PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/37831
GO6F 9/38 A1 »

(43) International Publication Date: 28 November 1996 (28.11.96)

(21) International Application Number: PCT/US96/07630 | (81) Designated States: DE, KR, European patent (AT, BE, CH,

(22) International Filing Date: 23 May 1996 (23.05.96)

(30) Priority Data:
08/445,569 26 May 1995 (26.05.95) uUs
(71) Applicant: NATIONAL SEMICONDUCTOR CORPORA-

TION [US/US]; 2900 Semiconductor Drive M/S D3-579,
Santa Clara, CA 95051 (US).

(72) Inventors: DIVIER, Robert, J.; 1244 Washoe Drive, San
Jose, CA 95120 (US). NEMIROVSKY, Mario; 5999 W.
Walbrook Drive, San Jose, CA 95129 (US). WILLIAMS,
Robert; 14981 Ridgetop Drive, San Jose, CA 95127 (US).

(74) Agent: CONSER, Eugene; National Semiconductor Corpora-
tion, 2900 Semiconductor Drive M/S D3-579, Santa Clara,
CA 95051 (US).

SE).

Published

With international search report.

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(54) Title: TWO TIER PREFETCH BUFFER STRUCTURE AND METHOD WITH BYPASS

(57) Abstract

A method and apparatus for prefetching instructions in a pipelined

processor including first and second prefetch buffers arranged in

memory dote

a two tier

system. As instruction bytes are fetched from cache memory or external
memory, those instruction bytes from memory for which there is space in the

first level buffer are loaded therein, and, simultaneously, those valid
bytes in the second tier buffer for which there is room in the first

instruction
tier buffer

are also loaded into the first tier buffer. Those instruction bytes from memory
for which there is not currently room in the first tier buffer are loaded into the
second tier buffer. The second tier buffer is also used as a buffer for loading

the instruction cache memory from the external memory.

88

57 |52

D transporent latch |54

161
56
)

/L54

cache data
50

.8

14
| D w4
/

88

________]-: g

8%

" Nes

2
62

8

/ 12
e et} —

64

10

decode stoge

[~ 21

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

o

Ny

WO 96/37831 PCT/US96/07630

TWO TIER PREFETCH BUFFER STRUCTURE AND METHOD
WITH BYPASS

Field of the Invention

The invention pertains to prefetch structure and operation in a pipelined microprocessor. More
particularly, the invention pertains to a two tier prefetch buffer, the second tier of which can be bypassed
to improve efficient presentation of instructions for decoding.

Background of the Invention
Modern microprocessors employ pipelining techniques which allow multiple consecutive

instructions to be prefetched, decoded, and executed simultaneously in separate stages. Accordingly, in
any given clock cycle, a first instruction may be executed while the next (second) instruction is
simultaneously being decoded, and a third instruction is being fetched. Accordingly, since less is being
done per instruction each cycle, cycle time can be made shorter. Thus, while it requires several clock
cycles for a single instruction to be prefetched, decoded and executed, it is possible to have a processor
completing instructions as fast as one instruction per cycle, because multiple consecutive instructions are
in various stages simultaneously.

Typically, buffers for temporarily holding data are used to define the boundary between
consecutive stages of the pipeline. When the pipeline advances on a cycle transition, the data is written
out of that buffer into the next stage where it can be processed during that next cycle.

Most pipelined microprocessor architectures have at least four stages. In order of flow, they are
(1) the prefetch stage, (2) the decode stage, (3) the execute stage, and (4) the write-back stage. In the
prefetch stage, an instruction is read out of memory (e.g., an instruction cache) and stored in a buffer.

In the decode stage, the processor reads an instruction out of the prefetch buffer and converts it
into an internal instruction format which can be used by the execute stage of the microprocessor to
perform one or more operations, such as arithmetic or logical operations. In the execute stage, the actual
operations are performed. Finally, in the write-back stage, the results from the operation are written to
the designated registers and/or other memory locations.

In more complex microprocessors, one or more of the these four basic stages can be further broken
down into smaller stages to simplify each individual stage and even further improve instruction
completion speed.

Generally, instructions are read out of memory (e.g., external memory or an instruction cache) in a
sequential address order. However, instruction branches, in which the retrieval of instructions from
sequential address space is disrupted, are common, occurring on average about every 4 to 9 instructions,

The hardware in an instruction prefetch stage typically comprises a prefetch buffer or prefetch
queue which can hold one or more instructions. Each cycle, the decode section can take in the bytes of
an instruction held in the prefetch buffer for decoding during that cycle.

Some microprocessor instruction sets are known as variable width instruction sets. In such
architectures, the instructions are not all the same width. For instance, in the instruction set of the x86
microprocessors developed by Intel Corporation of Santa Clara, California, an instruction can be
anywhere from 1 to 16 bytes in width.

It is an object of the present invention to provide an improved microprocessor.

It is a further object of the present invention to provide an efficient prefetch stage structure and
method for a microprocessor with a variable width instruction set architecture.

It is another object of the present invention to provide a method and apparatus for maintaining the
prefetch buffer as fuli as possible during each cycle.

It is yet another object of the present invention to provide a two tier prefetch buffer, the second
tier of which can also be used to load an instruction cache from external memory.

WO 96/37831 PCT/US96/07630

Summary of the Invention

The invention relates to a method and apparatus for prefetching instructions in a microprocessor,
particularly a variable width instruction set architecture processor, and even more particularly an x86
architecture microprocessor. According to the invention, the prefetch stage of the microprocessor
includes first and second prefetch buffers of equal width. In a preferred embodiment of the invention,
the width of each buffer is great enough to hold several instructions of average width and is also equal in
width to the instruction cache'memory.

Each byte of the prefetch buffers has associated therewith a valid tag bit indicating whether the
data contained therein is a valid instruction byte for decoding. A first one of the prefetch buffers,
prefetch buffer 0, is the interface between the prefetch stage and the decode stage. It is coupled directly
to the decode logic for providing instructions thereto for decoding. The second prefetch buffer, prefetch
buffer 1, is a second tier in which instructions fetched from the cache or the external memory are held if
there is no room in prefetch buffer O for them when they are retrieved.

As instructions are fetched from the cache memory or the external memory, all bytes in byte
positions for which there is room in prefetch buffer O (i.e., which are tagged invalid in prefetch buffer 0)
are loaded directly into prefetch buffer 0, bypassing prefetch buffer 1. Simuitaneously, valid instruction
bytes in prefetch buffer 1 which are in byte positions corresponding to byte positions in prefetch buffer 0
which are tagged invalid are loaded into prefetch buffer O from prefetch buffer 1. Those bytes from
memory in positions for which the corresponding byte position in prefetch buffer O are tagged valid are
loaded into prefetch buffer 1. After each fetch, the valid bits of both prefetch buffers are updated.

The flow of instruction bytes from source (external memory, instruction cache, or prefetch buffer
1) to destination (prefetch buffer 1 or prefetch buffer 0) is dictated by masks used to selectively load the
data bytes into byte positions in the two prefetch buffers. One way of directing the data bytes is to use
the masks to generate the clock enables for each of the prefetch buffers and the select control lines for
certain multiplexers. In one such scheme, each byte of each prefetch buffer is individually controlled by
a separate clock enable signal. Likewise, each byte of each multiplexer is individually controlled by a
separate select control signal. The masks are generated by making a particular combination of the valid
bits of the two prefetch buffers and the incoming data from cache or external memory. The setting of
the valid bits of each buffer each cycle is dictated by a particular logical combination of the
aforementioned masks and the previous condition of the valid tag bits of the two prefetch buffers.

Brief Description of the Drawings -
Figure I is an architectural block diagram of a pipelined microprocessor according to the present

invention.

Figure 2 is a block diagram showing a logical implementation of a prefetch stage of a
microprocessor according to a preferred embodiment of the present invention. -

Figure 3 is a block diagram illustrating exemplary logic for generating bit masks for selectively
loading the prefetch buffers and valid tag bits for the prefetch buffers according to a preferred
embodiment of the invention. .

Figure 4 is a block diagram of an actual preferred implementation of a prefetch stage of a
microprocessor according to a preferred embodiment of the present invention.

Detailed Description of the Invention

The prefetch method and apparatus of the present invention is particularly designed for use in a
microprocessor architecture having variable width instructions and, more particularly, a microprocessor
using the instruction set of the x86 microprocessors developed by Intel Corporation of Santa Clara,
California. Figure | is a block diagram generally illustrating the various pipeline stages of a
microprocessor according to a preferred embodiment of the present invention. As shown, the

-2.

WO 96/37831 . PCT/US96/07630

microprocessor is pipelined in five stages; (1) a prefetch stage, (2) a decode stage, (3) an execute stage,
(4) a write-back stage, and (5) a second write-back stage.

As shown, the prefetch stage includes two prefetch buffers 12 and 14, referred to as prefetch
buffer 0 and prefetch buffer 1, respectively. Prefetch buffer 0 is the boundary between the prefetch and
decode stages and is the only data element in the prefetch stage which interfaces with the decode stage.
The decode stage pulls instructions out of prefetch buffer 0 only. The prefetch stage also includes a 1
kilobyte instruction cache 16 and a tag memory 18 for storing tag data related to the data in the
instruction cache 16. The instruction cache is direct mapped with a line size 8 bytes wide. Both prefetch
buffers also are 8 bytes wide, containing byte position 0 (least significant byte position) to byte position 7
(most significant byte position). The control logic of the prefetch stage is represented by box 20 and will
be described in greater detail subsequently.

The decode stage includes a data extraction unit 26 for separating the various portions of an
instruction and forwarding them to the appropriate logic in the decode stage. The decode stage further
includes a decoder 22 for decoding instructions and a microcode-ROM 24. The prefix and op-code
portions of an instruction are sent to the decoder 22. The decoder 22 addresses a particular location in
microcode-ROM 24 responsive to the op-code. Microcode-ROM 24 outputs a decoded instruction to the
execute stage. Data extraction unit 26 also extracts the constant data bytes of the incoming instruction
and forwards them to appropriate buffers 27 for clocking into the execute stage on the next cycle.

The execute stage fetches operands, executes the instructions and computes memory addresses. In
a preferred embodiment, the microprocessor of the present invention is designed according to the x86
architecture. The x86 architecture uses a segmented address space and has several complex addressing
modes. To generate a physical address according to the x86 architecture, at least two quantities must be
added. Namely, the base address of the particular segment and an offset indicating the distance of the
desired address from the base of the segment must be added. The offset itself may comprise up to three
more parts; a base, index and displacement.

In order to keep the architecture simple and inexpensive, yet allow most addresses to be computed
in a single cycle, a system is implemented in which two address additions can be performed in the same
cycle. Accordingly, all addresses which have only a scaled index and a displacement or a base and a
displacement can be calculated in a single cycle. The offset is calculated by a first adder 28. The offset
which is output from adder 28 is added by adder 30 to the segment base address which is supplied from
a shadow register 32. Segment limit checking is performed by limit check unit 34 in order to prevent
overruns.

The execute stage includes a register file 36 which is used to resolve the source and destination
information for all operations in the execute stage.

The write-back stage includes a bus interface unit 38, debug logic 40 and register write-back logic
42. A second write-back stage is provided for special cases and allows completion of an independent
register operation out of order while a memory write access is still pending.

When fetching instructions for decoding, consecutive instructions to be decoded are not always
found in consecutive address locations in memory. The most common situation in which instructions are
retrieved from non-consecutive memory locations is when a branch occurs in program flow. When a
branch occurs, it may take several cycles before an address can be generated, provided to memory and
the data retrieved. Accordingly, it is not always possible to fetch instructions and provide them to the
prefetch O buffer quickly enough so that the decode logic always has a waiting instruction to decode each
cycle. In fact, fetching of instructions from external memory as opposed to from cache memory usually
requires several cycles and may cause the decode section to stall. Such stall time slows the overall
performance of the microprocessor. Accordingly, it is desirable to keep the instruction buffer in the
prefetch stage as full as possible with instructions. Therefore, when a branch or other event (such as an

WO 96/37831 PCT/US96/07630

instruction fetch from external memory) occurs which requires an extended amount of time to fetch an
instruction. the decoder can continue to pull instructions out of the prefetch buffer.

The present invention utilizes the two tier prefetch buffer architecture illustrated in Figure 2 in
order to keep the prefetch buffers as full as possible. Figure 2 shows a logical implementation of the
prefetch stage according to the present invention.

As previously noted, the microprocessor of a preferred embodiment of the invention has a
1 kilobyte instruction cache. Accordingly, instructions can be prefetched from the instruction cache 16
over cache data lines 50 or from an external memory (not shown) over lines 52. There are 2 prefetch
buffers, prefetch buffer 0, labelled with reference numeral 12 in the figures, and prefetch buffer I,
labelled with reference numeral 14 in the figures. For reasons of efficiency, it is preferred that the data
cache and prefetch buffers have the same width. Thus, an entire cache line can be transferred to the
prefetch stage in a single cycle. In this particular embodiment, that width is 8 bytes (or 64 bits). The
external memory, on the other hand, is 2 bytes (or 16 bits) wide. Instructions from memory are loaded
into a transparent latch 54 before being forwarded to the actual prefetch buffers. Prefetch buffer 1 also
doubles as a buffer for loading the instruction cache memory from the external memory. Particularly, as
data is loaded into prefetch buffer 1, it is separately tagged for possible loading into the cache
irrespective of the condition of the valid tag bits. When a complete line of data which can be loaded into
the cache memory is in prefetch buffer 1, it is written into the cache at an appropriate address and the
tags are updated.

The x86 architecture utilizes variable width instructions. Particularly, an instruction may be
anywhere from | to 16 bytes wide with the average instruction being between 2 and 3 bytes wide. The

. decode stage can take in no more than 8 bytes per cycle since that is the width of prefetch buffer 0 from
which it obtains the instructions to be decoded. Accordingly, instructions which are greater than 8 bytes
wide require at least 2 cycles to be loaded into the decode stage and decoded. The 8 byte width for the
prefetch buffers and the instruction cache is preferred because it achieves a significant reduction in
semiconductor area as compared to prior art architectures in which the prefetch buffer (or queue) is the
same width as the maximum possible instruction width or wider. However, it is wide enough so that the
vast majority of instructions (which average 2 to 3 bytes in width) do fit within one line and potentially
can be loaded into the decode stage and decoded in a singie cycle.

When data is accessed from the cache memory, it is accessed in 8 byte wide units. Data is input
to the prefetch stage either from the cache memory or from the external memory, but not both, in any
given cycle. The byte position in the prefetch buffers into which an instruction byte will be loaded is
dictated by the address of the byte. Particularly, the 3 LSBs of the instruction byte’s address dictate the
byte position in the 8 byte wide prefetch buffers into which the byte will be loaded. Loading instruction
bytes into the prefetch stage in this manner substantially simplifies circuitry throughout the processor.

Associated with each byte of prefetch buffer 0 and prefetch buffer 1 is a valid tag bit. Each valid
tag bit indicates whether the byte in the corresponding position of the corresponding prefetch buffer is a
valid instruction byte to be decoded by the decode stage (1=valid, O=invalid). In one preferred
embodiment of the invention, the prefetch buffers 0 and 1 contain 8 extra bits for storing the valid tag
bits (a total width of 72 bits).

In order to keep prefetch buffer O as full as possible so that it will not be depleted of instructions
by the decode stage during extended waiting periods for retrieved instructions from memory, each cycle,
instructions can be loaded into prefetch buffer 0 simultaneously from prefetch buffer 1 and from memory.

As instructions are fetched from the cache memory or the external memory, all bytes in byte
positions for which there is room in prefetch buffer 0 (i.e., which are tagged invalid in prefetch buffer 0)
are loaded directly into prefetch buffer 0, bypassing prefetch buffer 1. Simultaneously, valid instruction
bytes in prefetch buffer 1 which are in byte positions corresponding to byte positions in prefetch buffer 0
which are tagged invalid are loaded into prefetch buffer O from prefetch buffer 1. Those bytes from

-4-

WO 96/37831 PCT/US96/07630

memory in positions for which the corresponding byte position in prefetch buffer 0 are tagged valid are
loaded into that same byte position in prefetch buffer 1. After each fetch, the valid bits of both prefetch
buffers are updated.

The flow of instruction bytes from source (external memory, instruction cache, or prefetch buffer
1) to destination (prefetch buffer 1 or prefetch buffer 0) may be controlled by masks used to selectively
load the data bytes into byte. positions in the two prefetch buffers.

Figure 2 illustrates one way of directing the data bytes to the appropriate prefetch buffer using
masks to generate select control signals for certain multiplexers and clock enable signals for prefetch
buffer 0 and prefetch buffer 1 such that only the appropriate bytes from memory and prefetch buffer 1
are loaded into prefetch buffer 0. Any instruction bytes returned from memory which do not fit into
prefetch buffer O (because the corresponding byte location in prefetch buffer 0 is still occupied by valid
data) are loaded into prefetch buffer 1.

In this embodiment, the prefetch stage includes multiplexers 56 and 58, the outputs of which load
prefetch buffer 1 and prefetch buffer 0, respectively. The multiplexer select control signals 64 and 62,
respectively, and prefetch buffer clock enable signals 72 and 70, respectively, for controlling the bytes
which are loaded into prefetch buffer 0 and prefetch buffer 1 are dictated by a logical combination of (1)
the valid tag bits of the two prefetch buffers, (2) an 8 bit valid byte mask, MEM, corresponding to the
data incoming from memory, and (3) an 8 bit RESET mask which indicates which bytes that were in
prefetch buffer 0 at the beginning of the cycle were consumed by the decode stage during the cycle.

As shown in Figure 2, prefetch buffer O is loaded through 2:1 multiplexer 58. Multipiexer 58 has
eight select control lines 62. There is one control line for each 8 bit wide byte of incoming data. The
select control lines 62 select either the first or second input to multiplexer 58 for transmission through the
device. As shown, the two selectable inputs to multiplexer 58 are (1) the 8 output bytes from prefetch
buffer 1 and (2) the 8 output bytes of multipiexer 64. The outputs of prefetch buffer 1 on lines 66
comprise the 8 bytes of data currently stored in prefetch buffer 1. The 8 byte output 68 from multiplexer
64 contains the data returned from memory (cache or external memory) during this cycie. As will be
described in more detail later, if the returned data is not the result of a branch, this will either be 8 bytes
of data from a cache hit or 2 bytes of data from external memory positioned in byte positions 0 and 1, 2
and 3, 4 and 5, or 6 and 7. If the data is the result of a branch, then the valid data can be in a variety of
configurations, also as will be discussed in greater detail below.

Accordingly, what is loaded into prefetch buffer O in a given cycle is dictated by the select control
signals 62 for muitiplexer 58 and the clock enable signals 70 for prefetch buffer 0. Prefetch buffer O has
a separate clock enable signal for each byte. Thus, the clock enable signal 70 is 8 bits wide. Data can
be loaded into a byte position in the buffer only when the corresponding clock enable signal is asserted.
Basically, therefore, select control signals 62 of multiplexer 58 determine which data is presented to the
inputs of prefetch buffer 0 while prefetch buffer 0 clock enable signals 70 dictate whether that data is
actually loaded into prefetch buffer 0.

Turning to prefetch buffer 1, the data which is loaded into prefetch buffer 1 on any given cycle is
given by the condition of the select control signals 64 of multiplexer 56 and the clock enable signals 72
of prefetch buffer 1. As was the case with multiplexer 58, multiplexer 56 also has one select control line
for each of the 8 bytes of its total width. Accordingly, select control line 64 is 8 bits wide. Also, as
with prefetch buffer 0, each byte of prefetch buffer 1 is individually enabled. Accordingly, clock enable
line 72 for prefetch buffer 1 is 8 bits wide.

Incoming cache data on line 50 is always 8 bytes wide. However, memory data from external
memory on line 52 is only 2 bytes wide. Accordingly, transparent latch 54 fans out the incoming
memory data in a 1:4 fan out such that four copies of the incoming 2 bytes of data are presented to
multiplexer 56 in byte positions 0-1, 2-3, 4-5, and 6-7, respectively.

WO 96/37831 PCT/US96/07630

Multiplexer 56 selects the cache data on lines 50, if there is a cache hit, and selects the memory
data from transparent latch 54, if there is a cache miss. Accordingly, the select control lines 64 into
muitiplexer 56 can be any signal which indicates whether a cache hit or miss has occurred. Ina
preferred embodiment of the invention, a signal is generated for purposes unrelated to the present
invention which indicates the number of clock cycles since the memory request which resulted in the data
being supplied currently. If the data was retrieved in one clock cycle, then it must be from cache
memory since data cannot be retrieved from external memory that quickly. On the other hand, if the data
is being returned in a second or subsequent clock cycle since the memory request, then it must be
coming from external memory since data is always returned from the cache in a single clock cycle.
Accordingly, a single bit indicating whether the returned data is or is not being returned in the first clock
cycle after the memory request is used as the select control inputs 64 to multiplexer 56. This bit is
fanned out to all 8 select control signals of multiplexer 56. Alternately, multiplexer 56 could have a
single select control input signal for controlling all 8 bytes of the multiplexer.

A memory request will not be made unless there is room in prefetch buffer 1 for the returning
data. Accordingly, it is known that there is room in prefetch buffer 1 for the data output by multiplexer
56. However, if there is room in prefetch buffer O for any of the returning data, it will also be loaded
into prefetch buffer 0. The condition of the clock enable signals 72 (hereinafter SETPF1) of prefetch
buffer 1 are given by:

SETPF1 = MEM & MEMREQ

In the above equation, and all equations throughout this specification, all quantities are 8 bit quantities
unless otherwise indicated. Further, the symbol, &, designates a logical AND operation and the

symbol, +, indicates a logical OR operation. The quantity MEM in the above equation is an 8 bit mask
indicating the byte position of valid data being returned from memory. Assuming for the moment that no
branch is pending when the data is retrieved then the data returned from memory will be in one of two
possible forms. For example, if there is a cache hit and no branch is pending, then all 8 bits will be 1's
indicating that 8 bytes of valid data are being returned (from the cache). If there was a cache miss and
data is being returned from external memory, then the MEM mask will be all 0’s except for two
consecutive 1’s in bit positions 0-1, 2-3, 4-5, or 6-7. The two bit positions within which the valid data
resides depends on the address of the data retrieved.

If a branch occurred in which the destination address is in the middle of a memory line (which is 8
bytes wide in the case of a cache hit or two bytes wide in the case of data returned from external
memory, the condition of the MEM mask will be different from the two conditions described above. A
more detailed discussion of how the MEM mask is generated when a branch is pending and when no
branch is pending is given further below. :

The MEMREQ quantity is a signal which indicates whether a memory request is pending or not.

It is a one bit wide signal which can be fanned out to eight lines. This signal simply assures that if a
memory request is not pending, none of the data which might be present on the output of multipiexer 56
is loaded into prefetch buffer 1. '

Therefore, as can be seen from the above equation, prefix buffer 1 is loaded with all valid data
being returned from memory responsive to a memory request, even if some or all of that data is actually
also going to be loaded into prefetch buffer 0. However, although all of the valid data returned from
memory is loaded into prefetch buffer 1, the data which also can be (and will be) loaded directly into
prefetch buffer 0 during that cycle will not be marked valid in prefetch buffer 1. Of course, the data
which cannot be loaded into prefetch buffer O in that cycle will be marked valid in prefetch buffer 1.
Even though invalid tagged data in prefetch buffer 1 is irrelevant to the decode stage, it is loaded as
described above because prefetch buffer 1 is also used for loading the cache memory. Separate tags keep

WO 96/37831 PCT/US96/07630

track of the data in prefetch buffer 1 for purposes of loading the cache merﬁory. When a full line of
consecutive bytes exist in prefetch buffer 1, it can be loaded to an appropriate line in the cache memory.
As previously noted and as will be described in greater detail below, during each cycle, the valid
bytes in prefetch buffer 1 for which there is room in prefetch buffer O are written from prefetch buffer 1,
through multiplexer 58, into prefetch buffer 0 simultaneously during the cycle.
The marking of the data as valid or invalid in prefetch buffer 1 is given by the equation below:

PFl,. = (PFl,, & PFO,,, & BRANCH NOT TAKEN) +
(MEM & PFO,;; & BRANCH NOT TAKEN)

where
PFl .., = the condition of the valid bits of prefetch buffer
1 at the end of the cycle
PFO,;; = the condition of the valid bits of prefetch buffer
0 at the beginning of the cycle,
PFL, . = the condition of the valid bits of prefetch buffer

1 at the beginning of the cycle, and

BRANCH NOT TAKEN = the execute stage has not taken
a branch (either all ones or all zeros)

The logical equation given above is the equivalent of the following description. Whatever data that was
in prefetch buffer 1 which was not loaded into prefetch buffer 0 because there was valid data at those
byte positions in prefetch buffer 0 (i.e. PFI, ;. & PF0,,,,) remains valid in prefetch buffer 1.
Additionally, any data coming in from memory which cannot be loaded into prefetch buffer 0 there was
valid data at those byte positions in prefetch buffer 0 (i.e., MEM & PFO‘,«M)) also must be marked valid
in prefetch buffer 1.

Since, when a branch is taken, all of the data in the prefetch stage will never be executed and must
be flushed, the branch not taken signal is ANDed in with both ANDing functions in the equation.
Accordingly, if a branch is taken, all valid bits for prefetch buffer 1 will be cleared to zero.

Thus, the equation:

PF1 =(PFl,,,;, & PF0,,, & BRANCH NOT TAKEN) +

vnew) wold)

(MEM & PFO,,,, & BRANCH NOT TAKEN)

Turning now to prefetch buffer 0, the select control lines 70 into multiplexer 58 are the prefetch
buffer 1 valid tag bits at the beginning of the cycle, i.e., PFl . A 1 in a given valid tag bit position
causes multiplexer 58 to select the data in that byte position from prefetéh buffer 1, whereas a 0 causes
multiplexer 58 to select the byte in that position from the output 68 of multiplexer 56. The output 68 of
multiplexer 56 is the data being returned from cache or external memory.

Not all of that incoming data from memory or prefetch buffer 1, however, can be loaded into
prefetch buffer 0. First, prefetch buffer 0 may have valid data which cannot be overwritten. Second, not
all of the data coming from memory will be valid, particularly if the data is being returned from external
memory (in which case, at best, only 2 bytes of data will be valid). Accordingly, the clock enable
signals 70 into prefetch buffer O (hereinafter SETPFO) must be set so that only valid incoming data is
loaded into only byte positions in prefetch buffer O which are tagged invalid. The equation below
accomplishes this task.

WO 96/37831 PCT/US96/07630

SETPFO = (PFl,,, + MEM) & PF0,

The above is the logical equation for describing the following conditions. Prefetch buffer 0 is
loaded with those bytes from prefetch buffer 1 which are valid at the beginning of that cycle) and any
valid bytes being returned from memory (i.e., PFl,,, + MEM) as long as it will not overwrite any data
in prefetch buffer 0 which is already marked valid at the beginning of that cycle
(ie., & PFO,).

In order to set the new condition of the valid tag bits of prefetch buffer 0, the following equation

is used. ‘

PFO,., = (PFO,; + SETPF0) & RESET & BRANCH NOT TAKEN
where

PFO,,,, = the condition of the valid bits of prefetch buffer

0 at the end of the cycle, and
RESET = a mask indicating which bytes in prefetch buffer 0 were
consumed by the decoder during the cycle.

The above logical equation describes the following conditions. The bytes which should be marked
valid in prefetch buffer O (i.e., PF0,,,) are those bytes which were previously valid in prefetch buffer 0
or were just loaded in with valid data (i.e., PFO,,, + SETPF0), while all bytes which were consumed by
the decode stage will no longer be marked valid (i.e., & RESET). As was the case with the prefetch
buffer 1 valid tag bits, the branch not taken signal is ANDed in in order that all valid bits will be cieared
to zero regardless of the incoming data when a branch is taken in the execute stage. The bits of the
RESET signal are determined in the decode pipeline stage. A detailed disclosure of how the reset bits
are generated may be found in U.S. Patent Application Serial No. , entitled

"Circuit For Designating Instruction Pointers For Use By A Processor Decoder" (Atty. Docket No.
NSC1-64300) and U.S. Patent Patent Application Serial No. , entitled "Tagged
Prefetch Instruction Decoder For Variable Length Instruction Set and Method of Operation” (Atty.
Docket No. NSC1-64100), filed on even date herewith, both of which are incorporated herein by
reference.

The following hypothetical example should help illustrate the operation of the prefetch stage of the

microprocessor of the present invention. If we assume that bytes 4, 5 and 6 in prefetch buffer 0 are valid
at the beginning of this cycle, then

PFO0,,;, = 01110000, and thus
PFO,,, = 10001111

Further, let’s assume that 2 bytes of data are being fetched from external memory on line 52 and that
they are presented from latch 54 in byte positions 6 and 7. Accordingly,

MEM = 11000000

Further, let’s assume that byte positions O through 3 in prefetch buffer 1 contain vaiid data and byte
positions 4 through 7 contain data tagged invalid. Accordingly,

PFl, = 00001111

Finally, let’s assume that the decode stage consumes bytes 4 and 5 from prefetch buffer O during
this cycle. Accordingly,

WO 96/37831 . PCT/US96/07630

RESET =001 1000 0,and thus
RESET =11001111

Given the above conditions, byte positions 4, 5 and 6 in prefetch buffer 0 should not be
overwritten since they contain valid data. Therefore, the byte of instruction data in byte position 6
coming from memory cannot be loaded into prefetch buffer 0. However, the byte of instruction data in
byte position 7 can be loaded into prefetch buffer O since the byte of data in byte position 7 of prefetch
buffer 0 is invalid and can be overwritten. Finally, the four bytes of valid data in prefetch buffer 1
which are in byte positions 0 through 3 can all be written into prefetch buffer O since the corresponding
bytes in prefetch buffer O are invalid.

Thus, the data output from multiplexer 56, as selected by select control lines 64, is determined by
whether the memory has been returned within one clock cycle from the memory request. Since the data
is being returned from external memory in this example, we know the data is not being returned in one
cycle, thus, multiplexer 56 selects the data from transparent latch 54 rather than from the cache.
Therefore, output 68 of multiplexer 56 has valid data in bit positions 6 and 7 and invalid data in bit
positions 0 through 5. The clock enable signals 72 for prefetch buffer 1 are given by the MEM mask
and the fact that there is an outstanding memory request. The MEM mask indicates that the valid data is
in bit positions 6 and 7. Accordingly,

SETPF1 = MEM & MEMREQ
yields

11000000 = MEM
&
11111111 = MEMREQ

11000000 = SETPFI

Thus, prefetch buffer 1 loads data into bit positions 6 and 7 from output 68 of multiplexer 56. Whether
one or both of those bits will be marked valid will be determined momentarily.

Next, the data which is presented to prefetch buffer 0 through multiplexer 58 is dictated by the
prefetch buffer 1 valid tag bits which are supplied as the select control signals 62 of multiplexer 58.
Accordingly, since PF1,,, = 00001111, the data presented in byte positions O through 3 from the output
of multiplexer 58 will be from prefetch buffer 1 and the data presented in byte positions 4 through 7 of
the output of multiplexer 58 will be from output 68 of multiplexer 56 (i.e., from memory). The portion

WO 96/37831 PCT/US96/07630

of the data presented to the input terminals of prefetch buffer 0 which actually will be loaded into
prefetch buffer O is:

SETPFO = (PFl,,, + MEM) & PFO,

which yields,
00001111 = PFI,,
o+
11000000 = MEM
11001111
&

10001111 = PFO,,

10001111 = SETPFO

Thus, prefetch buffer 0 loads bytes 0 through 3 (which are from prefetch buffer 1) and byte 7 (which is
from external memory).

Next, the valid tag bits must be determined for prefetch buffers 0 and 1. The new condition of the
valid tag bits for prefetch buffer 1 are given by:

PFIV(W) = (PFI Wold) & PFOv(old) & BRANCH NOT TAKEN) +
(MEM & PFO, ,, & BRANCH NOT TAKEN)
which yields;

00001111 = PFI,
&
01110000 = PI;(L)V(M

11111111 = BRANCHNOTTAKEN
00000000 - - - 00000000

11000000 MEM
& +
01110000 = PFO,,,

11111111 = BRANCHNOTTAKEN

01000000 -~ - - 01000000

PFl,,, = 01000000

As can be seen, only byte 6 will be tagged valid in prefetch buffer 1. Particularly, bytes 0
through 3, which were previously valid, have been loaded into prefetch buffer 0. Bytes 4 and 5, which

-10-

WO 96/37831 PCT/US96/07630

were previously invalid, must remain invalid since no new data has come in from memory in those byte
positions. Valid data has come in from memory in byte position 6 and was not loaded into prefetch
buffer 0. Accordingly, byte 6 is marked valid. Finally, although valid data was loaded from memory
into prefetch buffer 1 in byte position 7, that data also was loaded into prefetch buffer 0 and will be
marked valid there. Accordingly, it remains marked valid in prefetch buffer 1.

The valid data in prefetch buffer O at the end of this cycle is given by:

PF0,,,, = (PF0,,, + SETPF0) & RESET & BRANCH NOT TAKEN
which yields;
01110000 = PFO,
10001111 = SETPFO
11111111
&

11001111 = RESET
&
11111111 = BRANCHNOTTAKEN

11001111 = PF,.,

This result is correct since valid data has been loaded into bit positions O through 3 and 7 during this
cycle, the valid data which previously existed in byte position 6 in prefetch buffer O remains and the
valid data which previously existed in byte positions 4 and 5 has been consumed by the decode stage and
not replaced during this cycle.

Figure 3 shows the portion of the prefetch logic 20 of Figure 1 which is used to generate the clock
enable signals for the prefetch buffers, the select control lines for multiplexers 56 and 58, and the valid
tag bits of prefetch buffers 0 and 1. The prefetch buffer 0 and prefetch buffer 1 valid tag bit conditions
at the end of the preceding cycle as well as the first cycle of memory request signal are inputs to the
logic. In a preferred embodiment of the invention, the valid tag bits are designated bits in their
respective buffers. Thus, the prefetch buffers are physically 72 bits wide, having 8 bytes of instruction
data and 1 bit of valid tags for each instruction byte. The first cycle of memory request signal 90 is
generated outside of the prefetch stage for other purposes and is traced to the prefetched logic 20.

In order to determine what valid data is coming in from cache or external memory (i.e., the MEM
mask), the lower three bits of the prefetch instruction pointer (PIP) 94 from the decode stage and a one
bit branch pending signal 92 are also brought into the prefetch logic 20. The PIP points to the address of
the first byte in memory from which data is being retrieved. Since the prefetch buffers are eight bytes
wide, the lower three bits of the PIP address also are used to define the byte position in the buffer of the
byte being accessed. MEM mask generating circuit 100 comprises a logic circuit for generating the
MEM signal based on the PIP 94, the branch pending signal 92 and the first cycle of memory signal 90.
Table 1 below shows the truth table for the output of MEM mask generating circuit 100 (i.e., MEM) as a
function of the inputs. MEM mask generating circuit 100 can be implemented by any appropriate
combinational logyic circuit for implementing the indicated truth table.

- 11 -

WO 96/37831 PCT/US96/07630

TABLE |
Lo e Pommoe T MEM
1 0 0 0 0 0 0 0 0 0 11
2 0 0 0 0 1 0 0 0 0 11
3 0 0 0 1 0 00 0 0 1 1 0 0
4 0 0 0 1 1 0 0 0 0 1 1 0 0
5 0 0 1 0 0 00 1 1 0 0 0 0
6 0 0 1 0 1 0 0 1 1 0 0 0 0
7 0 0 1 1 0 I 1 0 0 0 0 0 0
8 0 0 1 1 1 1 1 0 0 0 0 0 0
9 0 1 0 0 0 00 0 0 0 0 1 1
10 0 1 0 0 1 00 0 0 0 0 1 0
1 0 1 0 i 0 00 0 0 1 1 0 0
12 0 1 0 1 I 00 0 0 1 0 0 0
13 0 1 1 0 0 0 0 1 1 0 0 0 0
14 0 1 I 0 1 00 1 0 0 0 0 0
15 0 1 1 I 0 I 1 0 0 0 0 0 0
16 0 1 1 1 I 1 0 0 0 0 0 0 0
17 1 0 0 0 0 111111
18 1 0 0 0 1 IS S U TR T S T
19 1 0 0 1 0 IS TS TS B N S S
20 1 0 0 1 1 RS S SN T TR S B
21 1 0 1 0 0 S RS U W T S T
22 1 0 1 0 1 11 1 1 1 1 1
23 1 0 1 1 0 IS TS TR TR T B S
2 1 0 1 1 1 IS LS S WS T B B
25 1 1 0 0 0 111 1 1 11T
26 1 1 0 0 1 I 1 1 1 1 1 1 0
27 1 1 0 1 0 1 1 1 1 1 1 0 0
28 i 1 0 1 1 1 1 1 1 1 0 0 0
29 1 1 1 0 0 1 1 1 1 0 0 0 0
30 1 1 1 0 1 I 1 1 0 0 0 0 0
31 1 1 1 1 0 1 1 0 0 0 0 0 0
32 1 1 1 1 1 1 0 0 0 0 0 0 0

The table is relatively self-explanatory. The first 16 rows relate to accesses from external memory
since the data is not returned in the first cycle. In the first 8 rows, no branch is pending and the three
LSBs of the PIP indicate the position in the 8 byte wide input of the 2 bytes of data being returned from
external memory. '

When a branch is pending, however, not all returned data from memory may be part of the valid
instruction stream. Particularly, in the illustrated embodiment external memory has a line width of 2
bytes and cache memory has a line width of 8 bytes. Accordingly, data is retrieved only in these two
widths, respectively. A branch, however, may be to any byte in memory and pérticularly can be to a
byte in the middle of a memory line. Accordingly, if a branch is to the second byte in a memory line,

-12-

WO 96/37831 PCT/US96/07630

both bytes at the specified line address in external memory (or all 8 bytes, if it happens to be a cache hit)
are returned to the prefetch stage. The first byte of the returned line must be marked invalid in the
prefetch stage so that it is not decoded and executed.

Rows 9-16 illustrate the situations for a cache miss when a branch is pending.

Rows 17 through 24 cover the cases where memory is returned in a first cycle (therefore it is from
the cache) and a branch is not pending. In all of those situations, all 8 bytes are valid. Rows 25-32
illustrate the situation if there is a cache hit and a branch is pending. As can be seen from the table, as
the lower three bytes of the PIP increases, the destination byte of the branch is further to the left in the
line, meaning that more and more bytes at the right of the line must be tagged invalid.

The MEM lines output from MEM mask generating circuit 100 are the clock enable signals for a
prefetch buffer 1 (SETPF1), assuming that there is a memory hit. In order to assure that the MEM value
is used only when there is a memory hit, the MEM lines are ANDed by AND gate 102 with the single
bit output of OR gate 96. OR gate 96 simply receives two 1 bit inputs indicating whether data is being
returned from external memory or from the cache, respectively. This line is the MEMREQ signal in the
equations above. ‘

The select control lines 62 to multiplexer 58 are the prefetch buffer 1 valid tag bits. Therefore, the
prefetch buffer 1 valid tag bits are supplied as the select control input signals of multiplexer 58 without
passing through any combinational logic.

The clock enable signal 70 for prefetch buffer 0 (SETPFO) is generated by ORing the MEM signal
with the prefetch buffer 1 valid tag bits in OR gate 112 and ANDing that result in AND gate 114 with
the inverse of the prefetch buffer O valid tag bits, as inverted by inverter 116. That result is ANDed by
an AND gate 118 with the [bit output of OR gate 104. The output of Or-gate 104 prevents prefetch
buffer O from attempting to load any data when there is no possible data to be loaded. Particularly, Or-
gate 104 ORs together signals 106 108 and 110. Signal 106 indicates if data is available from external
memory during the current cycle. Signal 110 indicated whether there is a cache hit during the current
cycle. Signal 108 is output from OR-gate 111, which ORs together the eight valid tags of prefetch buffer
1 to generate a single bit signal which indicates whether prefetch buffer 1 has any valid bytes. If it does
not, then no data can be loaded into prefetch buffer 0 from prefetch buffer I in any event.

Finally, the select control lines 62 into multiplexer 56 comprises the first cycle of memory request
signal itself, without passage through any combinational logic. This one bit signal is simply fanned out
to the eight select control terminals of multiplexer 56.

After the appropriate data bytes have been loaded into the prefetch buffers O and 1, the valid tag
bits of the two buffers must be updated. In accordance with the equations discussed above, the valid tag
bits for prefetch buffer O are updated by ORing SETPFO with the current condition of the prefetch buffer
0 valid tag bits in OR gate 121 and ANDing that result with the inverse of the RESET bits in AND gate
123. AND gate 123 also ANDs in a third signal indicating that a branch has not been taken in the
execute stage. If a branch is taken in the execute stage during this cycle, then the pipeline must be
flushed and the data in the prefetch stage will be thrown out. As such, the valid tag bits should all be
reset to invalid (i.e., 0).

The circuitry for generating the valid tag bits for prefetch buffer | appears primarily on the right
hand side of Figure 4. In accordance with the equation previously set forth, the prefetch buffer 0 valid
tag bits from the previous cycle are ANDed with MEM by AND gate 125. They are also ANDed with
the current prefetch buffer 1 valid tag bits by AND gate 127. For the same reasons discussed above with
respect to generation of the prefetch buffer 0 valid tag bits, AND gate 127 has a third input coupled to
receive the branch not taken signal. The output of AND gate 125 is further ANDed with the output of
OR gate 96 and the branch not taken signal 97 to assure that (1) the signals on MEM are not used to
affect the prefetch buffer 1 valid tag bits if there is no memory hit during this cycle and (2) the prefetch
buffer 1 valid tag bits are all reset if a branch is taken in the execute stage.

- 13-

WO 96/37831 PCT/US96/07630

Figure 4 illustrates a preferred actual circuit implementation which performs the function described
by Figures 2 and 3. The circuit essentially is the same as shown in Figure 2 except that 2 to 1
multiplexers 56 and 58 are replaced by a single 3:1 muitiplexer 80. The clock enables to prefetch buffers
0 and I remain the same as previously disclosed. The select control signal 82 into 3:1 multiplexer 80 is
given by:

SELECTI =PFI,

SELECT2=PF1,,,, & 1°CYCLE

SELECT3=PFI1, ,, & 1¥CYCLE

where
SELECT 1 selects the corresponding byte at input number 1,
SELECT 2 selects the corresponding byte at input number 2,
SELECT 3 selects the corresponding byte at input number 3, and
First cycle = data is being return within one cycle of the memory request.

Many different circuit implementations for generating select control signals 82 for multiplexer 80 in
accordance with this equation would be obvious to a person of ordinary skill in the related arts and are
therefore not specifically discussed herein.

The invention embodiments described herein have been implemented in an integrated circuit which
includes a number of additional functions and features which are described in the following co-pending,
commonly assigned patent applications, the disclosure of each of which is incorporated herein by
reference: U.S. patent application Serial No. 08/ , entitled "DISPLAY CONTROLLER
CAPABLE OF ACCESSING AN EXTERNAL MEMORY FOR GRAY SCALE MODULATION
DATA" (atty. docket no. NSC1-62700); U.S. patent application Serial No. 08/ , entitled
"SERIAL INTERFACE CAPABLE OF OPERATING IN TWO DIFFERENT SERIAL DATA
TRANSFER MODES" (atty. docket no. NSC1-62800); U.S. patent application Serial No.

08/ , entitled "HIGH PERFORMANCE MULTIFUNCTION DIRECT MEMORY ACCESS
(DMA) CONTROLLER" (atty. docket no. NSC1-62900); U.S. patent application Serial No.

08/ , entitled "OPEN DRAIN MULTI-SOURCE CLOCK GENERATOR HAVING
MINIMUM PULSE WIDTH" (atty. docket no. NSC1-63000); U.S. patent application Serial No.

08/ , entitled "INTEGRATED CIRCUIT WITH MULTIPLE FUNCTIONS SHARING
MULTIPLE INTERNAL SIGNAL BUSES ACCORDING TO DISTRIBUTED BUS ACCESS AND
CONTROL ARBITRATION" (atty. docket no. NSC1-63100); U.S. patent application Serial No.

08/ , entitled "EXECUTION UNIT ARCHITECTURE TO SUPPORT x86 INSTRUCTION
SET AND x86 SEGMENTED ADDRESSING" (atty. docket no. NSC1-63300); U.S. patent application
Serial No. 08/ , entitled "BARREL SHIFTER" (atty. docket no. NSC1-63400); U.S. patent
application Serial No. 08/ , entitled "BIT SEARCHING THROUGH 8, 16, OR 32-BIT
OPERANDS USING A 32-BIT DATA PATH" (atty. docket no. NSC1-63500); U.S. patent application
Serial No. 08/ , entitled "DOUBLE PRECISION (64-BIT) SHIFT OPERATIONS USING A
32-BIT DATA PATH" (atty. docket no. NSC1-63600); U.S. patent application Serial No.

08/ , entitled "METHOD FOR PERFORMING SIGNED DIVISION" (atty. docket no.
NSC1-63700); U.S. patent application Serial No. 08/________, entitled "METHOD FOR
PERFORMING ROTATE THROUGH CARRY USING A 32-BIT BARREL SHIFTER AND
COUNTER" (atty. docket no. NSC1-63800); U.S. patent application Serial No. 08/________, entitled
"AREA AND TIME EFFICIENT FIELD EXTRACTION CIRCUIT" (atty. docket no. NSC1-63900);
U.S. patent application Serial No. 08/ , entitled "NON-ARITHMETICAL CIRCULAR

- 14-

WO 96/37831 ~ PCT/US96/07630

BUFFER CELL AVAILABILITY STATUS INDICATOR CIRCUIT" (atty. docket no. NSC1-64000);
U.S. patent application Serial No. 08/ , entitled "TAGGED PREFETCH AND INSTRUCTION
DECODER FOR VARIABLE LENGTH INSTRUCTION SET AND METHOD OF OPERATION" (atty.
docket no. NSC1-64100); U.S. patent application Serial No. 08/ , entitled "PARTITIONED
DECODER CIRCUIT FOR LOW POWER OPERATION" (atty. docket no. NSC1-64200); U.S. patent
application Serial No. 08/ , entitled "CIRCUIT FOR DESIGNATING INSTRUCTION
POINTERS FOR USE BY A PROCESSOR DECODER" (atty. docket no. NSC1-64300); U.S. patent
application Serial No. 08/ , entitled "CIRCUIT FOR GENERATING A DEMAND-BASED
GATED CLOCK" (atty. docket no. NSC1-64500); U.S. patent application Serial No. 08/ ,
entitled "INCREMENTOR/DECREMENTOR" (atty. docket no. NSC1-64700); U.S. patent application
Serial No. 08/ , entitled "A PIPELINED MICROPROCESSOR THAT PIPELINES MEMORY
REQUESTS TO AN EXTERNAL MEMORY" (atty. docket no. NSC1-64800); U.S. patent application
Serial No. 08/ , entitled "CODE BREAKPOINT DECODER" (atty. docket no. NSC1-64900);
U.S. patent application Serial No. 08/ , entitied "INSTRUCTION LIMIT CHECK FOR
MICROPROCESSOR" (atty. docket no. NSC1-65100); U.S. patent application Serial No.

08/ , entitled "A PIPELINED MICROPROCESSOR THAT MAKES MEMORY REQUESTS
TO A CACHE MEMORY AND AN EXTERNAL MEMORY CONTROLLER DURING THE SAME
CLOCK CYCLE" (atty. docket no. NSC1-65200); U.S. patent application Serial No. 08/ ,
entitled "APPARATUS AND METHOD FOR EFFICIENT COMPUTATION OF A 486™
MICROPROCESSOR COMPATIBLE POP INSTRUCTION" (atty. docket no. NSC1-65700); U.S. patent
application Serial No. 08/ , entitled "APPARATUS AND METHOD FOR EFFICIENTLY
DETERMINING ADDRESSES FOR MISALIGNED DATA STORED IN MEMORY" (atty. docket no.
NSC1-65800); U.S. patent application Serial No. 08/ , entitled "METHOD OF
IMPLEMENTING FAST 486™ MICROPROCESSOR COMPATIBLE STRING OPERATION" (atty.
docket no. NSC1-65900); U.S. patent application Serial No. 08/ , entitled "A PIPELINED
MICROPROCESSOR THAT PREVENTS THE CACHE FROM BEING READ WHEN THE
CONTENTS OF THE CACHE ARE INVALID" (atty. docket no. NSC1-66000); U.S. patent application
Serial No. 08/ , entitled "DRAM CONTROLLER THAT REDUCES THE TIME REQUIRED
TO PROCESS MEMORY REQUESTS" (atty. docket no. NSC1-66300); U.S. patent application Serial
No. 08/ , entitled "INTEGRATED PRIMARY BUS AND SECONDARY BUS
CONTROLLER WITH REDUCED PIN COUNT" (atty. docket no. NSC1-66400); U.S. patent
application Serial No. 08/ , entitled "SUPPLY AND INTERFACE CONFIGURABLE
INPUT/OUTPUT BUFFER" (atty. docket no. NSC1-66500); U.S. patent application Serial No.

08/ , entitled "CLOCK GENERATION CIRCUIT FOR A DISPLAY CONTROLLER
HAVING A FINE TUNEABLE FRAME RATE" (atty. docket no. NSC1-66600); U.S. patent application
Serial No. 08/ , entitled "CONFIGURABLE POWER MANAGEMENT SCHEME" (atty.
docket no. NSC1-66700); U.S. patent application Serial No. 08/ _____, entitled "BIDIRECTIONAL
PARALLEL SIGNAL INTERFACE" (atty. docket no. NSC1-67000); U.S. patent application Serial No.
08/, entitled "LIQUID CRYSTAL DISPLAY (LCD) PROTECTION CIRCUIT" (atty. docket
no. NSC1-67100); U.S. patent application Serial No. 08/__________, entitled "IN-CIRCUIT
EMULATOR STATUS INDICATOR CIRCUIT" (atty. docket no. NSC1-67400); U.S. patent application
Serial No. 08/ , entitled "DISPLAY CONTROLLER CAPABLE OF ACCESSING
GRAPHICS DATA FROM A SHARED SYSTEM MEMORY" (atty. docket no. NSC1-67500); U.S.
patent application Serial No. 08/ | entitled "INTEGRATED CIRCUIT WITH TEST SIGNAL
BUSES AND TEST CONTROL CIRCUITS" (atty. docket no. NSC1-67600); U.S. patent application
Serial no. 08/______, entitled "DECODE BLOCK TEST METHOD AND APPARATUS" (atty.
docket no. NSC1-68000).

.15 -

WO 96/37831 PCT/US96/07630

Having thus described a few particular embodiments of the invention, various aiterations,
modifications and improvements will readily occur to those skilled in the art. Such aiterations,
modifications, and improvements as are made obvious by this disclosure are intended to be part of this
description though not expressly stated herein, and are intended to be within the spirit and scope of the
present invention. Accordingly, the foregoing description is by way of example only and not limiting.
The invention is limited only as defined in the following claims and equivalents thereto.

- 16 -

WO 96/37831 PCT/US96/07630

CLAIMS

What is claimed is:

1. A pipelined processor architecture having at least a prefetch stage and a decode stage, said
prefetch stage comprising;

a first buffer for storing instruction segments, said first buffer having a data input terminal coupled
to receive instruction segments retrieved from a memory and a data output terminal coupled to said
decode stage of said processor,

a second buffer for storing instruction segments, said second buffer having a data input terminal
coupled to receive instruction segments from said memory and having a data output terminal coupled to
said data input terminal of said first buffer, and

control means for causing said first buffer to store instruction segments retrieved from said
memory for which said first buffer has space which is not occupied by other instruction segments to be
decoded, and for causing said second buffer to load any remaining instruction segments retrieved from

said memory.

2. A processor as set forth in claim | wherein said buffers each comprise at least one segment
storage position. and said prefetch stage further comprises tag storage means for storing tag bits
comprising a tag bit for each segment storage position in said first and second buffers indicating whether
the corresponding segment storage position holds a valid instruction segment to be decoded.

3. A processor as set forth in claim 2 wherein said tag storage means comprises storage
locations within said buffers.

4. A processor as set forth in claim 2 wherein said tag bit values are set as a function of the
segment storage position of instruction segments which are consumed by the decode stage and the
segment storage position of instruction segments retrieved from said memory.

5. A processor as set forth in claim 2 wherein said processor has a variable width instruction
set and said buffers are of equal width, said width being less than a maximum possible instruction width
of an instruction and greater than the width of most instructions in said variable width instruction set.

6. A processor as set forth in claim 5 wherein said buffer width is eight segments wide.

7. A processor as set forth in claim 5 wherein said memory comprises an instruction cache

having a line width equal to said buffer width.

8. A processor as set forth in claim 5 wherein said control means further loads instruction
segments from said second buffer into said first buffer when space becomes available in said first buffer
for said segments.

9. A processor as set forth in claim 8 wherein segments are loaded into said buffers in a
segment position determined by an address of the segment such that, for each segment, there is only one
segment position in each buffer into which it can be loaded, further comprising;

means for generating a memory mask indicating the segment position of instruction segments
retrieved from memory, and

means for generating a reset mask indicating which segment position in said first buffer instruction
segments consumed by said decode stage were in, and

-17-

WO 96/37831 PCT/US96/07630

wherein said control means causes instruction segments to be loaded into said buffers responsive to
said memory mask, said reset mask, said valid tag bits of said first buffer and said valid tag bits of said
second buffer.

10. A processor as set forth in claim 9 wherein instruction segments from memory and
instruction segments from said second buffer are loaded into said first buffer as a function of said valid
tag bits of said first and second buffers and said memory mask, and wherein instruction segments from
memory are loaded into said second buffer as a function of said memory mask.

11. A processor as set forth in claim 10 wherein said valid tag bits for said segment positions in
said first buffer are generated as a function of said reset mask, a previous condition of said valid tag bits
of said first and second buffers and said memory mask, and wherein said valid tag bits for said segment
positions in said second buffer are generated as a function of a previous condition of said valid tag bits
for said first and second buffers and said memory mask.

12. A processor as set forth in claim 11 wherein said control means comprises at least a first
multiplexer having a first input coupled to said memory, and a second input coupled to said output
terminal of said second buffer, an output coupled to said first and second buffers, and wherein said
control means further comprises means for generating a select control signal for said multiplexer and
clock enable signals for said first and second buffers.

13. A processor as set forth in claim 12 wherein said buffers each further comprise a clock
enable terminal in which each segment position is separately enabled and said multiplexer is the same
width as said buffers and has a select control input terminal in which each segment position of said
multiplexer is individually selectable.

14. A processor as set forth in claim 13 wherein said control means further comprises circuitry
for logically combining said reset and memory masks with said valid tag bits to generate select control
signals for controlling said multiplexer and clock enable signals for each of said first and second buffers.

15. A processor as set forth in claim 14 wherein said processor has an x86 type architecture
and wherein said buffers and said multiplexer are eight segments wide.

16. A processor as set forth in claim 15 further comprising:

an external memory for storing said instruction segments, ,

a cache memory for storing copies of certain of said instruction segments stored in said
external memory, and

means for loading the instruction segments stored in said second buffer to a line in said
cache memory when said second buffer contains a full line of instruction segments retrieved from
said external memory.

17. A processor as set forth in claim 16 wherein said cache memory and said first and second
buffers have equal line widths.

18. A method of retrieving instruction segments in a pipelined processor and presenting said

instruction segments for decoding, said method comprising the steps of;

retrieving instruction segments from memory,

- 18-

WO 96/37831 PCT/US96/07630

storing in a first buffer those instruction segments retrieved from memory for which said first
buffer has space not occupied by other instruction segments to be decoded,

storing in a second buffer those instruction segments retrieved from memory for which space is not
available in said first buffer, and

retrieving instructions from said first buffer for decoding.

19. A method as set forth in claim 18 wherein said buffers each comprise at least one segment
storage position and further comprising the step of;

generating and storing a tag bit corresponding to each segment storage position in said first and
second buffers indicating whether the corresponding segment storage position holds an instruction
segment to be decoded.

20. A method as set forth in claim 19 wherein said processor operates in cycles and said step of
generating and storing tag bits comprises setting values for said tag bits as a function of instruction
segments decoded and segments retrieved from said memory each cycle of said processor.

21. A method as set forth in claim 20 wherein said first and second buffers comprise an equal
number of segment positions, and wherein segments are loaded into said buffers in a segment position
determined by an address of the segmenf such that, for each segment, there is only one segment position
in each buffer into which it can be loaded, said method further comprising the step of;

loading instruction segments from said second buffer into said first buffer when space becomes
available in said first buffer for said segments.

22. A method as set forth in claim 21 further comprising the steps of;

generating a memory mask indicating the segment positions of instruction segments retrieved from
memory,

generating a reset mask corresponding to instruction segments consumed from said first buffer by
said decode stage, and

wherein said buffers are loaded with instruction segments responsive to said memory mask, said
reset mask, said valid tag bits of said first buffer and said valid tag bits of said second buffer.

23. A method as set forth in claim 22 wherein said step of storing segments in said first buffer
comprises the steps of;

observing said valid tag bits for said first buffer to determine the segment positions in said first
buffer which are tagged invalid and are thus available to accept segments, ’

observing said valid tag bits for said second buffer to determine the segment positions in said
second buffer which are tagged invalid and are thus available to accept segments,

loading those valid tagged segments in segment positions in said second buffer and for which the
corresponding segment position in said first buffer are tagged invalid into said corresponding segment
positions in said first buffer,

observing said memory mask to determine the segment position in said buffers to which segments
retrieved from memory correspond, and

loading into said first buffer those segments retrieved from memory corresponding to segment
positions in both said first and second buffers which are tagged invalid.

24. A method as set forth in claim 23 wherein said step of storing segments in said second

buffer comprises the steps of;

.19 -

WO 96/37831 PCT/US96/07630

observing said memory mask to determine the segment positions in said second buffer to which
segments retrieved from memory correspond, and

loading said segments retrieved from memory into said corresponding segment positions in said
second buffer.

25. A method as set forth in claim 24 wherein said step of generating and storing tag bits for
said first buffer comprises the steps of;

observing said reset mask to determine from which segment positions in said first buffer segments
have been decoded,

resetting said tag bits corresponding to segment positions in said first buffer from which segments
have been decoded, and

setting said tag bits corresponding to those segment positions which have been loaded with
segments from memory or said second buffer.

26. A method as set forth in claim 25 wherein said step of generating and storing tag bits for
said second buffer comprises the steps of;

observing said memory mask,

observing said tag bits for said first buffer,

observing said tag bits for said second buffer, and

setting as valid the tag bits for said second buffer corresponding to those segment positions (1)
which were tagged valid in both said first and second buffers and (2) which were both tagged valid in
said first buffer and to which segments retrieved from memory correspond.

27. A pipelined processor architecture having at least a prefetch stage and a decode stage, said
prefetch stage comprising; ’

an X segment wide multiplexer, where X is an integer, having a first data input terminal coupled
to receive instruction segments from a memory, a second input terminal, an output terminal, and a select
control input terminal including a separate control for each segment in the width of said multiplexer,

an X segment wide first buffer having X segment positions for storing a plurality of instruction
segments, said first buffer having a data input terminal coupled to said output terminal of said
multiplexer, a data output terminal coupled to said decode stage of said processor, and a clock enable
input terminal including a separate enable terminal for each segment position of said buffer,

an X segment wide second buffer having X segment positions for storing a plurality of instruction
segments, said second buffer having a data input terminal coupled to said output terminal of said
multiplexer, a data output terminal coupled to said second input terminal of said multiplexer, and a clock
enable input terminal including a separate enable terminal for each segment position of said buffer,
wherein segments are loaded into said buffers in a segment position determined by an address of the
segment such that, for each segment, there is only one segment position in each buffer into which it can
be loaded,

storage means for storing a tag bit corresponding to each segment position in each of said first and
second buffers and indicating whether the data in the corresponding segment position is a valid
instruction segment to be decoded, and

control means for loading into segment positions in said first buffer (1) segments in said second
buffer in segment positions which are tagged valid and for which the corresponding segment position in
said first buffer is tagged invalid and (2) segments retrieved from memory corresponding to segment
positions which are tagged invalid in both said first and second buffers, said control means loading
segments retrieved from memory which are not loaded into said first buffer into said corresponding
segment positions in said second buffer.

-20-

WO 96/37831 PCT/US96/07630

28. A processor as set forth in claim 27 wherein said prefetch stage further comprises
means for generating said tag bits for said first buffer in which tag bits corresponding to segment
positions in said first buffer which have been loaded with segments from memory, tag bits
corresponding to segment positions which have been loaded with segments from said second buffer and
tag bits corresponding to segment positions which were previously tagged valid and were not consumed

by the decode stage are marked valid, while all other tag bits are tagged invalid.

29. A processor as set forth in claim 28 wherein said prefetch stage further comprises means for
generating tag bits for said second buffer in which segment positions corresponding to segments retrieved
from memory which were not loaded into said first buffer as well as any previously valid tagged segment
positions in said second buffer which were not loaded into said first buffer are tagged valid, while all
other segment position in said second buffer are tagged invalid.

-21 -

PCT/US96/07630

Il "9Old A [zm abois adid
e = g ey pp—————
0¥ —Jbngag D ke
_ T] .
— [2ul ssiw au d —CY
oo (U3 =g [39 8¢) [534nq_sping —— METSEE
ubiy
mw\lJ
— [3 eboys adig {
BL N
T _ b
] _ W0, . a|l4
19)s1bay] 7o R S JuDjsuog | e - “.L sa)sibay | Jayg bau
mopoys [~ zand | 10}9ajas
=g reA—4 [z 41
1Tr----————— 9 —————— W.I_‘”.\l.l. -_—_tTt——]——_———————— — — e — — — -1
_ ~ ye— o] [Fesuenbesn]
Lo \ e —n
] 7
Cl~Jpiapng yojepeid 44 [a 8bois mﬁ__n_A
2160 ==
yojagaid [~ _._ln
- | yd

b 9% .vm\\ 7
boj |01 ayong | _ i_to.czn_ yajese1d q _ 9

WO 96/37831

SUBSTITUTE SHEET (RULE 26)

PCT/US96/07630

WO 96/37831

2/3

¥ "Oid

1 —

aboys spooap

0L

<

9

{ pJang yajajaid

2/

4

8487

<L

vlm/|¢_ Liayng yayajeld

v’

~
¢8 og” 1€12 11

1] 848

0s 9] Lol

D}Dp 8Y3nd

4G —1.4210)_juaindsuos

76—

pa:]}

7

pjop Kiowaw

¢ Old
e~ obojs apooop
0L Y
——{owpnq ypeseidq
o]
8, 848
N
/ 8
29)
4 848 ,
V|V1.|_tmt_,5 yppjad]88
8 7
b9 14"
NN
8 /
9¢
Om ¢w \\m—
Djop 24aDd

em_ yao] juatodsuos ¢

51

9]

” pop Kiowsuw

SUBSTITUTE SHEET (RULE 26)

PCT/US96/07630

WO 96/37831

3/3

¢ Ol

9G xnN jo 85 XxnN jo
(Mau)ay 4y [ORUC) 10318 |4d 18S |04pu0] BPRS (Odd 18S (M3u)rg 4y
1
8 8 8} 8l
RN ANV uayp
AN Ea B TS nﬁ\ﬂ Jou ,_V_LE
8 8 167
L6 yayp V] _¢01 | HO Japooap ay} 4q
‘n_z<_ m jou ;xo_wEn [aN gLl g pawnsuod jou sajAq
M A
e 1”36 _I_I_xO aw] @
W ¢ b ol
[an 8 omm WY :
LTl O | \oz< ! Kiowaw 141 QN oLl | 40 | wc— 1
1A woij bjop | AN _
c C _v o Kiowswi
. W 801 woJj Djop
L6 40 8yd02 L
uao} 8 Anan-] ehl JT N
jou g < /ﬁmm
youbiq
g1 -] !
}noxnd
g bunoiauab 8,
Q 001~ ASDW NIN Scm
gl I i inq L}
i 06— _ |~ ¥6
_ A $S3000 Kiowaw le._ A_ _ A_ _ A
Siq pHOoA Qid jo 8pahd 35| bpud youniq <0:¢> did S}q PlioA Lid

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intern: |l Application No

PCT/US 96/07630

?. CLASSIFICATION OF SUBJECT MATTER

PC 6 GO6F9/38

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such docurnents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

August 1990

claims

X EP,A,0 380 854 (DIGITAL EQUIPMENT CORP) 8

A see column 12, line 4 - column 15, Tine 34
; column 22 line 8 - column 23, line 22;

1-5,8,
18-20,23
27-29

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited docurnents :

"“A" document defining the general state of the art which is not
considered to be of particular relevance

‘E” earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the international filing date but
later than the priority date claimed

T

X"

Y

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the documnent is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual compietion of the international search

7 August 1996

Date of mailing of the international search report

27 AUGUST 1396

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 65! epo nl, -
Fax: (+ 31-70) 340-3016

Authorized officer

Klocke, L

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern: il Application No

PCT/US 96/07630

Intormation on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0380854 08-08-90 US-A- 5113515 12-05-92

AU-B- 628527 17-09-92
AU-B- 5394090 19-12-91
CA-A- 1323937 02-11-93
JP-A- 2208728 20-08-90

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

