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Hash Function Constructions from Expander Graphs

BACKGROUND

[0001] Hash functions constructions are used in many algorithms and cryptographic
protocols. They are functions f: U = S with [U] > |S| that distribute their image “uniformly”. In

other words for most

xeU, [{yeU]| f(x)=y} isclosetoll-%l.

[0002] Hash functions that minimize the number of colliding pairs i.e., pairs (x, y) such
that f{x) = f(3) are very useful. For cryptographic applications of hash functions, it is typically
desired for the problem of engineering collisions to be hard. This means the task of finding
distinct elements x and y such that f{x) = f{3) is computationally hard. Often, there is interest in

the following weaker property: Given x finding another y such that f{x) = f{3) is hard.

SUMMARY

[0003] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the detailed description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to be
used as an aid in determining the scope of ~the claimed subject matter.

[0004] In view of the above, hash function constructions from expander graphs are
described. In one aspect, an expander graph is walked as input to a hash function. The expander
graph is walked using respective subsets of an input message. The output of the hash function is

the label of the last vertex walked.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] In the Figures, the left-most digit of a component reference number identifies the
particular Figure in which the component first appears.
[0006] Fig.1 illustrates an exemplary system for hash function constructions from

expander graphs, according to one embodiment.
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[0007] Fig.2 shows an exemplary procedure for hash function constructions from
expander graphs, according to one embodiment.

[0008] Fig.3 shows an exemplary procedure for hash function constructions from

expander graphs, according to one embodiment.

[0009] Fig. 4 illustrates an example of a suitable computing environment in which hash

function constructions from expander graphs may be fully or partially implemented.

DETAILED DESCRIPTION

Qverview

{0010} Systems (e.g., systems, apparatus, computer-readable media, etc.) and methods for
hash function constructions from expander graphs are described below in reference to Figs. 1
through 4. A hash function is constructed by taking walks on specific expander graphs. A random
walk on an expander graph mixes very fast, so the hash function output is generally uniform when
the input message is uniformly random. In one implementation, the systems and methods use
extractors in conjunction with expander graphs to produce hash functions. In this implementation,
input messages have a certain lower bound on the min-entropy. For example, cryptographically
signing a message (which is done by hashing) is done after adding a “random pad” to the
message. (This process injects entropy into the signature). Under the assumption that the input
messages have some small amount of entropy, an extractor is utilized to extract this randomness

and then execute a walk according to the output of the extractor.

[0011] These and other aspects of the systems and methods for hash function construction

from expander graphs are now described in greater detail.

An Exemplary System

[0012] Although not required, the systems and methods for hash function constructions
from expander graphs are described in the general context of computer-executable instructions
(program modules) being executed by a computing device such as a personal computer. Program

modules generally include routines, programs, objects, components, data structures, etc., that
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perform particular tasks or implement particular abstract data types. While the systems and
methods are described in the foregoing context, acts and operations described hereinafter may
also be implemented in hardware.

[0013] Fig. 1 illustrates an exemplary system 100 for hash function constructions from
expander graphs, according to one embodiment. System 100 includes computing device 102,
which includes one or more processing units 104 coupled to a system memory 106.
Processor 104 fetches and executes computer-program instructions from program modules 108,
and fetches and stores data to/from program data 110 portion of system memory 106. Program
modules 108 include, for example, expander graph hash function construction module (“EGHF
construction module™) 112 and other program modules 114. Other program modules 114 include,
for example, an operating system and one or more applications that utilize expander graph-based
hash function constructions 116 generated by module 112. There are many applications for which
such hash function constructions 116 are useful. For example, such constructions may be utilized
in one or more applications implementing cryptography, hash tables, error correction, audio
identification, Rabin-Karp string search algorithms, etc.

{0014} EGHEF construction module 112 generates hash function constructions 116 from an
input message 118 and an expander graph 120 of n vertices. Expander graph 118 is a sparse
graph with high vertex or edge expansion, or in other words highly connected. In one
implementation, expander graph 118 is a Ramanujan graph. In one implementation, the input
message 118 has a degree of randomness (or entropy).

[0015] For example, in one implementation, expander graph 120 is determined as follows.
Let p be a prime number and let £ (# p) be another prime number. The expander graph G(p, £) has
as its vertex set V the set of supersingular j-invariants over the finite field F, q=p*. There is an
edge between the vertices j; and j, if there is an isogeny of degree £ between the supersingular
elliptic curves whose j-invariants are j; and j,. The graph G(p, £) is known to be a £+1 regular
Ramanujan graph. The number of vertices of G(p, £) is the class number of the quaternion algebra

By, which is about p/12. G(p, £) is the expander graph 120.
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[0016] In another implementation, expander graph 120 is a Lubotzky-Phillips-Sarnak
expander graph, as described below in the section titled “Alternate Embodiments”.

[0017] To generate hash function constructions 116, expander graph hash function
construction module 112 identifies a message 118. In one implementation, the message has a
degree of entropy. EG HF construction module 112 assigns respective names, or labels to each
vertex of the n vertices that comprise the expander graph 120. When the input message has a
degree of entropy associated with it, EG HF construction module 112 extracts (determines) that
degree of randomness with an extractor function. Exemplary such extraction functions and
technique to extract randomness from such a message is described in greater detail below in the
section titled “Extracting Randomness from the Input”.

[0018] Construction module 112 identifies k-length bit segments of the input message 118
based either on the extracted degree of entropy (when present) or other objective criteria
(described below), in view of a configurable vertex edge convention to identify vertices of the
expander graph 120 to randomly walk (visit). Exemplary operations to walk and expander
graph 120 are described in greater detail below in the section titled “Exemplary Procedure”. A
respective name / label associated with a last vertex of the vertices walked represents the output of

the hash function construction 114.

Extracting Randomness from the Input

[0019] Min-Entropy: Let X be a random variable that takes values in {0, 1}". The min-

entropy of X is defined to be the quantity
min (— Iog(Pr[X = x])) .
xe{0,1}"

[0020] Closeness of distributions: Let X and Y be two distributions on {0, l}d. They are
said to be e-close (where ¢ is a real number) if
max [Pr{.X = x]~Pr[¥ = x] <e.
xe{(),l)"
[0021] Extractor: A function Ext:{0,1}" x{0,1} — {0,1}"is called a (kg)-extractor if for

any random variable X on {0, 1}" of min-entropy at least k£ and U, the uniform distribution on

{0,1}“ the distribution Ext(X,U,) is e-close to Up.
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[0022] Proposition: If Ext:{0,1}" x{0,}¢ —{0,}" is a (ke)-extractor. Then for most
choices of the random seed o € {0,1}“ the distribution Ext(X,c)is e-close to Uy,

[0023] Proof: The distribution Ex¢(X,U,) can be described as choosing a distribution
uniformly at random among the family X, of distributions indexed by o e{0,1}¢ defined
by X, = Ext(X, o). The fact that Ext is an extractor implies that many of these distributions are &-
close to Up. (End of proof).

[0024] Constructions of polynomial time extractors are known for any & >n” (y <l)and &
>0 if dis at least log’n and m =k"* where « is any real number.

Construction of the Hash Function:

[0025] Random variable M (i.e., input message 118), which denotes the inputs to the hash
function construction 116, has min-entropy at least log'*” nwhere # is the number of vertices of
G(p, £) and B>0. Let {0,1}" be the input space. To determine the degree of entropy 122 of M,
construction module 112 implements an extractor function Ext and fixes the function
Ext :{0,13" x{0,13* — {0,1}" with parameters k =log"” n, & very small and m =®(log"* n). For
purposes of exemplary illustration, such parameters are shown as respective portions of “other
data” 124. System 100 assumes that N =k°". Construction module 112 picks @ uniformly at
random from {0, 1}“. Given an input x  {0,1}", construction module 112 computes @ = Ext(x,a)
(ie., degree of entropy 122). The result of this construction is a string of size m.  Construction
module 112 executes a walk on m starting at some fixed vertex vy following the directions given
by @ and the output of the hash function 116 is the label of the final vertex in the walk.

[0026] For the expander graph whose nodes are supersingular elliptic curves modulo a
prime p, and edges are isogenies of degree £ between elliptic curves, we can take steps of a walk
around the graph as follows:

[0027] Beginning at a node corresponding to the elliptic curve E, first find generators P
and Q of the £ -torsion of E[¢]. To this end:

L. Let n be such that F, (E[{]) c Fq y e

2. Let S=¢EE(F q"); the number of F; . rational points on E . (Original)
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3. Set s=5/¢, where ¢* is the largest power of £ that divides S (note £>2).

4. Pick two points P and Q at random from E[{]:

(a) Pick two points U,V at random from E(Fq )

(b) Set P'=5sU and Q' =sV, ifeither P’ or Q' equals O then repeat step (i).
(¢) Find the smallest i,i, such that ¢"P'#0Q and ¢:Q'#Q but £'*'P'=0 and
Eiz“Q' — 0 .

(d) Set P=("P' and Q=120

5. Using the well-known Shanks’s Baby-steps-Giant-steps algorithm, determine if O belongs to

the group generated by P. If so, step (d) is repeated.

[0028] The j -invariants in F; » of the £+1 elliptic curves that are isogenous to E

are ji, ++, f,,;- To find them:

(@) Let Gy =<Q>and G4 = <P+ (i-1)*Q>for I1<i< (.

(b) For each i, 1<i</+1 compute the j-invariant of the elliptic curve E/G, using Vélu’s
formulas.

[0029] If we use the graph of supersingular elliptic curves with 2-isogenies, for example,
we can take a random walk in the following explicit way: at each step, after finding the 3 non-
trivial 2-torsion points of E, order them in terms of their x-coordinates in a pre-specified manner.
Then use the input bits to the hash function to determine which point to choose to quotient the

elliptic curve by to get to the next node in the walk.

Proof That Qutput of Hash Function Is Almost Uniform

[0030] By the Proposition the output of the extractor function implemented by expander
graph hash function constructions module 112 is close to uniform and the walk we take on the
expander graph 120 is very close to being a random walk. (The walk being random just means
that being at some vertex v on the graph, we are equally likely to be at any of its neighbors at the

next step). Now since the graph G(p, £) has »n vertices, and m =Q(log”°‘ n) the walk mixes
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rapidly and the output vertex is very close to uniform. Next, we make the above statements
precise. One way to state that a random walk of O(log) steps on a d-regular graph G (say) of n

vertices mixes rapidly is to say that

O(log )
(l Aj -y __I_I

<&
d n ’

where € is small, 4 is the adjacency matrix of G, v may be taken as any of the standard unit

vectors and 1 is the vector (1, 1, ..., 1). The matrix
L
d

can be thought of as the transition matrix of a uniformly random Markov chain on the graph 120.
In this implementation, system 100 implements an almost random walk on the graph 120. This
can be thought of as using a matrix B as the transition matrix such that

1

—A-B|<6
d

and & is a small real number (where the symbol || ||refers to the matrix norm). In other words,
construction module 112 perturbs the random walk a small amount. The following proposition

shows that this new random walk mixes quickly if § can be taken small enough.

[0031] Proposition: Let 4 and B be two sub-stochastic matrices, then ”A" - B"l

<k|4-B|.
[0032] Proof: One can write the difference A* — B*as
> 4" (4-B)B'.
0<i<k—1 i
Taking norms on both sides and using the fact that |4|=|B|=1 (as they are sub-stochastic
matrices) one gets the result. (End of Proof).

[0033] Since the length of the random walk that we take is O(log n). If we can arrange the

parameter 6 to be as follows:

o)
log®n

the resulting approximate random walk will also mix rapidly. This can be arranged by setting the

parameter & of the extractor to be equal to the following:

1
O[logz nj
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Collision Resistance

[0034] Explicitly finding a collision under this hash function 116 is equivalent to finding
two isogenies between a pair of supersingular elliptic curves of the same {-power degree. If the
graph G(p, £) does not have small cycles then this problem is very hard, since constructing

isogeni'es of high degree between curves is a well-known computationally hard problem.

Alternative Embodiments

[0035] As an alternative to using the graph G(p, £) described above, system 100 utilizes
the Lubotzky-Phillips-Sarnak expander graph 120. Let £ and p be two distinct primes, with € a
small prime and p relatively large. We also assume that p and £ are =1 mod 4 and the £ is a
quadratic residue mod p (this is the case if £%"2=1 mod p). We denote the LPS graph, with
parameters { and p, by X¢,. We define the vertices and edges that make up the graph Xg, next.
The vertices of X are the matrices in PSL(2,F}), i.e. the invertible 2x2 matrices with entries in
F, that have determinant 1 together with the equivalence relation A = —A for any matrix A. Given
a 2x2 matrix A with determinant 1, a name for the vertex will be the 4-tuple of entries of A or
those of —A depending on which is lexicographically smaller in the usual ordering of the set
{0,...,p-1}*. We describe the edges that make up the graph next. A matrix A is connected to the
matrices giA where the g;’s are the following explicitly defined matrices. Let i be an integer
satisfying i*= -1 mod p. There are exactly 8(£+1) solutions g = (go, g1, 22, g3) to the equation go™+
gi*+ g>+ g2 = L. Among these there are exactly £+1 with go> 0 and odd and g,forj=1,2,31s

even. To each such g associate the matrix

[ 8 tig gz'*'igsj
—&, +ig3 & —igl

[0036] This gives us a set S of £+1 matrices in PSL(2,F,). The g;’s are the matrices in this
set S. It is a fact that if g is in S then so is g'. Furthermore, since £ is small the set of matrices is S

can be found by exhaustive search very quickly.
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An Exemplary Procedure

[0037] Fig. 2 shows an exemplary procedure 200 for hash function constructions from
expander graphs, according to one embodiment. For purposes of exemplary description, the
operations of procedure 200 are described with respect to components of system 100 of Fig. 1.
The leftmost numeral of a component reference number indicates the particular figure where the

component is first described. f

[0038] At block 202, EG HF constructions module 112 (Fig. 1) divides an input message
118 into segments. For example, input message has a length N. Given that there are # vertices in
a k-regular the expander graph 120 (each vertex having a name / label), the name of each edge
coming out of any one vertex will have log k bits. The input message 118 is broken up into
chunks of length log k. At block 204, EG HF constructions module 112 walks the expander graph
120 as input to a hash function. The walk is determined as follows: Suppose we are at some
vertex v, the next vertex in the walk is determined by reading off the next chunk of fog k bits from
the input to determine the edge we will traverse out of vertex v, the other end point of this edge
will be the next vertex on the walk. For example, EG HF constructions module 112 starts the
random walk of edges in the expander graph 120 from a first vertex specified by the first k-bits
(segment / chunk) of the input message 118. The next vertex walked in the expander graph 120 is
specified by the next chunk of log k-bits. These operations are iteratively performed in view of a
convention that specifies how the name of an edge corresponds to the vertices in the expander
graph 120. An exemplary such convention is that for each vertex v, there is a function

Jo:{L....,k} — E. Thus f,(1)is the first edge out of v, f£,(2)is the second edge out of v, etc.

[0039] At block 206, EG HF constructions module 112 determines a label of a last vertex
walked. At block 208, EG HF constructions module 112 outputs the label as a result of the hash

function.

[0040] Fig.3 shows an exemplary procedure for hash function constructions from
expander graphs, according to one embodiment. For purposes of exemplary description, the

operations of procedure 300 are described with respect to components of system 100 of Fig. 1. At
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block 302, expander graph hash function constructions module (“EGHF constructions
module”) 112 (Fig. 1), identifies a message 118 with a degree of entropy. At block 304, EGHF
constructions module 112 assigns respective labels to each vertex in an expander graph 120. At
block 306, EGHF constructions module 112 uses an extractor function to determine the degree of
entropy in the input message 118. This determined degree is shown as the extracted degree of
entropy 122. At block 308, EGHF constructions module walks the expander graph 120 based on
the extracted degree of entropy 122. At block 310, EGHF constructions module 112 outputs a
label gssociated with a last vertex walked and the expander graph 120 as a result of the hash
function construction 116. That is, the operations of blocks 302 through 310 correspond to

operations of hash function construction 116.

An Exemplary Operating Environment

[0041] Fig. 4 illusﬁ‘ates an example of a suitable computing environment in which hash
function constructions from expander graphs may be fully or partially implemented. Exemplary
computing environment 400 is only one example of a suitable computing environment for the
exemplary system of Fig. 1 and exemplary operations of Figs. 2 and 3, and is not intended to
suggest any limitation as to the scope of use or functionality of systems and methods the
described herein. Neither should computing environment 400 be interpreted as having any
dependency or requirement relating to any one or combination of components illustrated in

computing environment 400.

[0042] The methods and systems described herein are operational with numerous other
general purpose or special purpose computing system, environments or configurations. Examples
of well-known computing systems, environments, and/or configurations that may be suitable for
use include, but are not limited to, personal computers, server computers, multiprocessor systems,
microprocessor-based systems, network PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above systems or devices, and so on. Compact or
subset versions of the framework may also be implemented in clients of limited resources, such as

handheld computers, or other computing devices. The invention is practiced in a distributed

10
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computing environment where tasks are performed by remote processing devices that are linked
through a communications network. In a distributed computing environment, program modules
may be located in both local and remote memory storage devices.

[0043] With reference to Fig. 4, an exemplary system for hash function constructions from
expander graphs includes a general purpose computing device in the form of a computer 410
implementing, for example, system 100 of Fig. 1. The following described aspects of
computer 410 are exemplary implementations of computing devices 102 of Fig. 1. Components
of computer 410 may include, but are not limited to, processing unit(s)420, a system
memory 430, and a system bus 421 that couples various system components including the system
memory to the processing unit 420. The system bus 421 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. By way of example and not limitation, such architectures
may include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

[0044] A computer 410 typically includes a variety of computer-readable
media. Computer-readable media can be any available media that can be accessed by
computer 410 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of example, and not limitation, computer-readable media may comprise computer
storage media and communication media. Computer storage media includes volatile and
nonvolatile, removable and non-removable media implemented in any method or technology for
storage of information such as computer-readable instructions, data structures, program modules
or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information and

which can be accessed by computer 410.

11
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[0045] Communication media typically embodies computer-readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier wave or
other transport mechanism, and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example and not limitation,
communication media includes wired media such as a wired network or a direct-wired
connection, and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of the any of the above should also be included within the scope of

computer-readable media.

[0046] System memory 430 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 431 and random access memory
(RAM) 432. A basic input/output system 433 (BIOS), containing the basic routines that help to
transfer information between elements within computer 410, such as during start-up, is typically
stored in ROM 431. RAM 432 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit 420. By way of
example and not limitation, Fig. 4 illustrates operating system 434, application programs 433,

other program modules 436, and program data 437.

[0047] The computer410 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 4 illustrates a hard
disk drive 441 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 431 that reads from or writes to a removable, nonvolatile magnetic disk 432,
and an optical disk drive 433 that reads from or writes to a removable, nonvolatile optical
disk 436 such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk

drive 441 is typically connected to the system bus 421 through a non-removable memory interface

12
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such as interface 440, and magnetic disk drive 431 and optical disk drive 433 are typically

connected to the system bus 421 by a removable memory interface, such as interface 430.

[0048] The drives and their associated computer storage media discussed above and
illustrated in Figure 4, provide storage of computer-readable instructions, data structures, program
modules and other data for the computer 410. In Figure 4, for example, hard disk drive 441 is
illustrated as storing operating system 444, application programs 443, other program
modules 446, and program data 447. Note that these components can either be the same as or
different from operating system 434, application programs 433, other program modules 436, and
program data 437. Application programs 433 includes, for example program modules 108 of
computing device 102 of Fig. 1. Program data 437 includes, for example, program data 110 of
computing device 102 of Fig. 1. Operating system 444, application programs 443, other program
modules 446, and program data 447 are given different numbers here to illustrate that they are at

least different copies.

[0049] A user may enter commands and information into the computer 410 through input
devices such as a keyboard 462 and pointing device 461, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other input.devices are often connected to
the processing unit 420 through a user input interface 460 that is coupled to the system bus 421,
but may be connected by other interface and bus structures, such as a parallel port, game port or a

universal serial bus (USB).

[0050] A monitor 491 or other type of display device is also connected to the system
bus 421 via an interface, such as a video interface 490. In addition to the monitor, computers may
also include other peripheral output devices such as printer 496 and audio device(s) 497, which

may be connected through an output peripheral interface 493.

[0051] The computer 410 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 480. In one

implementation, remote computer 480 represents computing device 102 or networked

13



WO 2007/053295 PCT/US2006/040538

computer 104 of Fig. 1. The remote computer 480 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node, and as a function of its particular
implementation, may include many or all of the elements described above relative to the
computer 410, although only a memory storage device 481 has been illustrated in Figure 4. The
logical connections depicted in Figure 4 include a local area network (LAN) 471 and a wide area
network (WAN) 473, but may also include other networks. Such networking environments are

commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

[0052] When used in a LAN networking environment, the computer 410 is connected to
the LAN 471 through a network interface or adapter 470. When used in a WAN networking
environment, the computer 410 typically includes a modem 472 or other means for establishing
communications over the WAN 473, such as the Internet. The modem 472, which may be
internal or external, may be connected to the system bus 421 via the user input interface 460, or
other appropriate mechanism. In a networked environment, program modules depicted relative to
the computer 410, or portions thereof, may be stored in the remote memory storage device. By
way of example and not limitation, Figure 4 illustrates remote application programs 483 as
residing on memory device 481. The network connections shown are exemplary and other means

of establishing a communications link between the computers may be used.

Conclusion

[0053] Although the systems and methods for hash function construction from expander
graphs have been described in language specific to structural features and/or methodological
operations or actions, it is understood that the implementations defined in the appended claims are
not necessarily limited to the specific features or actions described. Rather, the specific features
and operations of system 100 are disclosed as exemplary forms of implementing the claimed

subject matter.
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CLAIMS

1. A computer-implemented method comprising:

walking an expander graph according to input to a hash function, the expander graph being
walked using respective subsets of an input message;

determining a label of a last vertex walked; and

outputting the label as a result of the hash function.

2.  The method of claim 1, wherein the expander graph is a Ramanujan graph.

3.  The method of claim 1, wherein the expander graph is a Lubotzky-Phillips-Sarnak

expander graph.

4.  The method of claim 1, wherein the expander graph is the graph of supersingular elliptic

curves over a finite field of characteristic p.

S.  The method of claim 1, wherein the result is a cryptographic hash.

6.  The method of claim 1, wherein finding collisions for the hash function is computationally

hard.

7.  The method of claim 1, wherein the input message has a certain degree of entropy, and

wherein the hash function is collision resistant.

8.  The method of claim 1, wherein walking further comprises:
dividing the input message into segments; and
determining, for at least a subset of these segments, a path to a next respective vertex in

the expander graph based on aspects of a particular segment of a subset.

15



WO 2007/053295 PCT/US2006/040538

9.  The method of claim 1, wherein the expander graph comprises # vertices, wherein the input

message has a degree of entropy, and wherein the method further comprises:
assigning a respective label to vertices of the graph;
determining the degree of entropy;

wherein walking further comprises walking the 7 vertices using the degree of entropy to

identify completely random vertex output; and

wherein the output is a respective assigned label of a last vertex of the » vertices walked.

10.  The method of claim 9, wherein determining the degree of entropy further comprises
using an extractor function to determine a degree of randomness associated with the input

message.

11. A computer-readable medium comprising computer-programmed instructions executable

by a processor for:
dividing a message into segments;

walking an expander graph according to input to a hash function, the expander graph being
walked using respective ones of the segments to determine a path to a next vertex of n vertices in

the expander graph;
determining a label of a last vertex walked; and

outputting the label as a result of the hash function.

12.  The computer-readable medium of claim 11, wherein the expander graph is a Ramanujan

graph or a Lubotzky-Phillips-Sarnak expander graph.

13.  The computer-readable medium of claim 11, wherein the result is a cryptographic hash.
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14.  The computer-readable medium of claim 11, wherein finding collisions for the hash

function is computationally hard.

15.  The computer-readable medium of claim 11, wherein the message is divided into the

segments based on a degree of entropy extracted from the message.

16.  The computer-readable medium of claim 11, wherein the expander graph comprises #
vertices, wherein the message has a degree of entropy, and wherein the computer-program

instructions further comprising structures for:

assigning a respective label to vertices of the graph;

determining the degree of entropy;

wherein walking further comprises walking the » vertices using the degree of entropy to

identify completely random vertex output; and

wherein the output is a respective assigned label of a last vertex of the n vertices walked.

17.  The computer-readable medium of claim 11, wherein the computer-programmed
instructions for determining the degree of entropy further comprises instructions for using an

extractor function to determine a degree of randomness associated with the message.

17
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18. A computing device comprising:
a processor; and

a memory coupled to the processor, the memory comprising computer-program

instructions executable by the processor for:
assigning a respective label to respective ones of n vertices in an expander graph;
determining randomness of an input message;

walking the expander graph as input to a hash function, vertices in the expander

graph being visited based on the randomness;
determining a label of a last vertex of the vertices walked; and

outputting the label as a result of the hash function.

19.  The computing device of claim 18, wherein the expander graph is a Ramanujan

graph or a Lubotzky-Phillips-Sarnak expander graph.

20.  The computing device of claim 18, wherein the result is a cryptographic hash.
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