操作以提供施加到支承件的受控的向下力，从而当附接到支承件时使得能将该受控的向力施加到印刷部件。

在一个实施例中，受控的向下力在从 0 到 15N 的范围内，优选具有约 1% 以内的精度。

在一个实施例中，印刷头致动器包括低摩擦致动器。

在一个实施例中，印刷头致动器包括低摩擦气动致动器。

在一个实施例中，每个印刷头致动器包括缸体，可动地设置在该缸体中并且包括附接到支承件的一端的附接构件的浮式活塞，和至少一个流体端口，流体压力施加到该至少一个流体端口以升高或降低浮式活塞。

在一个实施例中，印刷头单元还包括优选是线性轴承的坚直导引机构，其坚直地引导支承件，从而基本上没有水平力分量被传递到印刷头致动器上。

在一个实施例中，支承件包括大体上呈 U 形的构件。

在一个实施例中，该 U 形构件限定出当横向看时基本上无障碍的开口。

在一个实施例中，支承件包括第一和第二托架构件和在该托架构件的相对的下端之间延伸的水平杆件，所述托架构件连接到相应的第一和第二印刷头致动器中相应的印刷头致动器且邻近于所述印刷头致动器的相应内侧坚直延伸。

在一个实施例中，印刷头单元包括止挡调节机构，其用于设定印刷头致动器的竖直运动的上止点和下止点。

在一个实施例中，该止挡调节机构包括在支承件的每一端上的第一和第二止挡调
调节器，优选是螺纹调节器，还包括如下步骤：调整第一挡调节器以设定印刷头驱动器的竖直运动的下止点，和调整第二挡调节器以设定相应的印刷头驱动器的竖直运动的上止点。

[0081] 在一个实施例中，该方法还包括如下步骤：使第二挡调节器脱离接合以允许相应的支承件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

[0082] 在另一方案中，本发明提供一种用于通过印刷丝网将印刷介质印刷在工作上的印刷头组件，该印刷丝网包括具有由其中的多个印刷点构成的图案的丝网件，该印刷头组件包括可安装到第一和第二滑架并位于它们之间的印刷头单元，其中该印刷头单元包括在滑架之间延伸并且在使用中支承印刷部件的支承件，且该支承件包括大体上呈U形的构件。

[0083] 在一个实施例中，该支承件限定出当横向看时基本上无障碍的开口。

[0084] 在一个实施例中，导引机构包括水平导引机构，优选是线性轴承。

[0085] 在一个实施例中，印刷头单元还包括可安装在相应的滑架上的第一和第二印刷头致动器，且该支承件在印刷头致动器之间延伸从而可通过印刷头致动器竖直致动。

[0086] 在一个实施例中，印刷头致动器可操作以提供受控的向下力到支承件，从而当印刷部件附接到支承件时可将一受控的向下力施加到该印刷部件上。

[0087] 在一个实施例中，该受控的向下力在从0到15N的范围内，且优选具有约1%以内的精度。

[0088] 在一个实施例中，印刷头致动器包括低摩擦致动器。

[0089] 在一个实施例中，印刷头致动器包括低摩擦气致动器。

[0090] 在一个实施例中，各印刷头致动器包括缸体，可动地设置在该缸体中且包括附接到支承件的一端的附接构件的浮式活塞，和至少一个流体端口，流体压力被施加到该至少一个流体端口以升高或降低浮式活塞。

[0091] 在一个实施例中，印刷头单元还包括优选是线性轴承的坚直导引机构，其中坚直地引导支承件从而基本上没有水平力分量传递到印刷头致动器。

[0092] 在一个实施例中，该支承件包括第一和第二托架构件以及在所述托架构件的相对较长的下端之间延伸的水平杆件，所述托架构件连接到相应的印刷头致动器且邻近于所述印刷头致动器的相应内侧坚直延伸。

[0093] 在一个实施例中，印刷头单元还包括止挡调节机构，其用于设定印刷头致动器的坚直运动的上止点和下止点。

[0094] 在一个实施例中，该止挡调节机构包括在支承件各端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定印刷头致动器的下止点，且第二止挡调节器设定印刷头致动器的上止点。

[0095] 在一个实施例中，第二止挡调节器能脱离接合以允许支承件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

[0096] 在另一方案中，本发明还提供一种丝网印刷系统，其包括：印刷丝网组件包括第一和第二导引机构的支承框架；上述印刷头组件，其被支承在导引机构上并位于所述导引机构之间，从而可移动通过印刷丝网将印刷介质印刷到在印刷丝网下支承的工件上，和用于在相反的第一和第二方向之一上沿着导引机构驱动该印刷头组件的驱动单元。

[0097] 在一个实施例中，该支承框架在平面视图中呈矩形且包括在其相对侧的每一侧处
的第一和第二框架支撑元件，该第一和第二框架支撑元件接纳并支撑印刷丝网的相对侧。
【0098】在又一方案中，本发明提供一种丝网印刷系统，其包括：支撑印刷丝网且包括在其相对侧上的第一和第二导引机构的支撑框架；和印刷头组件，其被支撑在导引机构上并位于所述导引机构之间，从而可移动以通过印刷丝网将印刷介质印刷到支撑在印刷丝网下的工件上，该印刷头组件包括可安装在第一和第二滑架并位于它们之间的印刷头单元，其中印刷头单元包括支撑件，且该支撑件包括在滑架之间延伸且在使用中支撑印刷部件的支撑元件，且在工作位置，该支撑元件的主要部分位于支撑框架的上表面之下。
【0099】在一个实施例中，该支撑框架在平面视图中呈矩形且包括在其相对侧的每一侧上的第一和第二框架元件，该第一和第二框架元件接纳并支撑印刷丝网的相对侧。
【0100】在一个实施例中，该系统还包括：用于在第一和第二的相反的方向之一上沿导引机构驱动该组件的驱动单元。
【0101】在一个实施例中，该支撑件限定出当横向看时基本无障碍的开口。
【0102】在一个实施例中，该导引机构包括水平导引机构，优选是线性轴承。
【0103】在一个实施例中，所述印刷头单元还包括可安装在对应的滑架上的第一和第二印刷头致动器，且该支撑件在印刷头致动器之间延伸，从而其能通过印刷头致动器竖直移动。
【0104】在一个实施例中，印刷头致动器可操作以提供受控的向下力到支撑件，从而当印刷部件附接到支撑件时可将一受控的向下力施加到该印刷部件上。
【0105】在一个实施例中，受控的向下力在从 0 到 15N 的范围内，优选具有约 1% 以内的精度。
【0106】在一个实施例中，该印刷头致动器包括低摩擦致动器。
【0107】在一个实施例中，该印刷头致动器包括低摩擦气动致动器。
【0108】在一个实施例中，各印刷头致动器包括缸体，可动地设置在该缸体中且包括附接到支撑件的一端的附接构件的浮式活塞，和至少一个流体端口，流体压力被施加到该至少一个流体端口以升高或降低浮式活塞。
【0109】在一个实施例中，印刷头单元还包括优选是线性轴承的竖直导引机构，其竖直地引导支撑件从而基本上没有水平力分量传递到印刷头致动器。
【0110】在一个实施例中，该支撑件包括第一和第二托架构件和在所述托架构件的相对的下端之间延伸的水平杆件，所述托架构件连接到相应的印刷头致动器且邻近于该印刷头致动器的内侧竖直延伸。
【0111】在一个实施例中，印刷头单元还包括止挡调节机构，其用于设定印刷头致动器的竖直运动的上止点和下止点。
【0112】在一个实施例中，该止挡调节机构包括在支撑件各端上的第一和第二止挡调节器，优选是螺纹调节器，其中第一止挡调节器设定印刷头致动器的下止点，且第二止挡调节器设定印刷头致动器的上止点。
【0113】在一个实施例中，第二止挡调节器能脱离接合以允许支撑件被升高以充分离开印刷丝网，从而有利于移走印刷丝网。

附图说明
【0114】现将参考附图仅作为示例地在下文描述本发明的优选实施例，其中：
具体实施方式

图3至图6示出了根据本发明优选实施例的丝网印刷系统，其构成有接纳印刷丝网105并亲通过该印刷丝网105在工件上印刷。在该实施例中，印刷丝网105包括平面视图呈矩形的框架107和在张紧状态下被安装到框架107上并且包括由多个印刷孔构成的图案110的丝网件109，在这里该丝网件109呈由金属材料或塑料材料制成的整片的形式，或涂层的筛网形式，该图案限定出印刷区域，印刷介质通过该印刷区域被印刷到支承在该印刷丝网下的工件上。

该丝网印刷系统包括支承印刷丝网105的刚性支承框架111；在印刷丝网105的相对侧平行地设置在该支承框架111上的第一和第二水平导引机构117，117；印刷头组件119，其被支承在水平导引机构117，117上从而可在水平面内移动并且通过印刷丝网105将印刷介质印刷到该印刷丝网下被支承的工件上；和用于在相反的第一和第二方向D1，D2之一上驱动印刷头组件119沿水平导引机构117，117运动的驱动单元121。

在该实施例中，支承框架111在平面视图中呈矩形并且包括在其相对侧处（在这里是在下边缘处）的第一和第二框架支承元件125，125，在此为凸出部分，该第一和第二框架支承元件接纳并支承印刷丝网105的框架107的相对侧。

在该实施例中，图5所示，支承框架111的相对侧包组在内侧的定位构件131，其用于将印刷丝网105定位在支承框架111中。在该实施例中，在支承框架111的一侧上的定位构件131在这里通过弹簧构件133弹性地偏压，从而偏压该印刷丝网105的框架以抵靠着支承框架111的另一侧上的定位构件131。

在该实施例中，丝网印刷系统还包括用于将印刷丝网105在固定位置处锁定到支承框架111的丝网锁定机构135。

在该实施例中，图5所示，丝网锁定机构135包括关于框架支承元件125，125相对设置且可操作地将印刷丝网105的框架107夹紧到框架支承元件125，125上的多个夹紧件137，和用于移动夹紧件137以将印刷丝网105夹紧到支承框架111上的至少一个（在该实施例中为多个）致动器139，该致动器在此为气动致动器。

在该实施例中，支承框架111上的水平导引机构117，117包括线性轴承，印刷头组件119的相对端可动地支承于其上。

在该实施例中，印刷头组件119安装在第一和第二水平导引机构117，117中
相应的水平导引机构上的第一和第二滑架 141, 141, 和以相邻且平行的关系安装到第一和第二滑架 141, 141 且位于它们之间的第一和第二印刷头单元 143, 145。

[0131] 在该实施例中，第一和第二滑架 141, 141 各包括用于接合驱动单元 121 的相应的传动部件 185, 185 的联接件 142, 此在该联接件包括带齿部，这将会在下文中更详细描述。

[0132] 印刷头单元 143, 145 各包括：安装在第一和第二滑架 141, 141 中相应的两上的第一和第二印刷头致动器 147, 147；支承件 151，其在印刷头致动器 147, 147 之间延伸从而可通过该印刷头致动器竖直移动并且支承呈割墨刀 181 或覆墨杆 / 刀 183 形式的印刷部件 (这将在下文更详细描述)；和在竖直方位引导该支承件 151 的第一和第二坚直导引机构 152, 152。

[0133] 通过将印刷头致动器 147, 147 直接支承在支承框架 111 上而不是像现有技术那样支承在必须很大体积的台架上，第一和第二印刷头单元 143, 145 的支承件 151, 151 的尺寸可以大大减小，这减轻了重量且还使得支承件 151, 151 能够靠近印刷丝网 105 布置而不延伸很高的高度，在此为具有低于支承框架 111 的上表面的上高度，这改进了可视性。在该实施例中，支承件 151, 151 提供了相对水平观看时在支承框架 111 之间的显著开阔的开口部。

[0134] 在该实施例中，印刷头致动器 147, 147 包括低摩擦气动致动器 (由英国弥尔顿凯恩斯的 SMC Pneumatics 英国公司产的 MQQ TB20-10D 型致动器)，其包括缸体 153；可动地设置在该缸体 153 中的浮式活塞 154，该浮式活塞 154 包括从缸体 153 中竖直延伸并且通过浮式活塞 154 的运动而运动的导杆 155；和第一和第二流体端口 157, 159，呈正压或负压 (真空) 的流体压力在此为气压被施加到该第一和第二流体端口以升高或降低浮式活塞 154 以及竖直延伸的导杆 155。

[0135] 在该实施例中，第一和第二印刷头单元 143, 145 中之任一个的印刷头单元的印刷头致动器 147, 147 的相应的第一流体端口 157 之间和第二流体端口 159 之间是共连的，从而第一和第二印刷头单元 143, 145 中相应的一个印刷头的印刷头致动器 147, 147 被一致地操作。

[0136] 在该实施例中，流体供应源是气动压缩空气供应源，其通过精确的压力调节器 (如英国弥尔顿凯恩斯的 SMC Pneumatics 英国公司生产的 ITV1050 型) 可切换地传送到第一和第二印刷头单元 143, 145 中相应的印刷头单元的印刷头致动器 147, 147 的第一和第二流体端口 157, 159。

[0137] 在该实施例中，第一和第二坚直导引机构 152, 152 包括线性轴承，支承件 151 的相对端可动地支承在该线性轴承上，从而确保没有横向力分量被传递到印刷头致动器 147, 147，否则这会给印刷头致动器 147, 147 带来摩擦阻力，这会损害印刷头致动器 147, 147 所提供的必需精确的压力控制。

[0138] 在该实施例中，支承件 151 包括大体呈 U 形的构件，其包括第一和第二托架构件 161, 161，其连接到对应的印刷头致动器 147, 147 并且邻近于印刷头致动器 147, 147 的相应内侧竖直延伸，和在托架构件 161, 161 的相对的下端之间延伸的横向杆件 163。

[0139] 通过这种构造，第一和第二印刷头单元 143, 145 的支承件 151, 151 的 U 形轮廓为操作人员提供了改进的印刷丝网 105 表面的可见性，这对于监控印刷丝网 105 和印刷介质的状态是特别有利的。

[0140] 在该实施例中，第一和第二印刷头单元 143, 145 各包括止挡调节机构 171，其用于
设定印刷头致动器 147, 147 的活塞 154, 154 的运动的上止点和下止点。

[0141] 在该实施例中，该止挡调节机构 171 包括在支承件 151 的各端上的第一和第二螺纹调节器 173, 175，其中第一螺纹调节器 173, 173 设定印刷头致动器 147, 147 的活塞 154, 154 的下止点，且第二螺纹调节器 175, 175 设定印刷头致动器 147, 147 的活塞 154, 154 的上止点。

[0142] 在一个实施例中，印刷头致动器 147, 147 能被设置成较长时间致动器，通过使上止点螺纹调节器 175, 175 脱接，它能够允许相应的支承件 151 和附接于其上的印刷部件升高以充分离开印刷丝网 105，从而有利于移出印刷丝网 105。

[0143] 在该实施例中，第一印刷头单元 143 的支承件 151 具有附接于其上的刮墨刀 181，且第二印刷头单元 145 的支承件 151 具有附接于其上的覆墨刀 183。

[0144] 在没有压力施加到第一印刷头单元 143 的印刷头致动器 147, 147 的情况下，刮墨刀 181 将搁置在印刷丝网 105 的丝网件 109 的表面上并且施加由刮墨刀 181, 支承件 151 和各印刷头 147, 147 的浮式活塞 154 的总重量所确定的力到丝网件 109 上。

[0145] 通过向第一印刷头单元 143 的印刷头致动器 147, 147 的第一流体端口 157, 157 施加正流体压力或向第二流体端口 159, 159 施加负流体压力，由刮墨刀 181 施加到丝网件 109 上的力能被减小，且通过施加足够的流体压力，刮墨刀 181 可被提升离开丝网件 109，直到由止挡调节机构 171 的第二螺纹调节器 175, 175 所设定的上止点。

[0146] 作为替代，通过向第一印刷头单元 143 的印刷头致动器 147, 147 的第一流体端口 157, 157 施加负压或第二流体端口 159, 159 施加正压，由刮墨刀 181 施加到丝网件 109 的力可被增加。

[0147] 这样，通过可控制地施加流体压力到第一印刷头单元 143 的印刷头致动器 147, 147 的第一流体端口 157, 157 或第二流体端口 159, 159 中相应的流体端口，如图 6(a) 所示，刮墨刀 181 可以以约 1% 的精度施加任何所需的向下力 F（在该实施例为在 0 到约 15N 的范围中）到丝网件 109 上，或者如图 6(b) 所示，刮墨刀 181 可被保持在离开丝网件 109 的不工作位置。

[0148] 在替代的实施例中，足够的流体压力能被施加到第一印刷头单元 143 的第一流体端口 157, 157，以反作用于刮墨机构的静重，且受控的流体压力能被施加到第一印刷头单元 143 的第二流体端口 159, 159 以将所需的向下力施加到刮墨刀 181。

[0149] 在没有压力施加到第二印刷头单元 145 的印刷头致动器 147, 147 的情况下，印刷头致动器 147, 147 的活塞 154, 154 将处于由止挡调节机构 171 的第一螺纹调节器 173, 173 限定的下止点位置，从而覆墨刀 183 被保持在如图 6(b) 所示的恰离离开丝网件 109 的再涂布位置。

[0150] 通过施加正流体压力到第二印刷头单元 145 的印刷头致动器 147, 147 的第二流体端口 159, 159 或施加负流体压力到第一流体端口 157, 157，覆墨刀 183 被锁定在再涂布位置。当使用粘稠的液态墨时，印刷丝网 105 通常使用用于丝网件 109 的涂层过的筛网，并且希望由多个印刷孔构成的图案 110 所限定的丝网件 109 的图案区保持覆盖有薄黑膜以防止墨在丝网件 109 中干化且堵塞印刷孔构成的图案 110。当印刷头组件 119 的每个返回行程中返回最初的起始位置时，通过将覆墨刀 183 定位在再涂刷位置，如图 6(b) 所示覆墨刀 183 用印刷介质薄膜再涂刷丝网件 109 的表面。
[0151] 通过施加正流体压力到第二印刷头单元 145 的印刷头致动器 147, 147 的第一流通体端口 157, 157 或施加负流体压力到第二流通体端口 159, 159, 液墨刀 183 能被升高进一步离开丝网件 109 到如图 6(a) 所示的由刀头调节机构 171 的第二螺纹调节器 175, 175 限定的上止点位置。

[0152] 在该实施例中，驱动单元 121 包括附接到第一和第二滑架 141, 141 中相应的滑架的联结件 142, 142 的第一和第二传动部件 185, 185，在这里为齿带）。和可操作以驱动传动部件 185, 185 并从而驱动第一和第二滑架 141, 141 的驱动马达 187。在该实施例中，传动部件 185, 185 通过传动轴 189 连接，且驱动马达 187 被联接到一个传动部件 185，从而驱动马达 187 的运转通过传动轴 189 同时驱动传动部件 185, 185。

[0153] 印刷头组件 119 的操作如图 6(a) 和图 6(b) 所示。

[0154] 在印刷行程中，如图 6(a) 所示，其中印刷头组件 119 沿第一方向 D1 移动，第一印刷头单元 143 的刮墨刀 181 通过第一印刷头单元 143 的印刷头致动器 147, 147 与丝网件 109 相接触并且被加载所需的向下力 F，从而推动刮墨刀 181 前面的印刷介质 PM 向前并且通过丝网件 109 中印刷孔构成的图案 110 沉积到在该丝网件 109 下被支承的工件 W 上，且第二印刷头单元 145 的覆墨刀 183 被第二印刷头单元 145 的印刷头致动器 147, 147 保持在升高的不工作位置。

[0155] 在返回行程中，如图 6(b) 所示，其中印刷头组件 119 沿第二方向 D2 移动，第一印刷头单元 143 的刮墨刀 181 通过第一印刷头单元 143 的印刷头致动器 147, 147 被升高而不与丝网件 109 接触且被保持在升高的不工作位置，且第二印刷头单元 145 的覆墨刀 183 被降低且被保持在工作的再涂布位置，从而用印刷介质 PM 薄膜再涂刷丝网件 109 的表面。

[0156] 在替代的实施例中，如图 7(a) 和图 7(b) 所示，其例如是用于粘稠材料的印刷，第二印刷头单元 145 的支承件 151 装配刮墨刀 181 来取代覆墨刀 183，且第二印刷头单元 145 以与如上所述的第一印刷头单元 143 的相同的方式操作。

[0157] 在该实施例中，刮墨刀 181, 183 的上端充分间隔开以允许印刷介质 PM 导入它们之间限定出的腔室中。这样一来，刮墨刀 181, 181 之间的腔室能保持有高充填体积的印刷介质，并且至少使得印刷介质 PM 延伸横过该腔室以与每个刮墨刀 181, 181 都接触。通过这种构造，实现印刷介质 PM 的循环，这提供了充分的剪切减薄度，从而能以比现有印刷头更高的印刷速度印刷。

[0158] 在该实施例中，印刷头组件 119 包括联接到刮墨刀 181, 181 的相对端部的第一和第二端部阻挡件 191, 191，从而将印刷介质 PM 保持在刮墨刀 181, 181 之间。

[0159] 在该实施例中，端部阻挡件 191, 191 用固定件固定到刮墨刀 181, 181 的端部，且各端部阻挡件包括在竖直位上方伸延且允许刮墨刀 181, 181 的相对竖直运动的槽孔。

[0160] 替代的印刷头组件 119 的操作在图 7(a) 和图 7(b) 中示出。在该实施例中，印刷头组件 119 可沿相反的方向 D1, D2 的第一和第二印刷行程中往复运动。

[0161] 在向下的第一印刷行程中，如图 7(a) 所示，其中印刷头组件 119 沿第一方向 D1 移动，第一印刷头单元 143 的后刮墨刀 181 通过第一印刷头单元 143 的印刷头致动器 147, 147 与丝网件 109 相接触并且被加载所需的向下力 F，从而推动该刮墨刀 181 前面的印刷介质 PM 向前并且通过丝网件 109 中的印刷孔构成的图案 110 沉积到在该丝网件下被支承的工件 W 上，而第二印刷头单元 145 的前刮墨刀 181 被第二印刷头单元 145 的印刷头致动器 147, 147
保持在恰好离开丝网件 109 的高位置。第二印刷头单元 145 的前刮墨刀 181 紧密地靠近丝网件 109, 但仍隔开足够的距离以防在向外的印刷行程中与丝网件 109 相接触。在一个实施例中, 前刮墨刀 181 的下边缘与丝网件 109 间隔不超过约 1mm, 且优选不超过约 0.5mm。这种构造与现有技术的刮墨系统显著区别, 在现有的刮墨系统中要保持前刮墨机构很好地避开工作中的后刮墨机构。

[0162] 在反回的第二印刷行程中, 如图 7(b) 所示, 其中印刷头组件 119 沿相反的第二方向 D2 移动, 第二印刷头单元 145 的后刮墨刀 181 通过第二印刷头单元 145 的印刷头致动器 147, 147 与丝网件 109 相接触且被加载所需的向下力 F, 从而推动该刮墨刀 181 前面的印刷介质 PM 向前且通过丝网件 109 中的印刷孔构成的图案 110 沉积到在该丝网件下被支撑的工件 W 上, 且第一印刷头单元 143 的前刮墨刀 181 被第一印刷头单元 143 的印刷头致动器 147, 147 保持在恰好离开丝网件 109 的高位置。类似于向外的第一印刷行程的配置, 第一印刷头单元 143 的前刮墨刀 181 紧密地靠近丝网件 109, 但仍隔开足够的距离以防在返回的印刷行程中与丝网件 109 相接触。在一个实施例中, 前刮墨刀 181 的下边缘与丝网件 109 间隔不超过约 1mm, 且优选不超过约 0.5mm。

[0163] 令人惊奇地, 本发明的发明人已证实, 在运动方向上的前刮墨刀 181 被升高以恰好避开丝网件的刮墨刀 181, 181 的这种构造与在刮墨刀 181, 181 之间的腔室中提供基本上填满该腔室的一定体积的印刷介质 PM 相结合提供了至少等效于现有封闭的丝网印刷头的性能。

[0164] 最后, 人们将会理解本发明已通过其优选实施例进行了描述且可以用多种方式进行变化, 而不背离由所附的权利要求书所限定的本发明的范围。