Title: PROBES, KITS AND METHODS FOR THE DETECTION AND DIFFERENTIATION OF MYCOBACTERIA

Abstract

The invention provides nucleotide probes, kits and methods for the detection and differentiation of Mycobacteria. The gene probes, kits and methods are useful for the diagnosis of tuberculosis and/or for epidemiological study tools for investigating the progress of infections caused by Mycobacteria. The gene probes as provided comprise part or all of nucleotide sequences provided in the specification or an allelic or a derivative of the nucleotide sequences. The gene probes can distinguish between M.tuberculosis, M.bovis and BCG as well as being able to distinguish between different strains of M.tuberculosis. The probes do not show significant hybridisation to nucleic acids from M.paratuberculosis, M.intracellulare, M.scrofulaceum, M.phlei, M.fortuitum, M.kansasii, M.avium, M.malhioense, M.flavescens, M.gordonae and M.chelonel.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
<th>MG</th>
<th>Madagascar</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LIE</td>
<td>Liechtenstein</td>
<td>SJ</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
PROBES, KITS AND METHODS FOR THE DETECTION
AND DIFFERENTIATION OF
MYCOBACTERIA

TECHNICAL FIELD

The present invention relates to gene probes, kits and methods for the detection and differentiation of Mycobacteria. In particular, the present invention relates to gene probes, kits and methods for the diagnosis of tuberculosis and/or for epidemiological study tools for investigating the progress of infections caused by members of the _M. tuberculosis_ complex.

BACKGROUND ART

In some developed countries including the United Kingdom, tuberculosis is numerically one of the major notifiable infectious diseases and yet the mechanism of pathogenicity of _M. tuberculosis_ is poorly understood. In the developing or 'third' world, this disease is an endemic health problem of vast proportions and therapy involves long periods of treatment with combinations of antibiotics. It is well recognised that one of the major problems in tackling tuberculosis is the lack of a simple, reliable and robust serodiagnostic or gene probe assay. These are necessary because current diagnostic tests, even those available in technically advanced rich nations, are poorly specific and insensitive, being based on a combination of relatively crude symptomology and radiography, staining for
acid fast bacilli and bacterial culture. The first two are widely variable features and the second two are notoriously unreliable. In particular, with presently available tests, several weeks may be required to obtain a definite result and the detection of small numbers of *M.tuberculosis* bacteria in heavily contaminated samples is often difficult. The specific identification of Mycobacteria is also difficult, and especially the differentiation between the members of the *M.tuberculosis* complex: *M.tuberculosis* itself, the bovine strain *M.bovis*, *M.africanum*, *M.microti* and the vaccine strain BCG (which may cause disease in immunologically suppressed individuals. Many attempts have been made to develop new laboratory tests for tuberculosis but all have suffered from poor specificity and/or sensitivity. Gene probes for specific DNA sequences of the organism can detect small amounts of Mycobacterial genome reliably, by procedures that do not require a prolonged culture step or the laborious examination by trained staff of stained sputum smears. Gene probe analysis offers a sensitive method for the rapid detection of small numbers of specific bacteria in the presence of other organisms.

As well as being a significant health problem in humans, infections caused by Mycobacteria are also a significant health problem in cattle, deer, sheep and badgers and the probes provided herein are also useful for diagnostic/epidemiological study tools for use in respect of these species.

Gene probes for identifying strains of the
M. tuberculosis complex are commercially available, but depend on detecting ribosomal RNA and require the bacteria to be cultivated first. Although these gene probes are capable of identifying the M. tuberculosis complex, they are not suitable for detecting bacteria in a specimen of sputum. The cultivation step also increases the test time and this is disadvantageous.

Described herein is the isolation and cloning of a fragment of M. tuberculosis DNA containing a repetitive element specific to the M. tuberculosis complex. This fragment hybridises to multiple polymorphic restriction fragments in different isolates of M. tuberculosis and is therefore able to fingerprint isolates for studies of transmission of tuberculosis. Only a few hybridising bands are detected in digests of M. bovis or BCG DNA, and the probe therefore has the unique ability to distinguish rapidly between these different members of the M. tuberculosis complex.

Research 17, 9063-9072). However, these repetitive elements are both species-specific and appear to give a constant hybridisation pattern with strains from different sources.

This application describes the characterisation and sequence analysis of a repetitive element, which identifies it as a member of the IS3 family of insertion sequences, of which several members have previously been characterised from species of the Enterobacteriaceae.

It has now been found that DNA probes having potential applications to the general diagnosis of Mycobacteria and to the specific diagnosis of tuberculosis can be derived from deoxyribonucleotide sequences capable of hybridizing with those sequences present in a naturally occurring plasmid.

As part of an investigation into antibiotic resistance, the presence of plasmids in *M. tuberculosis* was sought by hybridizing the total DNA from three clinical isolates with DNA from a naturally occurring plasmid known to exist in *M. fortuitum* (A. Labidi, C. Dauguet, K.S. Goh & H.L. David, 1984. Plasmid profiles of Mycobacterium fortuitum complex isolates. Current Microbiology 11: 235-240). Plasmids have not hitherto been found in *M. tuberculosis*, and it was hoped that they would be revealed by the use of the *M. fortuitum* plasmid DNA as a probe. Surprisingly, while this did not reveal the presence of any plasmids in *M. tuberculosis*, it did show that there are *M. tuberculosis* chromosomal DNA fragments
which can hybridize with the plasmid DNA. Moreover, in total DNA from the three clinical isolates digested with restriction endonucleases BamHI or PvuII, the size of the hybridizing fragments was not the same for each strain.

Gene probes for the detection of Mycobacterial infection can have varying degrees of specificity depending on how unique the gene sequences they detect in a bacterial genome, are to a given family, genus, species or strain. Probes of different specificities can be of use depending on the clinical analysis required. Thus, one probe could detect a sequence pattern that is found in many different species (e.g; M.tuberculosis and M.bovis) within a given genus (e.g; Mycobacterium). In other cases, gene probes may be specific for a particular species, and even for different strains of that species.

This varying specificity of gene probes has a practical use. For example, as a first line of diagnosis it may be more appropriate to use a probe which detected general Mycobacterial infection and then, if necessary use fine-tuning probes to diagnose which species of Mycobacteria are involved.

DISCLOSURE OF INVENTION

The present invention provides a nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which hybridises with M.tuberculosis genomic DNA obtainable by screening a M.tuberculosis genomic library with DNA of a plasmid of M.fortuitum.
The present invention also provides a nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which hybridises with genomic DNA of M. tuberculosis and with DNA of a plasmid of M. fortuitum.

The present invention also provides a nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which comprises, or hybridises with, the nucleotide sequence depicted in Fig. 2 hereof or its complementary sequence, or which comprises or hybridises with a nucleotide sequence obtainable from a genomic library of an organism of the M. tuberculosis complex, by hybridisation with the nucleotide sequence depicted in Fig. 2 hereof, and which is capable of distinguishing and characterising bacterial members of the M. tuberculosis complex either from each other, or from other bacteria not of the complex.

Also provided is a nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, wherein the genomic library is obtainable from M. tuberculosis strain 50410.

The present invention also provides a nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection which comprises, or hybridises with, part or all, of the nucleotide sequence shown in either Fig. 2 or Fig. 4 of the drawings or its complementary sequence.

The nucleotide probe may comprise or hybridise with part or all of an insertion element nucleotide sequence.
which in the genome of *M. tuberculosis* strain 50410 is
bounded by two inverted repeat sequences and contains the
nucleotide coding sequence identified in Fig. 2 of the
drawings.

Also provided by the present invention is a nucleotide
probe for the diagnosis and/or epidemiological study of
Mycobacterial infection which comprises or hybridises with
a flanking sequence of nucleotides which in the genome of
M. tuberculosis strain 50410 occur adjacent to an insertion
element nucleotide sequence, bounded by two inverted repeat
sequences and containing the nucleotide coding sequence
identified in Fig. 2 of the drawings.

For example, the nucleotide probe may comprise or
hybridise with part or all of the flanking sequence of
nucleotides which occurs downstream of the 3' end of base
896 in Fig.2 of the drawings.

The present invention also provides a nucleotide probe
for the diagnosis and/or epidemiological study of
Mycobacterial infection which comprises, or hybridises
with, part or all of an approximately 1.9kb nucleotide
sequence which, in the genome of *M. tuberculosis* strain
50410, occurs immediately downstream of the 3' end of the
sequence shown in Fig.2 of the drawings.

The present invention also provides a nucleotide probe
for the diagnosis and/or epidemiological study of
Mycobacterial infection, which comprises or hybridises
strongly with part or all of a nucleotide sequence which
occurs in the genome of *M. tuberculosis* strain 50410 and
which is characterised by the restriction map as shown in Fig. 1 of the drawings.

The nucleotide probe of the present invention may be used for the diagnosis of and/or epidemiological study of Mycobacterial infection. The nucleotide probes of the present invention may be able to distinguish between different strains of *M. tuberculosis*. The nucleotide probes of the present invention may be able to distinguish between *M. tuberculosis*, *M. bovis* and BCG. The nucleotide probes may not show significant hybridisation with *M. paratuberculosis*, *M. intracellularare*, *M. scrofulaceum*, *M. phlei*, *M. fortuitum*, *M. chelonel*, *M. kansasii*, *M. avium*, *M. malnioense*, *M. flavescens* and *M. gordonae*.

The nucleotide probes of the present invention may be used for the detection of Mycobacteria in clinical samples by the techniques of dot blot analysis, solution hybridization, Southern blot analysis or polymerase chain reaction. The clinical samples may comprise sputum, urine, cerebrospinal fluid, tissue samples, blood and other body fluids.

The present invention also comprises diagnostic kits comprising the above described nucleotide probes.

The present invention also provides a method for detecting, distinguishing and/or characterising Mycobacteria in clinical samples for the purposes of epidemiological study which comprises using the above described nucleotide probes.

The present invention also provides methods for the
production of said nucleotide probes.

The present invention also provides a method for distinguishing and characterising bacterial members of the M. *tuberculosis* complex, both from each other and from other bacteria not of the complex, which method comprises: i) digesting DNA from a sample of bacteria with a particular restriction enzyme; and ii) carrying out hybridisation analysis using an above described nucleotide probe.

The nucleotide sequence comprising the gene probe may not necessarily contain a restriction site for the restriction enzyme.

BRIEF DESCRIPTION OF DRAWINGS

In order that the present invention is more clearly understood, embodiments will be described in more detail by way of example only and with reference to the figures wherein:

Fig. 1 shows a restriction map of probe 5;

Fig. 2 shows the DNA sequence of fragment 5C from probe 5 and the translation product of the large open reading frame;

Fig. 3 shows a comparison of primary DNA structure of part of 5C compared with the insertion sequences IS3 and IS3411 of *E.coli*;

Fig. 4 shows the DNA sequence overlapping part of fragment 5B and part of fragment 5C of probe 5, namely the insertion sequence (IS986) from the 5kb DNA fragment of M. *tuberculosis*;
Fig. 5 shows the location of designated open reading frames;

Fig. 6 shows the alignment of potential translated product of IS986 ORFb with putative transposases of other IS3-like elements;

Fig. 7 shows the alignment of potential translated products of ORFa1 and ORFa2 with corresponding regions of other IS3-like elements;

Fig. 8 shows a comparison of the inverted repeat ends of ISTB and IS3411;

Fig. 9 shows the alignment of the potential translated products of the large open reading frames of 5C and IS3411;

Fig. 10 shows the alignment of the potential translated products of the large open reading frames of 5C and IS3;

Fig. 11 shows the alignment of the potential translated products of the large open reading frames of 5C, IS3411 and IS3;

Fig. 12 shows the alignment of the potential translated products of the large open reading frames of the insertion sequence (IS986) from the 5kb DNA fragment of M.tuberculosis with those of IS3411 and IS3;

Fig. 13 shows the alignment of the potential translated products of the large open reading frames of the insertion sequence (IS986) from the 5kb DNA fragment of M.tuberculosis with those of IS3411 and IS3 wherein the C-terminal region of the IS3411 sequence (IS3411') is read from the -1 frame with respect to the rest of the IS3411
sequence;

Fig. 14 shows a restriction map of probe 9; and —

Fig. 15 shows diagrammatically the relationship between probes 5 and 12J-B.

MODES FOR CARRYING OUT THE INVENTION

Probes 9 and 5

As part of an investigation into the possible presence of plasmids in clinical isolates of *M. tuberculosis*, total DNA from three such isolates was subjected to Southern blotting and probed with a naturally occurring plasmid from *M. fortuitum*. This plasmid, referred to as pUS300, was obtained from *M. fortuitum* strain CIPT 14-041-0003 in the Collection de l’Institut Pasteur, Tuberculose, Paris, France (deposited at the National Collection of Type Cultures, Colindale, London UK NW9 5HT under accession number NCTC 12381 on 21 February 1990). The results showed that there were chromosomal DNA fragments in the strains of *M. tuberculosis* which were capable of hybridizing to this *M. fortuitum* plasmid, and also that in material digested with BamHI or PvuII, the size of the hybridizing fragments were not the same for each strain.

In order to isolate these hybridizing fragments, a total DNA library from a clinical isolate of *M. tuberculosis* (strain 50410, obtained from the Public Health Laboratory, Dulwich, London, England) was constructed in the lambda phage vector EMBL4 by ligation of a partial Sau3AI digest of the *M. tuberculosis* DNA with BamHI-digested EMBL4. The
library was screened with a DNA probe derived by labelling a recombinant plasmid pUS301. This plasmid was constructed by ligating an EcoRI digest of plasmid pUS300 with an EcoRI digest of the E.coli plasmid vector pUC19. Positive plaques were purified through further rounds of plaque screening. The probes described below are obtained from the recombinant phage, referred to as the EMBL4/A-3 clone (deposited at the National Collection of Type Culture, Colindale, London UK NW9 5HT under accession number NCTC 12380 on 21 February 1990), of one of the positive plaques obtained by this procedure.

The DNA from this recombinant phage EMBL4/A-3 clone was extracted and digested with EcoRI. Agarose gel electrophoresis and Southern blotting demonstrated that EcoRI-digested EMBL4/A-3 contained a series of fragments including one of approximate size 9000 base pairs (9kb) and one of approximate size 5000 base pairs (5kb) which hybridized with the plasmid pUS300. These fragments were each excised from the gel and are referred to as probe 9 (the 9 kb fragment) and probe 5 (the 5 kb fragment) respectively. Isolation of the probe 5 by hybridisation with M.fortuitum plasmid pUS300 is more fully described in Zainuddin and Dale; J. Gen. Micro. (1989) 135, pp 2347-2355.

The 5kb EcoRI fragment from the lambda clone A3 (Zainuddin, Z.F. & Dale, J.W. (1989) Journal of General Microbiology 135, 2347-2355) was cloned using the plasmid vector pAT153 to generate plasmid pRP5000. Digestion of
the insert fragment from pRP5000 with PvuII generated three fragments designated 5A, 5B and 5C (Fig. 1) which were converted to blunt-ended fragments and ligated with PvuII digested pAT153, generating plasmids pRP5100, pRP5200 and pRP5300 respectively.

Specific subfragments from pRP5000, pRP5200 and pRP5300 generated using BamHI, XhoI, HindIII and SalI (Fig. 1) were cloned in M13mpl8 and M13mpl9 using the M13 Cloning Kit (New England Biolabs). The smaller EcoRI-BamHI fragment from pRP5000 was cloned into Bluescript pKS and nested deletions were carried out using the Erase-a-Base technique (Promega). Sequencing was performed with Taq and T7 polymerases (Promega) and Sequenase Version 2 (US Biochemicals), using the 370 Automated Sequencer (Applied Biosystems). Fragments with overlaps of at least 50bp were sequenced in both directions.

Searches of GenBank, EMBL, NBRF and SwissProt databanks were carried out using the SEQNET node at the SERC facility at Daresbury, by means of the UWGCG package and WordSearch program (Devereux, J., Haeberli, P. & Smithies, O. (1984) Nucleic Acids Research 12, 387-395; and Wilbur, W.J. & Lipman, D.J. (1983) Proceedings of the National Academy of Sciences USA 80, 726-730) and the NAQ program from the Protein Identification Resource. Sequence analyses were performed with the Staden-Plus package (Amersham) using DIAGON (Staden, R. (1982) Nucleic Acids Research 10, 2951-2961) for sequence comparisons and both Positional Base Preference (Staden, R. (1984) Nucleic Acids

Probe 9

Probe 9 was radioactively labelled with 32P using the Multiprime Random Primer Extension method (Amersham) and hybridized to Southern blots of PvuII-digested total DNA from eight clinical isolates of *M.tuberculosis* (isolate number 50410, 60925, 61066, 61104, 61125, 61267, 61377, 61513) as well as *M.bovis* (field strain, Central Veterinary Laboratory) and BCG (NCTC 5692). After agarose gel electrophoresis, the DNA fragments were transferred to a Hybond-N filter and fixed by baking at 80°C for 1 hour. The filter was prehybridized at 68°C in hybridisation buffer. Hybridisation with the probe was carried out in the same buffer at 68°C overnight.

The hybridization buffer consisted of 5X Denhardt's solution, 5X SSPE buffer, 0.2% sodium dodecyl sulphate (SDS) and 100 µg./ml. sonicated salmon sperm DNA. The
Denhardt's solution and the SSPE buffer were made up as stock solutions as follows:

50X Denhardt's solution: 0.5g. Ficoll (mw 400,000), 0.5g. polyvinylpyrrolidone (mw 40,000), 0.5 g. bovine serum albumin, were dissolved in sterile deionized distilled water to a final volume of 50mls which was dispensed into aliquots and stored at -20°C.

20X SSPE buffer: 3.6M NaCl, 20mM ethylenediaminetetra-acetic acid (EDTA), 0.2M NaH₂PO₄/Na₂HPO₄, pH 7.7 were dissolved in deionized distilled water and autoclaved.

The filter was then washed twice with 2X SSC, once with 2X SSC containing 0.1% SDS and once with 0.1X SSC containing 0.1% SDS. All washes were done at 68°C. The SSC was made up as a stock solution as follows:

20X SSC: 3M NaCl, 0.3M sodium citrate were dissolved in distilled water and autoclaved after the pH had been adjusted to 7.0.

The filter was covered with Saran wrap and exposed to X-ray film (RX, Fuji) for 16 hours at room temperature.

Each strain of *M. tuberculosis* hybridized to probe 9 exhibited several hybridizing bands; some elements of this pattern varied from strain to strain while others remained constant. *M. bovis* and BCG also hybridized to probe 9 with a pattern which retained the conserved features of the *M. tuberculosis* pattern.

The following species of Mycobacteria (one strain each except where indicated) did not hybridize with probe 9 to
any significant extent: *M. paratuberculosis*, *M. intracellulare*, *M. scrofulaceum*, *M. phlei*, *M. fortuitum* (three strains), *M. kansasii*, *M. avium*, *M. malnioense*, *M. flavescens*, *M. gordonae* and *M. chalonei* (two strains).

Probe 9 was, therefore, specific for the *M. tuberculosis* complex (which includes *M. bovis* and BCG), with some ability to differentiate between strains.

A restriction map of probe 9 is shown in Fig. 14. The probe is bound by two EcoRI sites and divided by four internal PvuII sites into fragments of approximately 3.5kb, 1kb, 4kb and 0.5kb.

Probe 5

Studies on probe 5 have revealed that it comprises a sequence which encodes an insertion element (designated IS986) which appears to be present in a variable number of copies (up to about 15) in *M. tuberculosis*, *M. bovis*, *M. africanum*, *M. microti* and *M. bovis* BCG of the *M. tuberculosis* complex. The insertion element has been compared to the previously described insertion elements IS 3 and IS 3411 found in *E. coli*. The insertion element of probe 5 has close homology to IS 3411 which probably encodes a transposase.

A restriction map of probe 5 is shown in Fig. 1. The probe can be divided at two PvuII sites into fragments 5A, 5B and 5C as shown.

The sequence of 5C is shown in Fig. 2. Useful restriction sites are boxed and a sequence with 29/40
identity with the right-hand inverted repeat (IR) from IS 3411 and 20/40 with the inverted repeat from IS 3 is underlined (Ishiguro & Sato 1988, J. Bacteriology 170, 1902-1906; Timmerman & Yu 1985, Nucl. Acids Res. 13, 2127-2139). Line diagrams comparing the primary DNA structure of part of 5C compared with IS 3 and IS 3411 are shown in Fig. 3.

Fig. 4 shows a DNA sequence which overlaps part of fragment 5B and part of fragment 5C of probe 5. As in Fig. 2 useful restriction sites are boxed. The PvuII restriction site defines the join between fragments 5B and 5C. This DNA sequence comprises two inverted repeat sequences (27/30 bases matching) which have been underlined in Fig. 4. The left-hand inverted repeat CCTGAACCGCCCCGG CATGTCCGGAGACTC is located within fragment 5B to the 5' side of a first Acc III site, whilst the right-hand inverted repeat GAGTCTCCGGACTCACCCGGGCCTCCAGG is located within fragment 5C to the 3' side of a second Acc III site. The sequence between these inverted repeat sequences comprises the insertion element IS986 (of approximately 1358 bp) which is present in a variable number of copies in members of the M. tuberculosis complex.

Examination of the insertion element revealed one long open reading frame (ORFb: bases 274 to 1311) with a potential translational start codon (GUG) at position 478, and another (ORFc) in the reverse direction (1107 to 622) (Fig. 5). Positional base preference analyses indicated both of these as potentially translated regions, together
with parts of two shorter ORFs (6 to 275 and 164 to 376). (For reasons discussed below, the latter two are considered
together and designated ORFb1 and ORFb2 respectively; the
regions likely to be translated are indicated in Fig. 5.

The codon usage of ORFb, and to a lesser extent ORFc, is
consistent with the high degree of codon bias normally
shown by mycobacterial genes (Dale, J.W. and Patki, A.
(1990) in The Molecular Biology of Mycobacteria (McFadden,
JJ., Ed.) in press). This was also true of the indicated
regions of ORFb1 and ORFb2 (Fig. 5), although not for the
remainder of these ORFs (see below)).

The sequence of the hypothetical translation product
of ORFb was screened against the NBRF and SwissProt
databanks. One sequence was identified with homology
significantly above background, which was the putative
transposase protein of the insertion sequence IS3411, from
E.coli (Ishiguro and Sato; 1988, J. Bacteriology 170, 1902-
1906); a lower degree of similarity was seen with
hypothetical proteins translated from the sequences of two
other insertion sequences, IS600 and IS629, both from
Shigella sonnei (Matsutani, S., Ohtsubo, H., Maeda, Y. &
455). All these sequences belong to the IS3 family.

A multiple alignment of these sequences, and that of
the IS3 transposase (Timmerman, K.P. & Tu, C-P.D. (1985)
Nucleic Acids Research 13, 2127-2139), demonstrates a
marked degree of resemblance except for the C-terminal
portion of the IS3411 protein. The different structure of
this region of IS3411 is also evident from the alignment of the putative transposases (proteins which allow the DNA segment comprising the insertion element bound by inverted repeats, to excise and insert at another part of the genome), of IS3 and IS3411 as shown by Ishiguro & Sato 1988. However, a comparison of the products of all three reading frames of the complete sequences of IS3, IS3411 and IS986 showed homology of the C-terminal portion of the IS986 ORFb with the -1 frame of IS3411. A multiple alignment, using an IS3411 product with a hypothetical frameshift (Fig. 6) (the sequences were split at the point corresponding to the putative frameshift in IS3411; the two portions were aligned separately and re-combined manually. IS3411' is read from the -1 frame with respect to the first part of the sequence), shows that 27% of the amino acid residues of the IS986 ORFb product are also present in at least two of the other three sequences used for comparison, with about half of these being identical in all four sequences. Clusters of identical residues can be seen in three regions containing the conserved motifs L/VWV/AADLYV, IHHT/SDRGSQY and C/SYDNA. The degree of conservation of these regions suggests that they are essential for the function of this protein.

The sequence prior to the potential start codon in ORFb (GUG_{479}) bears only a weak resemblance to a consensus Shine-Dalgarno sequence, which is probably not significant. Therefore the nature of the potential translation start of ORFb was investigated by examination of the upstream
region. The three-frame comparison of the translation products of IS3, IS3411 and IS986 indicated further similarities in this region. In both IS3 and IS3411, the putative transposase gene (ORFb) is preceded by an open reading frame of about 300 base pairs, with good translational start signals (Ishiguro, N. & Sato, G. (1988) Journal of Bacteriology 170, 1902-1906; and Matsutani, S., Ohhtsubo, H., Maeda, Y. & Ohhtsubo, E. (1987) Journal of Molecular Biology 196, 445-455). The hypothetical products of the relevant regions of these ORFs align well with those of ORFα1 and ORFα (Fig. 7) (the translated products of ORFα1 and ORFα2, up to and starting from the position of the suggested frameshift, were aligned with the products of the corresponding reading frame of the other elements. All sequences shown, except ORFα2, started from the presumed AUG initiation codon), indicating a possible frameshift in the IS986 sequence. Alternatively, there is a potential start codon (GUG_{200}) five amino acids into the sequence shown in Fig. 7; so it is conceivable that ORFα2 is translated independently. The potential ribosome binding site indicated in Fig. 7 is only separated from the GUG codon by a single base and is therefore of doubtful significance. Of the combined ORFα1 and ORFα2 products, 29% of residues are found in two of the other three sequences shown. Pairwise comparisons confirm the alignments; for example, 50% of the residues match with the IS3411 ORFα product. The alignment shown in Fig. 7 is in marked contrast to the finding of Schwartz et al (Schwartz,
E., Kroger, M. & Rak, B. (1988) Nucleic Acids Research 13, 2127-2139) that the ORFa products of several elements of the IS3 family showed only marginal homology.

The IS986 ORFα1 has a potential initiation codon (AUG) at position 54, preceded by a purine-rich region with several possible assignments of sequences showing five out of seven bases matching the consensus Shine-Dalgarno sequence. With several other members of the IS3 family, translation of the putative transposase (ORFb) is thought to occur by readthrough from ORFa. In both IS3411 and IS3, the translational stop signal ending ORFa overlaps the putative start codon for ORFb, with the sequence AUGA. A ribosome terminating at this point could therefore reinitiate at the overlapping AUG codon. However, in IS986, although ORFa2 overlaps ORFb, there is no potential start codon in the overlapping region of ORFb.

Ribosomal frameshifting, generating a fusion protein, has been shown to occur in IS1 (Sekine, Y. & Ohtsubo, E. (1989) Proceedings of the National Academy of Sciences USA 86, 4609-4613) in a region where two ORFs overlap, probably at the sequence UUUAAAAC. IS3411, IS3 and IS600 all contain runs of 5-7 A residues in the overlap region between the two ORFs. The overlap region between ORFa2 and ORFb in IS986 does not contain such a long run of adenines, but the sequence UUUUAAG (324-331) may be a candidate for such a frameshifting event. Translational frameshifting in the -1 direction also occurs in other prokaryotic genes which do not appear to possess a common sequence (Atkins,

The significance of ORFc, on the reverse strand, is unclear. The first potential start codon (AUG_{1002}) is not preceded by anything resembling a Shine-Dalgarno sequence. Although analysis of ORFc is consistent with it being a translated sequence, it is in register with ORFb on the other strand, and the analytical procedures on the two strands are not independent. Schwartz et al (Schwartz, E., Kroger, M. & Rak, B. (1988) Nucleic Acids Research 14, 6789-6802) have identified a similar ORF in the E.coli element IS150, which appears to have a coding function. The presence of ORFs on the reverse strand is a common feature of other IS elements, and is considered to be involved in the regulation of transposition possibly by the requirement for both proteins ensuring that the IS element cannot be gratuitously activated by external transcription (Galas, D.J. and Chandler, M. (1989) in Mobile DNA (Berg, D.E. and Howe, M.M., Eds.), pp. 109-162, American Society for Microbiology, Washington). Further work is required to define the actual nature of the translational (and transcriptional) control signals operating in M.tuberculosis.

The base composition of IS986 is typical of M.tuberculosis, at 64% G+C. It is therefore not surprising that the homology with the other members of the IS3 family, which is so pronounced at the protein level, is much less striking at the DNA level (data not shown). There is
however a marked degree of similarity of the inverted repeat ends with the other members of the IS3 family, especially IS3411 (Fig. 8) where the IR ends are 78% identical to those of IS986.

Fig. 9 shows that the translation of the large open reading frame from 5C is strongly homologous to the large open reading frame of insertion element IS3411 from E.coli. It is also homologous to IS3 from E.coli (Fig. 10). The alignment of all three sequences is shown in Fig. 11.

The alignment of the potential translated products of the large open reading frames of the insertion sequence from the 5kb DNA fragment of M.tuberculosis (IS986) with those of IS3411 and IS3 is shown in Fig. 12. In Fig. 13 a similar comparison is made, but here the C-terminal region of the IS3411 sequence (IS3411') is read from the -1 frame with respect to the rest of the IS3411 sequence.

Probe 5 was tested by hybridisation experiments substantially as described for probe 9 with 22 isolates of M.tuberculosis as well as M.bovis and BCG. The conditions were the same as described above for probe 9, except that autoradiography was for 6.5 hours at room temperature.

Each M.tuberculosis strain showed between five and fifteen strongly hybridizing fragments, as well as a number of weaker bands. The number of bands and the strength of the signal, as well as the variation between strains, indicated the presence of a randomly inserted repetitive DNA element in the chromosome of these strains.

M.bovis and BCG showed a simpler pattern of two and
three major bands respectively. These organisms could therefore be easily distinguished from *M. tuberculosis* and from each other.

The following species of mycobacteria (one strain each except where indicated) did not hybridize with probe 5: *M. paratuberculosis*, *M. intracellulare*, *M. scrofulaceum*, *M. phlei*, *M. fortuitum* (three strains) *M. kansasi*, *M. avium*, *M. malnioense*, *M. flavescens*, *M. gordonae* and *M. chelonei* (two strains).

Probe 5 was, therefore, specific for the *M. tuberculosis* complex and was in addition able to distinguish between *M. tuberculosis*, *M. bovis* and BCG, and to distinguish between strains of *M. tuberculosis*.

Fragment 5A on Southern blot, hybridises strongly and specifically with DNA from *M. tuberculosis* H$_{3,7}$Rv and H$_{3,7}$Ra and *M. bovis* BCG giving identical bands in each, of size 2.1 and 0.65 kbp, although it does not necessarily give these sized bands with any strain of *M. tuberculosis*.

INDUSTRIAL APPLICABILITY

Part or all of the sequences identified and which comprise part or all of probe 5 can be used as gene probes. In particular, part or all of the sequences identified in 5C and 5B, as constituting the insertion element can be used as gene probes. When such probes are used in hybridisation studies on cleaved genomic DNA from bacterial specimens of the *M. tuberculosis* complex, characteristic banding patterns are produced and therefore such probes are
useful as diagnostic and epidemiological tools. Not only
5 different species, but different strains within a species
produce characteristic banding patterns. This is
particularly useful for distinguishing M.bovis and M.bovis
BCG from other species, and indeed M.bovis from M.bovis
BCG. Probe 5A could be used as a generic probe, for
detecting all members of the M.tuberculosis complex.

The usefulness of probe 5 or a fragment thereof as a
diagnostic tool is largely due to the following features.

a) The insertion element has only been found in
members of the M.tuberculosis complex (M.tuberculosis,
M.bovis, M.africanum and M.microti) and not in non-
pathogenic environmental Mycobacteria nor M.leprae.

b) Using Southern blot analysis with probe 5 (or a
part of the insertion element in 5) as a probe, a different
pattern of bands is seen with each M.tuberculosis isolate
tested (22 to date). This would be a powerful tool in
epidemiological studies to examine tuberculosis
transmission.

c) It is one of the first probes to show differences
between M.tuberculosis and M.bovis and perhaps more
importantly between M.bovis and M.bovis BCG.

d) The use of the insertion element as a probe to
distinguish M.bovis BCG from M.bovis and M.tuberculosis is
useful in patients with disseminated BCG infection
following vaccination or immunosuppression.

e) Insertion elements (flanked by two insertion
sequences) are useful genetic tools in characterising
unknown genes.

Thus, the present invention provides a number of ways of distinguishing and characterising bacterial members of the *M.tuberculosis* complex, both from each other and from other bacteria not of the complex.

For example, DNA from a sample of bacteria can be digested with a particular restriction enzyme and a hybridisation analysis carried out (in accordance with standard techniques) using as a probe a fragment of the DNA disclosed herein, which fragment does not contain the restriction site used to cleave the sample DNA. For example, a BamHI to Xho I fragment (or a part thereof) of probe 5/5C (see Fig. 1 and bases 420 to 810 of Fig. 2) which is located within the insertion element and which does not contain any PvuII sites, was used to probe a PvuII digest of *M.bovis* BCG DNA. When this was done, strong hybridisation to a single band was observed, indicating that in the *M.bovis* BCG strain tested, the insertion element is present in a single copy.

Employing a probe which contains the restriction site used to cleave the sample DNA, will give rise to multiple band hybridisation, as will also occur if the sample DNA contains multiple copies of e.g. the insertion element; as appears to be the case with most members of the *M.tuberculosis* complex. Nevertheless, the banding hybridisation patterns can be used to distinguish between different strains of the same species, and between different species of the *M.tuberculosis* complex. A generic
probe for detecting all members of the *M. tuberculosis* complex need not include DNA from the insertion sequence, but could be exclusively from the flanking DNA, such as PvuII-EcoRI fragment 5A, as discussed above.

The existence in *M. tuberculosis* of an insertion sequence so closely related to characterised IS elements from the Enterobacteriaceae is of considerable significance from several points of view. The multiple restriction fragment length polymorphisms detected (Zainuddin, Z.F. & Dale, J.W. (1989) Journal of General Microbiology 135, 2347-2355) indicate that a number of copies of IS986 are inserted at different sites in different isolates of *M. tuberculosis*. In this respect it differs from other recently described repetitive elements from mycobacteria (Clark-Curtiss, J.E. & Walsh, G.P. (1989) Journal of Bacteriology 171, 4844-4851; Clark-Curtiss, J.E. & Docherty, M.A. (1989) Journal of Infectious Diseases 159, 7-15; and Green, E.P., Tizard, M.L. V., Moss, M.T., Thompson, J., Winterbourne, D.J., McFadden, J.J. & Hermon-Taylor, J. (1989) Nucleic Acids Research 17, 9063-9072) which give identical Southern blot patterns with different isolates. This suggests that IS986 may be a functional transposable element in mycobacteria, which would be of considerable value for transposon mutagenesis of mycobacterial species. The transposability of IS986 may be regulated by ribosomal frameshifting in the overlap between ORFa and ORFb, as has been established for IS1 (Sekine, Y. & Ohtsubo, E. (1989) Proceedings of the...
The presence of IS986 in clinically isolated strains of *M. tuberculosis* from a wide variety of sources (Zainuddin, Z.F. & Dale, J.W. (1989) Journal of General Microbiology 135, 2347-2355) and the relationship with the IS elements from *E.coli* and *Sh.sonnei*, suggest the possibility of transfer of genetic material amongst *M. tuberculosis* strains as well as acquisition from Gram negative bacteria. It has been suggested (Zainuddin, Z.F. & Dale, J.W. (1990) Tubercle 71, in press) that at least some clinical strains of *M. tuberculosis* carry plasmids, and these may play a role in the dissemination of such elements; the ability of some *E.coli* plasmids to replicate in Mycobacteria (Zainuddin, Z., Kunze, Z. & Dale, J.W. (1989) Molecular Microbiology, 29-34) may have enabled insertion sequences to spread from *E.coli* to *M. tuberculosis*. However, conjugation has never been conclusively demonstrated in *M. tuberculosis*, and the organism normally has a solitary existence, apart from incidental encounters with other organisms, e.g., in the gut. Therefore, transmission of plasmids carrying insertion sequences would probably be a rare event. The high G+C composition of the IS element indicates that its acquisition by *M. tuberculosis* is not a recent event. These questions may be resolved by a study of the behaviour of this insertion sequence in laboratory strains and clinical isolates.

IS986 is found in all species of the *M. tuberculosis*
complex, although the copy number varies, and is not found in other mycobacterial species (Zainuddin, Z.F. & Dale, J.W. (1989) Journal of General Microbiology 135, 2347-2355). Therefore, probes based on IS986 will be highly specific for pathogenic mycobacteria. Coupled with the use of the Polymerase Chain Reaction (PCR), this will provide an exceptionally sensitive system for the detection and speciation of *M. tuberculosis* in clinical specimens. The extensive polymorphism of *M. tuberculosis* isolates tested with this probe (Zainuddin, Z.F. & Dale, J.W. (1989) Journal of General Microbiology 135, 2347-2355) enables extremely precise epidemiological investigations to be carried out, by fingerprinting clinical isolates. With this system all but the most closely related isolates will yield different patterns of hybridising restriction fragments, and it will thus be possible to track the spread of different strains of *M. tuberculosis* through a community.

Probe 12

"Probe 12" is an Eco RI fragment of around 25.2 Kb from *M. tuberculosis* NCTC 7416 H₃₇Rv, obtained by screening a library of EcoRI - digested *H₃₇Rv* under stringent conditions, with *H₃₇Rv* DNA and isolating a strongly hybridising clone.

The 25.2 kb EcoRI fragment is digested by *Pvu*II into fragments of approximate size 8.9 kb, 3.8 kb, 3.5 kb, 3.0 kb (fragment 12J), 1.8 kb (fragment 12B), 1.6 kb, 1.4 kb, and 1.2 kb (fragment 12A). The 1.2kb 12A fragment is
M. tuberculosis complex specific and not related to probes 5 or 9. Figure 15 shows the arrangement of the 12J and 12B fragments with respect to probe 5. The DNA flanking the insertion sequence is illustrated by a wavy line as it is not identical to the flanking DNA in probe 5, owing to the fact that the insertion element inserts at many places in the genome. The flanking DNA of probe 12J hybridises with many different species of Mycobacteria. Fragment 12J could have value as a diagnostic probe for detecting a wide range of Mycobacteria.

Probe 8

This describes an Eco RV fragment of approximately 16.1kb isolated by hybridisation screening a Eco RV library of H₃⁷Rv.

When used as a probe on Southern blot with DNA from **M. tuberculosis** it binds to many fragments. On PvuII digestion it yields fragments of approximate size 5.6 kb, 4.8 kb, 2.1 kb, 2.0 kb, 0.9 kb and 0.7 kb. It does not appear to be related to probes 5 and 12.
CLAIMS:

1. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which hybridises with *Mycobacterium tuberculosis* genomic DNA obtainable by screening a *Mycobacterium tuberculosis* genomic library with DNA of a plasmid of *Mycobacterium fortuitum*.

2. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which hybridises with genomic DNA of *Mycobacterium tuberculosis* and with a plasmid of *Mycobacterium fortuitum*.

3. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which comprises, or hybridises with, the nucleotide sequence depicted in Fig. 2 hereof, or its complementary sequence, or which comprises or hybridises with a nucleotide sequence obtainable from a genomic library of an organism of the *Mycobacterium tuberculosis* complex by hybridisation with the nucleotide sequence depicted in Fig. 2 hereof, and which is capable of distinguishing and characterising bacterial members of the *Mycobacterium tuberculosis* complex, either from each other, or from other bacteria not of the complex.

4. A nucleotide probe according to claim 1 wherein the
genomic library is obtained from *Mycobacterium tuberculosis* strain 50410.

5. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection which comprises, or hybridises with, part or all of the nucleotide sequence shown in either Fig. 2 or Fig. 4 of the drawings or its complementary sequence.

6. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection which comprises, or hybridises with, part or all of an insertion element nucleotide sequence which, in the genome of *Mycobacterium tuberculosis* strain 50410, is bounded by two inverted repeat sequences and contains the nucleotide coding sequence identified in Fig. 2 of the drawings.

7. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection which comprises, or hybridises with, a flanking sequence of nucleotides which, in the genome of *Mycobacterium tuberculosis* strain 50410, occur adjacent to an insertion element nucleotide sequence bounded by two inverted repeat sequences and containing the nucleotide coding sequence identified in Fig. 2 of the drawings.

8. A nucleotide probe according to claim 7 which comprises, or hybridises with, part or all of the flanking
sequence of nucleotides which occurs downstream of the 3' end of base 896 in Fig.2 of the drawings.

9. A nucleotide probe for the diagnosis and/or epidemiological study of Mycobacterial infection, which comprises, or hybridises, with, part or all of an approximately 1.9kb nucleotide sequence which, in the genome of Mycobacterium tuberculosis strain 50410, occurs downstream of the 3' end of the nucleotide sequence shown in Fig.2 of the drawings.

10. A nucleotide probe according to any one of the preceding claims which can distinguish between Mycobacterium tuberculosis, Mycobacterium bovis and BCG.

11. A nucleotide probe according to any one of claims 1 to 10 which can distinguish between different strains or isolates of Mycobacterium tuberculosis.

12. A nucleotide probe according to any one of claims 1 to 10 which does not show significant hybridisation to nucleic acids from Mycobacterium paratuberculosis, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium phlei, Mycobacterium fortuitum, Mycobacterium kansasii, Mycobacterium avium, Mycobacterium malnionense, Mycobacterium flavescens, Mycobacterium gordonae and Mycobacterium cheloni.
13. A kit which comprises a nucleotide probe according to any one of claims 1 to 10.

14. A method for detecting, distinguishing and/or characterising Mycobacteria in clinical samples for the purposes of epidemiological study which comprises using a nucleotide probe according to any one of claims 1 to 10.

15. A method for distinguishing and characterising bacterial members of the *Mycobacterium tuberculosis* complex, either from each other, or from other bacteria not of the complex which comprises:
 - digesting DNA from a sample of bacteria with a particular restriction enzyme; and
 - carrying out hybridisation analysis using a nucleotide probe according to any one of claims 1 to 10.

16. A nucleotide probe substantially as described herein with reference to the Figures.

17. A method for detecting, distinguishing and characterising Mycobacteria substantially as described herein with reference to the Figures.
Fig. 2.
Fig. 2 (cont)

CysGlyAspValProProValGluLeuGluAlaAlaTyrTyrAlaGlnArgGlnArgPro
TGGGGAGGTCCGCCGCCGGTGTAAGCTGAGCTGCTACTAGTTGCTCAACGCGAGAGG
790 800 XhoI 820 830 840

AlaAlaGly***

GCCGCGGCTGGAGGTCCAGATCACAGGCTGCTCCGGAGATTCACCGGGGCGGGGCTAG
850 860 870 AccIII880 890 900

GATGGTGCCCGGTGTTGATACGGCCACACGCACAGGTTGCGCCAGCTGCGCTGGCCC
910 920 930 940 950 960

CACCCTTCGCTGCCAATGTCGGATGTTGCTGGCGTCAAAAAACCGGGCTGCCCCACACGG
970 980 990 1000 1010 1020

GAACACACACGTCGCGTGATGCTCAAGCGACGCAACGCGATGATCTGTGAC
1030 1040 1050 1060 1070 1080

GATCGTTGACCCGAGCCCAATGACCTGCCCCGTCACGTTCAAAAACCAGCCCTCAAGGTGG
1090 1100 1110 1120 1130 1140

CATCACAGAGCAGATCATCCGGTGTCGTCGCTGACGAGCGCCACAGAGGTGCAGCCAG
1150 1160 1170 1180 1190 1200

CGGCACGCTCCTGCACGTCTAGATGATCACCACGCGTTGCTGCTGCCAATGTGCGCCGC
1210 1220 1230 1240 1250 1260

GAGCCACCTCCGGCTCCGACAGCGCTCACCAGCAGCAGAAGGCTCAACACGGCC
1270 1280 1290 1300 1310 1320

GCAACGGGGCCGCTGATCCGACACCGCTGCTCTGTTGTGATGACGGGCTTGTACTGG
1330 1340 1350 1360 1370 1380

CGATCAACGACATCCAGATGAGACTGCAAACGCCATACGATGGGTCCAGGGCCGCGG
1390 1400 1410 1420 1430 1440

AGCTTGACTCCGCAACACTGATCCTAGTCCGGGTCTGCTGTTGATGACGGGCGGCGT
1450 1460 1470 1480 1490 1500

TCCGCGAATCCCGTGTTCCGCTGGTGCTGCTGCTGCCCTCAAATGAGCGGCGTCCCG
1510 1520 1530 1540 1550
Fig. 3.

IS3

ATT ——— ATT

IS3411

GAA ——— GAA

5C (DNA1-849)

--- 5B ---

Acc III

--- CCG ---

Acc III

IR

ORF

100 bp
<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTGAACCGC</td>
<td>CCCGGAGACTC</td>
<td>CAGTGTCTTG</td>
<td>AAAGGATGGG</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>GTCATGTCAG</td>
<td>GTGGTTCACT</td>
<td>GAGGAGTAC</td>
<td>CCGCCGGAGC</td>
<td>TGGCTGAGGC</td>
</tr>
<tr>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>GCGGTTCCGG</td>
<td>ATGGTCAAGC</td>
<td>AGATCCGCAG</td>
<td>TCAGCAGCAT</td>
<td>TCGGAGTGGG</td>
</tr>
<tr>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>CAGGATCAG</td>
<td>TGAGATCGCC</td>
<td>CGTCTACTTG</td>
<td>GTGCTGGCTG</td>
<td>CCGGAGACGG</td>
</tr>
<tr>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>TGCCTAAGTG</td>
<td>GGTGCGCCAG</td>
<td>GCGGAGGTCG</td>
<td>ATGCCGGCCGC</td>
<td>ACGGCCCCGG</td>
</tr>
<tr>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td>ACCACGACCG</td>
<td>AAGAAATCCGC</td>
<td>TGAGATAAAG</td>
<td>CGTCTGCCC</td>
<td>GGGACAACGC</td>
</tr>
<tr>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
</tr>
<tr>
<td>CGAATTTGCC</td>
<td>AGGGCAAGCG</td>
<td>CGAATTTTTAAG</td>
<td>GACCGGCTCG</td>
<td>GCTTTCTTCG</td>
</tr>
<tr>
<td>360</td>
<td>370</td>
<td>380</td>
<td>390</td>
<td>400</td>
</tr>
<tr>
<td>CGGCCGGAGCT</td>
<td>CGACCGCGCA</td>
<td>GCACGCTAAT</td>
<td>TACCGCTGTCG</td>
<td>ATCGCGCAGT</td>
</tr>
<tr>
<td>410</td>
<td>420</td>
<td>430</td>
<td>440</td>
<td>450</td>
</tr>
<tr>
<td>ATCGGGGCAA</td>
<td>CGCGAGGGCC</td>
<td>CGCGATGCTT</td>
<td>TGCCTGTTGGG</td>
<td>TGGTGGATCG</td>
</tr>
<tr>
<td>460</td>
<td>470</td>
<td>480</td>
<td>490</td>
<td>500</td>
</tr>
<tr>
<td>ATCTGCAACATGGCTGACGA</td>
<td>GCTGGGGTGTG</td>
<td>CGCGGCACC</td>
<td>CATCGACCTA</td>
<td></td>
</tr>
<tr>
<td>5B <----- PvuII----------> 5C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>520</td>
<td>530</td>
<td>540</td>
<td>550</td>
</tr>
<tr>
<td>CTACGACCAC</td>
<td>ATCAACCGGG</td>
<td>AGGCCAGCCC</td>
<td>CGCGGAGCTG</td>
<td>CGCGATGGGC</td>
</tr>
<tr>
<td>560</td>
<td>570</td>
<td>580</td>
<td>590</td>
<td>600</td>
</tr>
<tr>
<td>AACTCAAGGA</td>
<td>GCACATCAGC</td>
<td>CGCGTCACCG</td>
<td>CGCCCAACTA</td>
<td>CGGGTTTAC</td>
</tr>
<tr>
<td>610</td>
<td>620</td>
<td>630</td>
<td>640</td>
<td>650</td>
</tr>
<tr>
<td>GGTCCCCGA</td>
<td>AAGTGTGGAT</td>
<td>AACCTGGAAC</td>
<td>CTTGAGGGCA</td>
<td>TCGAGGTGGC</td>
</tr>
<tr>
<td>660</td>
<td>670</td>
<td>680</td>
<td>690</td>
<td>700</td>
</tr>
<tr>
<td>CAGATGCAAC</td>
<td>GTGCAACCGC</td>
<td>TGATGAACAA</td>
<td>ACTCGGCCTG</td>
<td>TCCGGACCA</td>
</tr>
<tr>
<td>710</td>
<td>720</td>
<td>730</td>
<td>740</td>
<td>750</td>
</tr>
<tr>
<td>CCCGCGGGCAA</td>
<td>AGGCCGCGAG</td>
<td>ACCAGGATCG</td>
<td>CTGATCCGGC</td>
<td>CACAGCGGGT</td>
</tr>
<tr>
<td>760</td>
<td>770</td>
<td>780</td>
<td>790</td>
<td>800</td>
</tr>
<tr>
<td>CCCGCGGATC</td>
<td>TGCTCCAGCG</td>
<td>CGCGGTTGCA</td>
<td>CACCAGCAC</td>
<td>CTAACCGGGC</td>
</tr>
<tr>
<td>810</td>
<td>820</td>
<td>830</td>
<td>840</td>
<td>850</td>
</tr>
<tr>
<td>GTGGTACAGCA</td>
<td>GACCTCAGCT</td>
<td>ATGGTGGCTGAC</td>
<td>CTGGCCAGGG</td>
<td>TCCGGCTACG</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET
Fig. 4 (cont)

860 870 880 890 900
TGGCCATTTGT CACCGAGGCC TACGCTCGCA GGGATCTCGG GTGGCGGGCTC
BamHI

910 920 930 940 950
GCTTCCAGCA TGGCCACCTC CATGGTCCTC GACGGATCG AGCAAGCCAT

960 970 980 990 1000
CTGGACCAGC CAACAAGAAG GCGTACTCGA CCTGAAGAGC GTTATCCACC

1010 1020 1030 1040 1050
ATACGGATAG GGGATCTCAG TACACATCGA TCCGTTTCAG CGAGCGGCTC

1060 1070 1080 1090 1100
GCCGAGGCAG GCATCCAACC GTCGGTCCGA GCGGTGCGGA GCTCTATGAG

1110 1120 1130 1140 1150
CAATGCACCTA GCCGAGACGA TCAACGGCCCT ATACAAAGACC GAGCTGATCA

1160 1170 1180 1190 1200
AACCCGGCAA GCCCTGGGCG TCCATCGAGG ATGTCGAGTT GCCCACCAGG

1210 1220 1230 1240 1250
CGCTGGGTGC AGGTTACAA CCATGGGCGC CTCTACGGT ACTGGCGGCA
Sal I

1260 1270 1280 1290 1300
CGTCCGCGGG GTGAACTCG AGCTGGCTCA TACGCTCAGA CGCCAGAGAC
Xho I

1310 1320 1330 1340 1350
CAGCCGCGGG CTGAGGTTCG AGATCAGAGA GTGGTCGGAG AGTCACCGGGGC
AccIII

GTTCAGG

SUBSTITUTE SHEET
Fig. 6.

* => match across all seqs.
. => conservative substitutions
: => IS986 (ORFb) matches 2 other sequences

ORFb

VPIAPSTYY---DHINREPSRRELDRQ---LKEHISRVH

IS3411

MMPLLDKLREQYGVGFLCSELHIPSTYH--CQQQRHDPDKRSARAQRDDWLKKQIQRVY

IS3

MKVY-FIEKHAQELSIAKCMCRVLVRASRGWYTCQRRTRISTRQORQ---QHCDSVVLAASF

IS600

MCQFVGVSRSQYVYNWVQHEP---SDRQSD----ERLKLLEIKVHAH

---*::*:*<>
Fig. 7.

* => match across all relevant sequences
. => conservative substitutions
:= IS986 (ORFα1 or ORFα2) matches 2 other sequences

ORFα1
MSGGSS---------RRYPPELRERAVRMVAEIRGQHDSEWAASEIARLLGV

ORFα2
CAETVRKWVR

IS3411
MTKNT---------RFSPERVQRRAVRMVLESQSEYDSQWATCIS1APKICGTRETIRVWR

IS3
MTKTVSTSKPRKQHSPEFRSEALKL---------AERIGVTAARELSISLYESQLYNWRS

IS600
MSRII---------QRYSKEFKAEAVRTVPENQ-------ISISEGASRSLPETLQGWVT

*.
:.:*.*.*:.*:*:*.*:*:*:*:*:.*:.

ORFα2
QAQVDAGARPGE-TTTEAESAIKRLRRDNRLRRANAILKTASAFFA-AELDRP-AR

IS3411
QHERDGTGGGDTLDITELTARQLKELEERHNNNLDRSNDLRQSAYFACAFDRLWKK

IS3
KQNQQQTS具体EL-------EMSTEARLRQIARDEELAILQIKATFYAFK----RL-K

IS600
AARKGLGTGPRSRTVALESEILQRKALNERRIDILKATAYFA-QES--L-KNTR

Fig. 8.

IS986.IR_L
ccTGAAACGCCCCCGGTCC-GGAGACTC

IS986.IR_R
ccTGAAACCGCCCCGGTGAGTCC-GGAGACTC

IS3411.IR_L
TGAACGGCAGCCG-GAATCCTGGAGACT

IS3411.IR_R
TGAACCGCCCGG-GTTTCTGGAGAGT

************* *** ****** *

* = identical in all four sequences

SUBSTITUTE SHEET
Fig. 9.

* :=> match across all seqs.
. :=> conservative substitutions

5C
LTEL-------------GVPIAPSTYY--DHINREPSRELKDGE--LKEHISVRHA

5C
MMPLLDKLREQYGVGPLCSELHAPSTYYHCQQQRHHPDKRSARAQRDWDLKKQIQRVYD

5C
ANYGVYGARKWLTNLREGIEVARCTVERLMTKLGLSGTTTRGKARRTTIADPATARPADL

5C
ENHKVGYVRKVWRQQLREGIRVARCTVARLMAVGVLGMGVLRGKVRRTTISRKAVA-AGHR

5C
VQRFRGPPAPNRLWADLTYVSTWAGFAYVAFAVFDAYARRILGWRVASTMATSMLDAE

5C
VRQRQFVAERPDQLWADFTYVSTWRGFVYVAFIIIDVFAGYTVGWRVSSSMETTFVLDAE

5C
QAIWTRQQEQVGLDKVHHTDRGOSYTSIRFSRLAEGIQPSVGAHVSSYDNALAETI

5C
QALMTRRP-------------PARSITVIK-------------VLSMYRWP---TH

5C
NGLYKTELIKPGKPSRSE-DVELATARWDFNHRRLLYQCGDVPVELEAAAYAQRQR

5C
SGLRKPDPY-------WHQESVATRTTRW--------RR----------ASMVFTRRR-

5C
PAAG

IS3411

Fig. 10.

* :=> match across all segs.
. :=> conservative substitutions

5C
L-------TELGV-------PIAPSTYYDHINREPSRRERLDRGELKEHISRVHAANYG
IS3
MKYVFIEKHOAEFSIKAMCRVLTVARSGWYTWCQR-RTRISTRQ-QFRQHCDSVVLAAFT
.*...
......
......*...*...*...*

5C
V------YGARKVWLTINREGIEVARCTVERLMTkGLSGTTRGKARRTTIADPATARPADL
IS3
RSKQRYGAPRTDELRADQGFYPFNKTVAAALRRQILDRLRAKASRKFDPYVSRAHGLPVSEN
L**...**...*...**...*...**...*...**...*...**..."...

5C
VQRRFQPPPAPNRLWVADLYTVSTWAGFAFYAFAVTDAARRILGWVASTMATSMVLDAAE
IS3
LEQDFYASGPPKQWGDTILRTECGWLYLAVIDLWSRAWIGWSMRPTMATQLACDALQ
...**...*...**...**...**...*...*...*...*...*...*...**...*...**..."...

5C
QAIWTRQEQVGVLKDLKVIDVIHTDRGQYTSIRFESERAEGIQLPSVGAAGSSYDNALIE
IS3
MALWRKRP------RNVIHTDRGQCYCSADYQAQKLKHNRGSMASAKGCGYDNACVESF
...*......**...*...*...*...*...*...*...*...*...*...*...*...*...*...*...

5C
NGLYXTELJKPGKPRSDIVEDLATARWD-WFNHRRLYQCGDVPPELEMACYAYQRQR
IS3
FHSLKVECII-GEHFSREMRAVTVFNYIECDYNKRWRHSGCGLPEQFENKNLAA---
......*...*...*...*...*...*...*...*...*...*...*...*...*...*...*...

5C
PAAG
IS3

* :=> match across all sequences.
. :=> conservative substitutions

** Fig. 11. **

| IS3 | MKYVFIEKHQAESIKAMCRVLVARSQGWTWCQRRTISTRQFRQFRHCDSVLAAFTPSS
| IS3411 | MM-PDLLKLREQVGYGVPLCSELHIAPSTYH-CQQRHISDDSKRASAQRDDWLLKQIQRV
| 5C | LT-EL-------------------GVIAPSTY---DHINREPSRE---LRDGELEKHSRV
| | .*.*.*.*.*.*.*.*.*.*.*.*.*
| IS3 | KQR----YGAPRPLTDLRASQGYFPNKTVAASLRRQGLRAKASRSFVPSYRAYHGLPVE
| IS3411 | YDENHIVGYGVKRKVRLQRGIRVACTVARLMAVMEGLAGVLRGKVKRTTISKAVAG
| 5C | HAAAGVYGGARKWLTNLREGIEVARCTVERLMTHKLGSGTTTRGKARRTITADPATAP
| | **.*.*.*.*.*.*.*.*.*.*.*.*.*
| IS3 | NLEQDFYASAGPNQKWADTDYLYRTPEGLWLYAVVIDLSRAVIGWMSPRMTAQALCDA
| IS3411 | HRVNRQFVAERPDQLWVADVTFVSTWRGFYVVFIIIDVFAIGTVGVWRRVSSSMTTFVLD
| 5C | DLVQRFFFGAPNRLVWADLFVSTWAGFAYVAFVTDAYARRICGWVASTMTSMVLD
| | .*.*.*.*.*.*.*.*.*.*.*.*.*
| IS3 | LQMALARWRRKRF-------RNIVHTDRGGQCADYLAQLKRHNLRGSMASKCGCCYDNA
| IS3411 | LEQALWTRF-------------PARSITVIK------------VLSPYRNP---
| 5C | IEQAIWTRQQEGLVDLVHIYHTDRSQTSTSIRFEQLAIAQGIPSFVGAVGSSYDNA
| | **.*.*.*.*.*.*.*.*.*.*.*.*
| IS3 | SFFHSLVKVECH-GEHFSRESIT-RAVTVFNYIECDYWRWRHSCGGLSPEQPEKN
| IS3411 | THSGQKRPDY--------WHQEQVATMTTRW--------RR--------ASMVFTK
| 5C | TINGLYKTELIPKGKWRSIE-DVELATARNVD-WFNHRLLYQCGDVFPFVEEAAYAQ
| | **.*.*.*.*.*.*.*.*.*.*.*.*
| IS3 | -------
| IS3411 | RR-------
| 5C | RQRPAAG

SUBSTITUTE SHEET
* : => match across all segs.
. : => conservative substitutions

IS986
VPIAPSTYY---DHNREPSRRELGDGE---1KEHISRVHA
IS3411 MM-PLLDKLREQYGVGPLCESHIAPSTYYH-CQQQRHHPDKRSARAQRDDWLKQIQRVYD
IS3 MKYVFIEKHQAEFSIKAMCRVRVARGSWYGWTQCRRTRISTRQFRQHCD---SVVLAAFT
 ..*

IS986
ANYGVYGRKVLWLTNREGIEVARCTVERLMTKGLGSGTTRGKAKRTTIAADPATARPADLVQ
IS3411 ENHKVYGRVLRQWQLLREGIRVARCTVARLMAVMGLAVLGRLRKKVRTTISRKAVALAGHRVN
IS3 RSKQRYGAPRLTDLRAQDAQYPFNVKIVAALSRRGQLRAKASRKFVFVYRAHGGLPVSENLLLE
 *

IS986
RRFGPPAPNRLWVADLTQYSTWAGFAYVAFVTADAYARRILGWRVASTMATSVMVLDI1EQAiW
IS3411 RQFVAERPQDLWVADFVTWSTWGRGFTYVAFI1DVFAGYIGWRVSSMETTFVLDAEQALW
IS3 QDFYASGPNQKWAGDITYLRTPEGLYLVADLWRAIVGWSMSPRTMQACDLQMALW

IS986
TRQQEGVLDLKVHHTDRGSQYTSFJRPSERLAEAGIQFSVAGVSSYDNLAEETINGLYKT
IS3411 TRRPPA-----RSTIVKVLMSMYRPP----THSGLRKP----------DYWHQQEV
IS3 RRKRPP-----RNIVHTDRGQQYCSADYQALKRRHNLRGSRMSAKGCYDNAECVESFFHSLK
 * . *

IS986
ELIKPGFWRSIEDVELATARWVD-WFNHRRLYQCGDVPPVELEAAAYQQRPAAG
IS3411 QATRMTRWRARSMV----------FTKR----------
IS3 ECIH-GEHFISREIMRATVFNYIECDYNWRHRHSWCGGSLPQFENKNL-----

SUBSTITUTE SHEET
Fig. 13.

* :=> match across all seqs.
. :=> conservative substitutions

IS986 VPIAPSTYY---DHINREPSRELGED---LKEHISRH
IS3411 MM-PLLCLKREQYGVGPILCSELHAPSTYYH-CQQQRHHPDKRSARAAQRDDWLKQIQRVY
IS3 MKYVFIEKHQAEFSIKAMCRVLRVARSOWTWCQRRTRISTRQFPRQHCD----SVIILAF
 ..*.*.* ** **** *** . ** ** . **

IS986 AANYGVYQKVKWLTNREGIEVARTVERIMTKLGSLGTTRGKARRTITIADPATAPADDL
IS3411 DLHKVGYVQKRQMLREIRVARCTVARIAMAVMGIAVRLAVKVRTRTISRKA-AAGR
IS3 TRSKQYRGAPRTDIELRAQGYPFPQVTKVAAASLLRQQLRAKASKRFSFVSYRAHGLFVSEN
 ** ** ** ** ** ** ** ** **

IS986 VQRRFGPPAPNRLVMDLTVSTWAGFAYVAFVTLDAYARRILGWVASTMATSMLDIAEC
IS3411 VNRFQVAAERPDQQLVMDLTVSTVRGFVVAFIIIDVFQVYGWVRSSTMETFVDLAEQ
IS3 LEQDFYASPGNPQWABDITYLRTQPGWLAVVLDWSRAIVGWSMPRTAQLACDALQM
 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

IS986 ADWTRQEGVLDKVIHTDRGQSQTIRSFERSLEAESGQPSGAVGSSYDNALEITNG
IS3411 ALWTRRPPG
IS3411' TVVHSDKGSQYVSLAVLTQLRKEAGLLASTGSTGDSYDNAAESING
IS3 ALWRRKRPA------RNVVIVHTDRGOYCSADNYAQLKRHNRLVSGSARKGCDYNACVESFFH
 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

IS986 LYGKELIFKGPWRSDEVETELARWVD-WFNNHRRLYQCDVPPVEELAAAYAQRPA
IS3411' LYGKEVIHVR-KSWSNRAEEVELATLWVD-WYNNRRLERLTHYPPEAEEEEEE----
IS3 S2 SLKVECIH-GEHFSREIMRATVNYTECYNKRRHSHWCGGSLPEQFENKNL--------
 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
Fig. 15.

PvuII

5B 5C 5A

PvuII

12J (~3.0 kb) 12B (~1.8 kb)
INTERNATIONAL SEARCH REPORT

International Application No: PCT/GB 90/00276

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC: C 12 Q 1/68, C 07 H 21/04, //C 07 K 13/00, 7/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Minimum Documentation Searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C 12 Q</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Journal of General Microbiology, volume 135, no. 9, September 1989, SGM, (GB), Z.F. Zainuddin et al.: "Polymorphic repetitive DNA sequences in Mycobacterium tuberculosis detected with a gene probe from a Mycobacterium fortuitum plasmid", pages 2347-2355 see the whole article, especially discussion (cited in the application)</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>Journal of Clinical Microbiology, volume 26, no. 11, November 1988, American Society for Microbiology, K.D. Eisenach et al.: "Repetitive DNA sequences as probes for Mycobacterium tuberculosis", pages 2240-2245 see the whole article</td>
<td>6,7,15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 29th May 1990

Date of Mailing of this International Search Report: 2 JUL 1990

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: [Signature]

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>Nucleic Acids Research, volume 18, no. 1, January 1990, Oxford University Press, (GB) D. Thierry et al.: "IS6110, an IS-like element of Mycobacterium tuberculosis complex", page 188 see the whole article</td>
<td>1,2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,7,15</td>
</tr>
</tbody>
</table>