wO 2016/048419 A1 [N I NP0 00O OO0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/048419 A1l

31 March 2016 (31.03.2016) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 17/30 (2006.01) HO4L 29/08 (2006.01) kind of national protection available). AE, AG, AL, AM,
HO4L 29/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) International Abolication Number- BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: PCTIUS2015/027763 DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
27 April 2015 (27.04.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
- . PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: Fnglish TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
62/054,613 24 September 2014 (24.09.2014) Us kind Of regional protection available): ARIPO (BW, GH,
14/696,432 25 April 2015 (25.04.2015) Us GM, KE, LR, LS, MW, MZ, NA, RW, 8D, SL, ST, SZ,
TZ, UG, ZM, ZW), Furasian (AM, AZ, BY, KG, KZ, RU,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
TION [US/US]; 500 Oracle Parkway, M/S 50P7, Red- DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
wood Shores, California 94065 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(72) Tnventors: HANDA, Nitin; 500 Oracle Parkway, M/S E}I;/IV El{v)[&?P{\/I(EFI,\IEJ’SEF,TCDG”}SL CM. GA, GN, GQ,
50P7, Redwood Shores, California 94065 (US). - KM, ML, MR, NE, SN, TD, TG).
YAMUNA, Prakash; 500 Oracle Parkway, M/S 50OP7, Declarations under Rule 4.17:
Redwood Shores, California 94065 (US). — as to the identity of the inventor (Rule 4.17(i))
(74) Agents: BRISNEHAN, Brian J. et al.; Kil patrick Town-

send & Stockton LLP, Fighth Floor, Two Embarcadero
Center, San Francisco, California 94111 (US).

Published:

with international search report (Art. 21(3))

(54) Title: SERVICES WITHIN REVERSE PROXY SERVERS

EXTERNAL
METWORK(S)
410

SUBNETWORK

435a

4
o]
<
=
i
=
i

REQUEST HANDLER

CMMUNICATION NETWORKS)

REVERSE PROXY SERVER

REST INFRASTRUCTURE

4350
423

wEB
SERVICE

FIREWALL

(57) Abstract: Embodiments of the invention provide techniques for processing messages transmitted between computer networks.
Messages, such as requests from client devices for web services and other web content may be transmitted between multiple com -
puter networks. Intermediary devices or applications such as proxy servers may receive, process, and transmit the messages between
the communication endpoints. In some embodiments, a reverse proxy server may be configured to dynamically generate Representa-
tional State Transfer (REST) services and REST resources within the reverse proxy server. The REST services and REST resources
within the reverse proxy server may handle incoming requests from client devices and invoke backend web services, thereby allow -
ing design abstraction and/or enforcement of various security policies on the reverse proxy server.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

SERVICES WITHIN REVERSE PROXY SERVERS

RELATED APPLICATIONS

[0001] The present application claims the benefit and priority of U.S. Non-Provisional
Application No. 14/696,432, filed April 25, 2015, entitled “SERVICES WITHIN REVERSE
PROXY SERVERS,” which claims the benefit and priority of U.S. Provisional Patent
Application No. 62/054,613, filed September 24, 2014, entitled “MOBILE SECURITY
ACCESS SERVER (MSAS).” The entire contents of the above-identified patent applications are

incorporated herein by reference for all purposes.
BACKGROUND

[0002] The present disclosure relates generally to systems, methods and computer-readable
media for providing security across computer networks. More particularly, this disclosure relates
to systems, methods and computer-readable media for providing security services and other
functionality at a proxy server implemented between client devices and backend web
applications and services. Such security services may include authentication, authorization,
auditing, single sign on, security policy enforcement, key management and distribution, secure

communication, secure data storage, and secure data sharing, among others.
BRIEF SUMMARY

[0003] Aspects described herein provide various techniques for processing messages
transmitted between computer networks. In some embodiments, messages such as requests from
client devices for backend web services, applications, and other web content may be transmitted
between multiple computer networks. One or more intermediary devices or applications, such as
proxy servers implemented within a physical or logical subnetwork, may receive, process, and
transmit the messages between the communication endpoints. In some embodiments, a reverse

proxy server may be configured to dynamically generate Representational State Transfer (REST)

1

10

15

20

25

WO 2016/048419 PCT/US2015/027763

services and REST resources within the reverse proxy server. The REST services and REST
resources within the reverse proxy server may handle incoming requests from client devices and
invoke backend web services, thereby allowing design abstraction and/or enforcement of various

security policies on the reverse proxy server.

[0004] According to certain aspects described herein, a proxy server may receive a web service
request for a specific resource exposed by a REST web service within the proxy server. The
appropriate resource within the REST web service in the proxy server may be invoked, and may
in turn invoke a backend web service. In some cases, a reverse proxy server may expose a set of
REST web services which virtualize and obscure various backend web services. For instance,
the reverse proxy server may expose only virtual uniform resource locators (URLSs) so that client
devices on untrusted networks might not see or have knowledge of the underlying backend web

SErvices.

[0005] According to additional aspects described herein, REST services and REST resources
may be generated within the reverse proxy server to handle some or all of the REST requests
received from client devices. These REST services/resources may be dynamically generated and
configured to handle REST requests within the reverse proxy server, and/or to invoke
corresponding sets of backend web services. In order to dynamically generate and manage
REST web services/resources, a REST infrastructure and/or a REST application engine may be
implemented within the reverse proxy server. Additionally, in some embodiments, REST
resources within the reverse proxy server may generate and provide backend web service calls to

a policy enforcement engine for enforcing various policies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram illustrating components of an exemplary distributed system in

which various embodiments of the present invention may be implemented.

[0007] FIG. 2 is a block diagram illustrating components of a system environment by which

services provided by embodiments of the present invention may be offered as cloud services.

10

15

20

WO 2016/048419 PCT/US2015/027763

[0008] FIG. 3 is a block diagram illustrating an exemplary computer system in which

embodiments of the present invention may be implemented.

[0009] FIGS. 4A and 4B are block diagrams illustrating, at a high-level, examples of
computing environments including a reverse proxy server for processing and transmitting
messages between computing devices and/or systems, according to one or more embodiments of

the present invention.

[0010] FIG. 5 is another block diagram illustrating, at a high-level, a reverse proxy server for
receiving and processing REST requests, according to one or more embodiments of the present

invention.

[0011] FIGS. 6A-6B are a flowchart illustrating a process for receiving and processing
receiving and processing REST requests from client devices, and determining and invoking

backend web services, according to one or more embodiments of the present invention.

[0012] FIG. 7 is another block diagram illustrating, at a high-level, a reverse proxy server for
dynamically generating REST services and REST resources, according to one or more

embodiments of the present invention.

[0013] FIG. 8 is a flowchart illustrating a process for generating, building, and deploying
REST services and REST resources on a reverse proxy server, according to one or more

embodiments of the present invention.

[0014] FIG. 9 is another block diagram illustrating, at a high-level, a reverse proxy server
including a policy enforcement engine, according to one or more embodiments of the present

invention.

[0015] FIG. 10 is a flowchart illustrating a process for processing and transmitting messages
using determined message processing policies, according to one or more embodiments of the

present invention.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

DETAILED DESCRIPTION

[0016] In the following description, for the purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of various embodiments of the present
invention. It will be apparent, however, to one skilled in the art that embodiments of the present
invention may be practiced without some of these specific details. In other instances, well-

known structures and devices are shown in block diagram form.

[0017] The ensuing description provides exemplary embodiments only, and is not intended to
limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description
of the exemplary embodiments will provide those skilled in the art with an enabling description
for implementing an exemplary embodiment. It should be understood that various changes may
be made in the function and arrangement of elements without departing from the spirit and scope

of the invention as set forth in the appended claims.

[0018] Specific details are given in the following description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in
the art that the embodiments may be practiced without these specific details. For example,
circuits, systems, networks, processes, and other components may be shown as components in
block diagram form in order not to obscure the embodiments in unnecessary detail. In other
instances, well-known circuits, processes, algorithms, structures, and techniques may be shown

without unnecessary detail in order to avoid obscuring the embodiments.

[0019] Also, it is noted that individual embodiments may be described as a process which is
depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. In addition, the order of the operations
may be re-arranged. A process is terminated when its operations are completed, but could have
additional steps not included in a figure. A process may correspond to a method, a function, a
procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its
termination can correspond to a return of the function to the calling function or the main

function.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0020] The term “computer-readable medium” includes, but is not limited to non-transitory
media such as portable or fixed storage devices, optical storage devices, and various other
mediums capable of storing, containing or carrying instruction(s) and/or data. A code segment
or computer-executable instructions may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software package, a class, or any combination of
instructions, data structures, or program statements. A code segment may be coupled to another
code segment or a hardware circuit by passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed,
forwarded, or transmitted via any suitable means including memory sharing, message passing,

token passing, network transmission, etc.

[0021] Furthermore, embodiments may be implemented by hardware, software, firmware,
middleware, microcode, hardware description languages, or any combination thereof. When
implemented in software, firmware, middleware or microcode, the program code or code
segments to perform the necessary tasks may be stored in a machine readable medium. A

processor(s) may perform the necessary tasks.

[0022] Various techniques (e.g., methods, systems, non-transitory computer-readable storage
memory storing a plurality of instructions executable by one or more processors, etc.) are
described herein for processing messages transmitted between computer networks. In some
embodiments, messages such as requests from client devices for backend web services,
applications, and other web content may be transmitted between multiple computer networks.
One or more intermediary devices or applications, such as proxy servers implemented within a
physical or logical subnetwork, may receive, process, and transmit the messages between the
communication endpoints. In some embodiments, a reverse proxy server may be configured to
dynamically generate Representational State Transfer (REST) services and REST resources
within the reverse proxy server. The REST services and REST resources within the reverse
proxy server may handle incoming requests from client devices and invoke backend web
services, thereby allowing design abstraction and/or enforcement of various security policies on

the reverse proxy server.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0023] In some embodiments, a proxy server may receive a web service request for a specific
resources exposed by a REST web service within the proxy server. The appropriate resource
within the REST web service in the proxy server may be invoked, and may in turn invoke a
backend web service. In some cases, a reverse proxy server may expose a set of REST web
services which virtualize and obscure various backend web services. For instance, the reverse
proxy server may expose only virtual uniform resource locators (URLSs) so that client devices on
untrusted networks might not see or have knowledge of the underlying backend web services.
According to additional aspects, REST services and REST resources may be generated within
the reverse proxy server to handle some or all of the REST requests received from client devices.
These REST services/resources may be dynamically generated and configured to handle REST
requests within the reverse proxy server, and/or to invoke corresponding sets of backend web
services. In order to dynamically generate and manage REST web services/resources, a REST
infrastructure and/or a REST application engine may be implemented within the reverse proxy
server. Additionally, in certain embodiments, REST resources within the reverse proxy server
may generate and provide backend web service calls to a policy enforcement engine for

enforcing various policies.

[0024] FIG. 1 is a block diagram illustrating components of an exemplary distributed system in
which various embodiments of the present invention may be implemented. In the illustrated
embodiment, distributed system 100 includes one or more client computing devices 102, 104,
106, and 108, which are configured to execute and operate a client application such as a web
browser, proprietary client (e.g., Oracle Forms), or the like over one or more network(s) 110.
Server 112 may be communicatively coupled with remote client computing devices 102, 104,

106, and 108 via network 110.

[0025] In various embodiments, server 112 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or cloud services or under a Software
as a Service (SaaS) model to the users of client computing devices 102, 104, 106, and/or 108.

Users operating client computing devices 102, 104, 106, and/or 108 may in turn utilize one or

10

15

20

25

WO 2016/048419 PCT/US2015/027763

more client applications to interact with server 112 to utilize the services provided by these

components.

[0026] In the configuration depicted in the figure, the software components 118, 120 and 122
of system 100 are shown as being implemented on server 112. In other embodiments, one or
more of the components of system 100 and/or the services provided by these components may
also be implemented by one or more of the client computing devices 102, 104, 106, and/or 108.
Users operating the client computing devices may then utilize one or more client applications to
use the services provided by these components. These components may be implemented in
hardware, firmware, software, or combinations thercof. It should be appreciated that various
different system configurations are possible, which may be different from distributed system
100. The embodiment shown in the figure is thus one example of a distributed system for

implementing an embodiment system and is not intended to be limiting.

[0027] Client computing devices 102, 104, 106, and/or 108 may be portable handheld devices
(c.g., an 1IPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant
(PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running software
such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as i0S,
Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being Internet, e-mail,
short message service (SMS), Blackberry®, or other communication protocol enabled. The
client computing devices can be general purpose personal computers including, by way of
example, personal computers and/or laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices
can be workstation computers running any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation the variety of GNU/Linux operating
systems, such as for example, Google Chrome OS. Alternatively, or in addition, client
computing devices 102, 104, 106, and 108 may be any other electronic device, such as a thin-
client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with
or without a Kinect® gesture input device), and/or a personal messaging device, capable of

communicating over network(s) 110.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0028] Although exemplary distributed system 100 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 112.

[0029] Network(s) 110 in distributed system 100 may be any type of network familiar to those
skilled in the art that can support data communications using any of a variety of commercially-
available protocols, including without limitation TCP/IP (transmission control protocol/Internet
protocol), SNA (systems network architecture), IPX (Internet packet exchange), AppleTalk, and
the like. Merely by way of example, network(s) 110 can be a local area network (LAN), such as
one based on Ethernet, Token-Ring and/or the like. Network(s) 110 can be a wide-area network
and the Internet. It can include a virtual network, including without limitation a virtual private
network (VPN), an intranet, an extranet, a public switched telephone network (PSTN), an infra-
red network, a wireless network (e.g., a network operating under any of the Institute of Electrical
and Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or any other wireless

protocol); and/or any combination of these and/or other networks.

[0030] Server 112 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms,
server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 112 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server 112 may correspond to a server for

performing processing described above according to an embodiment of the present disclosure.

[0031] Server 112 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 112 may also run any of a
variety of additional server applications and/or mid-tier applications, including HTTP (hypertext
transport protocol) servers, FTP (file transfer protocol) servers, CGI (common gateway interface)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM

(International Business Machines), and the like.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0032] In some implementations, server 112 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
102, 104, 106, and 108. As an example, data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more
third party information sources and continuous data streams, which may include real-time events
related to sensor data applications, financial tickers, network performance measuring tools (e.g.,
network monitoring and traffic management applications), clickstream analysis tools, automobile
traffic monitoring, and the like. Server 112 may also include one or more applications to
display the data feeds and/or real-time events via one or more display devices of client

computing devices 102, 104, 106, and 108.

[0033] Distributed system 100 may also include one or more databases 114 and 116. Databases
114 and 116 may reside in a variety of locations. By way of example, one or more of databases
114 and 116 may reside on a non-transitory storage medium local to (and/or resident in) server
112. Alternatively, databases 114 and 116 may be remote from server 112 and in communication
with server 112 via a network-based or dedicated connection. In one set of embodiments,
databases 114 and 116 may reside in a storage-area network (SAN). Similarly, any necessary
files for performing the functions attributed to server 112 may be stored locally on server 112
and/or remotely, as appropriate. In one set of embodiments, databases 114 and 116 may include
relational databases, such as databases provided by Oracle, that are adapted to store, update, and

retrieve data in response to SQL-formatted commands.

[0034] FIG. 2 is a block diagram illustrating components of a system environment by which
services provided by embodiments of the present invention may be offered as cloud services. In
the illustrated embodiment, system environment 200 includes one or more client computing
devices 204, 206, and 208 that may be used by users to interact with a cloud infrastructure
system 202 that provides cloud services. The client computing devices may be configured to
operate a client application such as a web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a user of the client computing device
to interact with cloud infrastructure system 202 to use services provided by cloud infrastructure

system 202.

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0035] It should be appreciated that cloud infrastructure system 202 depicted in the figure may
have other components than those depicted. Further, the embodiment shown in the figure is only
one example of a cloud infrastructure system that may incorporate an embodiment of the
invention. In some other embodiments, cloud infrastructure system 202 may have more or fewer
components than shown in the figure, may combine two or more components, or may have a

different configuration or arrangement of components.

[0036] Client computing devices 204, 206, and 208 may be devices similar to those described
above for 102, 104, 106, and 108.

[0037] Although exemplary system environment 200 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as

devices with sensors, etc. may interact with cloud infrastructure system 202.

[0038] Network(s) 210 may facilitate communications and exchange of data between clients
204, 206, and 208 and cloud infrastructure system 202. Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a

variety of commercially-available protocols, including those described above for network(s) 110.

[0039] Cloud infrastructure system 202 may comprise one or more computers and/or servers

that may include those described above for server 112.

[0040] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the like. Services provided by the cloud infrastructure system can
dynamically scale to meet the needs of its users. A specific instantiation of a service provided by
cloud infrastructure system is referred to herein as a “service instance.” In general, any service
made available to a user via a communication network, such as the Internet, from a cloud service
provider’s system is referred to as a “cloud service.” Typically, in a public cloud environment,

servers and systems that make up the cloud service provider’s system are different from the

10

10

15

20

25

WO 2016/048419 PCT/US2015/027763

customer’s own on-premises servers and systems. For example, a cloud service provider’s
system may host an application, and a user may, via a communication network such as the

Internet, on demand, order and use the application.

[0041] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the
art. For example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor’s web site.

[0042] In certain embodiments, cloud infrastructure system 202 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided

by the present assignee.

[0043] In various embodiments, cloud infrastructure system 202 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructure system 202. Cloud infrastructure system 202 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud
model in which cloud infrastructure system 202 is owned by an organization selling cloud
services (e.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services may be provided under a private
cloud model in which cloud infrastructure system 202 is operated solely for a single organization
and may provide services for one or more entities within the organization. The cloud services
may also be provided under a community cloud model in which cloud infrastructure system 202

and the services provided by cloud infrastructure system 202 are shared by several organizations

11

10

15

20

25

WO 2016/048419 PCT/US2015/027763

in a related community. The cloud services may also be provided under a hybrid cloud model,

which is a combination of two or more different models.

[0044] In some embodiments, the services provided by cloud infrastructure system 202 may
include one or more services provided under Software as a Service (SaaS) category, Platform as
a Service (PaaS) category, Infrastructure as a Service (1aaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or more
services provided by cloud infrastructure system 202. Cloud infrastructure system 202 then

performs processing to provide the services in the customer’s subscription order.

[0045] In some embodiments, the services provided by cloud infrastructure system 202 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under
the SaaS category. For example, the SaaS platform may provide capabilities to build and deliver
a suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexibility for large organizations.

[0046] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that enable organizations (such as Oracle) to consolidate existing applications on a
shared, common architecture, as well as the ability to build new applications that leverage the
shared services provided by the platform. The PaaS platform may manage and control the

underlying software and infrastructure for providing the PaaS services. Customers can acquire

12

10

15

20

25

WO 2016/048419 PCT/US2015/027763

the PaaS services provided by the cloud infrastructure system without the need for customers to
purchase separate licenses and support. Examples of platform services include, without

limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0047] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to pool
database resources and offer customers a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy

Java applications, in the cloud infrastructure system.

[0048] Various different infrastructure services may be provided by an laaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the PaaS

platform.

[0049] In certain embodiments, cloud infrastructure system 202 may also include
infrastructure resources 230 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 230
may include pre-integrated and optimized combinations of hardware, such as servers, storage,
and networking resources to execute the services provided by the PaaS platform and the SaaS

platform.

[0050] In some embodiments, resources in cloud infrastructure system 202 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For example, cloud infrastructure system 230 may

enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
13

10

15

20

25

WO 2016/048419 PCT/US2015/027763

system for a specified number of hours and then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby maximizing the utilization of

reésources.

[0051] In certain embodiments, a number of internal shared services 232 may be provided that
are shared by different components or modules of cloud infrastructure system 202 and by the
services provided by cloud infrastructure system 202. These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email service, a

notification service, a file transfer service, and the like.

[0052] In certain embodiments, cloud infrastructure system 202 may provide comprehensive
management of cloud services (e.g., SaaS, PaaS, and laaS services) in the cloud infrastructure
system. In one embodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure

system 202, and the like.

[0053] In one embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 220, an order
orchestration module 222, an order provisioning module 224, an order management and
monitoring module 226, and an identity management module 228. These modules may include
or be provided using one or more computers and/or servers, which may be general purpose
computers, specialized server computers, server farms, server clusters, or any other appropriate

arrangement and/or combination.

[0054] In exemplary operation 234, a customer using a client device, such as client device 204,
206 or 208, may interact with cloud infrastructure system 202 by requesting one or more services
provided by cloud infrastructure system 202 and placing an order for a subscription for one or
more services offered by cloud infrastructure system 202. In certain embodiments, the customer
may access a cloud User Interface (UI), cloud UI 212, cloud Ul 214 and/or cloud UI 216 and

place a subscription order via these Uls. The order information received by cloud infrastructure
14

10

15

20

25

WO 2016/048419 PCT/US2015/027763

system 202 in response to the customer placing an order may include information identifying the
customer and one or more services offered by the cloud infrastructure system 202 that the

customer intends to subscribe to.

[0055] After an order has been placed by the customer, the order information is received via

the cloud Uls, 212, 214 and/or 216.

[0056] At operation 236, the order is stored in order database 218. Order database 218 can be
one of several databases operated by cloud infrastructure system 218 and operated in conjunction

with other system elements.

[0057] At operation 238, the order information is forwarded to an order management module
220. In some instances, order management module 220 may be configured to perform billing
and accounting functions related to the order, such as verifying the order, and upon verification,

booking the order.

[0058] At operation 240, information regarding the order is communicated to an order
orchestration module 222. Order orchestration module 222 may utilize the order information to
orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 222 may orchestrate the provisioning of resources to

support the subscribed services using the services of order provisioning module 224.

[0059] In certain embodiments, order orchestration module 222 enables the management of
business processes associated with each order and applies business logic to determine whether an
order should proceed to provisioning. At operation 242, upon receiving an order for a new
subscription, order orchestration module 222 sends a request to order provisioning module 224 to
allocate resources and configure those resources needed to fulfill the subscription order. Order
provisioning module 224 enables the allocation of resources for the services ordered by the
customer. Order provisioning module 224 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 200 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration

module 222 may thus be isolated from implementation details, such as whether or not services

15

10

15

20

25

WO 2016/048419 PCT/US2015/027763

and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned

upon request.

[0060] At operation 244, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 204, 206 and/or 208 by order

provisioning module 224 of cloud infrastructure system 202.

[0061] At operation 246, the customer’s subscription order may be managed and tracked by an
order management and monitoring module 226. In some instances, order management and
monitoring module 226 may be configured to collect usage statistics for the services in the
subscription order, such as the amount of storage used, the amount data transferred, the number

of users, and the amount of system up time and system down time.

[0062] In certain embodiments, cloud infrastructure system 200 may include an identity
management module 228. Identity management module 228 may be configured to provide
identity services, such as access management and authorization services in cloud infrastructure
system 200. In some embodiments, identity management module 228 may control information
about customers who wish to utilize the services provided by cloud infrastructure system 202.
Such information can include information that authenticates the identities of such customers and
information that describes which actions those customers are authorized to perform relative to
various system resources (¢€.g., files, directories, applications, communication ports, memory
segments, etc.) Identity management module 228 may also include the management of
descriptive information about each customer and about how and by whom that descriptive

information can be accessed and modified.

[0063] FIG. 3 is a block diagram illustrating an exemplary computer system in which
embodiments of the present invention may be implemented. The system 300 may be used to
implement any of the computer systems described above. As shown in the figure, computer
system 300 includes a processing unit 304 that communicates with a number of peripheral
subsystems via a bus subsystem 302. These peripheral subsystems may include a processing

acceleration unit 306, an I/O subsystem 308, a storage subsystem 318 and a communications

16

10

15

20

25

WO 2016/048419 PCT/US2015/027763

subsystem 324. Storage subsystem 318 includes tangible computer-readable storage media 322

and a system memory 310.

[0064] Bus subsystem 302 provides a mechanism for letting the various components and
subsystems of computer system 300 communicate with each other as intended. Although bus
subsystem 302 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 302 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus

manufactured to the IEEE P1386.1 standard.

[0065] Processing unit 304, which can be implemented as one or more integrated circuits (e.g.,
a conventional microprocessor or microcontroller), controls the operation of computer system
300. One or more processors may be included in processing unit 304. These processors may
include single core or multicore processors. In certain embodiments, processing unit 304 may be
implemented as one or more independent processing units 332 and/or 334 with single or
multicore processors included in each processing unit. In other embodiments, processing unit
304 may also be implemented as a quad-core processing unit formed by integrating two dual-

core processors into a single chip.

[0066] In various embodiments, processing unit 304 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 304 and/or in storage subsystem 318. Through suitable programming, processor(s)
304 can provide various functionalities described above. Computer system 300 may additionally
include a processing acceleration unit 306, which can include a digital signal processor (DSP), a

special-purpose processor, and/or the like.

17

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0067] 1/0 subsystem 308 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse
or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel,
a dial, a button, a switch, a keypad, audio input devices with voice command recognition
systems, microphones, and other types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recognition devices such as the Microsoft
Kinect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controller, through a natural user interface using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users and transforms the eye gestures as
input into an input device (e.g., Google Glass®). Additionally, user interface input devices may
include voice recognition sensing devices that enable users to interact with voice recognition

systems (e.g., Siri® navigator), through voice commands.

[0068] User interface input devices may also include, without limitation, three dimensional
(3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image
scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and
eye gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, audio input devices such as MIDI keyboards, digital musical

instruments and the like.

[0069] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term “output
device” is intended to include all possible types of devices and mechanisms for outputting
information from computer system 300 to a user or other computer. For example, user interface

18

10

15

20

25

WO 2016/048419 PCT/US2015/027763

output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0070] Computer system 300 may comprise a storage subsystem 318 that comprises software
elements, shown as being currently located within a system memory 310. System memory 310
may store program instructions that are loadable and executable on processing unit 304, as well

as data generated during the execution of these programs.

[0071] Depending on the configuration and type of computer system 300, system memory 310
may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only
memory (ROM), flash memory, etc.) The RAM typically contains data and/or program modules
that are immediately accessible to and/or presently being operated and executed by processing
unit 304. In some implementations, system memory 310 may include multiple different types of
memory, such as static random access memory (SRAM) or dynamic random access memory
(DRAM). In some implementations, a basic input/output system (BIOS), containing the basic
routines that help to transfer information between elements within computer system 300, such as
during start-up, may typically be stored in the ROM. By way of example, and not limitation,
system memory 310 also illustrates application programs 312, which may include client
applications, Web browsers, mid-tier applications, relational database management systems
(RDBMYS), etc., program data 314, and an operating system 316. By way of example, operating
system 316 may include various versions of Microsoft Windows®, Apple Macintosh®, and/or
Linux operating systems, a variety of commercially-available UNIX® or UNIX-like operating
systems (including without limitation the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems such as i0S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[0072] Storage subsystem 318 may also provide a tangible computer-readable storage medium
for storing the basic programming and data constructs that provide the functionality of some
embodiments. Software (programs, code modules, instructions) that when executed by a

processor provide the functionality described above may be stored in storage subsystem 318.

19

10

15

20

25

WO 2016/048419 PCT/US2015/027763

These software modules or instructions may be executed by processing unit 304. Storage
subsystem 318 may also provide a repository for storing data used in accordance with the present

invention.

[0073] Storage subsystem 300 may also include a computer-readable storage media reader 320
that can further be connected to computer-readable storage media 322. Together and, optionally,
in combination with system memory 310, computer-readable storage media 322 may
comprehensively represent remote, local, fixed, and/or removable storage devices plus storage
media for temporarily and/or more permanently containing, storing, transmitting, and retrieving

computer-readable information.

[0074] Computer-readable storage media 322 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include non-transitory and tangible computer-readable storage media such
as RAM, ROM, electronically erasable programmable ROM (EEPROM), flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other
tangible computer readable media. This can also include nontangible computer-readable media,
such as data signals, data transmissions, or any other medium which can be used to transmit the

desired information and which can be accessed by computing system 300.

[0075] By way of example, computer-readable storage media 322 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 322 may
include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash
drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable

storage media 322 may also include, solid-state drives (SSD) based on non-volatile memory such

20

10

15

20

25

WO 2016/048419 PCT/US2015/027763

as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based
on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs,
magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and
flash memory based SSDs. The disk drives and their associated computer-readable media may
provide non-volatile storage of computer-readable instructions, data structures, program

modules, and other data for computer system 300.

[0076] Communications subsystem 324 provides an interface to other computer systems and
networks. Communications subsystem 324 serves as an interface for receiving data from and
transmitting data to other systems from computer system 300. For example, communications
subsystem 324 may enable computer system 300 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 324 can include radio frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE
(enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), global positioning system (GPS)
receiver components, and/or other components. In some embodiments communications
subsystem 324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead

of a wireless interface.

[0077] In some embodiments, communications subsystem 324 may also receive input
communication in the form of structured and/or unstructured data feeds 326, event streams 328,
event updates 330, and the like on behalf of one or more users who may use computer system

300.

[0078] By way of example, communications subsystem 324 may be configured to receive data
feeds 326 in real-time from users of social networks and/or other communication services such
as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds,

and/or real-time updates from one or more third party information sources.

[0079] Additionally, communications subsystem 324 may also be configured to receive data in

the form of continuous data streams, which may include event streams 328 of real-time events
21

10

15

20

25

WO 2016/048419 PCT/US2015/027763

and/or event updates 330, that may be continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may include, for example, sensor data
applications, financial tickers, network performance measuring tools (e.g. network monitoring
and traffic management applications), clickstream analysis tools, automobile traffic monitoring,

and the like.

[0080] Communications subsystem 324 may also be configured to output the structured and/or
unstructured data feeds 326, event streams 328, event updates 330, and the like to one or more
databases that may be in communication with one or more streaming data source computers

coupled to computer system 300.

[0081] Computer system 300 can be one of various types, including a handheld portable device
(e.g., an 1IPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a
Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack,

or any other data processing system.

[0082] Due to the ever-changing nature of computers and networks, the description of
computer system 300 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular elements
might be implemented in hardware, firmware, software (including applets), or a combination.
Further, connection to other computing devices, such as network input/output devices, may be
employed. Based on the disclosure and teachings provided herein, a person of ordinary skill in

the art will appreciate other ways and/or methods to implement the various embodiments.

[0083] As introduced above, embodiments of the invention provide techniques for processing
messages transmitted between computer networks. More specifically, intermediary network
devices or applications, such as proxy servers implemented within a physical or logical
subnetwork, may receive, process, and transmit the messages between the communication
endpoints. In some embodiments, a reverse proxy server may be configured to dynamically
generate Representational State Transfer (REST) services and REST resources within the reverse

proxy server. The REST services and REST resources within the reverse proxy server may
22

10

15

20

25

WO 2016/048419 PCT/US2015/027763

handle incoming requests from client devices and invoke backend web services, thereby
allowing design abstraction and/or enforcement of various security policies on the reverse proxy

SCIver.

[0084] In various embodiments, a proxy server may receive a web service request for a
specific resources exposed by a REST web service within the proxy server. The appropriate
resource within the REST web service in the proxy server may be invoked, and may in turn
invoke a backend web service. In some cases, a reverse proxy server may expose a set of REST
web services which virtualize and obscure various backend web services. For instance, the
reverse proxy server may expose only virtual uniform resource locators (URLs) so that client
devices on untrusted networks might not see or have knowledge of the underlying backend web
services. According to additional aspects, REST services and REST resources may be generated
within the reverse proxy server to handle some or all of the REST requests received from client
devices. These REST services/resources may be dynamically generated and configured to
handle REST requests within the reverse proxy server, and/or to invoke corresponding sets of
backend web services. In order to dynamically generate and manage REST web
services/resources, a REST infrastructure and/or a REST application engine may be implemented
within the reverse proxy server. Additionally, in certain embodiments, REST resources within
the reverse proxy server may generate and provide backend web service calls to a policy

enforcement engine for enforcing various policies.

[0085] FIGS. 4A and 4B are block diagrams illustrating components of computing
environments 400a and 400b that include a reverse proxy server 420 for processing and
transmitting messages between computing devices and/or systems in various computer networks.
Computing environments 400a and 4000 (collectively, 400) illustrated in this example may
correspond to a high-level computer architecture designed to provide various client devices 410
with access to backend computing resources such as web applications and web services 430. In
various embodiments, computing environment 400 may range from a small and simple
computing system to a large and highly complex system including hardware, software, and
network components designed to integrate with other such systems to support the computing
needs of various organizations. The computing environment 400 may be implemented as a

23

10

15

20

25

WO 2016/048419 PCT/US2015/027763

multi-tier computer architecture, which may include web-based and/or cloud-based
implementations, and in which various endpoint devices (e.g., user devices 410, web service
providers 430, etc.) interact via one or more middle-tier systems. Additionally, each component
shown in computing environment 400 may be implemented as an individual computer system
including various combinations of hardware, software, and/or network components. In other
cases, multiple components shown in computing environment 400 may be implemented as
logical subcomponents (e.g., software applications embodied on computer-readable media, etc.)

operating within combined computer systems.

[0086] As shown in FIGS. 4A and 4B, such computing environments 400 may correspond to a
client-server system in which client devices 410 may transmit requests via one or more computer
network(s) 415, one or more firewalls 435, reverse proxy server 420, and/or other intermediary
network devices, to one or more backend web services 430. Web services 430 may include any
application programming interfaces (APIs), services, applications, and any other information
assets exposed by the various systems 430, including but not limited to Simple Object Access
protocol (SOAP) web services or APIs, Representational State Transfer (REST) web services or
APIs, and/or web content exposed via Hypertext Transfer Protocol (HTTP) or HTTP Secure
protocols. In such cases, the reverse proxy server 420 may provide a security layer between the
client devices 410 and backend web services 430. For example, proxy server 420 may provide a
central access point for the backend web services 430, along with service virtualization and
enforcement of various security and management policies associated with the backend web
services 430. Reverse proxy server 420 also may expose the backend web services 430 while
virtualizing and obscuring these services 430. For instance, the reverse proxy server 420 may
expose only virtual uniform resource locators (URLSs) so that client devices 410 on untrusted

networks might not see or have knowledge of the underlying backend web services 430.

[0087] Additionally or alternatively, computing environments 400 may be configured as a
client-server system for processing and transmitting requests-responses in the opposite direction.
For example, in some embodiments, one or more client devices (not shown) operating within the
internal computer network 460 may transmit requests to web services or applications (not
shown) operating on various external computer systems and networks 480 beyond the proxy

24

10

15

20

25

WO 2016/048419 PCT/US2015/027763

server 420 and firewall(s) 435a. Thus, although server 420 is referred to herein as a reverse
proxy server 420, it should be understood that it also may act as a forward proxy server, and may
provide a security layer between internal client devices 440 and external backend web services or
applications. When performing either the functionality of a reverse proxy (i.e., reverse proxy
mode) or the functionality of a forward proxy (i.e., forward proxy mode), the reverse proxy
server 420 may handle network requests to and responses from SOAP web services, REST web
services, HTTP/HTTPS web content, and the like. When the proxy server 420 is operating as a
forward proxy server, the internal client devices may already know about the external backend
web services/applications, and those backend services/applications may receive direct
transmissions from the proxy server 420 configured on the client side. In such cases, the proxy
server 420 may provide security for the forward proxy uniform resource identifier (URI)
endpoints, using any security or communication management policies. In either forward proxy
mode or reverse proxy mode, the proxy server 420 may support various security and
authentication features, such as Kerberos Kinit-based authentication, Kerberos Pkinit-based
authentication, open standard for authorization protocol version 2.0 (OAuth2) based
authentication, TLP-based authentication, create session tokens and/or challenge-based
authentication of backend services using Simple and Protected GSSAPI Negotiation Mechanism
(SPNEGO) tokens, WINDOWS NT LAN Manager (NTLM) tokens, Security Assertion Markup
Language (SAML) tokens, and the like.

[0088] Client devices 410 may include desktop or laptop computers, mobile devices, and other
various computing devices/systems, including some or all of the hardware, software, and
networking components discussed above in the illustrative computing systems in FIGS. 1-3. In
some embodiments, client devices 410 may include one or more client software applications
(e.g., web browsers) configured to request and receive data from the backend web services 430.
Client devices 410 also may include the necessary hardware and software components to
establish the network interfaces, security and authentication capabilities, and content caching

capabilities to receive the live content and provide it to users in real-time (or near real-time).

[0089] Communication networks 415 may include any combination of computer networks and
other communication networks described herein. For example, networks 415 may include

25

10

15

20

25

WO 2016/048419 PCT/US2015/027763

TCP/IP (transmission control protocol/Internet protocol) networks such as local area networks
(LANSs), wide area networks (WANS) (e.g., the Internet), and various wireless
telecommunications networks. Additionally, it should been understood that communication
network 415 may represent combinations of many different physical and logical networks
separating client devices 410 from backend web services 430. In addition to one or more
firewalls 435, various servers such as web servers, authentication servers, and/or specialized
networking components, such as firewalls, routers, gateways, load balancers, and the like, may

facilitate communication between client devices 410 and backend web services 430.

[0090] In some embodiments reverse proxy server 420 may be implemented as isolated
computer system (e.g., a proxy computer server) or as combination of computer multiple
computing systems including specialized hardware, software, and network components within an
isolated DMZ 470, as shown in FIG. 4B. Alternatively or additionally, reverse proxy server 420
may be a proxy server software application executing within a network device (e.g., a web server
or firewall 435b) or a computer server within a trusted network 460. Thus, reverse proxy server
420 may reside in physical or logical subnetwork 465 of the internal computer network 460, as
shown in FIG. 4A. In cither case, the reverse proxy server 420 may act as an intermediary
between clients/servers on a trusted internal network 460 and clients/servers on untrusted
external networks 480. Additionally, each of the components 421-423 within the reverse proxy
server 420 (as well as other the proxy server components discussed in reference to FIGS. 5, 7,
and 9) may be implemented as separate computing systems configured to communicate with
reverse proxy server 420, or may operate as logical subcomponents integrated within the same
computer server as the reverse proxy server 420. In either case, each component 421-423 (as
well as other the proxy server components discussed in reference to FIGS. 5, 7, and 9) may be
implemented using specialized hardware, software, network, and memory subsystems to perform

the techniques described herein.

[0091] In this example, reverse proxy server 420 includes a message handler 421 configured to
receive messages from client devices 410 via communication networks 415 and/or firewalls
435a. In some embodiments, message handler 421 may be entry point for all TCP, UDP, HTTP,
and HTTPS traffic from any external networks to the backend web services 430. Message

26

10

15

20

25

WO 2016/048419 PCT/US2015/027763

handler 421 also may be configured to receive response from backend web services 430, and
transmit the responses to the client devices 410. In some examples, the message handler 421
may include one or more specialized hardware, software, and network components such as load

balancers, caches, and/or message throttlers.

[0092] After receiving and parsing messages, message handler 421 may transmit the messages
(e.g., via Java Native Interface (JNI) or NET programming framework, etc.) to an appropriate
web services framework. For example, SOAP requests received at the reverse proxy server 420
may be transmitted to a SOAP web services framework (not shown), while REST requests may
be transmitted to a REST web services framework (e.g., REST infrastructure 422). Web content
requests may be handled similarly by the message handler 421, for example, by parsing and
transmitting the requests to various components, such as URL virtualization component or
service. In some cases, the message handler 421 also may be configured to perform protocol
transformations, such as SOAP to REST and REST to SOAP message transformations, as well as
JavaScript Object Notation (JSON) to XML or JSON to SOAP, and vice versa.

[0093] Proxy server 420 also may include a Representational State Transfer (REST)
infrastructure 422 and one or more REST web services (or REST APIs) 423. As shown in FIG.
4, the REST infrastructure 422 may receive requests for REST web services from the request
handler 421. As described below in more detail, the REST infrastructure 422 may analyze and
process REST requests before forwarding them to the appropriate REST service 423 to handle
the request. Each REST service 423 may include REST resources configured to handle requests
and invoke corresponding backend web services 430 based on the request. Additionally, in some
embodiments, the REST infrastructure 422 may dynamically generate the REST services 423

and individual REST resources to handle requests.

[0094] REST infrastructure 422 may include a web services framework for developing and
executing REST web services (also called RESTful web services, RESTful APIs, etc.). In some
embodiments, the REST infrastructure 422 may be an implementation of the JAX-RS (The Java
API for RESTful Web Services) specification, such as the JERSEY reference implementation of
JAX-RS. Although many examples below are discussed in terms of JAX-RS and the JERSEY

27

10

15

20

25

WO 2016/048419 PCT/US2015/027763

web service/API infrastructure, other frameworks and techniques may be used in other examples.
For example, other REST web frameworks/API servers such as SCALA, BOWLING
FINCH/FINAGLE frameworks may be used alternatively or in addition to JERSEY and JAX-
RS.

[0095] In various embodiments, the REST infrastructure 422 may include a library to
implement REST web services (e.g., within a JERSEY JAVA servlet container), and also may
provide an application (e.g., a JERSEY JAVA servlet) configured to scan predefined classes to
identify REST resources. The REST infrastructure 422 also may provide a client library to
communicate with REST web services 423 and/or 430. When receiving requests from client
devices, an application within the REST infrastructure (e.g., a JERSEY JAVA servlet) may
analyze incoming HTTP requests and select the correct resource and method to respond to the
request. Unlike certain types of web services, REST web services need not communicate in
XML or any other particular data format. Accordingly, the REST infrastructure 422 may support
creation of data in XML, JavaScript Object Notation (JSON), comma-separated values (CSV), or

a variety of other data formats.

[0096] As shown in FIGS. 4A and 4B, reverse proxy server 420 may be implemented within
an intermediary network device between two or more computer networks, for example, between
a trusted internal network 460 providing web services 430, and untrusted external networks 480
(e.g., the Internet) over which various untrusted client devices 410 may access the internal web
services 430. As shown in FIG. 4A, reverse proxy server 420 may operate within a subnetwork
465 of an internal computer network 460, in order to provide an initial layer of security and
communications management for the internal computer network 460. For example, a secure
internal network 460 may include a plurality of web services and applications 430, along with
various other servers and/or client devices. Reverse proxy server 420 and/or additional network
or computing devices may be part of the same internal network 460, but may operate within a
physical subnetwork 465 of the internal computer network, separated from the internal computer
network by one or more gateways, firewalls 435b, etc. In some examples, reverse proxy server
420 may be implemented as a proxy server application executing within a logical subnetwork
465 (but not a physical subnetwork) of the internal computer network 460. Thus, reverse proxy

28

10

15

20

25

WO 2016/048419 PCT/US2015/027763

server 420 may reside on the same computing systems one or more of the backend web services

430 or other computer systems within the internal computer network 460.

[0097] Additionally, in some embodiments, the reverse proxy server 420 may operate within a
demilitarized zone (DMZ) network 470 between a trusted internal network 460 and an untrusted
external network 480. As shown in FIG. 4B, the DMZ network 470 may be implemented as a
wholly separate computing system, with dedicated hardware, software, and network components,
and isolated from both the internal network 460 and the external network 480. Alternatively, as
shown in FIG. 4A, the DMZ may be implemented as a physical or logical subnetwork 465 of the
trusted internal network 460, whereby the DMZ provides a first layer of security and
communications management, separate from the endpoint security provided at client devices 410
and/or backend web services 430. In either case, a DMZ network may be implemented between
two firewalls 435a and 435b, or may be implemented using a single firewall, or using other
various configurations of network devices that physically or logically separate a DMZ network
470 or a subnetwork 465, both from the trusted internal network 460 and the untrusted external
network 415. All computer servers and other devices within the DMZ, such as the reverse proxy
server 420, may have limited connectivity to a specific subset of the devices within the internal
network 460 (e.g., specific servers hosting web services 430). Such connectivity may be limited
based on the specific hosts, ports, protocols, and the like. Similarly, policies of limited
connectivity may be enforced on the devices within the DMZ when communication with any
external untrusted network (e.g., network 415 and client devices 410). In addition to operating a
reverse proxy server 420 within a DMZ, in certain embodiments, one or more of the backend
web services 430 may operate within a DMZ. For instance, certain computer servers/services
that are more vulnerable or prone to attacks from external systems (e.g., web servers, email
servers, Domain Name System (DNS) servers, etc.) may be moved into the DMZ with the proxy

server 420.

[0098] FIG. 5 is a block diagram illustrating certain elements and systems of a reverse proxy
server according to one or more embodiments. The reverse proxy server 520 in this example
may correspond to reverse proxy 420, and the various subcomponents 521-523 of the reverse
proxy server 520 may be similar or identical to the corresponding subcomponents 421-423,

29

10

15

20

25

WO 2016/048419 PCT/US2015/027763

discussed above. Additionally, reverse proxy server 520 may operate within computing
environment 400 or other similar environments, and may be configured to process and transmit
messages between client computing devices and backend web services. Accordingly, reverse
proxy server 520 may include some or all of the hardware, software, and networking components

and functionality discussed above in reference to FIGS. 4A and 4B.

[0099] REST infrastructure 522 may include one or more REST web service frameworks
having various components (e.g., applications and libraries) for developing, deploying,
executing, and accessing REST services and resources. In various embodiments, the REST
infrastructure 522 may include to a JERSEY implementation of the JAX-RS specification and/or
other REST web service framework implementations. The REST infrastructure 522 may provide
one or more libraries to implement REST web services, applications to scan predefined classes to

identify REST resources, and client libraries to communicate with REST web services, etc.

[0100] As discussed above, request handler 521 may forward REST requests to the REST
infrastructure 522, which may analyze and process the requests before forwarding them to one or
more REST services within the reverse proxy server 520. In this example, the REST
infrastructure 522 includes a REST stack 524, a static REST application 525 (e.g., a JERSEY
application generated during build-time), and a REST provider resource 526. As discussed in
more detail below, the reverse proxy server 520 may dynamically (i.e., during runtime) initialize
the REST stack 524 and register the static REST application 525. The static REST application
525 may return a REST provider resource 526 which may be responsible for identifying the root

resource of the appropriate REST service 523 to handle the request.

[0101] As shown in FIG. 5, the REST provider resource 526 may forward requests to any
REST service 523 within the reverse proxy server 520. In this example, the request has been
forwarded to REST service 523b, and received by the root resource 527 in that REST service.
As shown in this example, REST services 523 may be designed and implemented as resource
hierarchies, in which a root resource 527 is the highest-level resource within the service 523
(e.g., mapped the “/” path of the service) and is responsible for identifying the sub-resources 528

(or child resources) that will handle the different requests. Both the root resource 527 and/or all

30

10

15

20

25

WO 2016/048419 PCT/US2015/027763

of the child resources 528 may be created as dynamic REST resources (e.g., resources created
during runtime), as discussed below in more detail. Additionally, although a simple two-level
hierarchy is shown in this example, complex hierarchies of many different levels (e.g., three-

level, four-level, five-level, etc.) may be implemented in other examples.

[0102] Referring now to FIGS. 6A-6B (collectively “FIG. 6”), a flowchart is shown illustrating
a process for receiving and processing REST web service requests via reverse proxy servers. As
described below, the steps in this process may be performed by one or more components in the
computing environment 400, such as reverse proxy server 420 (and/or reverse proxy servers 520,
720, and 920), and the various subsystems and subcomponents implemented therein.
Additionally, in some embodiments, certain steps in this process may be performed within client
devices 410, backend web services 430, and/or by other various intermediary devices. It should
further be understood that the techniques described herein, including receiving and analyzing
messages, selecting message processing policies and processing messages, need not be limited to
the specific system and hardware implementations described above, but may be performed
within other hardware and system environments comprising other combinations of the hardware,

software, and network components.

[0103] Instep 601, a web service request may be received by an intermediary computing
system or application, such as reverse proxy server 420. As noted above, reverse proxy server
420 may be implemented as an intermediary server device and/or application between a trusted
internal network 460 and one or more untrusted external networks. Therefore, the reverse proxy
server 420 may intercept messages transmitted by client endpoints (e.g., client devices 410) and
intended for server endpoint devices (e.g., computer server hosting backend web services and/or

applications 430), or vice versa.

[0104] In some embodiments, all network traffic entering or leaving an internal network 460
may be routed through the reverse proxy server 420. In other cases, the reverse proxy server 420
may be configured to intercept specific types or protocols of network messages, for example,
HTTP requests from client devices 410 for SOAP, REST, or URL resources, and HTTP
responses from SOAP, REST, or URL web services/applications 430 back to the client devices.

31

10

15

20

25

WO 2016/048419 PCT/US2015/027763

Therefore, the web service request received in step 601 may be, for example and without
limitation, a TCP message, an HTTP or HTTPS message, a Simple Mail Transport Protocol
(SMTP), a User Datagram Protocol (UDP) message, and/or a Java Message Service (JMS)
message. In some cases, the web service request may correspond to a SOAP, REST, or web
content request from a client device 410 to a backend web service 430, or to response by a

backend web service 430 to a SOAP, REST, or web content request from a client device 410.

[0105] In step 602, the reverse proxy server 420 may analyze the request received in step 601
to determine whether or not the request is directed to a REST resource 528 exposed by a REST
service 423/523 within the reverse proxy server 420. As used herein, “exposing” a resource such
as programming object or a data object may refer to providing an interface that provides access
to the resource. For example, web services and APIs may expose resources by providing

methods and operations that allow client applications to access and/or manipulate the objects.

[0106] As discussed above, the REST web service request received in step 601 may be
intended for (and/or may be ultimately forwarded to) a backend web service 430. However, in
various embodiments, REST services and resources may be generated within the reverse proxy
server 420 to handle some or all of the REST requests received from client devices 410. For
example, as shown in FIGS. 4A and 4B, a set of a REST services 423 may be generated to
handle REST requests in the reverse proxy server 420, and potentially may invoke a
corresponding set of backend web services 430. Thus, a set of REST services 423/523 within the
reverse proxy server 420 may expose some or all of the same resources exposed by the backend
web services 430. In some cases, these REST services 423 within the reverse proxy server 420
may be referred to as “virtual services.” As described below in more detail, these REST services
423 may or may not correspond precisely to the backend web services 430. For instance, a
single REST service 423 may expose REST resources 528 that invoke multiple different backend
services 430, or conversely, multiple different REST services 423 may invoke the same backend
service 430. Additionally, the REST services 423 within reverse proxy server 420 may include
support for new or different operations or methods, parameters, data types, and the like, that are

not supported by the backend web services 430, and vice versa.

32

10

15

20

25

WO 2016/048419 PCT/US2015/027763

[0107] Further, certain REST web services 423 and/or REST resources 527-528 may be
dynamically created within the reverse proxy server 420 in some embodiments. For example,
the REST infrastructure 422 (and/or 522, 722, and 922) and/or other components within the
reverse proxy server 420 may generate, delete, replace or update various REST services and/or
REST resources during runtime. In such cases, even though certain REST resources 528 might
not exist on the reverse proxy server 420 at certain times, those resources may nonetheless still
be exposed by the reverse proxy server 420 at the same times. For example, a Web Application
Description Language (WADL) file may be generated to describe all of the resources exposed by
a REST web service 423/523. The WADL file may be used to determine which REST resources
528 are exposed by the REST service 423, even if some of those resources 528 have not yet been
created. The techniques for dynamically generating and updating various REST services
423/523 and REST resources 528 within the reverse proxy server 420 are described in more

detail below in reference to FIGS. 7 and &

[0108] In order to determine in step 602 whether or not the request is directed to a REST
resource 528 exposed by a REST service 423/523 in the reverse proxy server 420, the request
may be parsed and analyzed to identify the request destination and relevant portions of the
message header and/or body. For example, if the request is an HTTP request directed to a URL
that corresponds to a REST resource within a WADL file (or other web service description data)
for a REST service 423, then the request handler 421 may determine that the request is directed
to a REST resource 528 exposed by the reverse proxy server 420 (602:Yes). Alternatively, if the
request is an invalid request, a SOAP request, a request for normal web content, or a request
directed to a REST resource that is not accessible via reverse proxy server 420, then the request
handler 421 may determine that the request is not directed to a REST resource 528 exposed by
the reverse proxy server 420 (602:No).

[0109] In step 603, the REST web service request received in step 601 may be forwarded to

the REST infrastructure 422 within the reverse proxy server 420. For example, after determining

that the web service request is a request for a REST resource exposed by the reverse proxy server

420 in step 602, the request handler 421 may forward the request to the REST stack 524 within

the REST infrastructure 422, and the REST stack 524 may then forward the request to the static
33

10

15

20

25

WO 2016/048419 PCT/US2015/027763

REST application 525. As discussed above, in some embodiments, the REST stack 524 may be
a JAX-RS stack, and the static REST application may be a JERSEY application generated during
build-time. In some cases, components within the reverse proxy server 520 may be configured

to dynamically initialize the JAX-RS stack 524 and register the static JERSEY application 525.

[0110] In step 604, various components within the reverse proxy server 420 (and/or reverse
proxy servers 520, 720, and 920) may determine whether or not the requested REST resource(s)
currently exist on the reverse proxy server 420. As noted above, in some embodiments, the
REST web services 423 may be dynamically created, that is, generated during runtime by the
REST infrastructure 422 (and/or 522, 722, and 922) and/or other components within the reverse
proxy server 420. Therefore, in step 604, the REST infrastructure 422 and/or REST services 423
may determine whether or not requested REST resources currently exist on the reverse proxy
server 420. In some cases, upon receiving a REST request (602:Yes), the REST stack 524 (e.g.,
a JAX-RX stack) may receive the request and invoke the static REST application 525 (e.g., a
JERSEY application), which may invoke the registered REST provider resource 526. The REST
provider resource 526 may delegate the request to the appropriate REST service 423 and/or the
appropriate REST resources 428 within the virtual REST services 423. If the REST provider
resource 526 and/or the root resource 527 of the invoked REST service determines that the
requested resource has previously been generated (604:Yes), then the request may be forwarded
to the root resource 527 of the REST service 523 in step 606, and then to the appropriate REST
resource 528 to handle the request in step 607. In some embodiments, the provider resource 526
may determine the appropriate REST root resource 527 using the URI of the request, and the
REST root resource 527 may be mapped to the “/”’path of the resource. The REST root resource
527 then may user a sub-resource locator to locate the actual REST resource 528 within the

reverse proxy server 420 to handle the request.

[0111] Alternatively, if one or more components within the REST infrastructure 526 and/or the
invoked REST service 523 determine that the requested REST resource has not yet been
generated (or needs to be regenerated) (604:No), then the requested appropriate REST resource
to handle the request may be generated in step 605. The generation of virtual REST web
services 423 within the reverse proxy server 420 is discussed below in more detail in reference to

34

10

15

20

25

WO 2016/048419 PCT/US2015/027763

FIGS. 7-8. After the appropriate REST resource to handle the request has been generated in step
605, the request then may be forwarded to the root resource 527 of the REST service 523 in step
606, and then to the newly created REST resource 528 in step 607.

[0112] In step 608, one or more backend web service calls may be determined during handling
of the request, for example, during the execution of the REST resource 528 within the reverse
proxy server 420. In some embodiments, a software hook and/or other customized software code
may be inserted into the REST resource 528 when the resource is created. Such software hooks
and/or customized software code may identify backend REST services 430 and resources, as
well as individual operations (or methods), parameters, and other data that may be transmitted in
a call to a backend web service 430. When the REST resource 528 on the reverse proxy server
420 1s invoked to handle the request, the software hook and/or customized software code may be

executed and the call to the backend web service 430 may be generated.

[0113] In some cases, the backend web service call determined in step 608 may be similar or
identical to the REST request handled by the REST resource 528 on the reverse proxy server
420. For instance, as described below in more detail, REST services 423 within the reverse
proxy server 420 may be created as copies of backend REST services 430, having the same
resource definitions (e.g., based on a Web Application Description Language (WADL) file),
supporting methods and parameters, etc. In such cases, a REST resource 528 on the reverse
proxy server 420 may contain a simple software hook configured to invoke the same REST
resources, call the same methods with the parameters and/or body content, etc., within a

corresponding backend REST web service 430.

[0114] In various other cases, the backend web service call determined in step 608 may be
different from the REST request initially handled by the REST resource 528 on the reverse proxy
server 420. In such cases, the REST services 423/523 and resources 528 exposed to client
devices 410 by the reverse proxy server 420, need not correspond at all to the REST resources
exposed by the backend REST services 430. For instance, referring briefly to FIGS. 4A and 4B,
while virtual REST service 423a and its corresponding backend REST service 430a may be

implemented similarly in some cases (e.g., having a similar (or the same) WADL file, including

35

10

15

20

25

WO 2016/048419 PCT/US2015/027763

the same resources, supporting the same methods, parameters, data types, etc.), in other cases,
the virtual REST services 423 and corresponding backend services 430 may be implemented
quite differently. To illustrate, the REST request received from the client device 410 in step 601
may include a URL path to a REST resource 528, an HTTP method, one or more URL
parameters and/or additional parameters or data within the message headers or body. However,
when the REST resource 528 executes to handle the message, it may generate a backend web
service calls having a different URL path (e.g., a different sub-resource path or resource name), a
different HTTP method, different URL parameters, and/or different header or body data.
Additionally, in some embodiments, the backend web services 430 need not be REST services,
but may be SOAP services, URLS, or other types of web services, web applications, or web
content. In such cases, the REST resources 528 within the reverse proxy server 420 may be
configured to generate SOAP and URL calls and/or to invoke various different types of backend
web services, applications, web content, etc. Thus, client devices 410 might only have
knowledge of REST resources 528 exposed by the REST services 423/523 within the reverse
proxy server 420, and might not have any awareness of the design or structure of the underlying
backend web services 430. The use of different web service/resource designs and
implementations for the virtual REST services 423 and their corresponding backend services 430
may be advantageous in some embodiments, for example, to obscure the underlying design of
the backend services 430 from untrusted client devices 410, and to provide for easier integration,

compatibility, and scalability among backend web services 430.

[0115] In step 609, after the backend web service call has been generated, the reverse proxy
server 420 may enforce various security policies (and/or other communication management
policies) associated with the backend web service call. Then, in step 610, the call may be
executed within the reverse proxy server 420, to invoke one or more backend web services 430
within the trusted internal network 460. As described below in more detail in reference to FIGS.
9-10, the REST resources 428 within the reverse proxy server 420 may provide the backend web
service calls to a policy enforcement engine 960 which may process the calls and enforce various
policies. In certain embodiments, security policies (and/or other communication management

policies) may be enforced at various different attachment points (e.g., OnRequest, Onlnvoke,

36

10

15

20

25

WO 2016/048419 PCT/US2015/027763

OnResponse, MessageTransformation, OnError, etc.) within an end-to-end processing flow of

the request-response from the client 410 to the backend web services 430 and back.

[0116] FIG. 7 is a block diagram illustrating certain elements and systems of a reverse proxy
server according to one or more embodiments. The reverse proxy server 720 in this example
may correspond to reverse proxy server 420 and/or reverse proxy server 520, and the various
subcomponents 722-723 of the reverse proxy server 720 may be similar or identical to the
corresponding subcomponents discussed above. Additionally, reverse proxy server 520 may
operate within computing environment 400 or other similar environments, and may be
configured to process and transmit messages between client computing devices and backend web
services. Accordingly, reverse proxy server 720 may include some or all of the hardware,
software, and networking components and functionality discussed above in reference to FIG. 4A-

4B and/or FIG. 5.

[0117] Certain components illustrated in FIG. 7 may be configured to generate REST web
services 723 within the reverse proxy server 720. As noted above, in some embodiments, REST
services 723, along with the REST resources 728 contained in or exposed by the REST services
723, may be dynamically created within the reverse proxy server 720. In such embodiments, the
REST infrastructure 722, REST application engine 740, gateway management system 750 and/or
other components within the reverse proxy server 720 may be configured to generate, delete,
replace or update various REST services 723 and/or REST resources 728 within the reverse

proxy server during runtime.

[0118] In this example, the REST infrastructure 722 includes a REST stack 724, a static REST
application 725 (e.g., a JERSEY application generated during build-time), and a REST provider
resource 726. The reverse proxy server 720 may dynamically initialize the REST stack 724
during runtime, and may register the static REST application 725 which may return a REST
provider resource 726. The REST application 725 and/or provider resource 726 may be
configured to determine which REST services 723 and resources 728 exposed by the reverse
proxy server 720 have been generated on the reverse proxy server 720. In this example, the

REST application 725 may determine when a REST web service 723 or REST resource 728

37

10

15

20

25

WO 2016/048419 PCT/US2015/027763

should be created, for example, to handle a REST request from a client device 410. The REST
application 725 then may instruct the REST application engine 740 to generate the new REST

services 723 and/or resources 728.

[0119] FIG. 7 includes a REST application engine 740 within the reverse proxy server 720,
and a gateway management server 750 (e.g., within the internal network 460) configured to
communicate with the reverse proxy server 720. The REST application engine 740 may include
one or more software tools or platforms configured to generate REST services 723 and/or
resources 728 within the reverse proxy server 720. As discussed below, the REST application
engine 740 may receive REST service and/or resource description data, for example, via a
WADL file received from the gateway management server 750. The REST application engine
740 then may generate, build, and deploy REST services 723 and resources 728 within the

reverse proxy server 720.

[0120] Referring now to FIG. 8, a flowchart is shown illustrating a process for dynamically
generating REST services and/or resources within a reverse proxy server. As described below,
the steps in this process may be performed by one or more components discussed above, such as
reverse proxy server 420 (and/or reverse proxy servers 520, 720, and 920), the REST application
engine 740, the gateway management server 750, and/or the various subsystems and
subcomponents implemented therein. Additionally, in some embodiments, certain steps in this
process may be performed within client devices 410, backend web services 430, and/or by other
various intermediary devices. It should further be understood that the techniques described
herein, including transmitting and receiving web service description data, and dynamically
generating REST services and resources, need not be limited to the specific system and hardware
implementations described above, but may be performed within other hardware and system
environments comprising other combinations of the hardware, software, and network

components.

[0121] As noted above, steps 801-804 may be performed in relation to processes for
dynamically generating REST services and resources within a proxy server. For example, REST

services 723 and REST resources 728 may be created during runtime, rather than during build

38

10

15

20

25

WO 2016/048419 PCT/US2015/027763

time, within the reverse proxy server 720. The dynamically generation of a REST service or
resource may be initiated (or triggered) based on various information received by the reverse
proxy server 720 during runtime. For instance, a REST request received from a client device
410 may initiate a dynamic REST service/resource generation process within the reverse proxy
server 720, if the requested REST resource has not yet been created within the reverse proxy
server 720. As another example, the deployment of a new backend web service 730, or a
modification to an existing backend web service 730, may initiate a dynamic REST
service/resource generation process within the reverse proxy server 720, in order to synchronize

the REST services 723 in the reverse proxy server 720 with the backend web services 730.

[0122] Instep 801, data describing (and/or defining) one or more backend web services 730
may be received within the reverse proxy server 720. In some embodiments, the description data
received in step 801 may include one or more Web Application Description Language (WADL)
files generated by the backend web services 730 and/or a trusted gateway management server
750. A WADL file for a REST service 730 may describe all of the resources exposed by the
REST service, including the resource URLSs, supported methods, parameters, data types, and the
like. As noted above, backend web services 730 may include REST web resources 730 as well
as other types of web services 730, such as SOAP web services and other types of backend web
services, applications, web content, etc. Thus, for SOAP web services 730 Web Service
Description Language (WSDL) may be used instead of WADL, and various other data formats

may be used in other examples depending on the types of the backend web services 730.

[0123] Regardless of the type or format of the received description data, the data may be
transmitted in a machine-readable format that may be parsed by the recipient device to determine
the structure and supported operations of the backend web resources 730. In some embodiments,
the description data (e.g., WADL files) may be generated by individual backend web services
730, provided to the gateway management server 750, and then transmitted to the REST
application engine 740. For instance, the gateway management server 750 may automatically
transmit updated description data to the REST application engine 740, in response to the
deployment of a new backend web service 730 or a modification to an existing backend web
service 730. In other instances, the REST application engine 740 may retrieve the description

39

10

15

20

25

WO 2016/048419 PCT/US2015/027763

data from the gateway management server 750 (or directly from the backend web services 730),

either periodically or in response to an event occurring within the reverse proxy server 720.

[0124] In steps 802-804, the REST application engine 740 and/or other components within the
reverse proxy server 720 may generate, build, and deploy REST services 723 and/or REST
resources 728 within the reverse proxy server 720. In this example, in step 802, the REST
application engine 740 may modify and/or customize REST service description data based on the
resources exposed by the backend web services 730. In step 803, the REST application engine
740 may create one or more dummy rest resources within the reverse proxy server 720 using the
REST service description data modified/customized in step 802. Finally, in step 804, the REST
application engine 740 and/or REST infrastructure 722 may deploy the REST services 723

and/or resources 728 generated in step 803, within the reverse proxy server 720.

[0125] In some embodiments, the steps of generating and building the REST services may be
performed within the reverse proxy server 720, for example, by the REST application engine 740
and/or REST infrastructure 722. However, in other examples, the REST services 723 and REST
resources 728 may be designed, generated, and/or built remotely from the reverse proxy server
720 (e.g., within the internal network 460), before being provided to and deployed on the reverse

proxy server 720.

[0126] The modifications and/or customizations to the REST resources 728 may take the form
of a software hook and/or other customized software code inserted into a dummy REST resource
to invoke one or more backend web services 730. Such software modifications/customizations
may, for example, identify a backend REST service 730 and resources, as well as individual
operations (or methods), parameters, and other data that may be transmitted in a call to a backend
web service 730. After the REST resource 728 is built and deployed on the reverse proxy server
720, the software hook and/or customized software code may be executed to invoke the backend
web service 730. As discussed above, in some cases the software code inserted into REST
resources 728 in step 803 may include simple software hook configured to invoke the same
REST resources, call the same methods with the parameters and/or body content, etc., within a

corresponding backend REST web service 730. In other cases, the modified/customized code in

40

10

15

20

25

WO 2016/048419 PCT/US2015/027763

step 803 may be designed to invoke one or more different backend web services 730, using
different URL paths (e.g., a different sub-resource path or resource name), different HTTP
methods, different URL parameters, and/or different header or body data. Additionally, as
discussed above, the backend web services 730 need not be REST services, but may be SOAP
services, URLS, or other types of web services, web applications, or web content. In such cases,
the software customization/modification in step 803 may include custom code generate SOAP
and URL calls and/or to invoke various different types of backend web services, applications,

web content, etc.

[0127] When deploying REST resources 728 within the reverse proxy server 720 in step 804,
cach resource 728 may be deployed within a REST service 723 hierarchically according to the
URL of the resource 728. As discussed above, REST services may have a root resource that is
the highest-level resource within the service 723 (e.g., mapped the “/”” path of the service) and is
responsible for identifying the sub-resources 728 (or child resources) that will handle the

different requests.

[0128] FIG. 9is a block diagram illustrating elements and systems of a reverse proxy server
920, including a policy enforcement engine 960. The reverse proxy server 920 in this example
may correspond to reverse proxy server 420 (and/or 520 and 720), and the various
subcomponents 921-923 of the reverse proxy server 920 may be similar or identical to the
corresponding subcomponents discussed above. Additionally, reverse proxy server 920 may
operate within computing environment 400 or other similar environments, and may be
configured to process and transmit messages between client computing devices and backend web
services. Accordingly, reverse proxy server 920 may include some or all of the hardware,
software, and networking components and functionality discussed above in reference to FIG. 4A-

4B, FIG. 5, and/or FIG. 7.

[0129] In addition to the request handler 921, REST implementation 922, and REST services
923, this example illustrates a policy enforcement engine 960 within the reverse proxy server
920. In this example, the REST services 923 and their respective REST resources 428 may

provide any backend web service calls to be invoked to policy enforcement engine 960. The

41

10

15

20

25

WO 2016/048419 PCT/US2015/027763

policy enforcement engine 960 may process the backend web services calls and enforce various
security policies and other communication management policies before and/or after invoking the

backend web services 930.

[0130] The policy enforcement engine 960 may include various security systems or
components configured to implement security policies, as well as other communication
management policies, within the reverse proxy server 920. In this example, policy enforcement
engine 960 includes a message throttling system 961, authentication and authorization systems
962, a key management system 963, and a token mediation system 964. These systems and
security components within the policy enforcement engine 960 may authenticate messages from
client devices 410, provide security token mediation, perform API key management, perform
fine grained authorization and/or data redaction, support confidentiality and integrity, perform
risk-based authentication, perform device-based security for mobile client devices 410, support
demilitarized zone (DMZ) threat protection, perform protocol and payload mediation, and the
like. For example, authentication/authorization systems 962 may include subsystems to prevent
of Denial of Service (DoS) attacks, detect and filter malformed messages, detect and prevent
SQL, JavaScript, and/or XPath/XQuery injection attacks, perform message validation to protect
against malicious content (e.g., detect viruses within message attachments, validate XML and
JSON data structures, validate form and query parameters, etc.). Token mediation system 964
may be configured to convert authentication tokens between specified client devices 410 and
backend web services 930. Security systems 961-964 may also support orchestration and by
removing of operations, for example, by aggregating multiple backend APIs or services and

perform automatic mediation or composition.

[0131] Additionally, in this example, the policy enforcement engine 960 includes a data store
of message processing policies 965. Message processing policies may be stored in various forms
of computer-readable media, such as XML, JavaScript, or other types of executable software
components. As discussed below in more detail, message processing policies 965 may be used
to enforce security policies and other communications management policies within the reverse
proxy server 920. Data store 965 may include individual message processing policies that may
be retrieved and applied to individual messages at various stages during an end-to-end

42

10

15

20

25

WO 2016/048419 PCT/US2015/027763

processing flow for the individual messages. The message processing policy data store 965 may
reside in the reverse proxy server 920, as shown in this example, or may reside within a backend

server of a trusted internal computer network 460, or a secure third-party server, or the like.

[0132] Referring now to FIG. 10, a flowchart is shown illustrating a process for determining
message processing policies and processing messages such as REST requests and other backend
web service calls. As described below, the determination and enforcement of message
processing policies may be performed by one or more components in the reverse proxy server
920 (and/or 420, 520, and 72), along with the various subsystems/subcomponents implemented
therein. Additionally, in some embodiments, certain steps in this process may be performed
within client devices 410, backend web services 930, and/or by other various intermediary
devices. It should further be understood that the techniques described herein, including
monitoring end-to-end message processing flows, determining message processing policies, and
enforcing the message processing policies, need not be limited to the specific system and
hardware implementations described above, but may be performed within other hardware and
system environments comprising other combinations of the hardware, software, and network

components.

[0133] Instep 1001, the policy enforcement engine 960 may analyze the message received
from the REST service 923 to determine the destination backend service 930 for the message, as
well as the client device 410 that initiated the message. The destination of the message may be
determined by parsing and analyzing the backend web service call (e.g., REST request, SOAP
request, or web content request) generated by the REST service 923. For example, the uniform
resource identifier (URI) of a REST or SOAP request, or an identifier of a web service or
application and/or operation identifiers within the message body may correspond to a backend
web service/application 930 or web content provided by the internal network 460. In this
example, the proxy server 920 may determine based on the message header and content that the
message 1s intended for a specific computer server hosting a web service 930 within the internal
network 460. Information within the message identifying the transmitter of the message, such as

a source IP address or host name identifier, also may be used to determine the intended

43

10

15

20

25

WO 2016/048419 PCT/US2015/027763

destination of the message. In addition to determining the intended destination of the message,

the proxy server 420 may determine the client device 410 from which the message was initiated.

[0134] In step 1002, the policy enforcement engine 960 may determine a current point in a
predetermined processing flow for the message to be transmitted to the backend web service 930.
A message processing flow may refer to an end-to-end message processing flow to be executed
by the proxy server 920, beginning with the receipt of the message by the proxy server 920 from
the client device 410, and concluding with the transmission of the response by the proxy server
920 back to the client device 410. As discussed below, determining a current point in a
predetermined processing flow for a message may include identifying a policy model associated

with the message, and determining a current processing location within the processing model.

[0135] In some embodiments, predetermined message processing flows for messages may be
defined by policy models. A policy model may include data defining a set of policies (e.g.,
security policies, communication management policies, etc.) that may be applied by the policy
enforcement engine 960 to process the message at various points during the end-to-end message
processing flow of the message. Both the policy models that define the end-to-end processing
flow of a message, and the individual message processing policies, may be various forms of
computer-readable media, such as XML, JavaScript, or other types of executable software
components. Policy models and/or message processing policies may be stored within the policy

enforcement engine 960, for example, in data store 965, or elsewhere within the internal network

460.

[0136] As noted above, policy models may define a set of message processing policies that the
policy enforcement engine 960 may apply to a message at various points in the message’s end-
to-end processing flow. In some embodiments, the policy enforcement engine 960 may apply
different policy models in step 1002, depending on the characteristics of the message received
from the REST services 923. For example, the specific policy model retrieved and applied by
the policy enforcement engine 960 may depend on the intended destination of the message
and/or the client device 410 that initiated the request. Additionally, the policy model retrieved

and applied by the policy enforcement engine 960 may depend on the network protocols used to

44

10

15

20

25

WO 2016/048419 PCT/US2015/027763

transmit the message and/or the request type or client type of the message. For instance,
different policy models may be used for REST requests, SOAP requests, web content (URL)

requests, and the like.

[0137] In some examples, policy models may be implemented in XML or other machine-
readable format. Policy models may include tags or identifiers of various points within
processing flows (which also may be called “assertions’), and one or more policy identifiers for
cach of processing points/assertions. For instance, a policy model may identify policies to be
performed when a request is received (within “on-request” tag), policies that perform message
transformation (within “message-transformation” tags), and policies to be performed when the

backend web service is invoked (within “on-invoke” tags).

[0138] In some embodiments, the policy enforcement engine 960 may apply policies at the
service level (or URL level) and/or at the operation level (or method level). Therefore, when
invoking backend web services 930, the policy enforcement engine 960 may first determine the
operation (for SOAP) or the method (for REST and URL) before it can enforce the policies
identified within the policy model.

[0139] After identifying a policy model (or other data defining a processing flow) associated
with the message received from the REST service 923, the policy enforcement engine 960 may
determine the current point in the processing the message in accordance with the policy or
processing flow. The current point in the message processing flow may be determined by the
characteristics of the message itself, as well as based on the previously stored data regarding the
carlier processing of the message. As noted above, a predetermined processing flow may apply
end-to-end processing for a message, from the initial request by a client device 410, to the
response transmitted back to the client device 410. Therefore, determining whether the message
is an initial request from a client device 410, a transmission of additional data from a client
device (e.g., authentication credentials or additional data related to a request), a response from a
backend web service 930, or a transmission of additional data from a backend server or device
(c.g., data from a single sign-on or token translation service), may allow the policy enforcement

engine 960 to determine the current point of message processing within the end-to-end message

45

10

15

20

25

WO 2016/048419 PCT/US2015/027763

processing flow. Additionally, the policy enforcement engine 960 may store data relating to
previous processing performed on the message or other related messages, such as the results of
previous message transformations, invocations of services, processing errors encountered, in
order to determine the next message processing policy that the policy enforcement engine 960

should apply to the message.

[0140] The following paragraphs include several examples of possible points (which also may
be called “assertions”) within a policy model or other message processing flow, at which
message processing policies may be applied. It should be understood that these examples are
illustrative only and need not be an exhaustive list. Moreover, the assertion names described
herein (e.g., OnRequest, Onlnvoke, OnResponse, OnError, MessageTransformation, etc.), as
well as the XML structures and tag names used for assertions and policies may be changed in

various other embodiments.

[0141] A first example of determining a current point within a policy model or other
predetermined message processing flow in step 1002, may include determining that the received
message corresponds to a request from a client device 410 in an external computer network.

This point, at the beginning of the end-to-end processing flow of the message, may be referred to
as an “OnRequest” assertion or the like. As discussed below in more detail, an OnRequest
assertion may include references to policies that may be applied in order to secure virtual
services, proxy services, and/or web applications. For example, an OnRequest assertion may
include URIs or other identifiers representing the security policies that the policy enforcement
engine 960 should enforce for new web service/application/content requests received from
external client devices 410. OnRequest assertions also may refer to other policies and/or may
contain other assertions. In some cases, OnRequest assertions may only operate in reverse proxy
mode, that is, may only handle requests from external client devices 410 for internal web

services 930.

[0142] Another determination of the current message processing point that may occur in step
1002 may include, after receiving the request from the client device 410, determining that the

proxy server 920 should transmit the request to a backend web application or web service 930.

46

10

15

20

25

WO 2016/048419 PCT/US2015/027763

This point within the end-to-end processing flow of the message may be referred to as an
“Onlnvoke” assertion or the like. Like the OnRequest assertion, in some embodiments, the
Onlnvoke assertion may apply only in reverse proxy use cases in which the initial request was
received from an client device 410 to invoke backend web services/applications 930 within the
internal network 460. Onlnvoke assertions may include URIs or other identifiers representing
the policies that the policy enforcement engine 960 should enforce during this point in the end-
to-end processing flow. Multiple policy identifiers (or references) may be including within an
Onlnvoke assertion, for example, by using multiple XML “Policy URI” XML elements.
Additionally, OnInvoke assertions may uniquely identify the client details from using the client’s
resource pattern. The client type used for Onlnvoke assertions (e.g., a REST client, SOAP
client, URL/web client, etc.) may be determined by policy enforcement engine 960 at runtime,
based on the values configured within the OnInvoke assertion. Onlnvoke assertions also may

refer to other policies and/or may contain other assertions.

[0143] Another example of determining the current message processing point may include,
after receiving the request from the client device 410 and after invoking the backend web service
430, determining that the proxy server 920 should transmit the response to the client device 410.
This point within the end-to-end processing flow of the message may be referred to as an
“OnResponse” assertion or the like. Like the OnRequest and Onlnvoke assertions, in some
embodiments, the OnResponse assertion may apply only in reverse proxy use cases in which the
initial request was received from an client device 410 to invoke a backend web service 930
within the internal network 460. OnResponse assertions may include URIs or other identifiers
representing the policies that the policy enforcement engine 960 should enforce during this point
in the end-to-end processing flow. Multiple policy identifiers (or references) may be including
within an OnResponse, and OnResponse assertions also may refer to other policies and/or may

contain other assertions.

[0144] Another example of determining the current message processing point may include, at
some point during the end-to-end processing flow, determining that the proxy server 920 should
transform the message from one message type to another. This point within the end-to-end
processing flow of the message may be referred to as a “MessageTransformation” assertion or

47

10

15

20

25

WO 2016/048419 PCT/US2015/027763

the like. For instance, the proxy server 920 may receive a message having of a first message
type (e.g., a REST request), and may analyze the message to determine that the message is
intended for a backend service or application that only accepts a second message type (e.g., a
back SOAP service). After such a determination, the policy enforcement engine 960 may
execute the appropriate MessageTransformation assertion on the message, before sending the
transformed message to the intended destination. Examples of transformation policies that may
be supported by the policy enforcement engine 960 may include, without limitation, XML to
JavaScript Object Notation (JSON) and JSON to XML policies, XML to SOAP and SOAP to
XML policies, and JSON to SOAP and SOAP to JSON policies. Transformation between other
well-known media types may be supported in various embodiments. The policy enforcement
engine 960 may automatically attach the appropriate transformation policies at the time of the
backend service virtualization, and the transformations may be performed using one or more
translation frameworks installed at the proxy server 920 or elsewhere in the computing

environment.

[0145] Another yet example of determining the current message processing point may include
determining that an error has occurred at some point during the end-to-end processing flow for
the message. This point within the end-to-end processing flow of the message may be referred to
as an “OnError” assertion or the like. The errors triggering an OnError assertion for a message
(e.g., triggering the execution of one or more policies identified in an OnError assertion
associated with a message), may be errors occurring within the processing done by the reverse
proxy server 920 and/or error received by the reverse proxy server 920 from a backend computer
server or device. For example, the reverse proxy server 920 may receive an error indication from
a backend computer server invoked during the processing flow of the message, such as an
authorization service, a token translation service, or a backend web service 930. Additionally,
the reverse proxy server 920 may identify or generate errors while performing message
processing tasks, such as errors in parsing or validating a message, or errors when executing a
message transformation policy. Thus, unlike some of the previous examples of the points within
processing flows (also called “assertions”) at which specific message processing policies may be

applied, OnError assertions may be conditional. That is, during the end-to-end processing flow

48

10

15

20

25

WO 2016/048419 PCT/US2015/027763

of a message, the policy enforcement engine 960 may apply a policy from OnError assertion
once, multiple times, or not at all depending on the number and type of errors that may occur

during the processing.

[0146] In step 1003, one or more specific policies for processing the message received in step
501 may be determined by the policy enforcement engine 960. As discussed above, the specific
policies selected and applied to messages by the reverse proxy server 920 may include security
policies as well as any other types of communication management policies. For example, and
without limitation, such policies may perform functions relating to authentication, authorization,
auditing, single sign on, security policy enforcement, key management and distribution, secure

communication, secure data storage, and secure data sharing, among others.

[0147] Policies may be selected in step 1003 by policy enforcement engine 960 by first
retrieving the end-to-end processing flow(s) (e.g., policy models) that are associated with the
message, and then using the current point (e.g., assertion) within the end-to-end processing
flows, determined in step 1002, to identify the specific policies that will be applied to the
message at the current point in the end-to-end flow. For instance, if the message is a request
from an client device 410 for a backend web service 430, then the policy enforcement engine
960 may retrieve any policies identified within the “on-request” tag of the policy model

governing the end-to-end processing flow for the message.

[0148] In step 1004, the policy enforcement engine 960 may process the message using the
policies selected in step 1003. As discussed above, the policy enforcement engine 960 may
determine the appropriate policies to be applied to the message by identifying URISs or other
policy identifiers from a predetermined end-to-end processing flow for the message. In some
embodiments, policy models may contain policy URIs (or other identifiers) for policies to be
applied depending on the assertions that correspond to the current point in the end-to-end
processing flow. Such policy URIs may reference the storage locations of the policies. In other
examples, policies identifiers need not be represented as URIs, but may be include other
identifying data such as API or service identifiers, function names, method names, and/or

operation names, and the like. In any case, policy identifiers may identify the storage location or

49

10

15

20

25

WO 2016/048419 PCT/US2015/027763

other access information for the message processing policies. The policies themselves may be
stored in various forms of computer-readable media, such as XML, JavaScript, or other types of

executable software components.

[0149] Message processing policies may be stored in data stores, such as databases and/or file-
based storage systems, located in various different servers or devices within the computing
environment. For example, certain policies may be stored locally within the proxy server 920
(e.g., within the message processing policy data store 965), such as message transformation
policies, message throttling policies, load balancing policies, and other policies which may be
relatively unchanging and are without secure data. Other policies may be stored within a secure
server or storage system of trusted internal computer network 460, such as user
authentication/authorization policies and other policies that may be change frequently or may
include secure data. In other cases, certain policies may be stored on secure third-party servers
or client devices 410 in external networks. The policy enforcement engine 960 may be

configured to retrieve and apply policies from any of these various locations in step 1004.

[0150] In step 1005, after processing the message using various security policies and/or other
communication management policies in step 1004, the reverse proxy server 920 may transmit the
processed message to its intended destination. As discussed above, the intended destination may
be determined in step 1001 by parsing and analyzing portions of the message header and/or
message body. The intended destination of the message may be within the internal network 460,
such as a request to a backend web service 930. Alternatively, the intended destination of the
message may be in an external network, such as a request to an external web service or

application, or a response or other transmission to an client device 410.

[0151] As discussed above, the selection and application of specific policies for processing a
message within the proxy server 920 may be determined by a predetermined end-to-end
processing flow for the message, along with a determination of the current processing point for
the message within the end-to-end flow. Policy models, introduced above, may define the set of
message processing policies that the policy enforcement engine 960 may apply to a message at

various points in the message’s end-to-end processing flow. In some embodiments, policy

50

10

15

20

25

WO 2016/048419 PCT/US2015/027763

models and other techniques for defining end-to-end processing flows may be created using a set
of policy templates. Such templates may correspond to specific assertions, and may be used to
create policy models end-to-end processing flows. For example, one or more assertion templates
may be copied and the appropriate policy URIs may be inserted into each template copy. The
customized templates then may be added to appropriate policy models to define the policies that

may be executed during the end-to-end processing flow.

[0152] In addition to defining the assertions and policies to be executed during an end-to-end
processing flow, policy models enforced by the policy enforcement engine 960 (and other forms
of predetermined end-to-end processing flows) also may define the conditions under which
certain policies may or may not be performed. In some embodiments, a policy model may
contain a set of logical instructions to that implement conditions for performing each of the
policies referenced in the policy model. For example, a policy model may include conditions
that instruct the proxy server 920 that a certain policy should be executed for some message
types (e.g., SOAP, REST, or URL messages), but not for other message types. Additionally, as
discussed above, policy models may selectively apply policies at the service/application level
and/or at the operation/method level in some cases, and thus the application of specific policies
may depend not only on the backend web service 930 being invoked, but also on the specific
operations or methods being called within the service 930. In various additional embodiments,
some policy models may include conditions that instruct the policy enforcement engine 960 that
a certain policy should be executed for some users but not others, some client device types but
not others, some backend web services/applications but not others, and/or any other

characteristics relating to the message.

[0153] As the above examples illustrate, various embodiments described herein may support
dynamic policy models in which different security policies and other communication
management policies may be applied, within a DMZ or other logical or physical subnetwork, at
various different processing points throughout the end-to-end processing flow of the message.
This dynamic policy model framework may be used to build and implement additional security
to prevent attacks from malicious external computing systems, and may implement additional
types of security policies that might be not possible or preferable within the last mile security

51

10

15

20

25

WO 2016/048419 PCT/US2015/027763

infrastructure (e.g., within the backend web services/applications 430). Additionally, robust
authentication and authorization systems may be implemented using the dynamic policy model
described herein, such as token translation and/or single-sign-on access control systems. For
instance, a client device 410 may authenticate via a username/password or other user credentials,
and a predetermined end-to-end processing flow may execute within the proxy server 420 that
performs token retrieval and validation from trusted authentication/authorization services within
the internal network 460, in order to retrieve or generate various different access tokens of
different types (e.g., Kerberos tokens, SPNEGO tokens, username tokens, NTLM tokens, SAML
tokens, etc.). Therefore, after the user provides one set of valid credentials and is successfully
authentication and authorized, the various policy models within the proxy server 420 may be
used to implement a single-sign-on access control system by retrieving or generating the
corresponding token type for the various different backend web services/applications 430

subsequently accessed by the user.

[0154] According to an embodiment of the present application, a system comprising a
processing unit and a communication unit is provided. Such system may be implemented by
hardware, software, or a combination of hardware and software to carry out the principles of the
invention. It is understood by persons of skill in the art that the processing unit and the
communication unit may be implemented by the components described above, such as the
components illustrated in FIG. 3. Meanwhile, it is understood by persons of skill in the art that
the processing unit and the communication unit may be combined or separated into sub-units to
implement the principles of the invention as described above. Therefore, the description herein
may support any possible combination or separation or further definition of the functional units

described herein.

[0155] In an example of above embodiment, the processing unit and the communication unit
can cooperate to perform the following operations: receive a web service request from a client
device in an external computer network, wherein the system is configured to operate within a
subnetwork of an internal computer network separate from the external computer network;
identify a first resource within the web service request; determine that the first resource is
exposed by a first Representational State Transfer (REST) web service within the system; invoke

52

10

15

20

25

WO 2016/048419 PCT/US2015/027763

the first REST web service within the system; and during execution of the first REST web
service within the system, invoke a second web service within a computer server in the internal

computer network.

[0156] In another example, the processing unit and the communication unit can cooperate to
invoke a REST web service by performing the following operations: determining that the first
resource exposed by the first REST web service does not exist within a memory associated with
the processing unit; and generating the first resource within the memory, wherein the first

resource is generated after the web service request is received from the client device.

[0157] In another example, the processing unit and the communication unit can cooperate to
further perform the following operations: access a Web Application Description Language
(WADL) file describing a set of resources provided by the second web service within the
computer server in the internal computer network; and generate one or more resources in the first
REST web service, using the description in the WADL file of the set of resources provided by

the second web service.

[0158] In yet another example, the processing unit and the communication unit can cooperate
to generate the resources in the first REST web service within the system by performing the
following operations: modifying one or more resource descriptions within the WADL file;
creating one or more REST resources based on the modified resource descriptions; and

deploying each of the REST resources in the first REST web service within the system.

[0159] In the foregoing description, for the purposes of illustration, methods were described in
a particular order. It should be appreciated that in alternate embodiments, the methods may be
performed in a different order than that described. It should also be appreciated that the methods
described above may be performed by hardware components or may be embodied in sequences
of machine-executable instructions, which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits programmed with the instructions to
perform the methods. These machine-executable instructions may be stored on one or more
machine readable mediums or memory devices, such as CD-ROMs or other type of optical disks,

floppy diskettes, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory,
53

WO 2016/048419 PCT/US2015/027763

or other types of machine-readable mediums or memory devices suitable for storing electronic
instructions. Alternatively, the methods may be performed by a combination of hardware and

software.

[0160] While illustrative and presently preferred embodiments of the invention have been
described in detail herein, it is to be understood that the inventive concepts may be otherwise
variously embodied and employed, and that the appended claims are intended to be construed to

include such variations, except as limited by the prior art.

54

10

15

20

25

WO 2016/048419 PCT/US2015/027763

WHAT IS CLAIMED IS:

1. A method of transmitting web service requests between computer
networks, the method comprising:

receiving, at a proxy server in communication with an internal computer network,
a web service request from a client device in an external computer network separate from the
internal computer network;

identifying a first resource within the web service request;

determining that the first resource is exposed by a first Representational State
Transfer (REST) web service within the proxy server;

invoking the first REST web service within the proxy server; and

during execution of the first REST web service within the proxy server, invoking

a second web service within a computer server in the internal computer network.

2. The method of claim 1, wherein invoking the first REST web service
within the proxy server comprises:

determining that the first resource exposed by the first REST web service does not
exist within the proxy server; and

generating the first resource within the proxy server, wherein the first resource is

generated after the web service request is received from the client device.

3. The method of claim 1 or 2, further comprising:

accessing a Web Application Description Language (WADL) file describing a set
of resources provided by the second web service within the computer server in the internal
computer network; and

generating one or more resources in the first REST web service within the proxy
server, using the description in the WADL file of the set of resources provided by the second

web service.

4. The method of claim 3, wherein generating the resources in the first REST

web service within the proxy server comprises:

55

10

15

20

25

WO 2016/048419 PCT/US2015/027763

modifying one or more resource descriptions within the WADL file;

creating one or more REST resources based on the modified resource
descriptions; and

deploying each of the REST resources in the first REST web service within the

proxy server.

5. The method of any one of claims 1 to 4, wherein the second web service is

a REST web service within the computer server in the internal computer network.

6. The method of claim 5, wherein the first REST web service within the
proxy server exposes a plurality of resources, including at least one resource configured to
invoke the second REST web service, and including at least one resource configured to invoke a
third REST web service exposed by a different computer server in the internal computer

network.

7. The method of claim 5, wherein the second REST web service exposes a
plurality of resources, and wherein the first REST web service within the proxy server exposes a

subset of the plurality of resources exposed by the second REST web service.

8. The method of claim 1, wherein the second web service is a Simple Object
Access protocol (SOAP) web service within the computer server in the internal computer

network.

9. The method of any of claims 1 to 8, further comprising;:

determining a current point in a predetermined processing flow for the web
service request within the proxy server;

retrieving one or more security policies, based on the determined current point in
the predetermined processing flow for the web service request; and

processing the web service request in accordance with the security policies,
wherein the web service request is processed before invoking the second web service exposed by

the computer server in the internal computer network.

10. A system comprising;:
56

10

15

20

25

WO 2016/048419 PCT/US2015/027763

a processing unit comprising one or more processors; and
memory coupled with and readable by the processing unit and storing therein a set
of instructions which, when executed by the processing unit, causes the processing unit to:
receive a web service request from a client device in an external computer
network, wherein the system is configured to operate within a subnetwork of an internal
computer network separate from the external computer network;
identify a first resource within the web service request;
determine that the first resource is exposed by a first Representational
State Transfer (REST) web service within the system;
invoke the first REST web service within the system; and
during execution of the first REST web service within the system, invoke

a second web service within a computer server in the internal computer network.

11. The system of claim 10, wherein invoking the first REST web service
within the system comprises:

determining that the first resource exposed by the first REST web service does not
exist within the memory of the system; and

generating the first resource within the memory of the system, wherein the first

resource is generated after the web service request is received from the client device.

12. The system of claim 10 or 11, the memory storing therein further
instructions which, when executed by the processing unit, causes the processing unit to:

access a Web Application Description Language (WADL) file describing a set of
resources provided by the second web service within the computer server in the internal
computer network; and

generate one or more resources in the first REST web service within the system,
using the description in the WADL file of the set of resources provided by the second web

service.

13. The system of claim 12, wherein generating the resources in the first

REST web service within the system comprises:

57

10

15

20

25

WO 2016/048419 PCT/US2015/027763

modifying one or more resource descriptions within the WADL file;

creating one or more REST resources based on the modified resource
descriptions; and

deploying each of the REST resources in the first REST web service within the

System.

14. The system of any one of claims 10 to 13, wherein the second web service

is a REST web service within the computer server in the internal computer network.

15. The system of claim 14, wherein the first REST web service within the
system exposes a plurality of resources, including at least one resource configured to invoke the
second REST web service, and including at least one resource configured to invoke a third REST

web service exposed by a different computer server in the internal computer network.

16. The system of claim 14, wherein the second REST web service exposes a
plurality of resources, and wherein the first REST web service within the system exposes a

subset of the plurality of resources exposed by the second REST web service.

17. A non-transitory computer-readable memory comprising a set of
instructions stored therein which, when executed by a processor, causes the processor to:

receive a web service request at a system configured to operate within a
subnetwork of an internal computer network, wherein the web service request is received from a
client device in an external computer network separate from the internal computer network;

identify a first resource within the web service request;

determine that the first resource is exposed by a first Representational State
Transfer (REST) web service within the system;

invoke the first REST web service within the system; and

during execution of the first REST web service within the system, invoke a

second web service within a computer server in the internal computer network.

18. The computer-readable memory of claim 17, wherein invoking the first

REST web service within the system comprises:

58

10

15

20

WO 2016/048419 PCT/US2015/027763

determining that the first resource exposed by the first REST web service does not
exist within the memory of the system; and
generating the first resource within the memory of the system, wherein the first

resource is generated after the web service request is received from the client device.

19. The computer-readable memory of claim 17 or 18, comprising further
instructions stored therein which, when executed by the processor, causes the processor to:

access a Web Application Description Language (WADL) file describing a set of
resources provided by the second web service within the computer server in the internal
computer network; and

generate one or more resources in the first REST web service within the system,
using the description in the WADL file of the set of resources provided by the second web

service.

20. The computer-readable memory of any one of claims 17 to 19, wherein
generating the resources in the first REST web service within the system comprises:

modifying one or more resource descriptions within the WADL file;

creating one or more REST resources based on the modified resource
descriptions; and

deploying each of the REST resources in the first REST web service within the

System.

59

WO 2016/048419 PCT/US2015/027763

L

DATABASE
116

COMPONENT COMPONENT
118 izd

COMPONENT
122

NETWORK(S)
110

g

i

106

PCT/US2015/027763

WO 2016/048419

/12

< 'Did

v

o = ADIAEIAT
\ SADANIG QFUYHS TYNHILNG amams,omnm/
(0ce - / LNATS
r SHADHNOSTY FUNLOMAULSVHAN] N po7 153N0TY 4
) OIAMIES
Qo
{ ININFOVYNYIN ALILNIG)
Eras o
SINROLINOIN ONY (SIHEOMLIN
LINSNIDYNYY HIGHD
’ iz
are \% ADNANAQ
222 _ ﬁ GAQIAOH a0z
NOLLYYLSEHOND L . / A3
HIAHO DNINOISIAGH G HIqH PR
Zve < N~y LeEntEy -
0%z \# — EER
2LZ
bee 3SVEYLY(] BIAHD bp7
INIWIOYNYRY HAANE0 oS
gce mmm.\# a30IADHd 07
31z e 7E - \ onsd
I} 4RO 11 GRS i an N ez 15INUI IDANIC ANANG
70¢
WILSAS FHNLONMLISYHANI ANOID
00e—Y

PCT/US2015/027763

/12

~
3

WO 2016/048419

€ "Dl

135 (745 928
szlvadn| |sweasig| | 50334
INIAT INFAT V1Y
vZe

AA

0ot

WILSASENS SNOLLYDINNWINGD

S

NILSASHNGS FOVHOLS

8ie
Em&w@zﬁqmwao

g
YAV WYHD0Hd

eLe
SHYHOIOU A NOUVYONHEAY

gig
AUCWIN NILSAS

F449
VIO JOVHOLS
FIEVaYaN
~HILNANOD

[ir9
HIAYINM VIO
AOVHOLS
IEVOVIY
HALNANOD

z0g

g0t
WILSASENS O

0%
LINGY
NCILYHITI00Y
ONISSIDOU

¥eg FA%S
LING LiNG
HNISSIO0N 8NE ONISSIOOU 8ng
FHOY FHOVD IHOY)
JHCD 0D FHON
y0L

PCT/US2015/027763

/

4/12

/

e e e e e S e S S S S G S SE—n S S S S G S S S S S S —

WO 2016/048419

| _ _
_ | | _ GLy _
_ _ _ _ - _
_ _ _ _ _
_ _ _ _
_ | ! _ -~ _
AVANTS _ ATANTS _ “ L8 !
eV < 183y A | I |= oLy _
| R h 0 || | |2 _
Ty “ tey - s | e R
i
INAUES _ A ADIAUTS | gl m e« m < _ " M _ w "
e L z [153 4 z | = [2 A=
— | r E— Z Z _ Z1 1 |z oLY _
05h - WY 5 & I T _
_ & i || = |
I0IAMES | IDAHIS \ fm ? || “ mA| I
% Ned =8 A
aam | __ < 153y _ || 1 |@ P _
I _ / A (244 247 | _ \ | oLy |
_ a5cy | “ BGOY _ I
| | |
| _ -
| HAAMAS AXOYd 35HEAT " _ | —> _ — "
|
“ Qmw\ | | 7 O _
_ HAHOMILINENS _ " _ Sy EOTNED _
T _ _ ICLEEINE! !
MeAOMEAN TYNYHLN] o= L e e e e e —]
— e T T e ____ _ /
oﬁ\ 08y

PCT/US2015/027763

WO 2016/048419

ANNAES
g3

o0ty

ADIALES
M

g

e
=¥

AINGES
g

SHOMLAN

AN LN

TIWAAZAIA

_ IIIIIIIIIIIIIIIIIII - A
_ " “ "
“ | |94 o _
_ HAAAHES AKCud 48H3ATY I “ — “
_ _

| e |
_ EW PNV E S 4/ . _ - _
_ 153y m c aLy _

Y _
_ — tey . o | BE o |
| 2 = AN ES RN |
| FDIATS 2 4 _ B el 2 _
-« |e— - _ m
_ 183y = = =1 |& 7=
_] P Z _ & m oLy
Ty 5 & _ I T = _

I = - | | |
_ \ S ys _ 2 |
L ADAHES M | “ G |e— _
_ 183 _ -
“ =¥y 244 hov _ \ “ o “
_ " BSEY _ _
_ |~~~ _
_ e _ _ _
_ 02y _

| _ SpEoMmIan |
“ NHOMLIN ZA0 _ _ SCAEEINE] __
|||||||||||||||| /Mll rwﬁlllllll

04y 08y
~—o0r

PCT/US2015/027763

AJNANES

183y T T

S

/!

A0HNOSAY
1534
58eG

AVHNOBIY

/12

1834
a82s

L00H

2

L0l

"\

A0HNOSAY
1534

3
< FRN0SH <

BHCS gojad3s 153y

FoIAMES
15734

NOLLY OMddY
183N OLLYLS
[
I0HNOST ,
MAGIAON AHOVLS
1534 4534
9Z8 745

FANLONELSVYHAN] L33

BECS HIARITS AXOHd F5HIATH

y
el

| HATANYH L33N0FY

-
O
WO

WO 2016/048419

(2%

WO 2016/048419

PCT/US2015/027763

7/12

51

RECEIVE WEDB SERVICE REQUEST
AT PROXY SERVER

602

No

REQUEST FOR

REST SERVICE?

63

FORWARD WEB SERVICE REQUEST TO REST
INFRASTRUCTURE IN PROXY SERVER

REQUESTED

RESOURCES EXIST DSt

ON PROXY
SERVER?

DYNAMICALLY GENERATE REQUESTED
REST RESOURCES

606

FORWARD REQUEST TO
REST SERVICE ROOT RESQURCE

—p To FIG. 6B

FiG. BA

WO 2016/048419 PCT/US2015/027763

8/12
7
FROM IDENTIFY AND INVOKE REST RESCURCE | °
FIG. BA N PROXY SERVER TO HANDLE REQUEST

508
DETERMINE BACKEND WEB SERVICE CALL |~

USING REST RESOQURCE IN PROXY SERVER

ENFORCE SECURITY POLICIES ON P

BACKEND WEB SERVICE CALL

610
INVOKE BACKEND WEB SERVICE —

FiG. 6B

PCT/US2015/027763

WO 2016/048419

/12

HAAMES AXOHd 38dENEY

|
|
|

HIAEES _

ININIOVNYIN [1 - INIONT NOLLY DI ddY 193
AVAELYD _
L7) 7
|
|
_ Y
|
ezillgze NOLLYO!ddY
IDIAGMES g99Mm I I I 1S DILVYLS
ONEMOVE _ ADANES
_ 183
g0%Z _ aCel B

_ IDUNOSIY
_ llwm\. llwmm HIUAOHE HOVLS
_ 153 153y
_ IDIAGES — —

A0IAAES 93M | 193 9l V2l

ON=MOVE _ FHMLIMELSYHAN! 153y
Cy] | 77

|
|
|

WO 2016/048419

PCT/US2015/027763

10/12

RECEIVE DESCRIPTION DATAFOR
BACKEND WEB SERVICES

MODIFY/CUSTOMIZE DESCRIFPTION
DATA ON PROXY SERVER

GENERATE DUMMY REST RESOURCES ON
PROXY SERVER FOR BACKEND RESOURCES

DEPLOY REST RESOURCES
ON PROXY SERVER

801

803

804

PCT/US2015/027763

WO 2016/048419

11/12

ATIAHES G
ONEAOVY

(es

SSI20d "I0Ud MWGmmwu\d
06
NOLLYIGIN LNZWIADYNYIA
NZAO L AN
55 £56
NOUNVZIHOHINY / ONIMLLICHH]
NOILYSILNGHLN ADYSIHY
il OvESAN | SIDIAES
206 190 183
ANIONT INTWIADHOANT ADITOH £Zo
088

HAAHES AXOdd 3SHIATY

N
N
(o3

| FHMLOMTALSVHANT L83Y

HATANYH LS3N0E

o
N
[ox

WO 2016/048419 . PCT/US2015/027763

DETERMINE CLIENT DEVICE AND DESTINATION |_— 1001

BACKEND SERVICE OF WERB SERVICE REQUEST

1002
DETERMINE CURRENT POINT IN

END-TO-END PROCESSING FLOW

DETERMINE PROCESSING POLICIES FOR | _— """
WEB SERVICE REQUEST

ENFORCE DETERMINED POLICIES FOR | _— """
WEB SERVICE REQUEST

TRANSMIT REQUEST TO P
BACKEND WEB SERVICE

FiG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/027763

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30 HO4L29/06 HO4L29/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Anonymous: "Membrane Service Proxy 1,8,10,
documentation - Open Source Reverse Proxy 17,20

for SOAP & REST - Membrane",

2 December 2013 (2013-12-02), XP055204307,
Retrieved from the Internet:
URL:https://web.archive.org/web/2013120203
5553/http://www.membrane-soa.org/service-p
roxy/

[retrieved on 2015-07-23]

Y the whole document 2-7,9,
11-16,
18,19

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

23 July 2015 30/07/2015

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, % e .
Fax: (+31-70) 340-3016 Maenpdaa, Jari

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/027763

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

& Anonymous: "Membrane service proxy
documentation - REST to SOAP: Exposing
SOAP Services as REST Resources",

28 December 2013 (2013-12-28),
XP055204303,

Retrieved from the Internet:
URL:https://web.archive.org/web/2013122821
3248/http://www.membrane-soa.org/service-p
roxy-doc/4.0/rest2soap-gateway.htm
[retrieved on 2015-07-23]

the whole document

US 20117161477 Al (KOWALSKI VINCENT JOSEPH
[US]) 30 June 2011 (2011-06-30)

the whole document

paragraph [0037]

US 20117041171 A1l (BURCH LLOYD LEON [US]
ET AL) 17 February 2011 (2011-02-17)

the whole document

Marc J Hadley: "Web Application
Description Language (WADL)",

2 February 2009 (2009-02-02), XP055050652,
Retrieved from the Internet:
URL:http://java.net/projects/wadl/sources/
svn/content/trunk/www/wad120090202 . pdf
[retrieved on 2013-01-22]

the whole document

ALEX RODRIGUEZ: "RESTful Web services:
The basics",

IBM DEVELOPERWORKS

6 November 2008 (2008-11-06), pages 1-12,
XP002578060,

Retrieved from the Internet:
URL:http://download.boulder.ibm.com/ibmd1/
pub/software/dw/webservices/ws-restful/ws-
restful-pdf.pdf

[retrieved on 2010-04-15]

the whole document

2-7,9,
11-16,
18,19

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/027763
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011161477 Al 30-06-2011 US 2011161465 Al 30-06-2011
US 2011161477 Al 30-06-2011
US 2011041171 Al 17-02-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - wo-search-report
	Page 74 - wo-search-report
	Page 75 - wo-search-report

