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FEATURE-BASED IMAGE PROCESSING USING FEATURE IMAGES EXTRACTED
FROM DIFFERENT ITERATIONS
FIELD
The following relates generally to the image processing arts, image
reconstruction arts, magnetic resonance (MR) imaging and image reconstruction and
refinement arts, nuclear emission imaging and image reconstruction and refinement arts,
computed tomography (CT) imaging and image reconstruction and refinement arts, and

related arts.

BACKGROUND

Medical imaging is performed using various imaging modalities. Nuclear
emission imaging modalities such as positron emission tomography (PET) or single photon
emission computed tomography (SPECT) provide for functional imaging of take-up and/or
distribution of a radiopharmaceutical in tissue or organs. Transmission computed tomography
(CT) or magnetic resonance (MR) imaging are typically used to image anatomical features,
although additional information may be obtained using these techniques in conjunction with a
contrast agent or advanced contrast techniques, e.g. time-of-flight magnetic resonance
angiography (TOF-MRA).

In these techniques, the acquired imaging data generally do not directly form a
cognizable image. In PET, the imaging data are lines of response (LORs) defined by detected
511 keV gamma ray pairs, optionally with time-of-flight (TOF) localization. SPECT data are
generally collected as linear or narrow-angle conical projections defined by a honeycomb or
other type of collimator, while CT data are projections (here absorption line integrals) along
paths from x-ray tube to detector element. MR data are generally acquired as k-space data in
a Cartesian, radial, spiral, or other acquisition geometry. In any of these cases, a suitable
image reconstruction algorithm is applied to convert the imaging data from projection space
or k-space to a reconstructed image in two-dimensional (2D) or three-dimensional (3D)
image space. Image reconstruction is typically an iterative process, although non-iterative
reconstruction algorithms such as filtered backprojection are also known. Various image
refinement algorithms, such as filters and/or iterative resolution recovery, may optionally be
applied to the reconstructed image to enhance salient characteristics.

A challenge in the image reconstruction and refinement processing is the
balancing of noise suppression and edge preservation (or edge enhancement). These goals

tend to be in opposition, since noise constitutes unwanted image contrast that is to be
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suppressed; whereas edges constitute desired image contrast that is to be retained or perhaps
even enhanced. Post-reconstruction filtering is a primary approach for noise suppression in
medical imaging, but requires careful selection of filter type(s) and filter parameters to obtain
an acceptable (even if not optimal) image for clinical analysis. Some known noise-
suppressing filters include low-pass filters, bi-lateral filters, adaptive filters, or so forth.
Low pass filters tend to smooth the image uniformly, which can suppress lesion contrast.
Bi-lateral filters use the local image information to identify edges with the goal of only
smoothing regions to the sides of the edge and leave the edge untouched or minimally
smoothed. This is a type of edge-preserving filter, and if properly tuned may preserve
lesion/organ quantitation. However, depending upon the filter parameters, edges may not be
detected around some small/weak lesions/organs, in which case the small/weak
lesions/organs are filtered and quantitative accuracy may be compromised. Other advanced
adaptive image filters likewise require careful tuning.

The following discloses a new and improved systems and methods that

address the above referenced issues, and others.

SUMMARY

In one disclosed aspect, an image processing device comprises a computer and
at least one non-transitory storage medium storing instructions readable and executable by
the computer to perform operations including: performing iterative processing including one
of (i) iterative image reconstruction performed on projection or k-space imaging data to
generate an iteratively reconstructed image and (ii) iterative image refinement performed on
an input reconstructed image to generate an iteratively refined image, wherein the iterative
processing produces a series of update images ending in the iteratively reconstructed or
refined image; generating a difference image between two update images of the series of
update images; and using the difference image in the iterative processing or in post
processing performed on the iteratively reconstructed or refined image.

In another disclosed aspect, a non-transitory storage medium stores
instructions readable and executable by a computer to perform an image processing method
comprising: performing iterative image reconstruction on projection or k-space imaging data
to generate a series of update images ending in an iteratively reconstructed image; generating
a difference image between a first update image and a second update image of the series of

update images; transforming the difference image into a feature image by transformation
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operations; and using the feature image in the iterative image reconstruction or in post
processing performed on the iteratively reconstructed image.

In another disclosed aspect, an image processing method comprises:
performing a first image reconstruction on projection or k-space imaging data to generate a
first reconstructed image; performing a second image reconstruction on the projection or k-
space imaging data to generate a second reconstructed image; generating a difference image
between two images each selected from the group consisting of the first reconstructed image,
an update image of the first image reconstruction, the second reconstructed image, and an
update image of the second image reconstruction; and generating a final reconstructed image
that combines the first reconstructed image and the second reconstructed image using the
difference image.

One advantage resides in improved image quality for an iteratively
reconstructed image.

Another advantage resides in improved image quality for an iteratively refined
image.

Another advantage resides in providing for more accurate detection of
malignant tumors or lesions.

Another advantage resides in providing for reduction of obscuring noise in
clinical images.

Another advantage resides in providing for reduced likelihood of noise
suppression image processing degrading or removing small lesion features.

A given embodiment may provide none, one, two, more, or all of the
foregoing advantages, and/or may provide other advantages as will become apparent to one

of ordinary skill in the art upon reading and understanding the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form in various components and arrangements of
components, and in various steps and arrangements of steps. The drawings are only for
purposes of illustrating the preferred embodiments and are not to be construed as limiting the
invention.

FIGURE 1 diagrammatically shows an illustrative imaging system including
image reconstruction and/or refinement that leverages a difference image computed using

two different image updates of an iterative image reconstruction.
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FIGURE 2 diagrammatically shows an illustrative imaging system including
image refinement that leverages a difference image computed using two different image
updates of an iterative image refinement process.

FIGURE 3 diagrammatically shows an illustrative imaging system that
constructs a weighted combination of two different image reconstructions, with the weighing
being in accord with a difference image between the two reconstructions or between image
updates of one or both image reconstructions.

FIGURES 4-8 present image reconstruction results as described herein.

FIGURE 9 illustrates use of a feature image as disclosed herein displayed to

provide visual guidance as to detected features.

DETAILED DESCRIPTION

Image reconstruction and refinement approaches disclosed herein are premised
on the insight that, rather than attempting to identify edges in an image using local spatial
information (e.g. by detecting large image intensity gradients), image features as a whole (not
merely the edges) can be effectively detected based on a “temporal” evolution of update
images during an iterative image reconstruction or refinement process. In particular, a
difference image is computed as a difference (e.g. absolute difference) between
corresponding pixels of two different update images of the iterative image reconstruction or
refinement process. As disclosed herein, such a difference image can, for an appropriate
choice of update images, produce a difference image that captures image features such as
small lesions or tumors as areal structures, rather than as edges delineating such structures as
in edge-preserving or edge-enhancing image filtering. The disclosed “temporal” approaches
leverage certain observations about the evolution of update images during typical iterative
reconstruction of PET and SPECT images.

One observation is that large structures typically converge faster than small
structures, i.e., it takes fewer number of iterations for large structures to converge. Similarly,
low spatial frequency components converge faster than high spatial frequency components in
the image. These observations are intuitively linked since large structures principally
comprise lower spatial frequency components (e.g. in a spatial Fourier transform sense) while
small structures principally comprise higher spatial frequency components. Undesirable noise
is typically represented by high frequency components (higher than those needed for useful
realistic structures). From these observations, it can be appreciated that a difference image

employing earlier update images of an iterative image reconstruction tends to capture large
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features, while a difference image employing later update images tends to capture smaller
features.

Another observation is that, in the case of nuclear emission images (e.g. PET
or SPECT), cold regions tend to converge more slowly than hot regions. Here “cold” refers to
regions of low radiopharmaceutical concentration while “hot” refers to regions of high
radiopharmaceutical concentration. More generally, small lesions and sharp edges correspond
to high spatial frequency image signals.

The optimal choice of update images for the difference image can be selected
empirically, for example, via phantom studies to select update images for the difference
image that produce the difference image with the strongest contrast for phantom features
mimicking expected tumor sizes. It should be noted that the two update images that form the
difference image do not necessarily need to be consecutive update images in the series of
update images of the iterative reconstruction ending in the final iteratively reconstructed
image. (Further, the ending iterative reconstructed image is itself defined using the iterative
reconstruction termination criterion which may be variously chosen, e.g. stopping when a
change metric between successive iterations is less than some minimum threshold, or
stopping after a fixed number of iterations, or so forth).

A further observation is that, in the case of time-of-flight PET (i.e. TOF-PET),
reconstruction from data with time-of-flight (TOF) information converges faster in general
than without TOF information, since the TOF localization provides additional information to
improve convergence. Hence, if PET imaging data are reconstructed using a TOF
reconstruction algorithm that leverages TOF information and by a non-TOF reconstruction
algorithm that does not leverage TOF information, the former is expected to converge more
rapidly than the latter. More generally, different image reconstruction algorithms applied to
the same imaging data may converge more or less rapidly. This observation underlies variant
embodiments disclosed herein in which, rather than taking the difference image as a
difference between two update images of a single image reconstruction, the difference image
is between reconstructed images, or update images, of two different reconstruction
algorithms applied to the same imaging data.

Further observations pertain to the relationship between convergence speed
and the difference image (or the features in the difference image), as this can impact the
choice of update images. Those objects with faster converge speed become close to their final
reconstructed state after a few updates or iterations. On the contrary, the objects with slower

converge speed remain farther away from their final reconstructed state at the time of
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convergence of the faster-converging objects. Thus, if the choice of update images is selected
to be from the earliest updates, the difference for both faster converge objects and slower
converge objects are large, and thus are not optimal to differentiate the objects. Conversely, if
the choice of update images is selected to be from near the end of the iterations, the
differences for both faster or slower converge objects are small, which is again not an optimal
choice. In general, the optimal choice of update images is between these limits, and is
preferably chosen so that the faster converging objects are close to stable (thus differences
are small for these fast-converging object) while slower-converging objects are not yet stable
(and hence the differences are still alrge) Such selection of the update images for computing
the difference image thereby generates the strongest contrast for the smaller (and slower-
convergin) features compared to the bigger (and faster-converging) background.

Thus, in embodiments disclosed herein, the difference image is between two
iterations of iterative processing (image reconstruction or refinement). Further
transformations, e.g. scaling or weighting, may be applied to the difference image to generate
a feature image. The feature image carries the “evolution” information of each object/organ
between the iterations. The values of the same pixel or voxel in the images at different
iterations are compared directly to each other, rather than being compared to its neighboring
voxels in the individual images as in edge preserving or edge enhancing filtering techniques.

With reference to FIGURE 1, an illustrative imaging device 10 is a combined
system that includes a computed tomography (CT) gantry 12 and a positron emission
tomography (PET) gantry 14, with a common subject support or couch 16 for moving a
patient or other subject into a chosen gantry 12, 14 for CT or PET imaging. Advantageously,
this arrangement enables, for example, acquisition of a CT image to provide anatomical
information and of a PET image to provide functional information (e.g. radiopharmaceutical
uptake and/or distribution in a patient). An example of a commercial PET/CT imaging device
is the Vereos® digital PET/CT system available from Koninklijke Philips N.V., Eindhoven,
the Netherlands. These are merely illustrative examples, and the disclosed image
reconstruction and refinement approaches can be usefully employed in conjunction with CT
imaging, PET imaging, single photon emission computed tomography (SPECT) imaging,
magnetic resonance (MR) imaging, or so forth. The imaging device 10 acquires imaging data
in the form of projection data. PET imaging data acquired using the PET gantry 14 comprise
projection data in the form of lines of response (LORs) defined by detected 511 keV gamma
ray pairs, optionally with time-of-flight (TOF) localization. CT imaging data acquired by the

CT gantry 12 comprise projections (here absorption line integrals) along paths from x-ray
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tube to detector element. SPECT imaging data similarly comprise projections defined by a
honeycomb or other type of collimator as linear or narrow-angle conical projections. MR
imaging data are commonly collected as k-space imaging data, e.g. k-space samples acquired
along a k-space trajectory (e.g., Cartesian, spiral, radial, zig-zag) defined by frequency and/or
phase encoding implemented by suitably applied magnetic field gradients.

The acquired imaging data are processed by a computing device 20, e.g. a
computer 22 (network server, desktop computer, or so forth) that includes or has operative
access with one or more electronic data storage devices (e.g. one or more hard drives, optical
disks, solid state drives or other electronic digital storage devices, or so forth). Initially, the
acquired imaging data are stored at an imaging data storage device 24. In embodiments
conforming with FIGURE 1, the computer 22 executes suitable software to implement an
iterative image reconstruction 26 that generates a reconstructed image which is stored in a
storage 28. The image reconstruction 26 may also be implemented in part using application-
specific integrated circuitry (ASIC) or the like. The iterative image reconstruction 26 is
performed on projection imaging data (or k-space imaging data in the case of MR imaging)
to generate an iteratively reconstructed image. More particularly, the iterative reconstruction
26 produces a series of update images ending in the iteratively reconstructed image which is
stored in the storage 28. Some illustrative iterative image reconstruction algorithms for
reconstructing PET imaging data include ordered subset expectation maximization (OSEM)
image reconstruction and maximum a posteriori (MAP) image reconstruction using a
quadratic prior or an edge-preserving prior (such as relative differences prior). In the case of
MR imaging data, various iterative Fast Fourier Transform (FFT)-based image reconstruction
algorithms can be employed, with the particular algorithm usually chosen based in part on the
k-space trajectory used to acquire the MR imaging data. The imaging data that is
reconstructed may be two-dimensional (2D) imaging data in which case the image
reconstruction produces a 2D image (sometimes called an image slice); or, the imaging data
that is reconstructed may be three-dimensional (3D) imaging data in which case the image
reconstruction produces a 3D image (sometimes called a volume image).

As just noted, the iterative reconstruction 26 produces a series of update
images ending (e.g., when a specified number of iterations are performed or when some other
termination criterion is met) in the iteratively reconstructed image. In approaches disclosed
herein, selected update images are subtracted to generate a difference image having contrast
for features of interest. In illustrative FIGURE 1, two selected update images 30, 32 are

shown, which are indexed without loss of generality as update image i and update image j. A
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difference image 34 between the first update image 30 and a second update image 32 of the
series of update images is generated. To avoid the possibility of negative pixel or voxel
values, in some embodiments the difference image 34 is an absolute difference image
between the first and second update images 30, 32 in which each pixel or voxel of the
absolute difference image 34 is computed as the absolute value of the difference between
corresponding pixels or voxels of the first and second update images 30, 32. In some
embodiments, negative pixel or voxel values and positive values in the difference image can
be used to differentiate cold and hot features of the image. Optionally, the difference image
34 is transformed by transformation operations 36 such as scaling or weighting of pixels or
voxels of the difference image in order to generate a feature image 40.

The difference image 34 (optionally transformed into feature image 40) is used
in the iterative reconstruction 26 (i.e., used in iterations performed subsequent to the
iterations that generated the update images 30, 32) as indicated by feedback path 42. For
example, the feature image 40 may serve as a prior image in subsequent iterations of the
iterative image reconstruction 26. In other embodiments, the difference image 34 (optionally
transformed into feature image 40) is used in optional post-processing, such as illustrative
image refinement 44, that is performed on the iteratively reconstructed image to produce the
final clinical image that is stored in a clinical image storage 46 such as a Picture Archiving
and Communication System (PACS). Use of the feature image 40 in the post-processing 44 is
diagrammatically indicated in FIGURE 1 by data flow path 48.

With reference to FIGURE 2, in other embodiments the difference image is
generated from update images produced by iterative image refinement, rather than by
iterative image reconstruction. The distinction between iterative image reconstruction and
iterative image refinement is that iterative image reconstruction operates to convert imaging
data (projection data or k-space data) to image data in a 2D or 3D image space; whereas,
iterative image refinement operates to improve an image already extant in a 2D or 3D image
space. To simplify illustration, FIGURE 2 starts with the reconstructed image storage 28 that
stores a reconstructed image; but it should be noted that in the embodiment of FIGURE 2 the
reconstructed image stored in the storage 28 may have been generated using either an
iterative or a non-iterative image reconstruction algorithm. The computer 22 in the
embodiment of FIGURE 2 is programmed to perform an iterative image refinement 56 on the
reconstructed image stored in the storage 28, which in this context of FIGURE 2 is an input

reconstructed image that is input to the iterative image refinement 56. The iterative image
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refinement 56 may, for example, be iterative filtering, iterative resolution recovery, iterative
scatter correction, or so forth.

The iterative image refinement 56 is performed on the input reconstructed
image to generate an iteratively refined image that is stored in the PACS or other clinical
image storage 46. The iterative image refinement 56 produces a series of update images
ending (e.g., when a specified number of iterations are performed or when some other
termination criterion is met) in the iteratively refined image. In embodiments comporting
with FIGURE 2, selected update images of the series of update images produced by the
iterative image refinement 56 are subtracted to generate a difference image having contrast
for features of interest. In illustrative FIGURE 2, two selected update images 60, 62 are
shown, which are indexed without loss of generality as update image [;; and update image
Iy,. A difference image 64 between the first update image 60 and a second update image 62
of the series of update images is generated. To avoid the possibility of negative pixel or voxel
values, in some embodiments the difference image 64 is an absolute difference image
between the first and second update images 60, 62 in which each pixel or voxel of the
absolute difference image 64 is computed as the absolute value of the difference between
corresponding pixels or voxels of the first and second update images 60, 62. In some
embodiments, negative pixel or voxel values and positive values in the difference image can
be used to differentiate cold and hot features of the image. Optionally, the difference image
64 is transformed by transformation operations 66 such as scaling or weighting of pixels or
voxels of the difference image in order to generate a feature image 70. The difference image
64 (optionally transformed into feature image 70) is used in the iterative image refinement 56
(i.e., used in iterations of the image refinement 56 performed subsequent to the iterations that
generated the update images 60, 62) as indicated by feedback path 72.

With reference to FIGURE 3, in another variant embodiment the difference
image is between reconstructed images generated by two different (e.g., iterative or
non-iterative, reconstruction with or without TOF) image reconstruction algorithms. Thus,
the embodiment of FIGURE 3 again operates on the imaging data (e.g. projection or k-space
imaging data) acquired by the imaging device 10 and stored in the imaging data storage 24.
The computer 22 is programmed to generate a first reconstructed image 80 by performing a
first image reconstruction 81, and to generate a second reconstructed image 82 by performing
a second image reconstruction 83 that is different from the first image reconstruction 81. For
example, in the case of PET imaging data one of the image reconstruction algorithms 81, 83

may be a TOF reconstruction that leverages TOF localization data while the other may be a



10

15

20

25

30

WO 2018/037024 PCT/EP2017/071175
10

non-TOF reconstruction that does not use TOF localization data. In another embodiment, one
of the image reconstruction algorithms 81, 83 may converge more rapidly than the other. A
difference image 84 is generated as the difference between the two (differently) reconstructed
images 80, 82. It is emphasized that both reconstructed images 80, 82 are generated by
reconstructing the same imaging data, so that differences between the two reconstructed
images 80, 82 are due to the different reconstruction algorithms 81, 83. Rather than taking the
difference between the final reconstructed images 80, 82, in an alternative approach if one or
both of the two image reconstruction algorithms 81, 83 are iterative reconstruction
algorithm(s), then intermediate image update(s) preceding production of the (final)
reconstructed image(s) 80, 82 may be used, as indicated in FIGURE 3 by dotted inputs 86.
For example, the difference image 84 may be between an intermediate update image of the
first image reconstruction 81 and an intermediate update image of the second image
reconstruction 83. Alternatively, the difference image 84 may be between two different
update images of the first image reconstruction 81. As already described respecting the
embodiments of FIGURES 1 and 2, the difference image 84 may be an absolute difference
image, and/or may be transformed by transformation operations such as scaling or weighting
into a feature image (not shown in FIGURE 3). The computer 22 is further programmed to
implement an image synthesizer 88 that combines the two reconstructed images 80, 82 using
the difference image 84 (again, optionally transformed into a feature image by scaling,
weighting, or so forth) to generate a final reconstructed image that is stored in the PACS or
other clinical image storage 46. For example, the two reconstructed images 80, 82 may be
combined on a pixel-by-pixel or voxel-by-voxel basis in which each pixel or voxel of the
synthesized image is a weighted combination of the pixel or voxel values of the two
reconstructed images 80, 82 with the weights determined by the corresponding pixel or voxel
values of the difference (or feature) image 84.

It is again noted that the various computational components 26, 36, 44, 56, 66,
81, 83, 88 are implemented by suitable programming of the illustrative computer 22,
although implementation of some computationally intensive aspects via ASIC, field-
programmable gate array (FPGA), or other electronics is also contemplated. The computer 22
may be a single computer (server computer, desktop computer, or so forth) or an
interconnected plurality of computers, e.g. a computing cluster, cloud computing resource, or
so forth. It will be further appreciated that the disclosed image processing techniques may be
embodied as one or more non-transitory storage media storing instruction executable by the

illustrative computer 22 or by some other computer or computing resource to perform the
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disclosed operations. The non-transitory storage medium may, for example, comprise a hard
disk or other magnetic storage medium, an optical disk or other optical storage medium, a
solid state drive, flash memory or other electronic storage medium, various combinations
thereof, and/or so forth.

In the following, some more detailed illustrative examples are provided in the
form of phantom studies and clinical studies. These examples are directed to PET imaging,
but as already described the disclosed approaches levering difference images constructed
from update images produced by iterative image reconstruction or refinement are more
generally useful in other types of imaging (e.g., PET, SPECT, CT, MR, or so forth).

A first example, which comports with FIGURE 1, generates the feature image
40 from update images 30, 32 of iterative reconstruction 26 and uses the feature image 40 in
subsequent image refinement 44, namely in post-reconstruction filtering. In this example, the
imaging data were acquired using a digital PET system with TOF information and with
clinically relevant count level. The PET image was reconstructed using iterative TOF
list-mode OSEM reconstruction as the iterative reconstruction 26, with one iteration and four
subsets (Imagel, i.e. update image 30), then with two iterations and four subsets (Image2, i.e.
update image 32). The difference image 34 was generated by subtracting Imagel from
Image?2 and taking the absolute value of each voxel of the difference image to generate the
absolute difference image. Subsequent scaling/weighting 36 to generate the feature image 40
included calculating the ratio of the absolute difference image to Imagel voxel-by-voxel to
generate the ratio image Ratiol2, followed by clamping the voxel values to 0.15 and then
dividing the image by 0.15 to obtain the feature image 40. The value of 0.15 was found
empirically to be effective in this example, but a smaller or larger clamp value may be used
to gauge the level of changes in the images from different reconstructions, and/or the clamp
value may be adjusted based on how the iterative reconstruction is performed. As an example
of the latter, when TOF is used, image convergence is typically faster than for a non-TOF
reconstruction, so that one may prefer a relatively larger clamp value for TOF reconstruction;
when more subsets are used in each iteration, then the difference can be larger.

It is also noted that while the update images 30, 32 in this example are from
different iterations, more generally iterative image reconstruction is commonly performed
with a number of subsets, and the image is updated at each subset. The term “update image”
is used herein to emphasize that the images used to generate the difference image are not

necessarily from different iterations, but more generally are from two different updates.
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The feature image 40 generated as described above for this example has the
following characteristics: (1) Any voxel that has value change of 15% (in this specific
illustrative example; more generally other values may be used) or more from Imagel to
Image? has value 1; (2) Any voxel that has value change between 0 to 15% is scaled to 0-1;
and (3) Small structures (e.g., lesions) and cold regions tend to have large percentage change
between iterations, therefore, the corresponding voxels in the feature image have values 1 or
close to 1. Accordingly, when the feature image 40 is used for the post-reconstruction image
refinement 44 (filtering, in this example), the feature image 40 provides extra information. In
particular, if a voxel is from a lesion then its value in the feature image 40 has value 1 or
close to 1. This is used to guide the post-reconstruction processing 44 for optimized
performance. For the example of post-reconstruction filtering of the image, it is desired that
voxels having value 1 in the feature image 40 should not be filtered at all, or should be
filtered only slightly; by contrast, voxels of the feature image 40 with value O or close to O
should be filtered heavily. For values between 0 and 1, the amount of filtering should (at least
approximately) scale with the feature image voxel value, i.e. the feature image voxel value
serves as a weight to determine how much the voxel will be filtered. The resulting filtered
image thus preserves the quantitation of the lesions and organ boundaries (due to weak or no
filtering) while smoothing out the noise in the background/uniform regions (by way of strong
filtering).

Leveraging of the feature image 40 as weights in a weighted combination of

two image transformations 77 and T, can be expressed as follows:

T,(@O)(1 - FD) + T,UD)f (@) (1)

where i indexes pixels or voxels, I(i) denotes pixels or voxels of the iteratively reconstructed
image 28 and f (i) denotes corresponding pixels or voxels of the feature image, and T; and T,
are two different image transformations. Specifically, T, is a strong (e.g., a Gaussian filter
with a large kernel) filter and T, is a weak (e.g., a Gaussian filter with a small kernel) filter in
this particular example.

FIGURE 4 displays Imagel, Image2, the Absolute Difference image, and the
feature image obtained for a NEMA IEC phantom study with 30 million counts. FIGURE 5
illustrates a suitable filtering scheme of the NEMA IEC phantom image using the obtained
feature image. The NEMA IEC phantom image was first reconstructed using a standard

reconstruction protocol (IECO). Then it was heavily filtered using three sequential box filters
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with window size 3 (IEC_Heavy), and slightly filtered using a box filter with kernel weight
of 19 at the center and 1 at the other elements (IEC_Slight). The two filtered images were
then combined using the feature image (IEC_Feature) in accordance with Equation (1) to
obtain the final jointly filtered image (IEC_Joint). Using the foregoing notation, Equation (1)

can be written for this task as:

IEC _Joint = (1-1EC_Feature)*IEC_Heavy + IEC_Feature*IEC_Slight 2)

According to Equation (2), a voxel in the final image is a weighted sum of the value of the
same voxel in the heavily filtered image and that in the slightly filtered image, using the
voxel value in the feature image to calculate the weight. For lesions, the voxel value is 1 in
the feature image, so the weight is 1 for the slightly filtered image and O for the heavily
filtered image. Thus the lesions have the values from the slightly filtered image. In contrast,
the background regions have small value in the feature image, therefore, the weight for the
heavily filtered image is large. Consequently, the obtained image showed preserved spheres
and significantly filtered background.

More particularly, FIGURE 4 shows an example of extracting a feature image
(an embodiment of the feature image 40 of FIGURE 1) from images at two different OSEM
iterations. Images are displayed in FIGURE 4 using linear gray scale and each image was
scaled to its own maximum. In FIGURE 4, from left to right: Imagel (one iteration, four
subsets; this is an embodiment of first update image 30 of FIGURE 1), Image2 (two
iterations, four subsets; this is an embodiment of second update image 32 of FIGURE 1), the
absolute difference (an embodiment of the difference image 34 of FIGURE 1), and the
feature image (an embodiment of feature image 40 of FIGURE 1). The hot spheres and cold
spheres of the IEC phantom as well as the lung insert in the center of the phantom (which is
cold) exhibited large changes between Imagel and Image2. The corresponding voxels of
such objects in the feature image had high values. The uniform background (low frequency
components) of the imaged phantom had low values (more black area in the gray scale
display) in the feature image, indicating relatively small change from Imagel to Image2 due
to faster convergence than the spheres (higher frequency components).

FIGURE 5 shows an example of using the feature image from FIGURE 4 to
post-filter the NEMA image reconstructed using the standard reconstruction protocol (three
iterations, 17 subsets). From left to right: the NEMA image to be filtered (this is an

embodiment of the reconstructed image stored in the storage 28 of FIGURE 1), a heavily
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filtered image (box filter with window size 3, filter three times sequentially), a slightly
filtered image (a box filter with window size 3 but with center of 19 and 1 for the rest), and
the jointly filtered image using the feature image (i.e. the weighted sum of the heavily filtered
and lightly filtered image combined using Equation (2)). The jointly filtered image
significantly suppressed the noise in the background while still preserving the sphere
quantitation.

Next, an imaging example is described in which a final reconstructed image is
synthesized from two different image reconstructions. In regularized reconstruction, different
reconstruction schemes may lead to different image quality. For example, when using a
quadratic prior image, regularized reconstruction leads to more smoothed images, but this
approach has the disadvantage that some small structures may also be smoothed out.
Conversely, when using an edge-preserving prior image, the edges in the image are
preserved, but some areas may not be sufficiently smoothed if the noise level is relatively
high in those areas.

In this example, two reconstructed images are generated: one using a quadratic
prior to obtain a (heavily) smoothed image, and the other using an edge-preserving prior to
obtain an edge-preserved image. Using a feature image, these two images are combined in
weighted fashion to synthesize the two reconstructed images into one joint image. A suitable

weighted combination is:

LMOA =) + LOfE (3)

where i indexes pixels or voxels, I; (i) and I,(i) denotes pixels or voxels of two different
images generated by two different image reconstruction or refinement algorithms applied to
the projection data (or k-space data in the case of MR image reconstruction), f (i) denotes
corresponding pixels or voxels of the feature image. At least one of I; (i) and I,(i) is an
iteratively reconstructed image, and a feature image is generated from two update images of
the iterative reconstruction. In this example, the feature image was generated in the same way
as the NEMA IEC phantom study in FIGURE 4, but using the real patient data (i.e. there is a
trial recon to extract features) to demonstrate that once the mechanism of generating the
feature images is established (through IEC phantom studies), the mechanism is also
application to patient studies.

If one reconstructed image is heavily smoothed (e.g. using a quadratic prior)

and the other is edge-preserving (e.g. using an edge-preserving prior) then the combined
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image provides both the edge preserving advantage of the edge-preserved image and the
smoothing advantage of the smooth image since the feature image provides extra information
such as spatial frequency (i.e. how fast it changes locally) and object boundary information.
This extra information is used to decide which region (or pixels) should be more heavily
smoothed or more lightly smoothed.

FIGURE 6 shows transaxial slices of images of a patient study that illustrate
the effectiveness of the foregoing synthesis of images generated using quadratic and
edge-preserving priors, respectively. FIGURE 7 illustrates the effect of this synthesis for the
same patient study using coronal slices. The liver region was significantly filtered in the
synthesized image as compared to the edge-preserving image, but the small structures, such
as the hot spot in the center) was preserved as compared to the smooth image using a
quadratic prior

More particularly, FIGURE 6 shows the feature image (leftmost image in
FIGURE 6) used to synthesize a MAP reconstructed image using an edge-preserving prior
(second image from left) and a MAP reconstructed image using a (non-edge-preserving)
quadratic prior (third image from left, i.e. “smooth” image). Again, the feature image was
generated in the same way as for the NEMA IEC phantom study above. The rightmost image
in FIGURE 6 was the synthesized image combined using Equation (3) with the feature image
(leftmost image of FIGURE 6) providing the f (i) weights. The synthesized image exhibits
preservation of the small structures in the image and filtering of the soft tissue (indicated by
the black regions in the feature image). This final image was better than either of the MAP
images (middle two images of FIGURE 6).

FIGURE 7 shows coronal slices of the same patient as in FIGURE 6,
illustrating the effectiveness of using the feature image (leftmost image in FIGURE 7) to
obtain the final synthesized image (rightmost image in FIGURE 7) that has both the
advantage of edge-preservation of small features in the edge-preserving image (second image
from the left, MAP reconstruction using an edge-preserving prior) and the advantage of
smoothness of the liver and mediastinum of the smooth image (third image from the left,
MAP reconstruction using quadratic prior).

The same synthesis approach can be applied to generate a feature
image-weighted combination of two images generated using two different image refinement
processes. For example, an edge adaptive anisotropic diffusion filter (ADF) can be used with
two different parameter settings to obtain an edge-preserving image and a smooth image,

respectively. A feature image may then be used to synthesis the two images to obtain the
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final image. In any such approach, the feature image is generated from a difference image
generated by subtracting two update images of iterative image processing (either an iterative
reconstruction or an iterative image refinement) with the update images selected to
emphasize the features of interest.

In a further example, a feature image is used to provide reconstruction
parameter guidance. In regularized reconstruction, one can use a quadratic prior of variable
strength (guided by the feature image) to guide the regularization. For example, values of 1 in
the feature image would reduce the smoothing strength of quadratic prior, and lower values
would gradually enable it. The resulting image reconstruction will apply selective
regularization using the extra information from the feature image, leading to optimized
regularization in one reconstruction (as compared to performing two different reconstructions
as in the example described with reference to FIGURES 6 and 7).

FIGURE 8 illustrates an example of this single-reconstruction approach. Using
a feature image for selective regularization in regularized reconstruction obtained
advantageous lesion quantitation preservation and noise reduction in the background. The
leftmost image in FIGURE 8 shows a regularized reconstruction using classical OSEM
reconstruction without noise control. Lesions were sharp but background was noisy. The
middle image in FIGURE 8 shows a regularized reconstruction using a quadratic prior for
effectively suppressed noise in the background — but small lesions were also smoothed, and
the contrast was decreased significantly. The rightmost image in FIGURE 8 is a regularized
image where the strength of the quadratic prior was modulated by using a feature image to
guide the selective regularization voxel-by-voxel and to preserve the edges. Once again, the
feature image was created in the same way as for the NEMA IEC phantom study above. This
approach provided comparable lesion preservation as the edge-preserving image with
significantly reduced/suppressed background noise, particularly in the warm regions. In
another example, one can use combinations of different priors such as edge preserving prior
in regions where the feature image has high values; for voxels with small values in the
feature image, one can use a stronger low-pass quadratic prior.

With reference now to FIGURE 9, the feature image can additionally or
alternatively be displayed to provide the physician or other medical professional with visual
guidance as to the features detected via the difference image. In illustrative FIGURE 9, the
feature image 40 is displayed side-by-side with a clinical image 90 on a display device 92,
e.g. the LCD, plasma, or other graphical display component of a radiology workstation,

oncology workstation, or other computer device, films etc. used by the medical professional
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to review medical images. The clinical image 90 may optionally be generated leveraging the
feature image 40 as disclosed herein, or may be generated without resort to the feature image
40. As an example of the latter, the clinical image 90 may be generated by MAP
reconstruction using an edge-preserving prior. This can lead to significant noise retention —
however, the medical professional is assisted in detecting lesions in spite of this noise by
reference to the “features guide” which is the displayed feature image 40.

Additionally or alternatively, the feature image 40 may be used in scoring
lesions identified by the medical professional. Such scoring employ various factors or metrics
in providing a quantitative assessment of the likelihood that the feature identified as a lesion
by the medical professional is indeed a lesion, rather than being noise or some other image
artifact. Since the feature image using the illustrative scaling/weighting scheme has pixel or
voxel values near 1 for features and values near zero otherwise, the sum of pixel or voxel
values of the feature image 40 within the area or volume identified as a lesion by the
physician is a metric of how likely it is that the lesion identification is correct. Thus, for

example, the average pixel or voxel value over the area or volume of the lesion:

1
mz f® 4)

iEL

provides a lesion likelihood metric. In Equation (4), L represents the identified lesion, the
summation is over all pixels or voxels i within this lesion (i € L), and the notation |L]|
denotes the total number of pixels or voxels in the lesion L. The likelihood metric of
Equation (4) may optionally be combined with other factors or metrics, e.g. whether the
identified lesion L is wholly within an organ expected to contain the lesion (e.g. whether it is
within the prostate in the case of a prostate cancer analysis), a measure based on the image
texture in the lesion L, and/or so forth.

The invention has been described with reference to the preferred
embodiments. Modifications and alterations may occur to others upon reading and
understanding the preceding detailed description. It is intended that the invention be
construed as including all such modifications and alterations insofar as they come within the

scope of the appended claims or the equivalents thereof.
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CLAIMS:

1. An image processing device comprising:
a computer (22); and
at least one non-transitory storage medium storing instructions readable and
executable by the computer to perform operations including:
performing iterative processing (26, 56) including one of:
(1) iterative image reconstruction (26) performed on
projection or k-space imaging data to generate an iteratively
reconstructed image, and
(i1) iterative image refinement (56) performed on an
input reconstructed image to generate an iteratively refined
image;
wherein the iterative processing produces a series of update images ending in
the iteratively reconstructed or refined image;

generating a difference image (34, 64) between two update images (30,
32, 60, 62) of the series of update images; and

using the difference image in the iterative processing or in
post-processing (44) performed on the iteratively reconstructed or refined

image.

2. The image processing device of claim 1 wherein the difference image (34, 64) is an
absolute difference image between the two update images (30, 32, 60, 62) in which each
pixel or voxel of the absolute difference image is computed as the absolute value of the

difference between corresponding pixels or voxels of the two update images.

3. The image processing device of claim 1 wherein the difference image (34, 64)
between the two update images (30, 32, 60, 62) has pixel or voxel values that indicate large

positive changes and large negative changes between the two update images.
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4. The image processing device of any one of claims 1-3 wherein the two update
images (30, 32, 60, 62) are each generated by the iterative processing (26, 56) prior to

generating the iteratively reconstructed or refined image.

5. The image processing device of any one of claims 1-4 wherein the performed
operations further include:

transforming the difference image (34, 64) into a feature image (40, 70) by
transformation operations (36, 66) including at least scaling or weighting pixels or voxels of
the difference image;

wherein the using comprises using the feature image in the iterative processing or in

the post-processing (44) performed on the iteratively reconstructed or refined image.

6. The image processing device of claim 5 further comprising:
a display component (92);
wherein the performed operations further include simultaneously displaying, on the

display component, both the feature image (40) and a clinical image (90).

7. The image processing device of any one of claims 5-6 wherein the using
comprises:
post-processing (44) the iteratively reconstructed or refined image using the feature
image (40, 70) according to the image transformation:
A1 - FD) + T,Uf D
where i indexes pixels or voxels, I(i) denotes pixels or voxels of the iteratively reconstructed
or refined image and f (i) denotes corresponding pixels or voxels of the feature image, and T;

and T, are two different image transformations.

8. The image processing device of claim 7 wherein the two different image

transformations 77 and T, are two different image filters.

9. The image processing device of any one of claims 5-6 wherein the using
comprises:
post-processing (44) the iteratively reconstructed or refined image using the feature

image (40, 70) according to the image transformation:

LOM - @)+ LOFO
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where i indexes pixels or voxels, I; (i) and I,(i) denotes pixels or voxels of two different
images generated by two different image reconstruction or refinement algorithms applied to
the projection or k-space imaging data or to the input reconstructed image, f (i) denotes
corresponding pixels or voxels of the feature image (40), and one of I, (i) and I, (i) is the

iteratively reconstructed or refined image generated by the iterative processing (26, 56).

10. The image processing device of any one of claims 1-9 wherein the iterative
processing (26, 56) includes iterative image reconstruction (26) performed on projection or

k-space imaging data to generate the iteratively reconstructed image.

11. The image processing device of claim 10 wherein the using comprises:
using the difference image (34) in iterations of the iterative image reconstruction (26)

performed subsequent to producing the two update images (30, 32).

12. The image processing device of claim10 wherein the using comprises:
performing iterations of the iterative image reconstruction (26) subsequent to
producing the two images (30, 32) using a regularization prior with the strength of the prior

modulated according to the difference image (40).

13. The image processing device of any one of claims 1-9 wherein the iterative
processing (26, 56) includes iterative image refinement (56) performed on the input

reconstructed image to generate the iteratively refined image.

14. The image processing device of claim 13 wherein the using comprises:
using the difference image (64) in iterations of the iterative image refinement (56)

performed subsequent to producing the two update images (60, 62).

15. A non-transitory storage medium storing instructions readable and executable by a
computer (22) to perform an image processing method comprising:

performing iterative image reconstruction (26) on projection or k-space imaging data
to generate a series of update images ending in an iteratively reconstructed image;

generating a difference image (34) between a first update image (30) and a second

update image (32) of the series of update images;
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transforming the difference image into a feature image (40) by transformation
operations (36) including at least scaling or weighting pixels or voxels of the difference
image; and

using the feature image in the iterative image reconstruction or in post-processing

(44) performed on the iteratively reconstructed image.

16. The non-transitory storage medium of claim 15 wherein the difference image (34)
is an absolute difference image between the first and second update images (30, 32) in which
each pixel or voxel of the absolute difference image is computed as the absolute value of the

difference between corresponding pixels or voxels of the first and second update images.

17. The non-transitory storage medium of claim 15 wherein the difference image (34)
between the first and second update images (30, 32) has pixel or voxel values that indicate

large positive changes and large negative changes between the two update images.

18. The non-transitory storage medium of any one of claims 15-17 wherein the using
comprises:
post-processing (44) the iteratively reconstructed image using the feature image (40)
according to the image transformation:
L)1 = (D) + U ()
where i indexes pixels or voxels, I(i) denotes pixels or voxels of the iteratively reconstructed
image and f (i) denotes corresponding pixels or voxels of the feature image, and T; and T,

are two different image transformations.

19. The non-transitory storage medium of any one of claims 15-17 wherein the using
comprises:
using the feature image (40) in iterations of the iterative image reconstruction (26)

performed subsequent to producing the first and second update images (30, 32).

20. The non-transitory storage medium of claim 19 wherein the using comprises:
performing iterations of the iterative image reconstruction (26) subsequent to
producing the first and second update images (30, 32) using the feature image (40) as a

regularization prior image.
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21. The non-transitory storage medium of claim 19 wherein the using comprises:
performing iterations of the iterative image reconstruction (26) subsequent to
producing the first and second update images (30, 32) using the feature image (40) as a

weighting image for weighting a regularization prior image.

22. An image processing method comprising:

performing a first image reconstruction (81) on projection or k-space imaging data to
generate a first reconstructed image (80);

performing a second image reconstruction (83) on the projection or k-space imaging
data to generate a second reconstructed image (82);

generating a difference image (84) between two images each selected from the group
consisting of the first reconstructed image, an update image of the first image reconstruction,
the second reconstructed image, and an update image of the second image reconstruction; and

generating a final reconstructed image that combines the first reconstructed image and

the second reconstructed image using the difference image.

23. The image processing method of claim 22 wherein the difference image (84) is

between the first reconstructed image (80) and the second reconstructed image (82).

24. The image processing method of claim 22 wherein the difference image (84) is

between the two different update images of the first image reconstruction (81).
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