wo 2017/034820 A1 [N I NDF V0000 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

2 March 2017 (02.03.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/034820 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6N 3/08 (2006.01) GO6K 9/62 (2006.01)
GO6N 99/00 (2010.01)

International Application Number:
PCT/US2016/046576

International Filing Date:
11 August 2016 (11.08.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/209,859 25 August 2015 (25.08.2015) US
14/863,410 23 September 2015 (23.09.2015) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: TALATHI, Sachin Subhash; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). VAR-
TAK, Aniket; 5775 Morehouse Drive, San Diego, Califor-
nia 92121-1714 (US).

Agents: LENKIN, Alan M. et al.; Seyfarth Shaw LLP,
Suite 3500, 2029 Century Park Fast, Los Angeles, Califor-
nia 90067-3021 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: METHOD FOR IMPROVING PERFORMANCE OF A TRAINED MACHINE LEARNING MODEL

700

Train (Test) Error

Trained High
Complexity
Neuralnet (My)

e 704

Trained Machine
Learning Model

FIG. 7

(57) Abstract: A method for improving performance of a
trained machine learning model includes adding a second
classifier with a second objective function to a first classifier
with a first objective function. Rather than minimizing a func-
tion of errors for the first classifier, the second objective func-
tion is used to directly reduce the number errors of the first
classifier.

WO 2017/034820 A1 WK 00T 00O R A AR

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

WO 2017/034820 PCT/US2016/046576

METHOD FOR IMPROVING PERFORMANCE OF A TRAINED MACHINE
LEARNING MODEL

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of U.S. Provisional Patent
Application No. 62/209,859, filed on August 25, 2015, and titled “METHOD FOR
IMPROVING PERFORMANCE OF A TRAINED MACHINE LEARNING MODEL,”

the disclosure of which is expressly incorporated by reference herein in its entirety.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to machine learning
and, more particularly, to systems and methods of improving performance of a trained

machine learning model.

Background

[0003] A machine learning model such as an artificial neural network, which may
comprise an interconnected group of artificial neurons (e.g., neuron models), is a
computational device or represents a method to be performed by a computational

device.

[0004] Convolutional neural networks are a type of feed-forward artificial neural
network. Convolutional neural networks may include collections of neurons that each
have a receptive field and that collectively tile an input space. Convolutional neural
networks (CNNs) have numerous applications. In particular, CNNs have broadly been

used in the area of pattern recognition and classification.

[0005] Deep learning architectures, such as deep belief networks and deep
convolutional networks, are layered neural networks architectures in which the output of
a first layer of neurons becomes an input to a second layer of neurons, the output of a
second layer of neurons becomes and input to a third layer of neurons, and so on. Deep
neural networks may be trained to recognize a hierarchy of features and so they have
increasingly been used in object recognition applications. Like convolutional neural

networks, computation in these deep learning architectures may be distributed over a

WO 2017/034820 PCT/US2016/046576

population of processing nodes, which may be configured in one or more computational
chains. These multi-layered architectures may be trained one layer at a time and may be

fine-tuned using back propagation.

[0006] Other models are also available for object recognition. For example, support
vector machines (SVMs) are learning tools that can be applied for classification.
Support vector machines include a separating hyperplane (e.g., decision boundary) that
categorizes data. The hyperplane is defined by supervised learning. A desired
hyperplane increases the margin of the training data. In other words, the hyperplane

should have the greatest minimum distance to the training examples.

[0007] Although these solutions achieve excellent results on a number of
classification benchmarks, their computational complexity can be prohibitively high.

Additionally, training of the models may be challenging.

SUMMARY

[0008] In an aspect of the present disclosure, a method for improving performance
of a trained machine learning model is presented. The method comprises adding a
second classifier with a second objective function to a first classifier with a first
objective function. The second objective function is used to directly reduce errors of the

first classifier.

[0009] In another aspect, an apparatus for improving performance of a trained
machine learning model is presented. The apparatus includes a memory and at least one
processor coupled to the memory. The processor(s) is configured to add a second
classifier with a second objective function to a first classifier with a first objective
function. The second objective function is used to directly reduce errors of the first

classifier.

[0010] In yet another aspect, an apparatus for improving performance of a trained
machine learning model is presented. The apparatus includes means for adding a
second classifier with a second objective function to a first classifier with a first
objective function. The second objective function is used to directly reduce errors of the

first classifier. The apparatus further includes means for outputting a feature vector

WO 2017/034820 PCT/US2016/046576

from the second classifier based on an input received via the trained machine learning

model.

[0011] In yet still another aspect, a non-transitory computer-readable medium is
presented. The non-transitory computer-readable medium has encoded thereon program
code for improving performance of a trained learning machine model. The program
code is executed by a processor and includes program code for adding a second
classifier with a second objective function to a first classifier with a first objective
function. The second objective function is used to directly reduce errors of the first

classifier.

[0012] Additional features and advantages of the disclosure will be described below.
It should be appreciated by those skilled in the art that this disclosure may be readily
utilized as a basis for modifying or designing other structures for carrying out the same
purposes of the present disclosure. It should also be realized by those skilled in the art
that such equivalent constructions do not depart from the teachings of the disclosure as
set forth in the appended claims. The novel features, which are believed to be
characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The features, nature, and advantages of the present disclosure will become
more apparent from the detailed description set forth below when taken in conjunction
with the drawings in which like reference characters identify correspondingly

throughout.

[0014] FIGURE 1 illustrates an example implementation of designing a neural
network using a system-on-a-chip (SOC), including a general-purpose processor in

accordance with certain aspects of the present disclosure.

WO 2017/034820 PCT/US2016/046576

[0015] FIGURE 2 illustrates an example implementation of a system in accordance

with aspects of the present disclosure.

[0016] FIGURE 3A is a diagram illustrating a neural network in accordance with

aspects of the present disclosure.

[0017] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional

network (DCN) in accordance with aspects of the present disclosure.

[0018] FIGURE 4 is a block diagram illustrating an exemplary software architecture
that may modularize artificial intelligence (AI) functions in accordance with aspects of

the present disclosure.

[0019] FIGURE 5 is a block diagram illustrating the run-time operation of an Al

application on a smartphone in accordance with aspects of the present disclosure.

[0020] FIGURES 6A and 6B are block diagrams illustrating variations for adding a
second classifier to a first classifier to improve the performance of a machine learning

model in accordance with aspects of the present disclosure.

[0021] FIGURE 7 is a schematic diagram of an exemplary classifier to improve the
performance of a trained machine learning model in accordance with aspects of the

present disclosure.

[0022] FIGURE 8 illustrates a method for improving performance of a trained

machine learning model in accordance with aspects of the present disclosure.

[0023] FIGURE 9 is a block diagram illustrating a method for improving
performance of a trained machine learning model in accordance with aspects of the

present disclosure.

DETAILED DESCRIPTION

[0024] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing

a thorough understanding of the various concepts. However, it will be apparent to those

WO 2017/034820 PCT/US2016/046576

skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0025] Based on the teachings, one skilled in the art should appreciate that the scope
of the disclosure is intended to cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the disclosure. For example, an
apparatus may be implemented or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure is intended to cover such an
apparatus or method practiced using other structure, functionality, or structure and
functionality in addition to or other than the various aspects of the disclosure set forth.

It should be understood that any aspect of the disclosure disclosed may be embodied by

one or more elements of a claim.

[0026] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0027] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

[0028] Aspects of the present disclosure are directed to improving the performance
of a trained lower complexity machine learning model. In accordance with aspects of
the present disclosure, the model performance may be improved by adding a second
classifier configured to directly minimize or reduce the number of classification errors
of the low complexity classifier. That is, rather than minimizing a function of errors as

given by a typical cost function (e.g., sum of squares (SSE), or negative log likelihood)

WO 2017/034820 PCT/US2016/046576

using standard techniques (e.g., gradient descent), a new objective function for the
added classifier is defined to directly minimize or reduce the number of errors. For
example, if the classification operations are performed, with seven correct
classifications and three incorrect classifications, the objective function may be

designed to reduce the three errors to zero.

[0029] Additionally, in accordance with aspects of the present disclosure, the
performance of the trained lower complexity machine learning model may be further

improved using soft probabilities of a higher complexity model.

Soft Probabilities

[0030] Soft probabilities are non-maximum probability values or dark values of a
probability vector. In many conventional classification systems, a probability vector is
used to predict a class label. In such conventional systems, the class label is predicted
using the highest or maximum probability value in the probability vector. The non-

maximum probability values or soft probabilities are ignored.

[0031] For example, consider a supervised machine learning problem of
classification, where a machine learning model, M, (W), is trained using the training
data comprised of N samples of the input data X" = [x,, X, X5, - XN_1], where

x; € RP and the corresponding N training samples of the C-labeled output data y*" =
Vo, Y1, Y2, *** Yn—1l, where y; € [0, C — 1]. Typically, the parameters A that define the
architecture of the machine learning model (e.g., neural network) and the parameters of
the learning process to train the model are pre-determined. The training data {X"',y*"}
is then used to learn the weights Wof the model M,. The training may include encoding
the labeled datay = [yo, yy, - yn—1] using 1-K encoding to P = [pg, p1, *** Pn-1)]
such that pj € ZS , where pj, = 1 ify; = k,and ¥Zgpjx = 1.

[0032] Given an input X, the machine learning model M, produces an estimate for

the output probability, which may be expressed as:
p = M, (x,W) (D

so as to minimize the multi-class cross entropy function given by:

WO 2017/034820 PCT/US2016/046576

-1C-1

N
C = > pylog ().)

i=0 j=0

Ny

[0033] The output class label is obtained as:

y = argmax [p
y gmax [p] 3)
J
[0034] As such, only the index of the maximum value of vector P, referred to as the

hard-probability, is utilized for inference and the non-maximum values are ignored.

[0035] Aspects of the present disclosure utilize the soft probabilities to improve
classification performance. In some aspects, the soft probabilities may be extracted
using temperature scaling. For example, the probabilities p generated by the neural

network model are estimate via the softmax function as follows:

PO exp (aout,k)
pk - ZC—
j=

'_01 exp (aout,j)

(4)

where a,,; = [aout’o, Aout 1» ...,aout’c_l] are the activation values out of the output

node of the neural network.

[0036] The output probabilities generated by a trained machine learning model (e.g.,
neural network) may be scaled by temperature T to extract the information hidden in the

soft-probabilities as follows:

pATe — exp (am’;t’k) : (5)
= Py Gy

[0037] One objective is to soften the distribution of probability vector p generated
by the trained model. Scaling via temperature T flattens the distribution of probabilities

thereby allowing the information in the soft probabilities to be exploited.

[0038] Once extracted, the soft probabilities may be used to improve classification
performance. For instance, in one example, where Wy, and b, represent the set of
weights and the biases used for pooling together the information in soft probabilities, a

mixture probability may be given by:

WO 2017/034820 PCT/US2016/046576

1

~Te __
p o1+ exp (—(Wmﬁ” + bm)) (6)

[0039] The mixture probabilities may be used to predict the output class label by the

trained machine learning model as follows:

¥ = argmax [pTe]

j ()

[0040] The training data {X'T, "} may be used to estimate the values for the
weights and biases used to generate the mixture of soft probabilities. The fractional
training error generated by the trained machine learning model when the output labels
are predicted using only hard probabilities e4q (Eq. 3)and the fractional training error
when the output labels are predicted using the soft probabilities (e) (Eq. 7) are given
by:

1 N-1
€qg = N z Hj’}]#:j’}] (8)
j=0
N-1
1
j=0

[0041] A cost function C may be used to reduce the classification errors. That is,
the cost function C may be designed such that the error on the training data when using
the predicted values for the output labels generated by the mixture of soft-probabilities
is lower than the error obtained by using the probabilities the cost function takes on a

positive non-zero value. The cost function may be expressed as:
C = max (0,(eq — €)/ eq) (10)

[0042] An improved or optimal weight and biases for the mixture of soft

probabilities may be obtained by solving the following optimization problem:

argmin [1 — C]

(11

[0043] The optimization problem of Equation 11 may be solved using any of the

standard unconstrained optimization processes that do not use gradient values with

WO 2017/034820 PCT/US2016/046576

initial conditions {W, (0),b,(0)} = {I,0}. In some aspects, optimization techniques
may also be employed to determine an improved or optimal temperature for generating
the soft probabilities. For example, the optimization problem of Equation 11 may be

modified as follows:

argmin [1 — C]

{T ’ Wm bm} = {T, Wm; bm}

(12)

[0044] Using a standard unconstrained minimization process results in a solution,
which is a local minima for C around the initial choice of the temperature. A
convergence strategy may be used to get out of the local minima around the initial
choice of temperature. For instance, in some aspects, the strategy may begin with an

initial set of parameters: {T(0), W;,(0), b,,,(0)} and solve for optimal values for the
weights and biases {W;;T(O), b;’lT(O)} using Equation 11. Starting from the initial
condition T'(0), optimize the cost function: C = max (0, (e — €’) / e), where e is

computed using Equation 11 with {T’(O), W;;T(O), b;’lT(O)} and e’ is computed using

Equation 11 with {T’ (0), W;;T(O), b;’lT(O)}. The sequence may be repeated until

convergence.

[0045] In some aspects, ensemble averaging may be implemented across machine
learning models and/or across multiple logistic regression layers in a single machine
learning model. In one example, multiple machine learning models (M > 1) are trained
using the training data with output probabilities {Pg, P; -** Pm—1} generated by the M
trained models. For each of these models, an optimal mixture of soft probabilities may

be generated using the procedure optimization techniques and/or convergence strategy

above. The resulting mixture probabilities {}3560, ﬁIei pg/f_Ml_i} may be used to
predict the output label as:
pred — argmax T
R D wp (13)
K

[0046] One choice for {wy}is wy = 1/M, fork = (1,2,:--M — 1). Altematively,
the optimization technique and convergence strategy above or other similar techniques

may be used to estimate the optimal set of the multi-model probability mixture weights

{wit.

WO 2017/034820 PCT/US2016/046576
10

[0047] In another example, in a single machine learning model but with multiple
logistic regression output layers, the optimization techniques, the convergence strategy
and the like may be use to improve or optimize the soft probabilities resulting from the

different logistic regression layers of the model.

[0048] In some aspects, inferences may be improved using soft probabilities when
the number of classes is large (e.g., C > 1). The number of parameters to generate an
optimal mixture of soft probabilities scale as C? and can be a problem when estimating
the mixture of soft probabilities for inference. In this case, a subset P << C of the
highest soft probabilities for each class believed to contain useful information may be
leveraged to improve the classification performance. In turn, Equation 11 may be
solved to obtain the weights and biases such that the total number of parameters to be
estimated are P(P + 1). At or about the inference time, the index of the top P soft
probabilities may be tracked and appended via the estimated mixture probabilities using

the optimal weights and biases.

[0049] FIGURE 1 illustrates an example implementation of the aforementioned
method of improving performance of a trained machine learning model using a system-
on-a-chip (SOC) 100, which may include a general-purpose processor (CPU) or multi-
core general-purpose processors (CPUs) 102 in accordance with certain aspects of the
present disclosure. Variables (e.g., model weights), system parameters associated with
a computational device (e.g., machine learning model with weights), delays, frequency
bin information, and task information may be stored in a memory block associated with
a neural processing unit (NPU) 108, in a memory block associated with a CPU 102, in a
memory block associated with a graphics processing unit (GPU) 104, in a memory
block associated with a digital signal processor (DSP) 106, in a dedicated memory block
118, or may be distributed across multiple blocks. Instructions executed at the general-
purpose processor 102 may be loaded from a program memory associated with the CPU

102 or may be loaded from a dedicated memory block 118.

[0050] The SOC 100 may also include additional processing blocks tailored to
specific functions, such as a GPU 104, a DSP 106, a connectivity block 110, which may
include fourth generation long term evolution (4G LTE) connectivity, unlicensed Wi-Fi
connectivity, USB connectivity, Bluetooth connectivity, and the like, and a multimedia

processor 112 that may, for example, detect and recognize gestures. In one

WO 2017/034820 PCT/US2016/046576
11

implementation, the NPU is implemented in the CPU, DSP, and/or GPU. The SOC 100
may also include a sensor processor 114, image signal processors (ISPs), and/or

navigation 120, which may include a global positioning system.

[0051] The SOC 100 may be based on an ARM instruction set. In an aspect of the
present disclosure, the instructions loaded into the general-purpose processor 102 may
comprise code for adding a second classifier with a second objective function (e.g.,
cost) to a first classifier with a first objective function (e.g., cost). The second objective

function is used to directly reduce errors of the first classifier.

[0052] FIGURE 2 illustrates an example implementation of a system 200 in
accordance with certain aspects of the present disclosure. As illustrated in FIGURE 2,
the system 200 may have multiple local processing units 202 that may perform various
operations of methods described herein. Each local processing unit 202 may comprise a
local state memory 204 and a local parameter memory 206 that may store parameters of
a neural network. In addition, the local processing unit 202 may have a local (neuron)
model program (LMP) memory 208 for storing a local model program, a local learning
program (LLP) memory 210 for storing a local learning program, and a local connection
memory 212. Furthermore, as illustrated in FIGURE 2, each local processing unit 202
may interface with a configuration processor unit 214 for providing configurations for
local memories of the local processing unit, and with a routing connection processing

unit 216 that provides routing between the local processing units 202.

[0053] Deep learning architectures may perform an object recognition task by
learning to represent inputs at successively higher levels of abstraction in each layer,
thereby building up a useful feature representation of the input data. In this way, deep
learning addresses a major bottleneck of traditional machine learning. Prior to the
advent of deep learning, a machine learning approach to an object recognition problem
may have relied heavily on human engineered features, perhaps in combination with a
shallow classifier. A shallow classifier may be a two-class linear classifier, for
example, in which a weighted sum of the feature vector components may be compared
with a threshold to predict to which class the input belongs. Human engineered features
may be templates or kernels tailored to a specific problem domain by engineers with
domain expertise. Deep learning architectures, in contrast, may learn to represent

features that are similar to what a human engineer might design, but through training.

WO 2017/034820 PCT/US2016/046576
12

Furthermore, a deep network may learn to represent and recognize new types of features

that a human might not have considered.

[0054] A deep learning architecture may learn a hierarchy of features. If presented
with visual data, for example, the first layer may learn to recognize relatively simple
features, such as edges, in the input stream. In another example, if presented with
auditory data, the first layer may learn to recognize spectral power in specific
frequencies. The second layer, taking the output of the first layer as input, may learn to
recognize combinations of features, such as simple shapes for visual data or
combinations of sounds for auditory data. For instance, higher layers may learn to
represent complex shapes in visual data or words in auditory data. Still higher layers

may learn to recognize common visual objects or spoken phrases.

[0055] Deep learning architectures may perform especially well when applied to
problems that have a natural hierarchical structure. For example, the classification of
motorized vehicles may benefit from first learning to recognize wheels, windshields,
and other features. These features may be combined at higher layers in different ways

to recognize cars, trucks, and airplanes.

[0056] Machine learning models such as neural networks may be designed with a
variety of connectivity patterns. In feed-forward networks, information is passed from
lower to higher layers, with each neuron in a given layer communicating to neurons in
higher layers. A hierarchical representation may be built up in successive layers of a
feed-forward network, as described above. Neural networks may also have recurrent or
feedback (also called top-down) connections. In a recurrent connection, the output from
a neuron in a given layer may be communicated to another neuron in the same layer. A
recurrent architecture may be helpful in recognizing patterns that span more than one of
the input data chunks that are delivered to the neural network in a sequence. A
connection from a neuron in a given layer to a neuron in a lower layer is called a
feedback (or top-down) connection. A network with many feedback connections may be
helpful when the recognition of a high-level concept may aid in discriminating the

particular low-level features of an input.

[0057] Referring to FIGURE 3 A, the connections between layers of a neural

network may be fully connected 302 or locally connected 304. In a fully connected

WO 2017/034820 PCT/US2016/046576
13

network 302, a neuron in a first layer may communicate its output to every neuron in a
second layer, so that each neuron in the second layer will receive input from every
neuron in the first layer. Alternatively, in a locally connected network 304, a neuron in
a first layer may be connected to a limited number of neurons in the second layer. A
convolutional network 306 may be locally connected, and is further configured such that
the connection strengths associated with the inputs for each neuron in the second layer
are shared (e.g., 308). More generally, a locally connected layer of a network may be
configured so that each neuron in a layer will have the same or a similar connectivity
pattern, but with connections strengths that may have different values (e.g., 310, 312,
314, and 316). The locally connected connectivity pattern may give rise to spatially
distinct receptive fields in a higher layer, because the higher layer neurons in a given
region may receive inputs that are tuned through training to the properties of a restricted

portion of the total input to the network.

[0058] Locally connected neural networks may be well suited to problems in which
the spatial location of inputs is meaningful. For instance, a network 300 designed to
recognize visual features from a car-mounted camera may develop high layer neurons
with different properties depending on their association with the lower versus the upper
portion of the image. Neurons associated with the lower portion of the image may learn
to recognize lane markings, for example, while neurons associated with the upper

portion of the image may learn to recognize traffic lights, traffic signs, and the like.

[0059] A DCN may be trained with supervised learning. During training, a DCN
may be presented with an image, such as a cropped image of a speed limit sign 326, and
a “forward pass” may then be computed to produce an output 322. The output 322 may
be a vector of values corresponding to features such as “sign,” “60,” and “100.” The
network designer may want the DCN to output a high score for some of the neurons in
the output feature vector, for example the ones corresponding to “sign” and “60” as
shown in the output 322 for a network 300 that has been trained. Before training, the
output produced by the DCN is likely to be incorrect, and so an error may be calculated
between the actual output and the target output. The weights of the DCN may then be
adjusted so that the output scores of the DCN are more closely aligned with the target.

[0060] To adjust the weights, a learning algorithm may compute a gradient vector

for the weights. The gradient may indicate an amount that an error would increase or

WO 2017/034820 PCT/US2016/046576
14

decrease if the weight were adjusted slightly. At the top layer, the gradient may
correspond directly to the value of a weight connecting an activated neuron in the
penultimate layer and a neuron in the output layer. In lower layers, the gradient may
depend on the value of the weights and on the computed error gradients of the higher
layers. The weights may then be adjusted so as to reduce the error. This manner of
adjusting the weights may be referred to as “back propagation” as it involves a

“backward pass” through the neural network.

[0061] In practice, the error gradient of weights may be calculated over a small
number of examples, so that the calculated gradient approximates the true error
gradient. This approximation method may be referred to as stochastic gradient descent.
Stochastic gradient descent may be repeated until the achievable error rate of the entire

system has stopped decreasing or until the error rate has reached a target level.

[0062] After learning, the DCN may be presented with new images 326 and a
forward pass through the network may yield an output 322 that may be considered an

inference or a prediction of the DCN.

[0063] Deep belief networks (DBNs) are probabilistic models comprising multiple
layers of hidden nodes. DBNs may be used to extract a hierarchical representation of
training data sets. A DBN may be obtained by stacking up layers of Restricted
Boltzmann Machines (RBMs). An RBM is a type of artificial neural network that can
learn a probability distribution over a set of inputs. Because RBMs can learn a
probability distribution in the absence of information about the class to which each
input should be categorized, RBMs are often used in unsupervised learning. Using a
hybrid unsupervised and supervised paradigm, the bottom RBMs of a DBN may be
trained in an unsupervised manner and may serve as feature extractors, and the top
RBM may be trained in a supervised manner (on a joint distribution of inputs from the

previous layer and target classes) and may serve as a classifier.

[0064] Deep convolutional networks (DCN5s) are networks of convolutional
networks, configured with additional pooling and normalization layers. DCNs have
achieved state-of-the-art performance on many tasks. DCNs can be trained using

supervised learning in which both the input and output targets are known for many

WO 2017/034820 PCT/US2016/046576
15

exemplars and are used to modify the weights of the network by use of gradient descent

methods.

[0065] DCNs may be feed-forward networks. In addition, as described above, the
connections from a neuron in a first layer of a DCN to a group of neurons in the next
higher layer are shared across the neurons in the first layer. The feed-forward and
shared connections of DCNs may be exploited for fast processing. The computational
burden of a DCN may be much less, for example, than that of a similarly sized neural

network that comprises recurrent or feedback connections.

[0066] The processing of each layer of a convolutional network may be considered
a spatially invariant template or basis projection. If the input is first decomposed into
multiple channels, such as the red, green, and blue channels of a color image, then the
convolutional network trained on that input may be considered three-dimensional, with
two spatial dimensions along the axes of the image and a third dimension capturing
color information. The outputs of the convolutional connections may be considered to
form a feature map in the subsequent layer 318 and 320, with each element of the
feature map (e.g., 320) receiving input from a range of neurons in the previous layer
(e.g., 318) and from each of the multiple channels. The values in the feature map may
be further processed with a non-linearity, such as a rectification, max(0,x). Values from
adjacent neurons may be further pooled, which corresponds to down sampling, and may
provide additional local invariance and dimensionality reduction. Normalization, which
corresponds to whitening, may also be applied through lateral inhibition between

neurons in the feature map.

[0067] The performance of deep learning architectures may increase as more
labeled data points become available or as computational power increases. Modern
deep neural networks are routinely trained with computing resources that are thousands
of times greater than what was available to a typical researcher just fifteen years ago.
New architectures and training paradigms may further boost the performance of deep
learning. Rectified linear units may reduce a training issue known as vanishing
gradients. New training techniques may reduce over-fitting and thus enable larger
models to achieve better generalization. Encapsulation techniques may abstract data in

a given receptive field and further boost overall performance.

WO 2017/034820 PCT/US2016/046576
16

[0068] FIGURE 3B is a block diagram illustrating an exemplary deep convolutional
network 350. The deep convolutional network 350 may include multiple different types
of layers based on connectivity and weight sharing. As shown in FIGURE 3B, the
exemplary deep convolutional network 350 includes multiple convolution blocks (e.g.,
C1 and C2). Each of the convolution blocks may be configured with a convolution
layer, a normalization layer (LNorm), and a pooling layer. The convolution layers may
include one or more convolutional filters, which may be applied to the input data to
generate a feature map. Although only two convolution blocks are shown, the present
disclosure is not so limiting, and instead, any number of convolutional blocks may be
included in the deep convolutional network 350 according to design preference. The
normalization layer may be used to normalize the output of the convolution filters. For
example, the normalization layer may provide whitening or lateral inhibition. The
pooling layer may provide down sampling aggregation over space for local invariance

and dimensionality reduction.

[0069] The parallel filter banks, for example, of a deep convolutional network may
be loaded on a CPU 102 or GPU 104 of an SOC 100, optionally based on an ARM
instruction set, to achieve high performance and low power consumption. In alternative
embodiments, the parallel filter banks may be loaded on the DSP 106 or an ISP 116 of
an SOC 100. In addition, the DCN may access other processing blocks that may be
present on the SOC, such as processing blocks dedicated to sensors 114 and navigation

120.

[0070] The deep convolutional network 350 may also include one or more fully
connected layers (e.g., FC1 and FC2). The deep convolutional network 350 may further
include a logistic regression (LR) layer. Between each layer of the deep convolutional
network 350 are weights (not shown) that are to be updated. The output of each layer
may serve as an input of a succeeding layer in the deep convolutional network 350 to
learn hierarchical feature representations from input data (e.g., images, audio, video,

sensor data and/or other input data) supplied at the first convolution block C1.

[0071] FIGURE 4 is a block diagram illustrating an exemplary software architecture
400 that may modularize artificial intelligence (AI) functions. Using the architecture,

applications 402 may be designed that may cause various processing blocks of an SOC

WO 2017/034820 PCT/US2016/046576
17

420 (for example a CPU 422, a DSP 424, a GPU 426 and/or an NPU 428) to perform

supporting computations during run-time operation of the application 402.

[0072] The Al application 402 may be configured to call functions defined in a user
space 404 that may, for example, provide for the detection and recognition of a scene
indicative of the location in which the device currently operates. The AT application
402 may, for example, configure a microphone and a camera differently depending on
whether the recognized scene is an office, a lecture hall, a restaurant, or an outdoor
setting such as a lake. The Al application 402 may make a request to compiled program
code associated with a library defined in a SceneDetect application programming
interface (API) 406 to provide an estimate of the current scene. This request may
ultimately rely on the output of a deep neural network configured to provide scene

estimates based on video and positioning data, for example.

[0073] A run-time engine 408, which may be compiled code of a Runtime
Framework, may be further accessible to the Al application 402. The Al application
402 may cause the run-time engine, for example, to request a scene estimate at a
particular time interval or triggered by an event detected by the user interface of the
application. When caused to estimate the scene, the run-time engine may in turn send a
signal to an operating system 410, such as a Linux Kernel 412, running on the SOC 420.
The operating system 410, in turn, may cause a computation to be performed on the
CPU 422, the DSP 424, the GPU 426, the NPU 428, or some combination thereof. The
CPU 422 may be accessed directly by the operating system, and other processing blocks
may be accessed through a driver, such as a driver 414-418 for a DSP 424, for a GPU
426, or for an NPU 428. In the exemplary example, the deep neural network may be
configured to run on a combination of processing blocks, such as a CPU 422 and a GPU

426, or may be run on an NPU 428, if present.

[0074] FIGURE 5 is a block diagram illustrating the run-time operation 500 of an
Al application on a smartphone 502. The Al application may include a pre-process
module 504 that may be configured (using for example, the JAVA programming
language) to convert the format of an image 506 and then crop and/or resize the image
508. The pre-processed image may then be communicated to a classify application 510
that contains a SceneDetect Backend Engine 512 that may be configured (using for

example, the C programming language) to detect and classify scenes based on visual

WO 2017/034820 PCT/US2016/046576
18

input. The SceneDetect Backend Engine 512 may be configured to further preprocess
514 the image by scaling 516 and cropping 518. For example, the image may be scaled
and cropped so that the resulting image is 224 pixels by 224 pixels. These dimensions
may map to the input dimensions of a neural network. The neural network may be
configured by a deep neural network block 520 to cause various processing blocks of
the SOC 100 to further process the image pixels with a deep neural network. The
results of the deep neural network may then be thresholded 522 and passed through an
exponential smoothing block 524 in the classify application 510. The smoothed results

may then cause a change of the settings and/or the display of the smartphone 502.

[0075] In one configuration, a machine learning model is configured for adding a
second classifier with a second objective (e.g., cost) function to a first classifier with a
first objective (e.g., cost) function, the second objective function being used to directly
reduce errors of the first classifier. The machine learning model is also configured for
outputting a feature vector from the second classifier based on an input received via the
trained machine learning model. The machine learning model includes an adding means
and/or outputting means. In one aspect, the adding means and/or outputting means may
be the general-purpose processor 102, program memory associated with the general-
purpose processor 102, memory block 118, local processing units 202, and or the
routing connection processing units 216 configured to perform the functions recited. In
another configuration, the aforementioned means may be any module or any apparatus

configured to perform the functions recited by the aforementioned means.

[0076] According to certain aspects of the present disclosure, each local processing
unit 202 may be configured to determine parameters of the network based upon desired
one or more functional features of the network, and develop the one or more functional
features towards the desired functional features as the determined parameters are further

adapted, tuned and updated.

[0077] FIGURES 6A and 6B are block diagrams illustrating variations for adding a
second classifier to a first classifier to improve the performance of a machine learning
model such as a neural network model. Referring to FIGURES 6A and 6B, a second
classifier 602 may be added to a first classifier 604 of a trained machine learning model
606. In some aspects, the machine learning model 606 may comprise a deep

convolutional network (DCN) including a locally connected (L-C) layer or another

WO 2017/034820 PCT/US2016/046576
19

machine learning model. The machine learning model may be low in complexity. In
some exemplary aspects, a machine learning model that has less than 1 billion multiply-
accumulate operations (MACs) may be considered a low complexity model. On the
other hand, a machine learning model that has greater than 1 billion multiply-
accumulate operations may be considered a high complexity model. Of course, other
metrics may also be used to determine the relative complexity of the models (e.g.,

number of parameters, number of stages (layers) and/or type of stages).

[0078] The trained machine learning model 606 may be configured to receive an
input (e.g., an image) (not shown). The machine learning model 606 may process the
image to extract a set of feature from the input. A feature vector corresponding to the
input may be supplied to the first classifier 604. The first classifier 604 may be
configured with a differentiable (e.g., a gradient is determinable) objective function,
which may be used to improve the classification accuracy. In turn, the first classifier
604 may generate a probability vector P, that may be used to determine an output class

label.

[0079] To improve performance and accuracy of the first classifier 604, the second
classifier 602 may be added. The second classifier 602 may be configured with a non-
differentiable (e.g., there is no gradient) objective function. The objective function may
be configured to directly reduce the number of errors produced by the first classifier
604. That is, rather than attempting to minimize a cost function or function of errors for
the first classifier 604, the second classifier 602 reduces the total number of errors. For
example, in some aspects, the objective function for the second classifier 602 may be

expressed as:
Objective function: argmax [max(0,(eq — €)))] (14)

[0080] The objective function may be used to determine weights and bias terms for
the second classifier 602 using unconstrained minimization techniques as described
above. Accordingly, the output class labels from the second classifier 602 may include

fewer errors than produced via the second classifier 602 alone.

[0081] This configuration may be particularly beneficial because the improvement

in the classification performance may be achieved without retraining the previously

WO 2017/034820 PCT/US2016/046576
20

trained machine learning model. Instead, performance may be improved by only

retraining the second classifier 602.

[0082] In some aspects, as shown in FIGURE 6B, the second classifier 602 may
alternatively be provided within a trained machine learning model 606 (e.g., as a layer
of the model from the trained machine learning model.) Furthermore, in some aspects,
the performance of the machine learning model 606 (shown in FIGURES 6A and 6B)
may be further improved using soft probabilities supplied via a high complexity model

608.

[0083] FIGURE 7 presents a schematic diagram of an exemplary classifier 700 to
improve the performance of a trained machine learning model (e.g., a neural network) in
accordance with aspects of the present disclosure. Referring to FIGURE 7, a non-
differentiable objective function, O, is added at the output of the classifier (regression)
layer of the neural network. The objective function may be specified such that the
maximum non-zero value for the objective function for a given training (or testing)
dataset will only occur when the number of training (testing) errors are below those

obtained for the original trained neural network.

[0084] Given an input X € RP, a machine learning model 702 may be configured to
classify the input into one of C classes. Using an encoding scheme, such as one-hot
encoding, the class labels may be denoted by a probability vector, P € Z$, such that for
a given class label 1 < C,P = [p;p, -~ pcl”, where p; = 1ifi = land 3£, p; = 1.
Given a trained machine learning model (e.g., neural network) M: X € RP? — Z € R,
an estimated probability vector P may be obtained from Z as: P = o (Z), where o is the

soft-max nonlinearity.

[0085] As discussed above, traditional approaches use P to predict the class label as

[= argmax [ﬁ] For a given dataset with U training samples, the training error is then

. 1
obtained as: eg =3 P I, and the testing error on V test samples is similarly

. 1 .
obtained as: eff =3 > 1l . The values for eg and eff determine the goodness or
accuracy of the model M. One goodness or accuracy metric for a trained model M is,
eg = Oand eff << 1. Aspects of the present disclosure aim to improve performance

of a trained model M for which eg = 0.

WO 2017/034820 PCT/US2016/046576
21

[0086] In accordance with aspects of the present disclosure, a feature representation
generated via a trained model 702 may be supplied to a classifier 700. The classifier
700 receives feature vector Z, which may be mixed with model weight - to produce a
new feature vector Z, = W,I Z. The feature vector Z; may then be used to estimate the

probability vector F; = o (Z;). A probability feature vector Py = WpTPS may then be
used to compute an estimated prediction error on the training set as: e = % =
>, Hifil’ where l} = argmax [P¢]. The parameters, 4 = [WZ, Wp], are estimated by

optimizing over the following objective function:
0 = MAX (0, (el — efr)) (14)

[0087] In some aspects, a high complexity model 704 may provide a soft probability
vector Py to the machine learning model 702. The soft-probability vector may be mixed
with model weight 7). In turn, the probability-feature vector Py = WpTPS + WPy

may be used to compute the estimated prediction error on the training set as: e =

% = Zly=l]1if¢l7 where l} = argmax [P¢]. The parameters, 4 = [WZ, Wy, Wh, T],may

be estimated by optimizing over the objective function of Equation 14.

[0088] Given that O is a non-differentiable function, an unconstrained minimization
process may be used to solve for optimal A" as: A* = argmax [0]. A non-zero
convergence value for O would imply that ef” < e'", thus producing a resulting model
with better performance than the original model at the cost of estimating an additional

set of parameters.

[0089] In some aspects, some of the parameters in A (e.g., W, W), Wy, or T) may be
set a priori. As such, issues of overfitting due to the addition of several of the new

parameters may be mitigated or reduced.

[0090] In some aspects, various simplifications may be employed while improving
performance according to design preference. For example, weights corresponding to
features produced by the trained learning model may be set to an identity value. As
such, a mixture of feature vectors generated by the trained machine learning model will
not be considered. On the other hand, in a second example, only a mixture of feature

vectors produced via the trained machine learning model may be considered.

WO 2017/034820 PCT/US2016/046576
22

[0091] In a third example, weights corresponding to features produced by the
trained learning model may be set to an identity value and soft-probability information

available from the high complexity model 704 may be ignored.

[0092] In a fourth example, soft-probabilities Py from the high complexity model

704 may be rescaled by a given temperature value (e.g., T = a,a > 1).

[0093] FIGURE 8 illustrates a method 800 for improving performance of a trained
machine learning model. In block 802, the process adds a second classifier with a
second objective function (e.g., cost) to a first classifier with a first objective function
(e.g., cost). The second objective function is used to directly reduce errors of the first

classifier.

[0094] The first objective function is differentiable and the second objective
function is non-differentiable. In some aspects, the second objective function may be a
function of a difference between errors of the first classifier and the second classifier.

In other aspects, the second objective function may be determined based on a mixture of

probabilities from a higher complexity model.

[0095] In some aspects, the second classifier may be added externally to the first
classifier. Alternatively, the second classifier may be incorporated within the first
classifier (e.g., a layer of the first classifier). Furthermore, the second classifier may be

added without retraining the first classifier.

[0096] In block 804, the process outputs a feature vector from the second classifier

based on an input received via the trained machine learning model.

[0097] In some aspects, the process may implement various simplifications to
reduce or mitigate overfitting issues. For example, the process may assign weights to
features produced by a model, which is trained by the first classifier, to an identity
value. The process may also assign weights to features produced by a probability vector
of a high complexity model to zero. The process may further assign weights to features
produced by a probability vector of the second classifier. The process may assign
weights to features produced by a probability vector of a high complexity model to zero.

The process may further assign weights to features produced by a probability vector of

WO 2017/034820 PCT/US2016/046576
23

the second classifier. The process may also scale probability vectors generated by a

higher complexity model by a fixed temperature T.

[0098] FIGURE 9 is a block diagram illustrating a method 900 for improving
performance of a trained machine learning model in accordance with aspects of the
present disclosure. In block 902, the process receives in a machine learning model (e.g.,
classifier) a machine probability vectors via a trained machine learning model. The
probability vectors correspond to inputs received in the trained machine learning model.
In block 904, parameters of the machine learning model, such as the model weights and
biases, may be computed based on an objective function that directly reduces the errors
of the trained machine learning model. That is, the objective function is designed to
directly reduce the number of errors rather than the function of errors for the trained
machine learning model. As such, the objective function of the machine learning model

is non-differentiable.

[0099] In some aspects, soft probabilities from the trained machine learning model

and/or a high complexity model may be used to compute the parameters.

[00100] In block 906, the process may update the parameters of the machine learning
model. Thereafter, the machine learning model may generate output class labels for the
inputs corresponding to the received probability vectors, in block 908. As such, the
classification errors following the updating may be less than those produced by the
trained machine learning model for the same inputs. Accordingly, the performance of

the trained machine learning model may be improved.

[00101] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,
but not limited to, a circuit, an application specific integrated circuit (ASIC), or
processor. Generally, where there are operations illustrated in the figures, those
operations may have corresponding counterpart means-plus-function components with

similar numbering.

[00102] Asused herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,

deriving, investigating, looking up (e.g., looking up in a table, a database or another data

WO 2017/034820 PCT/US2016/046576
24

structure), ascertaining and the like. Additionally, “determining” may include receiving
(e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
Furthermore, “determining” may include resolving, selecting, choosing, establishing

and the like.

[00103] Asused herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of: a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

[00104] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a
general-purpose processor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other
programmable logic device (PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but in the alternative,
the processor may be any commercially available processor, controller, microcontroller
or state machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
Mmicroprocessors, one or more microprocessors in conjunction with a DSP core, or any

other such configuration.

[00105] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, erasable programmable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

WO 2017/034820 PCT/US2016/046576
25

[00106] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[00107] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[00108] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable read-only memory (EEPROM), registers, magnetic disks,

optical disks, hard drives, or any other suitable storage medium, or any combination

WO 2017/034820 PCT/US2016/046576
26

thereof. The machine-readable media may be embodied in a computer-program

product. The computer-program product may comprise packaging materials.

[00109] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with
cache and/or general register files. Although the various components discussed may be
described as having a specific location, such as a local component, they may also be
configured in various ways, such as certain components being configured as part of a

distributed computing system.

[00110] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
application specific integrated circuit (ASIC) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more field programmable gate arrays
(FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic,
discrete hardware components, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[00111] The machine-readable media may comprise a number of software modules.

The software modules include instructions that, when executed by the processor, cause

WO 2017/034820 PCT/US2016/046576
27

the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions
from that software module. Furthermore, it should be appreciated that aspects of the
present disclosure result in improvements to the functioning of the processor, computer,

machine, or other system implementing such aspects.

[00112] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Additionally, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable

media (e.g., tangible media). In addition, for other aspects computer-readable media

WO 2017/034820 PCT/US2016/046576
28

may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[00113] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer-readable medium having instructions stored (and/or
encoded) thereon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[00114] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.

[00115] Itis to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.

WO 2017/034820 PCT/US2016/046576

29
CLAIMS
WHAT IS CLAIMED IS:
1. A method for improving performance of a trained machine learning model,

comprising:
adding a second classifier with a second objective function to a first classifier
with a first objective function, the second objective function being used to directly

reduce errors of the first classifier.

2. The method of claim 1, in which the first objective function is differentiable.

3. The method of claim 1, in which the second objective function is non-
differentiable.

4. The method of claim 1, in which the second objective function is a function of a

difference between errors of the first classifier and the second classifier.

5. The method of claim 1, further comprising determining the second objective
function based at least in part on a mixture of probabilities from a higher complexity

model.

6. The method of claim 1, further comprising adding the second classifier without

retraining the first classifier.

7. The method of claim 1, further comprising adding the second classifier

externally to the first classifier.

8. The method of claim 1, further comprising assigning weights to features

produced by a model, which is trained by the first classifier, to an identity value.

9. The method of claim 8, further comprising assigning weights to features

produced by a probability vector of a high complexity model to zero.

WO 2017/034820 PCT/US2016/046576
30

10. The method of claim 1, further comprising assigning weights to features

produced by a probability vector of the second classifier.

11. The method of claim 1, further comprising assigning weights to features

produced by a probability vector of a high complexity model to zero.

12. The method of claim 11, further comprising assigning weights to features

produced by a probability vector of the second classifier.

13. The method of claim 1, further comprising scaling probability vectors generated

by a higher complexity model by a fixed temperature T.

14. An apparatus for improving performance of a trained machine learning model,
comprising:

a memory; and

at least one processor coupled to the memory, the at least one processor
configured to add a second classifier with a second objective function to a first classifier
with a first objective function, the second objective function being used to directly

reduce errors of the first classifier.

15. The apparatus of claim 14, in which the first objective function is differentiable.
16. The apparatus of claim 14, in which the second objective function is non-
differentiable.

17. The apparatus of claim 14, in which the second objective function is a function

of a difference between errors of the first classifier and the second classifier.

18. The apparatus of claim 14, in which the at least one processor is further
configured to determine the second objective function based at least in part on a mixture

of probabilities from a higher complexity model.

19. The apparatus of claim 14, in which the at least one processor is further

configured to add the second classifier without retraining the first classifier.

WO 2017/034820 PCT/US2016/046576
31

20. The apparatus of claim 14, in which the at least one processor is further

configured to add the second classifier externally to the first classifier.

21. The apparatus of claim 14, in which the at least one processor is further
configured to assign weights to features produced by a model, which is trained by the

first classifier, to an identity value.

22. The apparatus of claim 21, in which the at least one processor is further
configured to assign weights to features produced by a probability vector of a high

complexity model to zero.

23. The apparatus of claim 14, in which the at least one processor is further
configured to assign weights to features produced by a probability vector of the second

classifier.

24. The apparatus of claim 14, in which the at least one processor is further
configured to assign weights to features produced by a probability vector of a high

complexity model to zero.

25. The apparatus of claim 24, in which the at least one processor is further
configured to assign weights to features produced by a probability vector of the second

classifier.

26. The apparatus of claim 14, in which the at least one processor is further
configured to scale probability vectors generated by a higher complexity model by a

fixed temperature T.

27. An apparatus for improving performance of a trained machine learning model,
comprising:

means for adding a second classifier with a second objective function to a first
classifier with a first objective function, the second objective function being used to
directly reduce errors of the first classifier; and

means for outputting a feature vector from the second classifier based at least in

part on an input received via the trained machine learning model.

WO 2017/034820 PCT/US2016/046576
32

28. A non-transitory computer-readable medium having encoded thereon program
code for improving performance of a trained machine learning model, the program code
being executed by a processor and comprising program code to add a second classifier
with a second objective function to a first classifier with a first objective function, the

second objective function being used to directly reduce errors of the first classifier.

WO 2017/034820

100

1/10

PCT/US2016/046576

1024

104

106

108

1104

I
1

CPUs

MULTIMEDIA
GPU
DSP SENSORS
NPUs ISPs

MEMORY
CONNECTIVITY
NAVIGATION

—112

—114

—116

—118

—120

FIG. 1

PCT/US2016/046576

WO 2017/034820

2/10

¢ O

[11u) SuIssadoid 807

AJOWRAN

weI3orq

weI3orq
uorddUU0)) Surured | ADOIAT 1290

820 820 [PPOIN [E00°]
™ [4¥4 J 01¢ J 80¢C ~ >
AJOWRAN CIowop _

IRjoweIRd
[290] QJe)g [£90] _
90z - voz -~ _
_
3uIss9001 . _
uoneIngyuo.) . _
_
AIOWRIN weidoid _
uondauuU0)) Jururea| 5 :mﬁwo%%o _
8207 820 [PPON [B00T _
[4¥4 J 01¢ J 80¢C \ “
> KIOWSN o >
Iopuweled OUWRIN _
890 QJe)S [800] _
_
907 - voz -~ _
131U SuISSad0I{ [BJ07] _
14%4 ~

3urssa001qd
uornIUUo))
3unnoy

WO 2017/034820 PCT/US2016/046576

3/10
302 304 306
FULLY CONNECTED LOCALLY CONNECTED CONVOLUTIONA

300
~~~~~ h 318 320 CLASSIFICATION 322
\ N\ o o
A SN\ \
FEATURE MAPS FEATURE MAPS, » m \

2808 RN \

FEATURE EXTRACTION CONVOLUTION

FIG. 34



WO 2017/034820

4/10

350

|_~Cl
( cow )
[ LNorm ]
( maxpooL )
_~C2
( cow )
( LNorm )
( maxpooL )
Y
FCI
FC2
LR

FIG. 3B

PCT/US2016/046576



PCT/US2016/046576

WO 2017/034820

5/10

v OId

0cv -1

0l

y0v -1

7, 7, 12y 7,
\ . \ JYYMANYH
- NOSYHAAYNS
................................................ S S
\ % 30VdS
v EIEN
| NHOMINYES FWILNNY HLOYTZ
B | a P O S
! 80v ¢ dY : IdY m
m <3134 3104 POIRgeUs !
m \\ !
yseloss W
............................. S NOILYOMddY -
= 34N1y34 HLOY3Z

00v



PCT/US2016/046576

6/10

WO 2017/034820

$ O

Casody T T T T 1 (ang=poisias)
e INHLOORS | S11nS3
ol SOBRANT e} 3} Ao
_ N.mm._w._zmm_m zo_._%mom_“__mmio \ / w Nﬂ __. ............... i
“ weonﬂ@z _ g%ﬁ \ __ 00¥d3id dol _ oOo0D
1 I 1 |
s iy IR s B <+
| ONISS300K e {7 A |
e  — A LR E L —
hlg A /

y0G 208 /



WO 2017/034820 PCT/US2016/046576

7/10
602 — Classifier _ Added Classifier = Non-Differentiable
Objective Function
604 —— Classifier — Existing Classifier w/ Differentiable
Objective Function
60 DCN
[+ N C
A
e -
|
!
608 Classifier
DCN
FIG. 6A4
604 ———  (lassifier — Existing Classifier w/ Differentiable
Objective Function
602 Classifier | |— Added Classifier = Non-Differentiable
________________________ Objective Function
DCN
606~ L-C
A
L e o
|
|
608 Classifier
DCN

FIG. 6B



WO 2017/034820

PCT/US2016/046576
8/10
700
|
Train (Test) Error
|
Py
We
W
Ps PH
A
softmax
Zs T
[
Z
A
700 ——  Trained Machine Trained High ~ —— 704
Learning Model Complexity
Neuralnet (My)

FIG. 7



WO 2017/034820 PCT/US2016/046576

9/10

800

ADDING A SECOND CLASSIFIER WITH A 7 802
SECOND OBJECTIVE FUNCTION TO A FIRST
CLASSIFIER WITH A FIRST OBJECTIVE
FUNCTION. THE SECOND OBJECTIVE
FUNCTION IS USED TO DIRECTLY REDUCE
THE ERRORS OF THE FIRST CLASSIFIER

'

OUTPUTTING A FEATURE VECTOR FROM 804
THE SECOND CLASSIFIER BASED ON AN
INPUT RECEIVED VIA A TRAINED MACHINE
LEARNING MODEL

FIG. 8



WO 2017/034820 PCT/US2016/046576

10/10

900

RECEIVING, IN A MACHINE LEARNING 7 902
MODEL, A PROBABILITY VECTOR VIA A
TRAINED MACHINE LEARNING MODEL

'

COMPUTING PARAMETERS (E.G., WEIGHTS
AND BIASES) OF THE MACHINE LEARNING |~ 904
MODEL BASED ON AN OBJECTIVE FUNCTION
THAT DIRECTLY REDUCES ERRORS OF THE
TRAINED MACHINE LEARNING MODEL

'

906
UPDATING THE PARAMETERS OF THE
MACHINE LEARNING MODEL
908

GENERATING OUTPUT CLASS LABELS FOR
INPUTS CORRESPONDING TO THE RECEIVED
PROBABILITY VECTORS

FIG. 9



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/046576

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. GO6N3/08 GO6N99/00 GO6K9/62
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N  GO6K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2005/022343 A2 (EXSCIENTIA LLC [US]; 1-28
SAPTHARISHI MAHESH [US]; HAMPSHIRE JOHN
BENJAMIN) 10 March 2005 (2005-03-10)
paragraph [0004] - paragraph [0009];
figures 1-9

paragraph [0018] - paragraph [0025]
paragraph [0032] - paragraph [0046]

X M. PAZ SESMERO ET AL: "Generating 1-28
ensembles of heterogeneous classifiers
using Stacked Generalization",

WILEY INTERDISCIPLINARY REVIEWS: DATA
MINING AND KNOWLEDGE DISCOVERY,

vol. 5, no. 1,

28 January 2015 (2015-01-28), pages 21-34,
XP055310680,

ISSN: 1942-4787, DOI: 10.1002/widm.1143
the whole document

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : . . . . L
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
1 November 2016 07/11/2016
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . }
&x%mq&smsme Cilia, Elisa

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/046576

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Pascal Vincent ET AL: "Stacked Denoising
Autoencoders: Learning Useful
Representations in a Deep Network with a
Local Denoising Criterion Pierre-Antoine
Manzagol",

Journal of Machine Learning Research,

31 December 2010 (2010-12-31), pages
3371-3408, XP055209370,

Retrieved from the Internet:
URL:http://d1.acm.org/citation.cfm?id=1953
039

[retrieved on 2015-08-25]

paragraph [02.2] - paragraph [02.2]
paragraph [03.5] - paragraph [03.5];
figures 3-4

US 2009/157572 Al (CHIDLOVSKII BORIS [FR])
18 June 2009 (2009-06-18)

abstract

paragraph [0009] - paragraph [0010]
paragraph [0046] - paragraph [0103]

1,2,14,
15,27,28

1-28

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/046576
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2005022343 A2 10-03-2005 US 2005114278 Al 26-05-2005
WO 2005022343 A2 10-03-2005
US 2009157572 Al 18-06-2009  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - wo-search-report
	Page 46 - wo-search-report
	Page 47 - wo-search-report

