I*I Innovation, Sciences et Innovation, Science and CA 3220337 A1 2024/06/07
Développement économique Canada Economic Development Canada
en 3220 337

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(22) Date de dépotFiling Date: 2023/11/16 (51) CLINt/Int.Cl. GO6F 11/30(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2024/06/07 GO6F 11/36(2006.01)

i (71) Demandeur/Applicant:

(30) Priorité/Priority: 2022/12/07 (US18/076736) SERVICENOW. INC., US

(72) Inventeurs/Inventors:
WAPLINGTON, BRIAN JAMES, US;
KIM, HYUNG, US;
LUDWIG, MICHAEL STEVEN, US;
BANSAL, RAVINDRA, US;
VAN DE SOMPELE, BENNY, US;
PATEL, SWAPNESH, US

(74) Agent: SMART & BIGGAR LP

(54) Titre : CONFIGURATION CENTRALISEE ET SUIVI DES MODIFICATIONS POUR UNE
PLATEFORMEINFORMATIQUE
(54) Title: CENTRALIZED CONFIGURATION AND CHANGE TRACKING FOR A COMPUTING PLATFORM

800 in response fo determining that a software service satisfies a
Y degradation criterion, generate an alert that indicates the software
service and a change request specifying that configuration data
used by the software service was changed in a current snapshot of
the configuration data

Y

802
based on the change request, determine a set of configuration
changes between the current snapshot and a previous snapshot of
the configuration data

Y

804\ provide a representation of the set of configuration changes
indicating one or more parameters that were changed in the current
snapshot and one or more paths in a tree-based arrangement of the
configuration data that lead to the one or more parameters that were
changed in the current snapshot

(57) Abrégé/Abstract:

An embodiment may involve, in response to determining that a software service satisfies a degradation criterion, generating an alert
that indicates the software service and a change request specifying that configuration data used by the software service was
changed in a current snapshot of the configuration data; based on the change request, determining a set of configuration changes
between the current snapshot and a previous snapshot of the configuration data; and providing a representation of the set of
configuration changes indicating one or more parameters that were changed in the current snapshot and one or more paths in a
tree-based arrangement of the configuration data that lead to the one or more parameters that were changed in the current
shapshot.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

ABSTRACT

An embodiment may involve, in response to determining that a software service satisfies
a degradation criterion, generating an alert that indicates the software service and a change
request specifying that configuration data used by the software service was changed in a current
snapshot of the configuration data; based on the change request, determining a set of
configuration changes between the current snapshot and a previous snapshot of the configuration
data; and providing a representation of the set of configuration changes indicating one or more
parameters that were changed in the current snapshot and one or more paths in a tree-based
arrangement of the configuration data that lead to the one or more parameters that were changed

in the current snapshot.

Date Regue/Date Received 2023-11-16

CENTRALIZED CONFIGURATION AND CHANGE TRACKING FOR A COMPUTING
PLATFORM

BACKGROUND

[001] Modemn computing platforms have grown large and complex, simultaneously
supporting hundreds or thousands of software applications, as well as higher-level services
facilitated by groups of software applications operating in conjunction with one another. As a
consequence, these computing platforms can have anywhere from tens of thousands to millions
of individually configurable parameters that control the operation of the platform, the software
applications, and/or the services. These parameters are collectively referred to as configuration

data.

SUMMARY

[002] In many realistic scenarios, configuration data can change frequently. For
example, agile or rapid software development procedures may supply updates to these
parameters thousands of times per day across the platform as a whole. Some specific parameters
may be changed several times per day or week as the software applications and/or their usage
evolve. Further, configuration data may be stored in multiple locations within the computing
platform or even external to the platform, making certain parameters challenging and time
consuming to locate or otherwise identify.

[003] This results in changes to configuration data being difficult to track and manage.
As a consequence, it is believed that configuration errors (e.g., one or more parameters taking on
incorrect values) are now responsible for more system downtime, defects, and faults than
software coding errors.

[004] The embodiments herein overcome these and possibly other limitations with the
state of the art by providing techniques for centralizing configuration data and tracking changes
to this data. Each version of the configuration data may be referred to as a snapshot.
Modifications to the configuration data may be gated by change requests, where these change
requests specify the files, database entries, and/or other structures impacted by each change.
This allows a timeline of changes to be generated from the snapshots, and differences between

the parameters of the snapshots to be determined based on the change requests. Such differences

Date Regue/Date Received 2023-11-16

may be displayed in a tree-like hierarchy with additions, deletions, and modifications (edits)
from one snapshot to another clearly indicated. Advantageously, configuration faults can be
quickly identified and triaged without having to examine thousands of parameters in numerous
locations.

[005] With respect to representing these changes, many existing systems do so by
storing parameters (or change to parameters) in a row of a database table. As noted, a computing
platform may exhibit thousands of changes per day. Therefore, identifying changes between
snapshots may involve writing thousands of such rows to the table, and then reading these rows
in order to display the changes for a user.

[006] Such a process can involve a great deal of latency, as each write or read of a row
may take on the order of one millisecond. Thus, navigating and viewing large tables of changes
may take at least several seconds and in some cases several minutes. To avoid these user-facing
delays, the embodiments herein may employ virtual tables. This technique allows a database
interface to be used to access portions of one or more files stored in a file system of the
computing platform. Therefore, the changes can be written to and retrieved from the file(s)
instead of a database table, which can be 10-100 times faster. Further, the output displayed to the
user can be paginated so that only a small portion of the changes in the file(s) is displayed at any
one time. In combination, this approach reduces main memory utilization in addition to
dramatically improving the response time of the computing platform when presenting this
information to the user.

[007] Accordingly, a first example embodiment may involve, in response to determining
that a software service satisfies a degradation criterion, generating an alert that indicates the
software service and a change request specifying that configuration data used by the software
service was changed in a current snapshot of the configuration data. The first example
embodiment may also involve, based on the change request, determining a set of configuration
changes between the current snapshot and a previous snapshot of the configuration data. The
first example embodiment may also involve providing a representation of the set of configuration
changes indicating one or more parameters that were changed in the current snapshot and one or
more paths in a tree-based arrangement of the configuration data that lead to the one or more

parameters that were changed in the current snapshot.

Date Regue/Date Received 2023-11-16

[008] A second example embodiment may involve receiving, at a web server
application, a query specifying a file, a block number of a block of data within the file, and a
block size, wherein the file includes entries representing differences between snapshots of
configuration data; identifying, based on the block size, the block of data within the file; storing
the block in a non-transitory memory that is accessible to the web server application; and in
response to the query, transmitting, by the web server application, a set of the entries within the
block formatted for display in a list component of a graphical user interface.

[009] A third example embodiment may include a non-transitory computer-readable
medium, having stored thereon program instructions that, upon execution by a computing
system, cause the computing system to perform operations in accordance with the first and/or
second example embodiment.

[010] In a fourth example embodiment, a computing system may include at least one
processor, as well as memory and program instructions. The program instructions may be stored
in the memory, and upon execution by the at least one processor, cause the computing system to
perform operations in accordance with the first and/or second example embodiment.

[011] In a fifth example embodiment, a system may include various means for carrying
out each of the operations of the first and/or second example embodiment.

[012] These, as well as other embodiments, aspects, advantages, and alternatives, will
become apparent to those of ordinary skill in the art by reading the following detailed
description, with reference where appropriate to the accompanying drawings. Further, this
summary and other descriptions and figures provided herein are intended to illustrate
embodiments by way of example only and, as such, that numerous variations are possible. For
instance, structural elements and process steps can be rearranged, combined, distributed,
eliminated, or otherwise changed, while remaining within the scope of the embodiments as

claimed.

Date Regue/Date Received 2023-11-16

BRIEF DESCRIPTION OF THE DRAWINGS

[013] Figure 1 illustrates a schematic drawing of a computing device, in accordance
with example embodiments.

[014] Figure 2 illustrates a schematic drawing of a server device cluster, in accordance
with example embodiments.

[015] Figure 3 depicts a remote network management architecture, in accordance with
example embodiments.

[016] Figure 4 depicts a communication environment involving a remote network
management architecture, in accordance with example embodiments.

[017] Figure 5 depicts another communication environment involving a remote network
management architecture, in accordance with example embodiments.

[018] Figure 6A provides types of configuration data, how the configuration data is
stored, and where the configuration data can be stored, in accordance with example
embodiments.

[019] Figure 6B provides a simplified set of configuration data for a software service, in
accordance with example embodiments.

[020] Figure 6C illustrates centralized storage of configuration data, in accordance with
example embodiments.

[021] Figure 7A depicts a user interface displaying a list of snapshots, in accordance
with example embodiments.

[022] Figure 7B depicts a user interface displaying an alert, in accordance with example
embodiments.

[023] Figure 7C depicts a user interface displaying a timeline of snapshots relating to a
change request, in accordance with example embodiments.

[024] Figure 7D depicts a user interface displaying changes to configuration data, in
accordance with example embodiments.

[025] Figure 7E depicts a user interface displaying further changes to configuration
data, in accordance with example embodiments.

[026] Figure 7F depicts a user interface displaying an alternative view of changes to
configuration data, in accordance with example embodiments.

[027] Figure 8 is a flow chart, in accordance with example embodiments.

Date Regue/Date Received 2023-11-16

[028] Figure 9 depicts a partial difference comparison file, in accordance with example
embodiments.

[029] Figure 10 depicts a message flow diagram for populating a graphical user
interface with data from either a database or a virtual table, in accordance with example
embodiments.

[030] Figure 11 depicts a virtual database driver reading a block from a file, in
accordance with example embodiments.

[031] Figure 12 depicts a web server backend with custom pagination control, in
accordance with example embodiments.

[032] Figure 13 is a flow chart, in accordance with example embodiments.

Date Regue/Date Received 2023-11-16

DETAILED DESCRIPTION

[033] Example methods, devices, and systems are described herein. It should be
understood that the words “example” and “exemplary” are used herein to mean “serving as an
example, instance, or illustration.” Any embodiment or feature described herein as being an
“example” or “exemplary” is not necessarily to be construed as preferred or advantageous over
other embodiments or features unless stated as such. Thus, other embodiments can be utilized
and other changes can be made without departing from the scope of the subject matter presented
herein.

[034] Accordingly, the example embodiments described herein are not meant to be
limiting. It will be readily understood that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be arranged, substituted, combined, separated,
and designed in a wide variety of different configurations. For example, the separation of
features into “client” and “server” components may occur in a number of ways.

[035] Further, unless context suggests otherwise, the features illustrated in each of the
figures may be used in combination with one another. Thus, the figures should be generally
viewed as component aspects of one or more overall embodiments, with the understanding that
not all illustrated features are necessary for each embodiment.

[036] Additionally, any enumeration of elements, blocks, or steps in this specification or
the claims is for purposes of clarity. Thus, such enumeration should not be interpreted to require
or imply that these elements, blocks, or steps adhere to a particular arrangement or are carried
out in a particular order.

L Introduction

[037] A large enterprise is a complex entity with many interrelated operations. Some of
these are found across the enterprise, such as human resources (HR), supply chain, information
technology (IT), and finance. However, each enterprise also has its own unique operations that
provide essential capabilities and/or create competitive advantages.

[038] To support widely-implemented operations, enterprises typically use off-the-shelf
software applications, such as customer relationship management (CRM) and human capital
management (HCM) packages. However, they may also need custom software applications to
meet their own unique requirements. A large enterprise often has dozens or hundreds of these

custom software applications. Nonetheless, the advantages provided by the embodiments herein

Date Regue/Date Received 2023-11-16

are not limited to large enterprises and may be applicable to an enterprise, or any other type of
organization, of any size.

[039] Many such software applications are developed by individual departments within
the enterprise. These range from simple spreadsheets to custom-built software tools and
databases. But the proliferation of siloed custom software applications has numerous
disadvantages. It negatively impacts an enterprise’s ability to run and grow its operations,
innovate, and meet regulatory requirements. The enterprise may find it difficult to integrate,
streamline, and enhance its operations due to lack of a single system that unifies its subsystems
and data.

[040] To efficiently create custom applications, enterprises would benefit from a
remotely-hosted application platform that eliminates unnecessary development complexity. The
goal of such a platform would be to reduce time-consuming, repetitive application development
tasks so that software engineers and individuals in other roles can focus on developing unique,
high-value features.

[041] In order to achieve this goal, the concept of Application Platform as a Service
(aPaaS) is introduced, to intelligently automate workflows throughout the enterprise. An aPaaS
system is hosted remotely from the enterprise, but may access data, applications, and services
within the enterprise by way of secure connections. Such an aPaaS system may have a number
of advantageous capabilities and characteristics. These advantages and characteristics may be
able to improve the enterprise’s operations and workflows for IT, HR, CRM, customer service,
application development, and security. Nonetheless, the embodiments herein are not limited to
enterprise applications or environments, and can be more broadly applied.

[042] The aPaaS system may support development and execution of model-view-
controller (MVC) applications. MVC applications divide their functionality into three
interconnected parts (model, view, and controller) in order to isolate representations of
information from the manner in which the information is presented to the user, thereby allowing
for efficient code reuse and parallel development. These applications may be web-based, and
offer create, read, update, and delete (CRUD) capabilities. This allows new applications to be
built on a common application infrastructure. In some cases, applications structured differently

than MVC, such as those using unidirectional data flow, may be employed.

Date Regue/Date Received 2023-11-16

[043] The aPaaS system may support standardized application components, such as a
standardized set of widgets for graphical user interface (GUI) development. In this way,
applications built using the aPaaS system have a common look and feel. Other software
components and modules may be standardized as well. In some cases, this look and feel can be
branded or skinned with an enterprise’s custom logos and/or color schemes.

[044] The aPaaS system may support the ability to configure the behavior of
applications using metadata. This allows application behaviors to be rapidly adapted to meet
specific needs. Such an approach reduces development time and increases flexibility. Further,
the aPaaS system may support GUI tools that facilitate metadata creation and management, thus
reducing errors in the metadata.

[045] The aPaaS system may support clearly-defined interfaces between applications, so
that software developers can avoid unwanted inter-application dependencies. Thus, the aPaaS
system may implement a service layer in which persistent state information and other data are
stored.

[046] The aPaaS system may support a rich set of integration features so that the
applications thereon can interact with legacy applications and third-party applications. For
instance, the aPaaS system may support a custom employee-onboarding system that integrates
with legacy HR, IT, and accounting systems.

[047] The aPaaS system may support enterprise-grade security. Furthermore, since the
aPaaS system may be remotely hosted, it should also utilize security procedures when it interacts
with systems in the enterprise or third-party networks and services hosted outside of the
enterprise. For example, the aPaaS system may be configured to share data amongst the
enterprise and other parties to detect and identify common security threats.

[048] Other features, functionality, and advantages of an aPaaS system may exist. This
description is for purpose of example and is not intended to be limiting.

[049] As an example of the aPaaS development process, a software developer may be
tasked to create a new application using the aPaaS system. First, the developer may define the
data model, which specifies the types of data that the application uses and the relationships
therebetween. Then, via a GUI of the aPaaS system, the developer enters (e.g., uploads) the data
model. The aPaaS system automatically creates all of the corresponding database tables, fields,

and relationships, which can then be accessed via an object-oriented services layer.

Date Regue/Date Received 2023-11-16

[050] In addition, the aPaaS system can also build a fully-functional application with
client-side interfaces and server-side CRUD logic. This generated application may serve as the
basis of further development for the user. Advantageously, the developer does not have to spend
a large amount of time on basic application functionality. Further, since the application may be
web-based, it can be accessed from any Internet-enabled client device. Altematively or
additionally, a local copy of the application may be able to be accessed, for instance, when
Internet service is not available.

[051] The aPaaS system may also support a rich set of pre-defined functionality that can
be added to applications. These features include support for searching, email, templating,
workflow design, reporting, analytics, social media, scripting, mobile-friendly output, and
customized GUIs.

[052] Such an aPaaS system may represent a GUI in various ways. For example, a
server device of the aPaaS system may generate a representation of a GUI using a combination
of HyperText Markup Language (HTML) and JAVASCRIPT®. The JAVASCRIPT® may
include client-side executable code, server-side executable code, or both. The server device may
transmit or otherwise provide this representation to a client device for the client device to display
on a screen according to its locally-defined look and feel. Alternatively, a representation of a
GUI may take other forms, such as an intermediate form (e.g., JAVA® byte-code) that a client
device can use to directly generate graphical output therefrom. Other possibilities exist.

[053] Further, user interaction with GUI elements, such as buttons, menus, tabs, sliders,

22 ¢
k-

checkboxes, toggles, etc. may be referred to as “selection”, “activation”, or “actuation” thereof.
These terms may be used regardless of whether the GUI elements are interacted with by way of
keyboard, pointing device, touchscreen, or another mechanism.

[054] An aPaaS architecture is particularly powerful when integrated with an
enterprise’s network and used to manage such a network. The following embodiments describe
architectural and functional aspects of example aPaaS systems, as well as the features and
advantages thereof.

II. Example Computing Devices and Cloud-Based Computing Environments

[055] Figure 1 is a simplified block diagram exemplifying a computing device 100,
illustrating some of the components that could be included in a computing device arranged to
operate in accordance with the embodiments herein. Computing device 100 could be a client

device (e.g., a device actively operated by a user), a server device (e.g., a device that provides

Date Regue/Date Received 2023-11-16

computational services to client devices), or some other type of computational platform. Some
server devices may operate as client devices from time to time in order to perform particular
operations, and some client devices may incorporate server features.

[056] In this example, computing device 100 includes processor 102, memory 104,
network interface 106, and input / output unit 108, all of which may be coupled by system bus
110 or a similar mechanism. In some embodiments, computing device 100 may include other
components and/or peripheral devices (e.g., detachable storage, printers, and so on).

[057] Processor 102 may be one or more of any type of computer processing element,
such as a central processing unit (CPU), a co-processor (e.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a network processor, and/or a form of
integrated circuit or controller that performs processor operations. In some cases, processor 102
may be one or more single-core processors. In other cases, processor 102 may be one or more
multi-core processors with multiple independent processing units. Processor 102 may also
include register memory for temporarily storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used instructions and data.

[058] Memory 104 may be any form of computer-usable memory, including but not
limited to random access memory (RAM), read-only memory (ROM), and non-volatile memory
(e.g., flash memory, hard disk drives, solid state drives, compact discs (CDs), digital video discs
(DVDs), and/or tape storage). Thus, memory 104 represents both main memory units, as well as
long-term storage. Other types of memory may include biological memory.

[059] Memory 104 may store program instructions and/or data on which program
instructions may operate. By way of example, memory 104 may store these program instructions
on a non-transitory, computer-readable medium, such that the instructions are executable by
processor 102 to carry out any of the methods, processes, or operations disclosed in this
specification or the accompanying drawings.

[060] As shown in Figure 1, memory 104 may include firmware 104A, kernel 104B,
and/or applications 104C. Firmware 104A may be program code used to boot or otherwise
initiate some or all of computing device 100. Kernel 104B may be an operating system,
including modules for memory management, scheduling and management of processes, input /
output, and communication. Kernel 104B may also include device drivers that allow the

operating system to communicate with the hardware modules (e.g., memory units, networking

10

Date Regue/Date Received 2023-11-16

interfaces, ports, and buses) of computing device 100. Applications 104C may be one or more
user-space software programs, such as web browsers or email clients, as well as any software
libraries used by these programs. Memory 104 may also store data used by these and other
programs and applications.

[061] Network interface 106 may take the form of one or more wireline interfaces, such
as Ethernet (e.g., Fast Ethernet, Gigabit Ethernet, and so on). Network interface 106 may also
support communication over one or more non-Ethernet media, such as coaxial cables or power
lines, or over wide-area media, such as Synchronous Optical Networking (SONET) or digital
subscriber line (DSL) technologies. Network interface 106 may additionally take the form of
one or more wireless interfaces, such as IEEE 802.11 (Wifi), BLUETOOTH®, global positioning
system (GPS), or a wide-area wireless interface. However, other forms of physical layer
interfaces and other types of standard or proprietary communication protocols may be used over
network interface 106. Furthermore, network interface 106 may comprise multiple physical
interfaces. For instance, some embodiments of computing device 100 may include Ethemet,
BLUETOOTH®, and Wifi interfaces.

[062] Input / output unit 108 may facilitate user and peripheral device interaction with
computing device 100. Input/ output unit 108 may include one or more types of input devices,
such as a keyboard, a mouse, a touch screen, and so on. Similarly, input / output unit 108 may
include one or more types of output devices, such as a screen, monitor, printer, and/or one or
more light emitting diodes (LEDs). Additionally or alternatively, computing device 100 may
communicate with other devices using a universal serial bus (USB) or high-definition
multimedia interface (HDMI) port interface, for example.

[063] In some embodiments, one or more computing devices like computing device 100
may be deployed to support an aPaaS architecture. The exact physical location, connectivity, and
configuration of these computing devices may be unknown and/or unimportant to client devices.
Accordingly, the computing devices may be referred to as “cloud-based” devices that may be
housed at various remote data center locations.

[064] Figure 2 depicts a cloud-based server cluster 200 in accordance with example
embodiments. In Figure 2, operations of a computing device (e.g., computing device 100) may
be distributed between server devices 202, data storage 204, and routers 206, all of which may be

connected by local cluster network 208. The number of server devices 202, data storages 204,

11

Date Regue/Date Received 2023-11-16

and routers 206 in server cluster 200 may depend on the computing task(s) and/or applications
assigned to server cluster 200.

[065] For example, server devices 202 can be configured to perform various computing
tasks of computing device 100. Thus, computing tasks can be distributed among one or more of
server devices 202. To the extent that these computing tasks can be performed in parallel, such a
distribution of tasks may reduce the total time to complete these tasks and return a result. For
purposes of simplicity, both server cluster 200 and individual server devices 202 may be referred
to as a “server device.” This nomenclature should be understood to imply that one or more
distinct server devices, data storage devices, and cluster routers may be involved in server device
operations.

[066] Data storage 204 may be data storage arrays that include drive array controllers
configured to manage read and write access to groups of hard disk drives and/or solid state
drives. The drive array controllers, alone or in conjunction with server devices 202, may also be
configured to manage backup or redundant copies of the data stored in data storage 204 to
protect against drive failures or other types of failures that prevent one or more of server devices
202 from accessing units of data storage 204. Other types of memory aside from drives may be
used.

[067] Routers 206 may include networking equipment configured to provide internal
and external communications for server cluster 200. For example, routers 206 may include one
or more packet-switching and/or routing devices (including switches and/or gateways)
configured to provide (i) network communications between server devices 202 and data storage
204 via local cluster network 208, and/or (i1) network communications between server cluster
200 and other devices via communication link 210 to network 212.

[068] Additionally, the configuration of routers 206 can be based at least in part on the
data communication requirements of server devices 202 and data storage 204, the latency and
throughput of the local cluster network 208, the latency, throughput, and cost of communication
link 210, and/or other factors that may contribute to the cost, speed, fault-tolerance, resiliency,
efficiency, and/or other design goals of the system architecture.

[069] As a possible example, data storage 204 may include any form of database, such
as a structured query language (SQL) database. Various types of data structures may store the

information in such a database, including but not limited to tables, arrays, lists, trees, and tuples.

12

Date Regue/Date Received 2023-11-16

Furthermore, any databases in data storage 204 may be monolithic or distributed across multiple
physical devices.

[070] Server devices 202 may be configured to transmit data to and receive data from
data storage 204. This transmission and retrieval may take the form of SQL queries or other
types of database queries, and the output of such queries, respectively. Additional text, images,
video, and/or audio may be included as well. Furthermore, server devices 202 may organize the
received data into web page or web application representations. Such a representation may take
the form of a markup language, such as HTML, the eXtensible Markup Language (XML), or
some other standardized or proprietary format. Moreover, server devices 202 may have the
capability of executing various types of computerized scripting languages, such as but not
limited to Perl, Python, PHP Hypertext Preprocessor (PHP), Active Server Pages (ASP),
JAVASCRIPT®, and so on. Computer program code written in these languages may facilitate
the providing of web pages to client devices, as well as client device interaction with the web
pages. Alternatively or additionally, JAVA® may be used to facilitate generation of web pages
and/or to provide web application functionality.

III. Example Remote Network Management Architecture

[071] Figure 3 depicts a remote network management architecture, in accordance with
example embodiments. This architecture includes three main components — managed network
300, remote network management platform 320, and public cloud networks 340 — all connected
by way of Internet 350.

A. Managed Networks

[072] Managed network 300 may be, for example, an enterprise network used by an
entity for computing and communications tasks, as well as storage of data. Thus, managed
network 300 may include client devices 302, server devices 304, routers 306, virtual machines
308, firewall 310, and/or proxy servers 312. Client devices 302 may be embodied by computing
device 100, server devices 304 may be embodied by computing device 100 or server cluster 200,
and routers 306 may be any type of router, switch, or gateway.

[073] Virtual machines 308 may be embodied by one or more of computing device 100
or server cluster 200. In general, a virtual machine is an emulation of a computing system, and
mimics the functionality (e.g., processor, memory, and communication resources) of a physical
computer. One physical computing system, such as server cluster 200, may support up to

thousands of individual virtual machines. In some embodiments, virtual machines 308 may be

13

Date Regue/Date Received 2023-11-16

managed by a centralized server device or application that facilitates allocation of physical
computing resources to individual virtual machines, as well as performance and error reporting.
Enterprises often employ virtual machines in order to allocate computing resources in an
efficient, as needed fashion. Providers of virtualized computing systems include VMWARE®
and MICROSOFT®.

[074] Firewall 310 may be one or more specialized routers or server devices that protect
managed network 300 from unauthorized attempts to access the devices, applications, and
services therein, while allowing authorized communication that is initiated from managed
network 300. Firewall 310 may also provide intrusion detection, web filtering, virus scanning,
application-layer gateways, and other applications or services. In some embodiments not shown
in Figure 3, managed network 300 may include one or more virtual private network (VPN)
gateways with which it communicates with remote network management platform 320 (see
below).

[075] Managed network 300 may also include one or more proxy servers 312. An
embodiment of proxy servers 312 may be a server application that facilitates communication and
movement of data between managed network 300, remote network management platform 320,
and public cloud networks 340. In particular, proxy servers 312 may be able to establish and
maintain secure communication sessions with one or more computational instances of remote
network management platform 320. By way of such a session, remote network management
platform 320 may be able to discover and manage aspects of the architecture and configuration
of managed network 300 and its components.

[076] Possibly with the assistance of proxy servers 312, remote network management
platform 320 may also be able to discover and manage aspects of public cloud networks 340 that
are used by managed network 300. While not shown in Figure 3, one or more proxy servers 312
may be placed in any of public cloud networks 340 in order to facilitate this discovery and
management.

[077] Firewalls, such as firewall 310, typically deny all communication sessions that are
incoming by way of Internet 350, unless such a session was ultimately initiated from behind the
firewall (i.e., from a device on managed network 300) or the firewall has been explicitly
configured to support the session. By placing proxy servers 312 behind firewall 310 (e.g., within
managed network 300 and protected by firewall 310), proxy servers 312 may be able to initiate

14

Date Regue/Date Received 2023-11-16

these communication sessions through firewall 310. Thus, firewall 310 might not have to be
specifically configured to support incoming sessions from remote network management platform
320, thereby avoiding potential security risks to managed network 300.

[078] In some cases, managed network 300 may consist of a few devices and a small
number of networks. In other deployments, managed network 300 may span multiple physical
locations and include hundreds of networks and hundreds of thousands of devices. Thus, the
architecture depicted in Figure 3 is capable of scaling up or down by orders of magnitude.

[079] Furthermore, depending on the size, architecture, and connectivity of managed
network 300, a varying number of proxy servers 312 may be deployed therein. For example,
each one of proxy servers 312 may be responsible for communicating with remote network
management platform 320 regarding a portion of managed network 300. Altematively or
additionally, sets of two or more proxy servers may be assigned to such a portion of managed
network 300 for purposes of load balancing, redundancy, and/or high availability.

B. Remote Network Management Platforms

[080] Remote network management platform 320 is a hosted environment that provides
aPaaS services to users, particularly to the operator of managed network 300. These services
may take the form of web-based portals, for example, using the aforementioned web-based
technologies. Thus, a user can securely access remote network management platform 320 from,
for example, client devices 302, or potentially from a client device outside of managed network
300. By way of the web-based portals, users may design, test, and deploy applications, generate
reports, view analytics, and perform other tasks. Remote network management platform 320
may also be referred to as a multi-application platform.

[081] As shown in Figure 3, remote network management platform 320 includes four
computational instances 322, 324, 326, and 328. Each of these computational instances may
represent one or more server nodes operating dedicated copies of the aPaaS software and/or one
or more database nodes. The arrangement of server and database nodes on physical server
devices and/or virtual machines can be flexible and may vary based on enterprise needs. In
combination, these nodes may provide a set of web portals, services, and applications (e.g., a
wholly-functioning aPaaS system) available to a particular enterprise. In some cases, a single
enterprise may use multiple computational instances.

[082] For example, managed network 300 may be an enterprise customer of remote

network management platform 320, and may use computational instances 322, 324, and 326.

15

Date Regue/Date Received 2023-11-16

The reason for providing multiple computational instances to one customer is that the customer
may wish to independently develop, test, and deploy its applications and services. Thus,
computational instance 322 may be dedicated to application development related to managed
network 300, computational instance 324 may be dedicated to testing these applications, and
computational instance 326 may be dedicated to the live operation of tested applications and
services. A computational instance may also be referred to as a hosted instance, a remote
instance, a customer instance, or by some other designation. Any application deployed onto a
computational instance may be a scoped application, in that its access to databases within the
computational instance can be restricted to certain elements therein (e.g., one or more particular
database tables or particular rows within one or more database tables).

[083] For purposes of clarity, the disclosure herein refers to the arrangement of
application nodes, database nodes, aPaaS software executing thereon, and underlying hardware
as a “computational instance.” Note that users may colloquially refer to the graphical user
interfaces provided thereby as “instances.” But unless it is defined otherwise herein, a
“computational instance” is a computing system disposed within remote network management
platform 320.

[084] The multi-instance architecture of remote network management platform 320 is in
contrast to conventional multi-tenant architectures, over which multi-instance architectures
exhibit several advantages. In multi-tenant architectures, data from different customers (e.g.,
enterprises) are comingled in a single database. While these customers’ data are separate from
one another, the separation is enforced by the software that operates the single database. As a
consequence, a security breach in this system may affect all customers’ data, creating additional
risk, especially for entities subject to governmental, healthcare, and/or financial regulation.
Furthermore, any database operations that affect one customer will likely affect all customers
sharing that database. Thus, if there is an outage due to hardware or software errors, this outage
affects all such customers. Likewise, if the database is to be upgraded to meet the needs of one
customer, it will be unavailable to all customers during the upgrade process. Often, such
maintenance windows will be long, due to the size of the shared database.

[085] In contrast, the multi-instance architecture provides each customer with its own
database in a dedicated computing instance. This prevents comingling of customer data, and

allows each instance to be independently managed. For example, when one customer’s instance

16

Date Regue/Date Received 2023-11-16

experiences an outage due to errors or an upgrade, other computational instances are not
impacted. Maintenance down time is limited because the database only contains one customer’s
data. Further, the simpler design of the multi-instance architecture allows redundant copies of
each customer database and instance to be deployed in a geographically diverse fashion. This
facilitates high availability, where the live version of the customer’s instance can be moved when
faults are detected or maintenance is being performed.

[086] In some embodiments, remote network management platform 320 may include
one or more central instances, controlled by the entity that operates this platform. Like a
computational instance, a central instance may include some number of application and database
nodes disposed upon some number of physical server devices or virtual machines. Such a central
instance may serve as a repository for specific configurations of computational instances as well
as data that can be shared amongst at least some of the computational instances. For instance,
definitions of common security threats that could occur on the computational instances, software
packages that are commonly discovered on the computational instances, and/or an application
store for applications that can be deployed to the computational instances may reside in a central
instance. Computational instances may communicate with central instances by way of well-
defined interfaces in order to obtain this data.

[087] In order to support multiple computational instances in an efficient fashion,
remote network management platform 320 may implement a plurality of these instances on a
single hardware platform. For example, when the aPaaS system is implemented on a server
cluster such as server cluster 200, it may operate virtual machines that dedicate varying amounts
of computational, storage, and communication resources to instances. But full virtualization of
server cluster 200 might not be necessary, and other mechanisms may be used to separate
instances. In some examples, each instance may have a dedicated account and one or more
dedicated databases on server cluster 200. Alternatively, a computational instance such as
computational instance 322 may span multiple physical devices.

[088] In some cases, a single server cluster of remote network management platform
320 may support multiple independent enterprises. Furthermore, as described below, remote
network management platform 320 may include multiple server clusters deployed in
geographically diverse data centers in order to facilitate load balancing, redundancy, and/or high

availability.

17

Date Regue/Date Received 2023-11-16

C. Public Cloud Networks

[089] Public cloud networks 340 may be remote server devices (e.g., a plurality of
server clusters such as server cluster 200) that can be used for outsourced computation, data
storage, communication, and service hosting operations. These servers may be virtualized (i.e.,
the servers may be virtual machines). Examples of public cloud networks 340 may include
AMAZON WEB SERVICES® and MICROSOFT® AZURE®. Like remote network
management platform 320, multiple server clusters supporting public cloud networks 340 may be
deployed at geographically diverse locations for purposes of load balancing, redundancy, and/or
high availability.

[090] Managed network 300 may use one or more of public cloud networks 340 to
deploy applications and services to its clients and customers. For instance, if managed network
300 provides online music streaming services, public cloud networks 340 may store the music
files and provide web interface and streaming capabilities. In this way, the enterprise of
managed network 300 does not have to build and maintain its own servers for these operations.

[091] Remote network management platform 320 may include modules that integrate
with public cloud networks 340 to expose virtual machines and managed services therein to
managed network 300. The modules may allow users to request virtual resources, discover
allocated resources, and provide flexible reporting for public cloud networks 340. In order to
establish this functionality, a user from managed network 300 might first establish an account
with public cloud networks 340, and request a set of associated resources. Then, the user may
enter the account information into the appropriate modules of remote network management
platform 320. These modules may then automatically discover the manageable resources in the
account, and also provide reports related to usage, performance, and billing.

D. Communication Support and Other Operations

[092] Internet 350 may represent a portion of the global Internet. However, Internet 350
may alternatively represent a different type of network, such as a private wide-area or local-area
packet-switched network.

[093] Figure 4 further illustrates the communication environment between managed
network 300 and computational instance 322, and introduces additional features and alternative
embodiments. In Figure 4, computational instance 322 is replicated, in whole or in part, across

data centers 400A and 400B. These data centers may be geographically distant from one

18

Date Regue/Date Received 2023-11-16

another, perhaps in different cities or different countries. Each data center includes support
equipment that facilitates communication with managed network 300, as well as remote users.

[094] In data center 400A, network traffic to and from external devices flows either
through VPN gateway 402A or firewall 404A. VPN gateway 402A may be peered with VPN
gateway 412 of managed network 300 by way of a security protocol such as Internet Protocol
Security (IPSEC) or Transport Layer Security (TLS). Firewall 404A may be configured to allow
access from authorized users, such as user 414 and remote user 416, and to deny access to
unauthorized users. By way of firewall 404A, these users may access computational instance
322, and possibly other computational instances. Load balancer 406A may be used to distribute
traffic amongst one or more physical or virtual server devices that host computational instance
322. Load balancer 406A may simplify user access by hiding the internal configuration of data
center 400A, (e.g., computational instance 322) from client devices. For instance, if
computational instance 322 includes multiple physical or virtual computing devices that share
access to multiple databases, load balancer 406 A may distribute network traffic and processing
tasks across these computing devices and databases so that no one computing device or database
is significantly busier than the others. In some embodiments, computational instance 322 may
include VPN gateway 402A, firewall 404A, and load balancer 406A.

[095] Data center 400B may include its own versions of the components in data center
400A. Thus, VPN gateway 402B, firewall 404B, and load balancer 406B may perform the same
or similar operations as VPN gateway 402A, firewall 404A, and load balancer 406A,
respectively. Further, by way of real-time or near-real-time database replication and/or other
operations, computational instance 322 may exist simultaneously in data centers 400A and 400B.

[096] Data centers 400A and 400B as shown in Figure 4 may facilitate redundancy and
high availability. In the configuration of Figure 4, data center 400A is active and data center
400B is passive. Thus, data center 400A is serving all traffic to and from managed network 300,
while the version of computational instance 322 in data center 400B is being updated in near-
real-time. Other configurations, such as one in which both data centers are active, may be
supported.

[097] Should data center 400A fail in some fashion or otherwise become unavailable to
users, data center 400B can take over as the active data center. For example, domain name

system (DNS) servers that associate a domain name of computational instance 322 with one or

19

Date Regue/Date Received 2023-11-16

more Internet Protocol (IP) addresses of data center 400A may re-associate the domain name
with one or more IP addresses of data center 400B. After this re-association completes (which
may take less than one second or several seconds), users may access computational instance 322
by way of data center 400B.

[098] Figure 4 also illustrates a possible configuration of managed network 300. As
noted above, proxy servers 312 and user 414 may access computational instance 322 through
firewall 310. Proxy servers 312 may also access configuration items 410. In Figure 4,
configuration items 410 may refer to any or all of client devices 302, server devices 304, routers
306, and virtual machines 308, any components thereof, any applications or services executing
thereon, as well as relationships between devices, components, applications, and services. Thus,
the term “configuration items” may be shorthand for part of all of any physical or virtual device,
or any application or service remotely discoverable or managed by computational instance 322,
or relationships between discovered devices, applications, and services. Configuration items
may be represented in a configuration management database (CMDB) of computational instance
322.

[099] As stored or transmitted, a configuration item may be a list of attributes that
characterize the hardware or software that the configuration item represents. These attributes
may include manufacturer, vendor, location, owner, unique identifier, description, network
address, operational status, serial number, time of last update, and so on. The class of a
configuration item may determine which subset of attributes are present for the configuration
item (e.g., software and hardware configuration items may have different lists of attributes).

[100] As noted above, VPN gateway 412 may provide a dedicated VPN to VPN
gateway 402A. Such a VPN may be helpful when there is a significant amount of traffic
between managed network 300 and computational instance 322, or security policies otherwise
suggest or require use of a VPN between these sites. In some embodiments, any device in
managed network 300 and/or computational instance 322 that directly communicates via the
VPN is assigned a public IP address. Other devices in managed network 300 and/or
computational instance 322 may be assigned private IP addresses (e.g., IP addresses selected
from the 10.0.0.0 — 10.255.255.255 or 192.168.0.0 — 192.168.255.255 ranges, represented in
shorthand as subnets 10.0.0.0/8 and 192.168.0.0/16, respectively). In various alternatives,

20

Date Regue/Date Received 2023-11-16

devices in managed network 300, such as proxy servers 312, may use a secure protocol (e.g.,
TLS) to communicate directly with one or more data centers.

Iv. Example Discovery

[101] In order for remote network management platform 320 to administer the devices,
applications, and services of managed network 300, remote network management platform 320
may first determine what devices are present in managed network 300, the configurations,
constituent components, and operational statuses of these devices, and the applications and
services provided by the devices. Remote network management platform 320 may also
determine the relationships between discovered devices, their components, applications, and
services. Representations of each device, component, application, and service may be referred to
as a configuration item. The process of determining the configuration items and relationships
within managed network 300 is referred to as discovery, and may be facilitated at least in part by
proxy servers 312. Representations of configuration items and relationships are stored in a
CMDB.

[102] While this section describes discovery conducted on managed network 300, the
same or similar discovery procedures may be used on public cloud networks 340. Thus, in some
environments, “discovery” may refer to discovering configuration items and relationships on a
managed network and/or one or more public cloud networks.

[103] For purposes of the embodiments herein, an “application” may refer to one or
more processes, threads, programs, client software modules, server software modules, or any
other software that executes on a device or group of devices. A “service” may refer to a high-
level capability provided by one or more applications executing on one or more devices working
in conjunction with one another. For example, a web service may involve multiple web
application server threads executing on one device and accessing information from a database
application that executes on another device.

[104] Figure 5 provides a logical depiction of how configuration items and relationships
can be discovered, as well as how information related thereto can be stored. For sake of
simplicity, remote network management platform 320, public cloud networks 340, and Internet
350 are not shown.

[105] In Figure 5, CMDB 500, task list 502, and identification and reconciliation engine
(IRE) 514 are disposed and/or operate within computational instance 322. Task list 502

represents a connection point between computational instance 322 and proxy servers 312. Task

21

Date Regue/Date Received 2023-11-16

list 502 may be referred to as a queue, or more particularly as an external communication
channel (ECC) queue. Task list 502 may represent not only the queue itself but any associated
processing, such as adding, removing, and/or manipulating information in the queue.

[106] As discovery takes place, computational instance 322 may store discovery tasks
(jobs) that proxy servers 312 are to perform in task list 502, until proxy servers 312 request these
tasks in batches of one or more. Placing the tasks in task list 502 may trigger or otherwise cause
proxy servers 312 to begin their discovery operations. For example, proxy servers 312 may poll
task list 502 periodically or from time to time, or may be notified of discovery commands in task
list 502 in some other fashion. Alternatively or additionally, discovery may be manually
triggered or automatically triggered based on triggering events (e.g., discovery may
automatically begin once per day at a particular time).

[107] Regardless, computational instance 322 may transmit these discovery commands
to proxy servers 312 upon request. For example, proxy servers 312 may repeatedly query task
list 502, obtain the next task therein, and perform this task until task list 502 is empty or another
stopping condition has been reached. In response to receiving a discovery command, proxy
servers 312 may query various devices, components, applications, and/or services in managed
network 300 (represented for sake of simplicity in Figure 5 by devices 504, 506, 508, 510, and
512). These devices, components, applications, and/or services may provide responses relating
to their configuration, operation, and/or status to proxy servers 312. In turn, proxy servers 312
may then provide this discovered information to task list 502 (i.e., task list 502 may have an
outgoing queue for holding discovery commands until requested by proxy servers 312 as well as
an incoming queue for holding the discovery information until it is read).

[108] IRE 514 may be a software module that removes discovery information from task
list 502 and formulates this discovery information into configuration items (e.g., representing
devices, components, applications, and/or services discovered on managed network 300) as well
as relationships therebetween. Then, IRE 514 may provide these configuration items and
relationships to CMDB 500 for storage therein. The operation of IRE 514 is described in more
detail below.

[109] In this fashion, configuration items stored in CMDB 500 represent the
environment of managed network 300. As an example, these configuration items may represent

a set of physical and/or virtual devices (e.g., client devices, server devices, routers, or virtual

22

Date Regue/Date Received 2023-11-16

machines), applications executing thereon (e.g., web servers, email servers, databases, or storage
arrays), as well as services that involve multiple individual configuration items. Relationships
may be pairwise definitions of arrangements or dependencies between configuration items.

[110] In order for discovery to take place in the manner described above, proxy servers
312, CMDB 500, and/or one or more credential stores may be configured with credentials for the
devices to be discovered. Credentials may include any type of information needed in order to
access the devices. These may include userid / password pairs, certificates, and so on. In some
embodiments, these credentials may be stored in encrypted fields of CMDB 500. Proxy servers
312 may contain the decryption key for the credentials so that proxy servers 312 can use these
credentials to log on to or otherwise access devices being discovered.

[111] There are two general types of discovery — horizontal and vertical (top-down).
Each are discussed below.

A. Horizontal Discovery

[112] Horizontal discovery is used to scan managed network 300, find devices,
components, and/or applications, and then populate CMDB 500 with configuration items
representing these devices, components, and/or applications. Horizontal discovery also creates
relationships between the configuration items. For instance, this could be a “runs on”
relationship between a configuration item representing a software application and a configuration
item representing a server device on which it executes. Typically, horizontal discovery is not
aware of services and does not create relationships between configuration items based on the
services in which they operate.

[113] There are two versions of horizontal discovery. One relies on probes and sensors,
while the other also employs patterns. Probes and sensors may be scripts (e.g., written in
JAVASCRIPT®) that collect and process discovery information on a device and then update
CMDB 500 accordingly. More specifically, probes explore or investigate devices on managed
network 300, and sensors parse the discovery information returned from the probes.

[114] Patterns are also scripts that collect data on one or more devices, process it, and
update the CMDB. Patterns differ from probes and sensors in that they are written in a specific
discovery programming language and are used to conduct detailed discovery procedures on
specific devices, components, and/or applications that often cannot be reliably discovered (or
discovered at all) by more general probes and sensors. Particularly, patterns may specify a series

of operations that define how to discover a particular arrangement of devices, components,

23

Date Regue/Date Received 2023-11-16

and/or applications, what credentials to use, and which CMDB tables to populate with
configuration items resulting from this discovery.

[115] Both versions may proceed in four logical phases: scanning, classification,
identification, and exploration. Also, both versions may require specification of one or more
ranges of IP addresses on managed network 300 for which discovery is to take place. Each
phase may involve communication between devices on managed network 300 and proxy servers
312, as well as between proxy servers 312 and task list 502. Some phases may involve storing
partial or preliminary configuration items in CMDB 500, which may be updated in a later phase.

[116] In the scanning phase, proxy servers 312 may probe each IP address in the
specified range(s) of IP addresses for open Transmission Control Protocol (TCP) and/or User
Datagram Protocol (UDP) ports to determine the general type of device and its operating system.
The presence of such open ports at an IP address may indicate that a particular application is
operating on the device that is assigned the IP address, which in turn may identify the operating
system used by the device. For example, if TCP port 135 is open, then the device is likely
executing a WINDOW S® operating system. Similarly, if TCP port 22 is open, then the device is
likely executing a UNIX® operating system, such as LINUX®. If UDP port 161 is open, then
the device may be able to be further identified through the Simple Network Management
Protocol (SNMP). Other possibilities exist.

[117] In the classification phase, proxy servers 312 may further probe each discovered
device to determine the type of its operating system. The probes used for a particular device are
based on information gathered about the devices during the scanning phase. For example, if a
device is found with TCP port 22 open, a set of UNIX®-specific probes may be used. Likewise,
if a device is found with TCP port 135 open, a set of WINDOWS®-specific probes may be used.
For either case, an appropriate set of tasks may be placed in task list 502 for proxy servers 312 to
carry out. These tasks may result in proxy servers 312 logging on, or otherwise accessing
information from the particular device. For instance, if TCP port 22 is open, proxy servers 312
may be instructed to initiate a Secure Shell (SSH) connection to the particular device and obtain
information about the specific type of operating system thereon from particular locations in the
file system. Based on this information, the operating system may be determined. As an

example, a UNIX® device with TCP port 22 open may be classified as AIX®, HPUX, LINUX®,

24

Date Regue/Date Received 2023-11-16

MACOS®, or SOLARIS®. This classification information may be stored as one or more
configuration items in CMDB 500.

[118] In the identification phase, proxy servers 312 may determine specific details about
a classified device. The probes used during this phase may be based on information gathered
about the particular devices during the classification phase. For example, if a device was
classified as LINUX®, a set of LINUX®-specific probes may be used. Likewise, if a device was
classified as WINDOWS® 10, as a set of WINDOWS®-10-specific probes may be used. As
was the case for the classification phase, an appropriate set of tasks may be placed in task list
502 for proxy servers 312 to carry out. These tasks may result in proxy servers 312 reading
information from the particular device, such as basic input / output system (BIOS) information,
serial numbers, network interface information, media access control address(es) assigned to these
network interface(s), IP address(es) used by the particular device and so on. This identification
information may be stored as one or more configuration items in CMDB 500 along with any
relevant relationships therebetween. Doing so may involve passing the identification
information through IRE 514 to avoid generation of duplicate configuration items, for purposes
of disambiguation, and/or to determine the table(s) of CMDB 500 in which the discovery
information should be written.

[119] In the exploration phase, proxy servers 312 may determine further details about
the operational state of a classified device. The probes used during this phase may be based on
information gathered about the particular devices during the classification phase and/or the
identification phase. Again, an appropriate set of tasks may be placed in task list 502 for proxy
servers 312 to carry out. These tasks may result in proxy servers 312 reading additional
information from the particular device, such as processor information, memory information, lists
of running processes (software applications), and so on. Once more, the discovered information
may be stored as one or more configuration items in CMDB 500, as well as relationships.

[120] Running horizontal discovery on certain devices, such as switches and routers,
may utilize SNMP. Instead of or in addition to determining a list of running processes or other
application-related information, discovery may determine additional subnets known to a router
and the operational state of the router’s network interfaces (e.g., active, inactive, queue length,

number of packets dropped, etc.). The IP addresses of the additional subnets may be candidates

25

Date Regue/Date Received 2023-11-16

for further discovery procedures. Thus, horizontal discovery may progress iteratively or
recursively.

[121] Patterns are used only during the identification and exploration phases — under
pattern-based discovery, the scanning and classification phases operate as they would if probes
and sensors are used. After the classification stage completes, a pattern probe is specified as a
probe to use during identification. Then, the pattern probe and the pattern that it specifies are
launched.

[122] Patterns support a number of features, by way of the discovery programming
language, that are not available or difficult to achieve with discovery using probes and sensors.
For example, discovery of devices, components, and/or applications in public cloud networks, as
well as configuration file tracking, is much simpler to achieve using pattern-based discovery.
Further, these patterns are more easily customized by users than probes and sensors.
Additionally, patterns are more focused on specific devices, components, and/or applications and
therefore may execute faster than the more general approaches used by probes and sensors.

[123] Once horizontal discovery completes, a configuration item representation of each
discovered device, component, and/or application is available in CMDB 500. For example, after
discovery, operating system version, hardware configuration, and network configuration details
for client devices, server devices, and routers in managed network 300, as well as applications
executing thereon, may be stored as configuration items. This collected information may be
presented to a user in various ways to allow the user to view the hardware composition and
operational status of devices.

[124] Furthermore, CMDB 500 may include entries regarding the relationships between
configuration items. More specifically, suppose that a server device includes a number of
hardware components (e.g., processors, memory, network interfaces, storage, and file systems),
and has several software applications installed or executing thereon. Relationships between the
components and the server device (e.g., “contained by” relationships) and relationships between
the software applications and the server device (e.g., “runs on” relationships) may be represented
as such in CMDB 500.

[125] More generally, the relationship between a software configuration item installed
or executing on a hardware configuration item may take various forms, such as “is hosted on”,

“runs on”, or “depends on”. Thus, a database application installed on a server device may have

26

Date Regue/Date Received 2023-11-16

the relationship “is hosted on” with the server device to indicate that the database application is
hosted on the server device. In some embodiments, the server device may have a reciprocal
relationship of “used by” with the database application to indicate that the server device is used
by the database application. These relationships may be automatically found using the discovery
procedures described above, though it is possible to manually set relationships as well.

[126] In this manner, remote network management platform 320 may discover and
inventory the hardware and software deployed on and provided by managed network 300.

B. Vertical Discovery

[127] Vertical discovery is a technique used to find and map configuration items that are
part of an overall service, such as a web service. For example, vertical discovery can map a web
service by showing the relationships between a web server application, a LINUX® server device,
and a database that stores the data for the web service. Typically, horizontal discovery is run first
to find configuration items and basic relationships therebetween, and then vertical discovery is
run to establish the relationships between configuration items that make up a service.

[128] Patterns can be used to discover certain types of services, as these patterns can be
programmed to look for specific arrangements of hardware and software that fit a description of
how the service is deployed. Alternatively or additionally, traffic analysis (e.g., examining
network traffic between devices) can be used to facilitate vertical discovery. In some cases, the
parameters of a service can be manually configured to assist vertical discovery.

[129] In general, vertical discovery seeks to find specific types of relationships between
devices, components, and/or applications. Some of these relationships may be inferred from
configuration files. For example, the configuration file of a web server application can refer to
the IP address and port number of a database on which it relies. Vertical discovery patterns can
be programmed to look for such references and infer relationships therefrom. Relationships can
also be inferred from traffic between devices — for instance, if there is a large extent of web
traffic (e.g., TCP port 80 or 8080) traveling between a load balancer and a device hosting a web
server, then the load balancer and the web server may have a relationship.

[130] Relationships found by vertical discovery may take various forms. As an
example, an email service may include an email server software configuration item and a
database application software configuration item, each installed on different hardware device
configuration items. The email service may have a “depends on” relationship with both of these

software configuration items, while the software configuration items have a “used by” reciprocal

27

Date Regue/Date Received 2023-11-16

relationship with the email service. Such services might not be able to be fully determined by
horizontal discovery procedures, and instead may rely on vertical discovery and possibly some
extent of manual configuration.

C. Advantages of Discovery

[131] Regardless of how discovery information is obtained, it can be valuable for the
operation of a managed network. Notably, IT personnel can quickly determine where certain
software applications are deployed, and what configuration items make up a service. This allows
for rapid pinpointing of root causes of service outages or degradation. For example, if two
different services are suffering from slow response times, the CMDB can be queried (perhaps
among other activities) to determine that the root cause is a database application that is used by
both services having high processor utilization. Thus, IT personnel can address the database
application rather than waste time considering the health and performance of other configuration
items that make up the services.

[132] In another example, suppose that a database application is executing on a server
device, and that this database application is used by an employee onboarding service as well as a
payroll service. Thus, if the server device is taken out of operation for maintenance, it is clear
that the employee onboarding service and payroll service will be impacted. Likewise, the
dependencies and relationships between configuration items may be able to represent the
services impacted when a particular hardware device fails.

[133] In general, configuration items and/or relationships between configuration items
may be displayed on a web-based interface and represented in a hierarchical fashion.
Modifications to such configuration items and/or relationships in the CMDB may be
accomplished by way of this interface.

[134] Furthermore, users from managed network 300 may develop workflows that
allow certain coordinated activities to take place across multiple discovered devices. For
instance, an IT workflow might allow the user to change the common administrator password to
all discovered LINUX® devices in a single operation.

V. CMDB Identification Rules and Reconciliation
[135] A CMDB, such as CMDB 500, provides a repository of configuration items and

relationships. When properly provisioned, it can take on a key role in higher-layer applications

deployed within or involving a computational instance. These applications may relate to

28

Date Regue/Date Received 2023-11-16

enterprise IT service management, operations management, asset management, configuration
management, compliance, and so on.

[136] For example, an IT service management application may use information in the
CMDRB to determine applications and services that may be impacted by a component (e.g., a
server device) that has malfunctioned, crashed, or is heavily loaded. Likewise, an asset
management application may use information in the CMDB to determine which hardware and/or
software components are being used to support particular enterprise applications. As a
consequence of the importance of the CMDB, it is desirable for the information stored therein to
be accurate, consistent, and up to date.

[137] A CMDB may be populated in various ways. As discussed above, a discovery
procedure may automatically store information including configuration items and relationships in
the CMDB. However, a CMDB can also be populated, as a whole or in part, by manual entry,
configuration files, and third-party data sources. Given that multiple data sources may be able to
update the CMDB at any time, it is possible that one data source may overwrite entries of
another data source. Also, two data sources may each create slightly different entries for the
same configuration item, resulting in a CMDB containing duplicate data. When either of these
occurrences takes place, they can cause the health and utility of the CMDB to be reduced.

[138] In order to mitigate this situation, these data sources might not write configuration
items directly to the CMDB. Instead, they may write to an identification and reconciliation
application programming interface (API) of IRE 514. Then, IRE 514 may use a set of
configurable identification rules to uniquely identify configuration items and determine whether
and how they are to be written to the CMDB.

[139] In general, an identification rule specifies a set of configuration item attributes
that can be used for this unique identification. Identification rules may also have priorities so
that rules with higher priorities are considered before rules with lower priorities. Additionally, a
rule may be independent, in that the rule identifies configuration items independently of other
configuration items. Alternatively, the rule may be dependent, in that the rule first uses a
metadata rule to identify a dependent configuration item.

[140] Metadata rules describe which other configuration items are contained within a
particular configuration item, or the host on which a particular configuration item is deployed.

For example, a network directory service configuration item may contain a domain controller

29

Date Regue/Date Received 2023-11-16

configuration item, while a web server application configuration item may be hosted on a server
device configuration item.

[141] A goal of each identification rule is to use a combination of attributes that can
unambiguously distinguish a configuration item from all other configuration items, and is
expected not to change during the lifetime of the configuration item. Some possible attributes
for an example server device may include serial number, location, operating system, operating
system version, memory capacity, and so on. If a rule specifies attributes that do not uniquely
identify the configuration item, then multiple components may be represented as the same
configuration item in the CMDB. Also, if a rule specifies attributes that change for a particular
configuration item, duplicate configuration items may be created.

[142] Thus, when a data source provides information regarding a configuration item to
IRE 514, IRE 514 may attempt to match the information with one or more rules. If a match is
found, the configuration item is written to the CMDB or updated if it already exists within the
CMDRB. If a match is not found, the configuration item may be held for further analysis.

[143] Configuration item reconciliation procedures may be used to ensure that only
authoritative data sources are allowed to overwrite configuration item data in the CMDB. This
reconciliation may also be rules-based. For instance, a reconciliation rule may specify that a
particular data source is authoritative for a particular configuration item type and set of
attributes. Then, IRE 514 might only permit this authoritative data source to write to the
particular configuration item, and writes from unauthorized data sources may be prevented.
Thus, the authorized data source becomes the single source of truth regarding the particular
configuration item. In some cases, an unauthorized data source may be allowed to write to a
configuration item if it is creating the configuration item or the attributes to which it is writing
are empty.

[144] Additionally, multiple data sources may be authoritative for the same
configuration item or attributes thereof. To avoid ambiguities, these data sources may be
assigned precedences that are taken into account during the writing of configuration items. For
example, a secondary authorized data source may be able to write to a configuration item’s
attribute until a primary authorized data source writes to this attribute. Afterward, further writes

to the attribute by the secondary authorized data source may be prevented.

30

Date Regue/Date Received 2023-11-16

[145] In some cases, duplicate configuration items may be automatically detected by
IRE 514 or in another fashion. These configuration items may be deleted or flagged for manual
de-duplication.
VI. Determining Changes to Configuration Data

[146] As described above, a remote network management platform (such as remote
network management platform 320) may support a vast array of software applications and
services. Each of these may have its own configuration data, which could reside by default in
one or more files or database entries within or outside of the platform.

[147] The configuration data may be made up of sets of parameters, where a parameter
may be a key-value pair, one or more alphanumeric values, a file, or some other type of content.
For purposes of discussion herein, it may be assumed that parameters take the form of key-value
pairs but other parameter forms may be employed. An example of a key-value pair is “ip-
address: 10.0.177.15”, where the key is the text “ip-address” and the value is the IP address
“10.0.177.15”. Key-value pairs can be stored in various types of structured or unstructured text
files, database tables, and so on.

A. Arrangements of Configuration Data

[148] Figure 6A illustrates an example of types of configuration data, as well as how
and where it might be stored. Application / service configuration 600 may include configuration
data for specific software applications and/or services. These may be one or more of usernames
and passwords, encryption settings, application programming interface (API) keys, or
connections to databases. Middleware configuration 602 may include configuration data of
features built into the remote network management platform that may be employed by the
software applications and/or services. These may be one or more of database settings, message
queue settings, content delivery network (CDN) settings, and/or heap sizes. Cloud-based
resources configuration 604 may include configuration data relating to one or more public cloud
network services used by the software applications and/or services. These may be one or more
of storage settings, scaling rules (e.g., for processing, storage, and network capacity),
geographical regions in which the cloud-based resources are located, and/or host names relating
to these resources. Infrastructure configuration 606 may include configuration data directed to
the operation of computing devices within the remote network management platform. These

may be one or more of server device settings, network settings, firewall settings, and so on. For

31

Date Regue/Date Received 2023-11-16

instance, these settings may include IP address assignments, domain name assignments,
workgroup assignments, etc.

[149] All of this configuration data may be stored in different ways spread across the
remote network management platform, one or more public cloud networks, and/or other
locations. For example, some of this configuration data may be stored in files 608, which may
include unstructured text, structured text, or be other types of files — e.g., .properties, .conf,
XML, JavaScript Object Notation (JSON), comma-separated-value (CSV), and/or Yet Another
Markup Language (YAML) files. Alternatively or additionally, some of this configuration data
(parameters and/or files) may be stored in repositories 610, which may include databases (e.g.,
specific database tables), network folders, source code management systems, and/or artifact
storage.

[150] In some cases, configuration data may be stored in a hierarchical tree-like
structure. For instance, JSON and XML files are hierarchically structured in a fashion that is
directly analogous to a tree. In these types of files, objects are either an element (e.g., a key-
value pair that is like a leaf of a tree) or a container of other objects (e.g., a block of elements that
is like a root or intermediate node in a tree).

[151] As a concrete example, an airline booking web site can contain many nodes of
application and service configuration data, such as a custom ticket reservation application, a user
relations management component, a payment gateway service, a user interface, a series of
webservers that provide content to the user interface, authentication microservices, database
servers, load balancers, and internal network routing policies that all need to be configured
properly in order to combine and operate seamlessly as the airline booking application service.
As such, the configuration data of a software service may be extensive and number in the
thousands of nodes storing tens of thousands of configuration key-value pairs in a tree-like
hierarchy. A simplified example set of JSON configuration for such a software service is shown
in Figure 6B.

[152] The challenges of maintaining such configuration data is not only that the data is
complex (tens of thousands to millions of parameters), but also that changes to it are frequent.
For example, a remote network management platform may support hundreds or thousands of
software applications and services, some fraction of which may be under continuous

development processes, such as various types of agile programming models. As such, new

32

Date Regue/Date Received 2023-11-16

versions of these applications may be deployed into a production environment every few days, or
even several times in one day.

[153] The teams of software engineers developing and testing these applications may
make changes to the configuration data of their applications, but may also modify that of other
applications, as well as that of middleware and/or infrastructure. Thus, to fix a software defect or
to deploy a few feature, one team of software engineers may make changes to configuration data
that affects the software applications of some or all other teams. Such changes may cause at
least some of these other software applications to change behavior or to fail in various ways.

[154] Further, each set of configuration data may be placed in files 608 and/or
repositories 610 that are disposed throughout numerous locations. This leads to weak access
restrictions for configuration data and the coordination of changes being difficult if not
impossible. The result is that changes can be uncontrolled, can have no traceability, and cannot
be easily audited.

[155] As a consequence, a major root cause of software application and service outages
is now errors in configuration data. In some estimates, these errors are even more prevalent and
more impactful than coding errors in the software applications. Some notable configuration-
related outages have taken entire web sites offline or rendered them impractical to use for hours
or even days. Due to the aforementioned limitations, these outages are difficult to troubleshoot
because narrowing down the configuration changes that may have caused the outage is akin to
looking for a needle in a haystack across multiple files and repositories.

[156] Therefore, any improvement in how configuration data is managed, presented,
viewed, and manipulated such that outages are less likely to occur and faster to resolve would be
beneficial.

[157] The embodiments herein provide such improvements. As shown in Figure 6C, the
embodiments may involve consolidating the configuration data into a centralized configuration
data model 612, which may be stored in a single location. This facilitates centralized visibility
into configuration data (so that software engineers and operations engineers do not have to spend
inordinate amounts of time just to find relevant files or repositories). This also facilitates rule-
based access control, in which sets of access control lists (ACLs) or other mechanisms define
which users can make what changes to certain parameters at what points in time. This further

facilitates continuous validation in which automated processes scan the configuration data to

33

Date Regue/Date Received 2023-11-16

identify possible errors, misconfigurations, or inconsistent groups of parameters. Such validation
may be based on rules that define valid and/or invalid parameters or combinations of parameters,
or based on logic that is more complex.

[158] One or more such ACLs may also control the visibility to nodes, keys, or values
on a per-user or per-user-group basis. As a result, some users may be unable to view certain
branches in the tree, or to observe certain masked values (like passwords) while still maintaining
the ability to know that the masked value was added, edited, deleted, or remains unchanged.

[159] As noted above, snapshots refer to versions of the configuration data. In some
cases, a snapshot may refer to the entirety of the configuration data, and in others only a subset
of the configuration data (e.g., the part of the configuration data used by one or more specific
software applications).

[160] As an example, suppose that a particular software application includes parameters
in the configuration data that determine which search engine that is to be employed for user
search requests. It may be desirable to support multiple search engines and have the software
application be able to use or switch between any of them.

[161] In possible embodiments, the parameters may be updated to include a new search
engine. For example, parameters to specify the Google search engine may include the following
key-value pairs: “googleSearch: disabled”, “googleSearchURL: www.google.com”, and
“googleRefldNumber: grefID123113”,

[162] First, a change request may be made, asking for the new search engine to be
added. This change request may come from a user or an application, and may be added to a
database of change requests stored by the remote network management platform. Based on this
change request, a software developer may add the new parameters to a configuration file of the
software application. Next, a new version of the software application is built, incorporating
these parameters into its configuration file, as well as any changes to the code of the software
application that facilitates use of the new search engine. Then, the package (e.g., the new
versions of application and its configuration data) may undergo automated testing procedures.
Such testing may involve making sure that the configuration file is syntactically correct and
properly formatted.

[163] Assuming that these tests pass, the configuration file may be uploaded to

centralized configuration data model 612. A snapshot of the configuration file is made, where

34

Date Regue/Date Received 2023-11-16

the snapshot is the current version of the configuration file. The snapshot goes through a
validation process and is then published (made available) by way of a web interface of
centralized configuration data model 612.

[164] After the snapshot is available, a change control process is undertaken to review
and either approve or reject the change request (as well as the associated snapshot). The change
control process may include manual review from a software developer or automated review. For
example, the results of the validation process may be reviewed to ensure that validation was
successful. Once the change request is approved, the package can be deployed into an
environment (e.g., production use by end users of the remote network management platform,
testing use by software testers, or development use by software developers).

B. Example Graphical User Interfaces

[165] For purposes of further illustration, Figure 7A depicts a listing 700 of available
snapshots of configuration data organized by environment, where “prod” indicates production,
“test” indicates testing, and “dev” indicates development. This listing may be obtained by way
of a web interface of the remote network management platform, such as a web interface of
centralized configuration data model 612.

[166] Here, it is assumed that the snapshot prod-v8.dpl 702 is the new snapshot with the
addition of parameters specifying the Google search engine. Notably, the web interface specifies
whether each snapshot is published, into which environment it is deployable, whether it has been
validated, and timestamps of its creation and most recent validation. As shown, prod-v8.dpl 702
is the most recent production snapshot.

[167] Continuing with this scenario, suppose that the package associated with snapshot
prod-v8.dpl 702 is deployed in the production environment. This environment may be
configured to produce alerts when various types of problems or potential problems are detected.
For example, the environment may produce an alert when no searches have been conducted for
the last 15 minutes (given that thousands of users are expected to be using the search service,
such an event is expected to be quite rare).

[168] As a result, the remote network management platform may generate an alert. This
alert may be sent to one or more system reliability engineers, who are tasked with keeping the
platform and its application and services operating correctly. As an example, Figure 7B depicts a
web interface 710 into an alert management application of the remote network management

platform. Alert0010223 is shown, which includes identified issue 712 (“No searches processed

35

Date Regue/Date Received 2023-11-16

for last 15 minutes”), impacted configuration item 714 (“Search engine service — production”),
and probable root cause 716 (related to the change request CHG0030040). Here, it is assumed
that change request CHG0030040 was: (i) the basis for changing the configuration file to include
the Google search engine, and (ii) related to impacted configuration item 714.

[169] In many realistic scenarios, there may be multiple change requests that are listed
under probable root cause 716. Further, it may not be clear from the content of these change
requests which parameters of the configuration data was changed. Thus, the root cause analysis
process may require that the system reliability engineer manually review each change request
and then work with software developers to first identify the relevant configuration snapshots,
identify changes between these snapshots, and determine whether these changes resulted in the
apparent service outage. In all but the simplest of situations, this process is complex and can
take hours or days.

[170] The embodiments herein overcome these drawbacks due to the association
between change requests and snapshots. Notably, change request CHG0030040 resulted in
deployment of snapshot prod-v8.dpl 702. Therefore, the new configuration parameters
introduced in snapshot prod-v8.dpl 702 can be rapidly and easily identified.

[171] To that point, Figure 7C depicts user interface 720 showing snapshot deployment
timeline 722, on which several snapshots are shown and each may be selectable. Figure 7C
shows that reference snapshot 724 (representing the most recent previously-deployed snapshot)
and target snapshot 726 (representing currently-deployed snapshot prod-v8.dpl 702) have been
selected. In general, the range of times shown on timeline 722 can be broadened or narrowed,
and any one or two snapshots thereon can be selected. Further, the web interface may
automatically display the last several deployed snapshots (e.g., 2, 3, 5, or 10 snapshots).

[172] Figure 7D displays the differences between the two selected snapshots (e.g.,
reference snapshot 724 and target snapshot 726). In this figure, user interface 730 may be part of
user interface 720 (e.g., one would reach user interface 730 by scrolling down from user
interface 720) or a separate user interface.

[173] Regardless, pane 732 displays a tree-based arrangement of changes between these
snapshots, in which each node is selectable. Selecting such a node may cause pane 734 to
display any changes between the two snapshots that are within or under the node. For example,

in pane 732, the node “Prod” is selected. Thus, all changes under that node are shown in pane

36

Date Regue/Date Received 2023-11-16

734. These changes are labeled with a path through the tree to the node(s) where the changes
exist. For instance, the displayed path of “/Prod/release-1.0/searchService-
V1.0/javaConfig/json/settings” indicates that there are three changes between the two snapshots,
and that these changes appear in the settings node (i.e., the configuration file that was edited to
add the Google search engine).

[174] Pane 734 shows in tabular form, for each parameter changed, the associated
action 736 (e.g., added, edited, removed, no change), the key (name) of the parameter 738, its
value 740 from the reference snapshot, and its value 742 from the target snapshot. In cases
where the reference snapshot or the target snapshot does not include a parameter, the associated
entry may be blank. For example, in Figure 7D, the three parameters were added to the target
snapshot, so they are not shown in the reference snapshot.

[175] Pane 734, as shown, uses a list component of the graphical user interface to
display rows of actions, parameter key (names), and parameter values. Nonetheless, other types
of user interface components may be used to display such information.

[176] From this user interface, a system reliability engineer or software developer can
easily identify which parameters changed between relevant snapshots. This dramatically
narrows the amount of searching that such an individual needs to do in order to find the root
cause of the outage. Finding the differences between the content of two files is not particularly
difficult — the challenging part of root cause analysis is to identify the two files to compare. The
embodiments herein make doing so a process that takes only seconds or minutes rather than
hours or days.

[177] To that point, the added parameter “googleSearch” has a value of “disabled” in
Figure 7D. This indicates that the Google search engine has not been enabled in the production
environment, which would explain why the alert was generated. A software developer can create
and deploy a new snapshot with the parameter “googleSearch” having a value of “enabled” in
order to allow the Google search engine to be used.

[178] For sake of example, Figure 7E depicts user interface 750, which is a variation on
user interface 730. User interface 750, however, includes multiple changes to parameters at
multiple nodes in the tree-based arrangement. Further, these changes include additions,
deletions, and edits to both parameters and nodes. In addition, user interfaces 730 and 750 may

support features that display parameters for which changes were not made. This might be

37

Date Regue/Date Received 2023-11-16

helpful if a change of a parameter was expected, but did not take place for some reason.
Moreover, these user interfaces may support searching amongst and sorting of parameters
displayed.

[179] Figure 7F depicts a further optional user interface 760 that is an alternative view
of the changes made to parameters. Instead of a traditional view of difference between files
shown in two adjacent text boxes, here each parameter name (key) is shown with its previous
and new values (where applicable). Thus, for instance, Figure 7F shows that the key
“com.glide.csp.self script src_svg” had a value of “TRUE” in the reference snapshot and has a
value of “FALSE” in the target snapshot. Conversely, the value of the key
“com.glide.decision.table.max_inputs” did not change between these snapshots, as it is shown
with only one value. Added, deleted, and edited parameters may also be highlighted in various
ways (e.g., with special fonts, colors, or associated characters or icons) so that they draw the
user’s attention.

[180] This view may be superior to that of the traditional adjacent text boxes, because
the changes here are largely to values and not keys. Thus, it is hard for the user to identify
changes in the adjacent text boxes, but easy for the user to do so in this layout.

C. Example Operations

[181] Figure 8 is a flow chart illustrating an example embodiment. The process
illustrated by Figure 8 may be carried out by a computing device, such as computing device 100,
and/or a cluster of computing devices, such as server cluster 200. However, the process can be
carried out by other types of devices or device subsystems. For example, the process could be
carried out by a computational instance of a remote network management platform or a portable
computer, such as a laptop or a tablet device.

[182] The embodiments of Figure 8 may be simplified by the removal of any one or
more of the features shown therein. Further, these embodiments may be combined with features,
aspects, and/or implementations of any of the other figures or otherwise described herein.

[183] Block 800 may involve, in response to determining that a software service
satisfies a degradation criterion, generating an alert that indicates the software service and a
change request specifying that configuration data used by the software service was changed in a

current snapshot of the configuration data.

38

Date Regue/Date Received 2023-11-16

[184] Block 802 may involve, based on the change request, determining a set of
configuration changes between the current snapshot and a previous snapshot of the configuration
data.

[185] Block 804 may involve providing a representation of the set of configuration
changes indicating one or more parameters that were changed in the current snapshot and one or
more paths in a tree-based arrangement of the configuration data that lead to the one or more
parameters that were changed in the current snapshot.

[186] In some embodiments, determining the set of configuration changes between the
current snapshot and the previous snapshot of the configuration data is in response to receiving a
selection of the current snapshot and the previous snapshot.

[187] In some embodiments, the software service is supported by one or more software
applications, wherein the one or more parameters that were changed in the current snapshot of
the configuration data are used by the one or more software applications.

[188] In some embodiments, determining that the software service satisfies the
degradation criterion comprises detecting one or more of: an outage impacting the software
service, reduced performance of the software service, or processor or memory utilization
exceeding a threshold value.

[189] In some embodiments, the alert is one of a plurality of alerts, stored in an alert
database, related to detected technical problems affecting one or more of a plurality of software
services.

[190] Some embodiments may further involve providing, to a client device by way of a
graphical user interface, a representation of the alert that specifies the software service and the
change request.

[191] In some embodiments, determining the set of configuration changes comprises:
providing, to the client device, an adjustable timeline of a plurality of snapshots including the
current snapshot and the previous snapshot of the configuration data; receiving, from the client
device, a further selection of the current snapshot and the previous snapshot; and determining, as
the one or more parameters, those that were changed between the previous snapshot and the

current snapshot.

39

Date Regue/Date Received 2023-11-16

[192] In some embodiments, each of the one or more parameters that were changed in
the current snapshot of the configuration data is represented as a key-value pair comprising a key
that uniquely identifies a respective parameter and a value of the respective parameter.

[193] In some embodiments, each of the one or more parameters that were changed in
the current snapshot of the configuration data is marked as either being newly added to the
configuration data, removed from the configuration data, or edited within the configuration data.

[194] In some embodiments, the representation of the set of configuration changes also
indicates additional parameters that were not changed in the current snapshot of the
configuration data.

[195] In some embodiments, the current snapshot of the configuration data is deployed
in a production environment, wherein the previous snapshot is a snapshot of the configuration
data that was most recently deployed in the production environment prior to deployment of the
current snapshot

VII. Using Virtual Tables with Pagination to Display Changes to Confisuration Data

[196] With centralized configuration data model 612 in place, changes to configuration
data are tracked and stored in ways similar to that source control management systems such as
Git, Subversion (SVN), concurrent versions system (CVS), and team foundation server (TFS).
For instance, centralized configuration data model 612 tracks changes, user who committed each
change, and the ability to reconstruct the state of the configuration data before and after such
changes. But the embodiments herein involve managing and presenting such changes in a new
fashion that is specifically drawn to configuration data.

[197] Changes are tracked for debugging, traceability, and auditing purposes. Versions
of the configuration data can be imported from files, but also from changes made as part of a
change request process. These changes to the configuration data can take the form of change sets
that are committed to the configuration tree of one or more software services and/or deployable
modules that may be used by such services.

[198] Once committed, changes are incorporated into centralized configuration data
model 612. Centralized configuration data model 612 may be, for example, stored in a relational
database such that each element in the configuration data is represented as an row in a database
table representing a node in the tree-like structure of the configuration data. The node may
reference the change set that corresponds to the node (i.e., the change set that caused creation of

the node), and may be reached (addressed) by a unique path of nodes from the root to this node.

40

Date Regue/Date Received 2023-11-16

Particularly, a new release of the configuration data may reference a specific source control
change set that can be used to determine the effective snapshot of configuration data for that
release.

[199] These change set commits are additive to the configuration data. Thus, they are
non-destructive, meaning an added, edited, or deleted entry becomes a new instance of a node
and supersedes a node in a previous version of the tree-like structure. But this does not alter the
previous version of the node so that history is preserved. For example, a node that was deleted
from the configuration data by way of a change set still exists and can be observed as a deleted
node. From the nodes of this tree-like structure (deleted and non-deleted), snapshots of the
configuration data at various points in time can be generated. These snapshots can be released to
apply the current snapshot to the configuration items of the software service.

[200] Further, a snapshot of configuration data at a point in time or for a particular
change commit can be reassembled for auditing and/or review. Reassembling a snapshot of a
specific point in time and determining the nodes of the effective configuration data tree-like
structure for that snapshot involves identifying change commits for the tree-like structure and
determining the effective version of nodes in the tree for the point in time.

[201] As noted above, changes to the configuration data can lead to software service
degradation, or even non-functioning software services. Monitoring software on the platform
may raise an alert, such as unusually high processor utilization and/or slow response times. The
alert may identify the impacted configuration item(s) being monitored, the related software
service, and/or other components related to the configuration item(s). From the alert, the current
snapshot of configuration may be deduced because the configuration data of the snapshot
contains the configuration item identified by the alert. From the current snapshot, a history of
configuration changes and effective snapshots of the committed and deployed configuration
changes can be reassembled into a timeline of configuration snapshots used to pinpoint a
configuration change that caused the software service degradation.

[202] Visualizing the differences between two versions of code is a feature of source
control management systems, and is performed on a textual basis, line-by-line or character-by-
character. In contrast, the differences between two versions of configuration data, A and B,
involves identifying node differences between the tree-like structures of two snapshots of A and

B. The changes can then be categorized as added (a node’s path did not exist in A but exists in

41

Date Regue/Date Received 2023-11-16

B), deleted (a node’s path does not exist in B but did exist in A), edited (a node’s path exists in A
and B but has a different value in B), or no-change (identical node paths and values exist in A
and B).

[203] This differs from a typical source control code comparison due to the context of
the tree-like structure. A node in a configuration data tree-like structure may span several lines
of text, where not every line of text representing a node may have a text-based difference. In
effect, some lines of text in the two snapshots may be identical, yet be lines of text belonging to a
node that did change. A source control system such as Git may identify differences using just
line and text-based comparisons, and may highlight added and deleted lines of text.
Furthermore, the source control system may consider a line as not having changed even though
that line is part of a node that did change. The source control system visual differencing shows
added and deleted lines of text between two version of a code file, and omits any lines that were
not changed.

[204] The differences between snapshots of configuration data are contextual with
respect to the nodes of the configuration data. For example, even if a parent node has not
changed, a child node of the parent node may have changed. This results in the parent node
having a difference category of an edit.

[205] The difference category no-change is also more informative than that of source
control systems. For instance, when a node has a difference category of no-change, that also
means that none of its child nodes have changed. Thus, in the tree-like structure, the context of
where a node is in the tree and the difference category of the node’s sibling, descendant, and
ancestor nodes provides additional insight into pinpointing the changes in configuration data that
caused an alert. Trying to apply source control code text-and-line comparisons will cause this
context to be lost and can even result in a line change being attributed to the wrong node.

[206] The difference comparisons can be done by a configuration data management
software application, and calculated between two snapshots of configuration data of the
configuration item related to the alert. These snapshots can contain tens of thousands of nodes in
two tree-like hierarchies. The difference is a merged tree structure containing all nodes of both
snapshots. If a node exists in both snapshots as determined by its path, then it is considered the

same node in the merged tree. In such a node, the difference comparison of each key-value pair

42

Date Regue/Date Received 2023-11-16

is performed as well, resulting in one of the four states described above (added, deleted, edited,
no-change) being determined for the node.

A. Storage of Difference Comparisons

[207] Difference comparisons can be performed by loading two or more snapshots into
main memory and then determining the per-node differences between these snapshots. However,
results are ephemeral and are typically specific to just the one user (the user requesting the
difference comparison) and that user’s access permissions (each user may only see parts of the
tree to which they have access). The results may not even be relevant for the duration of the
entire user session, as the user may alter the selection of the snapshots for comparison.

[208] Results may also be in the tens of thousands of nodes. Thus, storing these results
in a database table is prohibitive and computationally costly due to the relative slowness of
database reads and writes. Presenting these results on a user interface in a responsive fashion
(e.g., in less than a 1-2 seconds) may be impossible due to the volume of data. Further, the
transient nature of the difference comparisons also makes employing permanent storage in a
database table wasteful, since those tens of thousands of results then have no purpose and need to
be deleted from the database once the user is done viewing them.

[209] Thus, performance and efficiency suffer when storing large numbers of short-
lived results in a database table. This is compounded in high availability database configurations
where every database operation is replicated to a secondary database. Inserting and deleting
such a high volume of data over a short duration can back up replication and ultimately risk the
stability of the replication process. In some cases, the stability of the computational instance
may be at risk, as most or all software applications executing on the platform depend on being
able to access the database and use replication procedures. For example, if an software
application is blocked by a large continuous database insert or delete operation, other operations
necessary for keeping a computational instance running smoothly and healthy can suffer and
cause service degradation of the entire instance.

[210] Thus, the storage of difference comparisons is transient but should be permanent
enough so that a user can retrieve the same results again, and apply filtering, searching, and/or
sorting in ways desired to isolate and identify changes that may be the root cause of an alert.
Database tables facilitate filtering, searching, and sorting, but as noted above using a database

table is computationally prohibitive.

43

Date Regue/Date Received 2023-11-16

[211] To overcome these and possibly other limitations, a merged difference snapshot
can be serialized to a file in the file system of a computational instance. Filesystem I/O is
typically several times faster than storing large data sets into a table in a database. Moreover, a
text file of several megabytes may be compressed with typical text compression resulting in 70-
80% reduction in size. Such compression and storage (e.g., to a solid-state drive) may take in
total approximately 10 milliseconds and is almost instantaneous to delete.

[212] As difference comparisons are made by pairing nodes of snapshots using paths,
the merged results in the file format are grouped by the tree path, with entries containing keys
and values, including values from both snapshots as well as an indicator of which of the four
types of differences the node exhibits. To further reduce file size, nodes with edited differences
may contains two values per key-value pair, one from each snapshot, while deleted, added, and
no-change nodes contain a single value per key-value pair.

[213] As example of this is shown in partial difference comparison file 900 of Figure 9.
Each leaf node in file 900 represents a key-value pair, and is annotated with comments (text after
the “//”) indicating the type of change (if any). Leaf nodes 902 and 904 contain two values,
because they represent edits. Considered left to right, the first value is from prior to editing and
the second value is from after editing. All other leaf nodes have just one value because they
represent additions, deletions, or no-change scenarios.

[214] Regardless, the resulting file is stored on the file system and related to a unique
difference identifier (diff-Id). This allows the file to be retrieved and opened by its difference
identifier.

B. Displaying Difference Comparisons on a User Interface

[215] To investigate the cause of a degradation to a software service, a user may find it
advantageous to observe a snapshot of configuration data that was deployed when the alert was
generated (a current snapshot). With support of the difference comparison operations described
above, the user can compare this snapshot to a snapshot of the configuration data that was
deployed at an earlier point in time when the software service was not experiencing the
degradation (a previous snapshot).

[216] To observe differences between nodes of the current and previous snapshots, a
graphical user interface may be generated to display the differences. Information from a
difference comparison file may be may be presented on the graphical user interface in tabular

form with columns and rows. The columns may indicate one or more of a node’s path, the type

44

Date Regue/Date Received 2023-11-16

of change exhibited by the node from the previous to the current snapshot, the key of the node’s
key-value pair, previous value of the node’s key-value pair (if applicable), and new value of the
node’s key-value pair (if applicable). The tabular graphical user interface may also support
filtering, searching, paging, and sorting its rows based on the content of its columns.

[217] Figure 7D depicts one possible embodiment of such a tabular graphical user
interface. Pane 734 displays a root path (/Prod/release-1.0/searchService-V1.0/
javaConfig json/settings) for three nodes (this path can also be inferred from the tree-like
structure of configuration data displayed in pane 732). For each node, the tabular form includes
columns for an action 736 (type of change), name 738 (key of the node’s key-value pair),
reference snapshot value 740 (previous value of the node’s key-value pair), and target snapshot
value 742 (new value of the node’s key-value pair). As noted above, pane 734 displays this
information using a list component.

[218] A tabular graphical user interface with rows and columns is a familiar experience
to users, and familiar graphical user interfaces with familiar navigation and presentation of data
increases the efficiency of a user tasked with identifying the root cause of an alert. For example,
if an alert details that requests are timing-out on an infrastructure configuration item responsible
for part of a software service, then a user may want to first inspect and filter results to a subtree
of the configuration data containing that software service to examine the configuration data and
any changes to that node and its children. A user can do this analysis more quickly and easily
with a familiar tabular graphical user interface with familiar options to inspect the difference
comparison results.

C. Virtual Tables

[219] Tabular graphical user interfaces are typically populated by data stored in a
database table. But for reasons discussed above, placing the difference comparison data in a
database is undesirable. Thus, to serve the tabular graphical user interface in an efficient fashion
that avoids the latencies associated with storing the difference comparison in a database, a virtual
table construct can be used to adapt a file stored on the file system to appear and respond as
though the information in the file was in a database table.

[220] Conventionally, a list component of a graphical user interface for displaying
database table entries may make API calls to a backend web service of a web server. These API
calls may specify a table name, columns of the table requested for display, a sort order, a limit on

the number of entries returned, a page number, and potentially filters based on values appearing

45

Date Regue/Date Received 2023-11-16

in one or more of the columns. The backend web service may invoke another layer of software
such as an object relational mapper (ORM) to produce a database query (e.g., SQL) to the
database table. This query may then be sent through a database driver of the web server.

[221] This database driver may be a further layer of software that handles low-level
communications between the web server and a database server. Thus, it may create a connection
to the database server, provide the query in the format the database server recognizes, receive the
results provided by the database server on the network, and then return those results to the ORM
layer. The web server then formats the results in accordance to the list component of the
graphical user interface, and displays the results in the list component. These layers work
together due to standards, defined communication protocols, and software interfaces that allow
each layer to interoperate with other layers that implement these same interfaces, protocols and
standards.

[222] The ORM can support multiple types of databases by employing more than one
database driver. For instance, there may be one database driver for MySQL databases, and
another for Postgres databases. Each database driver may use a specific communication protocol
and query format tailored for its type of database. Nonetheless, the web server’s graphical user
interface module is unaware of how the web service obtained the results, the web service is
unaware of how the ORM layer obtained the results, and the ORM is unaware of how the
database driver obtained the results. What matters to each of these modules is that they can
communicate and interoperate with other modules according to defined interfaces.

[223] When data is stored in a table that is not a conventional database table, there is no
database to handle queries related to that table. Nonetheless, a web service may still accept a
query from a list component of a graphical user interface, and the web service may still call the
ORM to provide results back to the web service. Instead of providing a query to a database
driver, the ORM may recognize that the table name being queried is not a database table and
instead call an alternate layer of software implementing a driver to a virtual table in non-
persistent, volatile memory, such as RAM.

[224] Such an arrangement is depicted in Figure 10. Client device graphical user
interface 1002 is in communication with web server 1004. When the client device is provided
with a list component that indicates that it would be populated with data from database 1006
(e.g., a MySQL database) or virtual table 1008, the client device may make a corresponding

46

Date Regue/Date Received 2023-11-16

query to web server 1004. Notably, the client device and web server 1004 may be separate and
distinct computing devices that communication over a network such as the Internet. Further,
database 1006 may also be a separate and distinct computing device that communicates with web
server 1004 over a network. Virtual table 1008 may be stored in RAM of web server 1004 or
that of a yet another separate and distinct computing device. Other possibilities exist. As noted
above, client device graphical user interface 1002 and possibly parts of web server 1004 may not
be aware of whether they are ultimately querying a virtual table instead or an actual database
table.

[225] Steps 1010-1024 illustrate how a query for data from database 1006 and its
corresponding response flow through the modules of web server 1004. At step 1010, client
device graphical user interface 1002 may transmit a database query to backend web service
1004A. At step 1012, backend web service 1004A may identify this query as relating to a
database and provide it to ORM 1004B. At step 1014, ORM 1004B may identify this query as
relating to database 1006 and provide it to database driver 1004C. At step 1016, database driver
1004C may translate the query into a format compatible with database 1006 and then transmit
the query to database 1006. At step 1018, database 1006 may transmit the response to the query
to database driver 1004C. At step 1020, database driver 1004C may translate the response into a
format compatible with ORM 1004B and then provide the response to ORM 1004B. At step
1022, ORM 1004B may provide the response to backend web service 1004A. At step 1024,
backend web service 1004A may provide the response to client device graphical user interface
1002. In turn, and not shown in Figure 10, client device graphical user interface 1002 may use
the response to populate the list component.

[226] Steps 1026-1040 illustrate how a query for data from virtual table 1008 and its
corresponding response flow through the modules of web server 1004. At step 1026, client
device graphical user interface 1002 may transmit a virtual table query to backend web service
1004A. Atstep 1028, backend web service 1004A may identify this query as relating to a virtual
table and provide it to ORM 1004B. At step 1030, ORM 1004B may identify this query as
relating to virtual table 1008 and provide it to virtual database driver 1004D. At step 1032,
virtual database driver 1004D may translate the query into a format compatible with virtual table
1008 and then transmit the query to virtual table 1008. At step 1034, virtual table 1008 may
transmit the response to the query to virtual database driver 1004D. At step 1036, virtual

47

Date Regue/Date Received 2023-11-16

database driver 1004D may translate the response into a format compatible with ORM 1004B
and then provide the response to ORM 1004B. At step 1038, ORM 1004B may provide the
response to backend web service 1004A. At step 1040, backend web service 1004A may provide
the response to client device graphical user interface 1002. In tumn, and not shown in Figure 10,
client device graphical user interface 1002 may use the response to populate the list component.

D. Block-Based Retrieval and User Interface Pagination

[227] As noted above, virtual table 1008 may be stored in RAM. RAM capacity is
typically several orders of magnitudes smaller than persistent storage such as a hard drive or
solid-state drive, and RAM may also be shared by other virtual tables, applications, processes
and operating system running on a computing system such as web server 1004. Therefore, while
a database can be maintained in persistent storage and can grow into the billions of entries, a
virtual table in shared volatile memory may have access to a significantly smaller amount of
memory, and only have the capacity for limited number of entries, for example 1000 entries.
Furthermore, an entry limit (e.g., 1000) may be enforced by the virtual table driver. Here, an
entry in the virtual table corresponds to a node of the configuration data (e.g., a node in a
difference comparison of two snapshots) and may be displayed in a row of the list component.

[228] Given that a difference comparison of two snapshots of configuration data could
have several times as many entries (e.g., tens of thousands) as can be reasonably stored in RAM,
it is desirable to be able to fetch a “block” of entries at a time from virtual table 1008 and store
these entries in RAM for at least some of the time that they are being displayed to the user. For
example, suppose that the entry limit is 1000 and a difference comparison that is stored in a
filesystem contains 10,000 entries. In this case, there are 10 blocks of 1000 entries each. Thus,
entries 0-999 make up the first block (block 0), entries 1000-1999 make up the second block
(block 1), and so on. In various embodiments, a block number and/or another set of identifiers
may be used to identify the desired block.

[229] To facilitate being able to display these entries on the client graphical user
interface, a custom block retrieval mechanism may be used. Doing so involves adding new
columns to the virtual table. The columns, rather than providing just data that is read out of the
virtual table, serve as additional parameters into the software layer producing the virtual table
entries. These additional columns in the virtual table may include a diff-Id, a block number, a
number of entries per block, and possibly other information. The software layer may be

configured to add filter conditions based on these additional columns. Such filter conditions

48

Date Regue/Date Received 2023-11-16

might not be used to filter the data returned by the virtual table, but instead serve as part of the
queries to the virtual table.

[230] Here, a diff-Id refers to a difference comparison between two snapshots stored in
one or more files in persistent storage. For instance, there may be a one-to-one mapping between
diff-Ids and file, or a single diff-Id may refer to a large difference comparison split across
multiple files. In the latter case, a B-tree (binary tree) index could be in the header of the first
file or a separate file, and would be used to determine to the correct file from which to serve a
request. In other words, the B-tree would serve as an index to identify which file(s) and/or block
regions in the file(s), and the resulting block(s) may contain some entries from each of more than
one file. Another possibility is multiple redundant files relating to the same diff-Id in persistent
storage, each with a different internal structure arranged or a specific data traversal procedure,
such as pre-grouped, pre-filtered, or pre-sorted results. This would allow certain types of
requests (e.g., for a particular grouping, filtering, or sorting of the results) to be provided more
rapidly.

[231] With these filter conditions, a query provided by the ORM can identify a
particular diff-Id, a particular block number within that diff-Id, and the particular block size of
blocks within that diff-Id. With this information, the virtual database driver can locate the
particular diff-Id in persistent storage, iterate through the diff-Id based on the particular block
size until the start of the particular block is found, and then return the appropriate number of
entries. As an example, if the query indicates that the block size is 1000 entries and that the
second block is requested, the virtual database driver can return entries 1000-1999 of the
specified diff-Id. Notably, a retrieved block may not always be sequentially loaded and from the
same region of the file on the filesystem, because a different request for the block may also
include additional filters and/or sorting conditions that modify how the block is identified for that
request.

[232] This scenario is illustrated in Figure 11. It is assumed that myfile 1100 exists in a
local or remote filesystem accessible to virtual database driver 1004D. At step 1102, virtual
database driver 1004D receives a query specifying a diff-Id of “myfile”, a block number of 1,
and a block size of 1000. The query may have come from ORM 1004B, for example. In some
cases, the block size is not included in the query, as it may be a fixed setting for virtual database

driver 1004D. At step 1104, virtual database driver 1004D locates myfile in a filesystem (local

49

Date Regue/Date Received 2023-11-16

or remote), and uses the block number and block size to identify and retrieve entries 1000-1999
that make up block 1 (the second block) of myfile. In the case that filters and/or sorting is to be
applied to one or more “columns” of the entries (e.g., node path, action, name, previous value,
current value), the data in the file is filtered and/or sorted accordingly before the entries are
identified. At step 1106, virtual database driver 1004D receives these entries. At step 1108,
virtual database driver 1004D provides these entries in response to the query.

[233] In these embodiments, the interfaces for the list component, the backend web
service and ORM remain the largely same as they were for a query to a conventional database
table. Maintaining these interfaces without significant changes facilitates backwards
compatibility without a reduced risk of introducing defects.

[234] Additionally, for sake of user convenience and system performance, user interface
components (such as the list component) typically do not display a limitless number of entries at
a time. For example, the entries may be paginated by the list component so that only a small,
fixed number are displayed on the client device graphical user interface at a time (e.g., 10, 25,
50, 100, etc.). Thus, for a block size of 1000, the list component may display any one of 10
pages of 100 entries each.

[235] In various embodiments, pagination interacts with the loaded block when there
are more entries than can be loaded into the block. The max of 1000 entries of the block (for
example) maybe be reloaded/replaced to handle the next graphical user interface request to
paginate past the first 10 pages of 100, if such additional entries exist in the diff-Id. In practice,
the block can be reloaded in virtual table memory for each stateful transaction (though multiple
requests at the same time from one or many users would not get co-mingled), and/or as needed
for the graphical user interface request request. Even when limited to 1000 entries per block, the
pagination control may independently know that there is a greater number of entries, such as
10,000, and does not limit the page options in the graphical user interface to the first 10 pages of
100 only. Thus, selecting page 11 reloads a different block into virtual table memory.
Additionally, the virtual table driver may understand the graphical user interface is only
displaying 100 entries at the time in the list (requested size of block), and may just load the 100
entries needed for that graphical user interface transaction rather than continue to fill the memory

up to the max 1000 entry memory limit.

50

Date Regue/Date Received 2023-11-16

[236] With the custom pagination control, some embodiments may avoid reading the
total count of entries through the normal channels of backend web service 1004A / ORM 1004B /
virtual database driver 1004D. Instead, the custom pagination control may query a different web
service (e.g., a pagination backend service) that is able to produce the total count of entries for
the current list filter, calculate the number of pages, and keep track of the current page that the
user is viewing.

[237] The pagination service may receive a diff-Id, various filter and filter values
currently active in the list component, and/or list page size currently used in the list component
as inputs. These inputs refresh and cause another pagination service call whenever any of them
changes in the graphical user interface. In exchange, the pagination control provides the
currently selected page to the list component for the list’s query to the backend, and also resets to
page 1 when inputs change. The pagination service may determine file(s) from the diff-Id and
apply the filters. Then, rather than load entries into the virtual table memory, the pagination
service may get the full count of filtered entries by invoking an iterative count. The pagination
service then divides the total count of entries by the list page size input, rounding up, and returns
total count (with any filters applied) and this rounded up number of pages.

[238] An example is shown in Figure 12. Client graphical user interface 1200 displays
difference comparison information in a list component. This information is retrieved by way of
list backend service 1004A-1, ORM 1004B, and virtual database driver 1004D of web server
1004. As depicted, virtual database driver 1004D retrieves blocks of the relevant diff-Id (file)
into main memory from filesystem 1202. A parallel channel exists in which the list component
communicates with pagination backend service 1004A-2. Pagination backend service 1004A-2
determines, from the block currently in main memory and/or blocks of the diff-Id (file) stored in
filesystem 1202, the number of pages and/or the current page number to display or emphasize on
client graphical user interface 1200.

E. Example Operations

[239] Figure 13 is a flow chart illustrating an example embodiment. The process
illustrated by Figure 13 may be carried out by a computing device, such as computing device
100, and/or a cluster of computing devices, such as server cluster 200. However, the process can
be carried out by other types of devices or device subsystems. For example, the process could be
carried out by a computational instance of a remote network management platform or a portable

computer, such as a laptop or a tablet device.

51

Date Regue/Date Received 2023-11-16

[240] The embodiments of Figure 13 may be simplified by the removal of any one or
more of the features shown therein. Further, these embodiments may be combined with features,
aspects, and/or implementations of any of the other figures or otherwise described herein.

[241] Block 1300 may involve receiving, at a web server application, a query specifying
a file, a block number of a block of data within the file, and a block size, wherein the file
includes entries representing differences between snapshots of configuration data.

[242] Block 1302 may involve identifying, based on the block size, the block of data
within the file.

[243] Block 1304 may involve storing the block in a non-transitory memory that is
accessible to the web server application.

[244] Block 1306 may involve, in response to the query, transmitting, by the web server
application, a set of the entries within the block formatted for display in a list component of a
graphical user interface.

[245] In some embodiments, the file is of one or more files that contain the entries.

[246] In some embodiments, identifying the block of data within the file comprises
iterating, based on the block size, through the file until the block is located.

[247] In some embodiments, the query also specifies a filter to apply to the entries.
These embodiments may further involve, before iterating through the file, applying the filter to
the entries. In practice, the filter may be applied but lazy-evaluated as part of the iteration loop.
This is so that the entire file does not always need to be iterated and filtered to the end of the file,
for instance if the block limit is reached first during iteration before filtering the entire file. The
process could be: read an entry, test the filter on the entry, keep or dispose the entry, then iterate
to the next entry. At this level of granularity, the filter is applied before each iteration step, but
all filtering is not completed before iteration begins. This is in contrast to sorting, where all
sorting must be completed before iteration begins, or else iteration happens on unsorted entries.

[248] In some embodiments, the query also specifies a sorting operation to apply to the
entries. These embodiments may further involve, before iterating through the file, applying the
sorting operation to the entries.

[249] In some embodiments, the set of the entries contains one or more of the entries.
In some cases, an empty set could be returned when the filters have filtered every possible entry

out, or due to snapshots being of empty trees and the comparison producing an empty file.

52

Date Regue/Date Received 2023-11-16

[250] In some embodiments, the file is specified by a unique identifier that is associated
with differences between two specific snapshots of the configuration data.

[251] In some embodiments, the list component displays the set of entries in a tabular
form with pagination buttons to load and display other sets of entries within the block.

[252] The embodiments may further involve: receiving, at the web server application, a
further query to load a further set of entries in the list component; determining that the further set
of entries includes an entry that is within a further block of the file, identifying, based on the
block size, the further block within the file; storing the further block in the non-transitory
memory; and in response to the further query, transmitting, by the web server application, the
entry that is within the further block formatted for display in the list component.

[253] In some embodiments, storing the further block into the non-transitory memory
comprises replacing the block with the further block.

[254] In some embodiments, each of the entries relates to a configurable setting within
the configuration data and contains a path, an action, a name, and one or both of a previous value
of the configuration setting from a previous snapshot of the snapshots and a current value of the
configurable setting from a current snapshot of the snapshots.

[255] In some embodiments, transmitting the set of the entries within the block
formatted for display in the list component comprises populating, for each of the entries, its
respective path, respective action, respective name, and one or both of its respective previous
value and respective current value in a row of the list component.

[256] In some embodiments, a particular entry of the entries contains a particular action
indicating that the configurable setting has been added, wherein the previous value is null and the
current value is not null.

[257] In some embodiments, a particular entry of the entries contains a particular action
indicating that the configurable setting has been removed, wherein the previous value is not null
and the current value is null.

[258] In some embodiments, a particular entry of the entries contains a particular action
indicating that the configurable setting has been edited, wherein the previous value is not null
and the current value is not null.

[259] In some embodiments, the file is used in place of storing the entries in a database

structure.

53

Date Regue/Date Received 2023-11-16

[260] In some embodiments, the non-transitory memory is a volatile main memory.

[261] In some embodiments, the block size is between 100 and 5000 of the entries.
VIII. Closing

[262] The present disclosure is not to be limited in terms of the particular embodiments
described in this application, which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing from its scope, as will be apparent to
those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the
disclosure, in addition to those described herein, will be apparent to those skilled in the art from
the foregoing descriptions. Such modifications and variations are intended to fall within the
scope of the appended claims.

[263] The above detailed description describes various features and operations of the
disclosed systems, devices, and methods with reference to the accompanying figures. The
example embodiments described herein and in the figures are not meant to be limiting. Other
embodiments can be utilized, and other changes can be made, without departing from the scope
of the subject matter presented herein. It will be readily understood that the aspects of the
present disclosure, as generally described herein, and illustrated in the figures, can be arranged,
substituted, combined, separated, and designed in a wide variety of different configurations.

[264] With respect to any or all of the message flow diagrams, scenarios, and flow
charts in the figures and as discussed herein, each step, block, and/or communication can
represent a processing of information and/or a transmission of information in accordance with
example embodiments. Alternative embodiments are included within the scope of these example
embodiments. In these alternative embodiments, for example, operations described as steps,
blocks, transmissions, communications, requests, responses, and/or messages can be executed
out of order from that shown or discussed, including substantially concurrently or in reverse
order, depending on the functionality involved. Further, more or fewer blocks and/or operations
can be used with any of the message flow diagrams, scenarios, and flow charts discussed herein,
and these message flow diagrams, scenarios, and flow charts can be combined with one another,
in part or in whole.

[265] A step or block that represents a processing of information can correspond to
circuitry that can be configured to perform the specific logical functions of a herein-described
method or technique. Alternatively or additionally, a step or block that represents a processing of

information can correspond to a module, a segment, or a portion of program code (including

54

Date Regue/Date Received 2023-11-16

related data). The program code can include one or more instructions executable by a processor
for implementing specific logical operations or actions in the method or technique. The program
code and/or related data can be stored on any type of computer readable medium such as a
storage device including RAM, a disk drive, a solid-state drive, or another storage medium.

[266] The computer readable medium can also include non-transitory computer
readable media such as non-transitory computer readable media that store data for short periods
of time like register memory and processor cache. The non-transitory computer readable media
can further include non-transitory computer readable media that store program code and/or data
for longer periods of time. Thus, the non-transitory computer readable media may include
secondary or persistent long-term storage, like ROM, optical or magnetic disks, solid-state
drives, or compact disc read only memory (CD-ROM), for example. The non-transitory
computer readable media can also be any other volatile or non-volatile storage systems. A non-
transitory computer readable medium can be considered a computer readable storage medium,
for example, or a tangible storage device.

[267] Moreover, a step or block that represents one or more information transmissions
can correspond to information transmissions between software and/or hardware modules in the
same physical device. However, other information transmissions can be between software
modules and/or hardware modules in different physical devices.

[268] The particular arrangements shown in the figures should not be viewed as
limiting. It should be understood that other embodiments could include more or less of each
element shown in a given figure. Further, some of the illustrated elements can be combined or
omitted. Yet further, an example embodiment can include elements that are not illustrated in the
figures.

[269] While various aspects and embodiments have been disclosed herein, other aspects
and embodiments will be apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration and are not intended to be limiting,

with the true scope being indicated by the following claims.

55

Date Regue/Date Received 2023-11-16

CLAIMS

What is claimed is:

1. A method comprising:

in response to determining that a software service satisfies a degradation criterion,
generating an alert that indicates the software service and a change request specifying that
configuration data used by the software service was changed in a current snapshot of the
configuration data;

based on the change request, determining a set of configuration changes between the
current snapshot and a previous snapshot of the configuration data; and

providing a representation of the set of configuration changes indicating one or more
parameters that were changed in the current snapshot and one or more paths in a tree-based
arrangement of the configuration data that lead to the one or more parameters that were changed

in the current snapshot.

2. The method of claim 1, wherein determining the set of configuration changes
between the current snapshot and the previous snapshot of the configuration data is in response

to receiving a selection of the current snapshot and the previous snapshot.

3. The method of claim 1, wherein the software service is supported by one or more
software applications, and wherein the one or more parameters that were changed in the current

snapshot of the configuration data are used by the one or more software applications.

4. The method of claim 1, wherein determining that the software service satisfies the
degradation criterion comprises detecting one or more of: an outage impacting the software
service, reduced performance of the software service, or processor or memory utilization

exceeding a threshold value.

5. The method of claim 1, wherein the alert is one of a plurality of alerts, stored in
an alert database, related to detected technical problems affecting one or more of a plurality of

software services.

56

Date Regue/Date Received 2023-11-16

6. The method of claim 1, further comprising:
providing, to a client device by way of a graphical user interface, a representation of the

alert that specifies the software service and the change request.

7. The method of claim 6, wherein determining the set of configuration changes
comprises:

providing, to the client device, an adjustable timeline of a plurality of snapshots including
the current snapshot and the previous snapshot of the configuration data;

receiving, from the client device, a further selection of the current snapshot and the
previous snapshot; and

determining, as the one or more parameters, those that were changed between the

previous snapshot and the current snapshot.

8. The method of claim 1, wherein each of the one or more parameters that were
changed in the current snapshot of the configuration data is represented as a key-value pair
comprising a key that uniquely identifies a respective parameter and a value of the respective

parameter.

9. The method of claim 1, wherein each of the one or more parameters that were
changed in the current snapshot of the configuration data is marked as either being newly added
to the configuration data, removed from the configuration data, or edited within the configuration

data.

10. The method of claim 1, wherein the representation of the set of configuration
changes also indicates additional parameters that were not changed in the current snapshot of the

configuration data.

11. The method of claim 1, wherein the current snapshot of the configuration data is

deployed in a production environment, and wherein the previous snapshot is a snapshot of the

57

Date Regue/Date Received 2023-11-16

configuration data that was most recently deployed in the production environment prior to

deployment of the current snapshot.

12. A non-transitory computer-readable medium storing program instructions that,
when executed by one or more processors of a computing system, cause the computing system to
perform operations comprising:

in response to determining that a software service satisfies a degradation criterion,
generating an alert that indicates the software service and a change request specifying that
configuration data used by the software service was changed in a current snapshot of the
configuration data;

based on the change request, determining a set of configuration changes between the
current snapshot and a previous snapshot of the configuration data; and

providing a representation of the set of configuration changes indicating one or more
parameters that were changed in the current snapshot and one or more paths in a tree-based
arrangement of the configuration data that lead to the one or more parameters that were changed

in the current snapshot.

13. The non-transitory computer-readable medium of claim 12, wherein determining
the set of configuration changes between the current snapshot and the previous snapshot of the
configuration data is in response to receiving a selection of the current snapshot and the previous

snapshot.

14. The non-transitory computer-readable medium of claim 12, wherein the software
service is supported by one or more software applications, and wherein the one or more
parameters that were changed in the current snapshot of the configuration data are used by the

one or more software applications.

15. The non-transitory computer-readable medium of claim 12, wherein determining
that the software service satisfies the degradation criterion comprises detecting one or more of:
an outage impacting the software service, reduced performance of the software service, or

processor or memory utilization exceeding a threshold value.

58

Date Regue/Date Received 2023-11-16

16. The non-transitory computer-readable medium of claim 12, wherein the alert is
one of a plurality of alerts, stored in an alert database, related to detected technical problems

affecting one or more of a plurality of software services.

17. The non-transitory computer-readable medium of claim 12, the operations further
comprising:
providing, to a client device by way of a graphical user interface, a representation of the
alert that specifies the software service and the change request, wherein determining the set of
configuration changes comprises:
providing, to the client device, an adjustable timeline of a plurality of snapshots
including the current snapshot and the previous snapshot of the configuration data;
receiving, from the client device, a further selection of the current snapshot and
the previous snapshot; and
determining, as the one or more parameters, those that were changed between the

previous snapshot and the current snapshot.

18. The non-transitory computer-readable medium of claim 12, wherein each of the
one or more parameters that were changed in the current snapshot of the configuration data is
represented as a key-value pair comprising a key that uniquely identifies a respective parameter

and a value of the respective parameter.

19. The non-transitory computer-readable medium of claim 12, wherein each of the
one or more parameters that were changed in the current snapshot of the configuration data is
marked as either being newly added to the configuration data, removed from the configuration

data, or edited within the configuration data.

20. A computing system comprising:
one Or more pProcessors;

memory; and

59

Date Regue/Date Received 2023-11-16

program instructions, stored in the memory, that upon execution by the one or more
processors cause the computing system to perform operations comprising:

in response to determining that a software service satisfies a degradation criterion,
generating an alert that indicates the software service and a change request specifying
that configuration data used by the software service was changed in a current snapshot of
the configuration data;

based on the change request, determining a set of configuration changes between
the current snapshot and a previous snapshot of the configuration data; and

providing a representation of the set of configuration changes indicating one or
more parameters that were changed in the current snapshot and one or more paths in a
tree-based arrangement of the configuration data that lead to the one or more parameters

that were changed in the current snapshot.

60

Date Regue/Date Received 2023-11-16

Q

N\ =N =\

<{
=
-—

l "Old

1INN LNdLNO /1NdNI F——*

C JOV4¥3INI
- L | eomuan
— C
| SNOLLYOIddY | 0
Ay [
e
L —— Jyvmwyae |
||||||] & ¥0SS3IV0Nd
AHOWIW
//§ //Ne
ok |

\

001

Date Regue/Date Received 2023-11-16

SERVER CLUSTER
200

208
ﬁ SERVER DEVICES
| 202

204

206

NETWORK
212

FIG. 2

Date Regue/Date Received 2023-11-16

0ve
SHYOMLIN
anotd anand

|
L

|
L

—_—— — —_— — — — — —_—,— — — — — — —

0ze
WA041V1d LNIWIOVNVIN
MHYOM.LIN JLONTN

€ Old

80€ SANIHOYIN
TVNLYIA

00€ YHOMLIN AIDOVNVIN

Date Regue/Date Received 2023-11-16

S S
 ¥3ONVIVE avo _
RN

> JONVISNI 1 AVMALVO NdA |
I TYNOILVINAWOD, "~~~ -
900v ¥3LN30 V1VQ

NOILVOId3Y

38VavLYa
T *

V907 | oo
yaonvve avon (1 TROF TIVAGR L
R D
> JONVISNI <> AVM3LVO NaA |
I TYNOILVINAWOD, "~~~ -
V00v ¥3LN3 V1V

¥ Old

91¥ ¥3aSN ILONIY

0€ YYOMLIN AIOVNVIN

Date Regue/Date Received 2023-11-16

G Old

<7 N
__ 005 |
| QW9
_)
H . NOILVINYOANI
~—L_ _ _ A¥3IA0ISIA _
NI __ 1SITYSYL _ >
- : _ SANVININOD _
||||| - AY3A0ISIa
SANVININOD
A¥3A0DSIA

(443
JONVLISNI TVNOILVLNdNOD

00€ YMOMLAN
J39VNVIN

AXO¥d

S3SNOdSIY
ANV S3R3N0

Date Regue/Date Received 2023-11-16

V9 Old

TAVA
JOVHOILS LOV4ILNY ASO
SWALSAS INJWIDVYNYIN 300D NOSr
S¥3Q704 YHOMLAN TNX
s3svaviva 4ANOJ' / SAILYIAJONd’
019 S3NOLISOdIY 809 S3114
S3ZISdVAH
SANYN LSOH * SONILL3S oL mz,%wm_um% .
SONILLIS TIYMINId SNOI93Y (N@2) Y4OML3N SADIIY
SONILLIS YHOMLAN TYOIHIV¥9039 ° AYIAITIA INJINOD © SONILLIS NOILLANONT *
SONILIIS ¥IAYIS SIINY ONINYIS * SONILL3S SANOMSSYd
SONILLIS IOVHOLS * 3N3ND IOVSSIAN *

SONILLIS ISVAVIvd e ANV SIWVNyISN

909 NOLLY¥N9IANOD 709 NOLLY¥N9OIANOD 209 NOLLY¥N9IANOD 009 NOLLY¥N9IANOD
RANLINYLISVHANI S$334N0S3y a3sva-ano1d RIVMITAAIN JOIAY3S / NOILYIITddY

Date Regue/Date Received 2023-11-16

"Now Airline Booking™": {
"Testing Environment”: {
"User Authentication Login Service": {
"OAUTH Provider Integration": {
"url": "https://sandbox.oauth-provider.net”,

"claims": ["address"”, "email”, "username”|

I8

"Custom Authentication Microservice™: {
"docker-repository": "NowAir",
"docker-container": "now/auth”,
"docker-host": "TAWS-XL.1",
"listen-url": "http://10.10.0.1/auth”,
"database": "UserAccounts”,
"database-server": "10.10.100.1",
"database-port": 3306

I8

8
"Payment Gateway Service”: {

"Gateway": {
"Merchant Number” : "Airline92122",
"URL": "http://sandbox.example.com/payment”,
"Pagsword"; "¥EFEFEKN

I8

"Payment Gateway": {
"Vendor Number": "Airline7150",
"URL": "https://sandbox.payment.com”

}
’
"UI Webserver": {
"domain": "testing. NowAir.com",
"dns-server: "10.53.53.53",
"Reverse Proxy": {
"external-ip": "10.10.10.1",
"internal-ip": "10.0.0.100"
}
"load-balancer™: {
"listen": "10.0.0.100",

"strategy”: "round-robin”,

"targets": ["webtest].nowair.com”, "webtest2.nowair.com

b
b

"o
>

'webtest3.nowair.com” |

FIG. 6B

Date Regue/Date Received 2023-11-16

J9 Ol

NOILYAIYA SNONNILNOD
JOYLNOI
§S399V @3Isva-s31ny
ALTIFISIA A3ZITYYLINTD
219 13aon
V1vd NOILYENOIANOID
@3ZINvYIN3ID
S3ZISdVIH
SANYN LSOH * SONILL3S oL mz,%wmm__um% .
SONILLIS TIYMINId SNOI93Y (N@2) Y4OML3N SADI 1Y
SONILIIS YHOMLIAN IYOIHAVY903D A¥3AIN3A INJINOD o SONILLIS NOLLANONT
SONILIIS ¥IAYIS SIINY ONINYIS * SONILL3S SONOMSSYd
SONILLIS IOVHOLS * 3N3ND IOVSSIAN *

SONILLIS ISVAVIvd e ANV SIWVNyISN

909 NOLLY¥N9IANOD 709 NOLLY¥N9OIANOD 209 NOLLY¥N9IANOD 009 NOLLY¥N9IANOD
RANLINYLISVHANI S$334N0S3y a3sva-ano1d RIVMITAAIN JOIAY3S / NOILYIITddY

Date Regue/Date Received 2023-11-16

V. Old

0§:€0:1 L LO-60-2Z02 9G'€0'1 L L0-60-220Z ! 1881 as|e} 1dpeA-189)
LG:€0:L L LO-60-2Z0T FSIE0LL L0-60-2202 =m 1881 anu jdppa-yse L
26:20:L L L0-60-2202 LS€0°L L LO-B0-Z20Z CETN any jdpga-18a
£6:€0'1 L LO-60-€202 85:€00L 1 L0-B0-220Z =n 1881 anu 1dp-9A-sa
S6:€0'L L LO-60-2202 00:%0:1 | L0-60-220Z E 1s8L anyg 1dp /A-js6L
8¥:6£:90 ¥1-60-2202 95'6£:90 ¥1-60-2202 =n 1sal asiey [dp-gA-isa)

ife moys (g) ysa :ajqedojdag \\
0S:€0°LL L0-60-2202 VSIE0') L L0-60-2202 [e=eae] poid any 1dpz-poig
05:€0'1 L L0-60-2Z02 7SE0LL LO-B0-Z20T E poid as|e) 1dp’ 1 A-poid
06:€0:1 L L0-60-2202 PSIE0:LL LO-B0-Z20Z E poid as|e} JdpgA-poid
16:€0:L L L0-60-220T YSE0LL LO-B0-2202 E poid anuy (dppa-poig
TG0} L0-80-220T 2S:€0:L 1 L0-B0-ZZ0Z E poid any 1dpgA-poid
£6:€0'1 L LO-60-€20€ 2S:€00L)L LO-B0-220Z E poid anj 1dp9A-poid
86:€0:1 | L 0-60-2202 00:%0:1 L LO-B0-ZZ0Z poid any {dp2A-poid
81:6€:90 ¥1-60-220Z 05:6€:90 ¥1-60-220Z E poid ang idpga-poid

ite #moys () poud : _ama_%a\\
0§:€0:1 L LO-60-2202 95:€0:1 L LO-60-ZZ0Z AaQ as|g} 1dp-LA-Asg
06:€0:1 L LO-60-2Z02 7GE0LL L0-B0-220Z AsQ asjey 1dpza-naq

\ ite moys (g) aaq :ajgeiaidag _
& pajeat) pajepljeajsen Uoljeplep I A ?|qefojdag paysijgnd uonduasaq aweN (J A

el -m:.— paysalel jse]

Nom sjoysdeug

oy sBumeg eep Byuco nlmwo:mnmcw “ MAINBAQ

002

a

1 000'001] %ET' 2

2hesn (g0 doy

“IBYPUBIBY PUBUE

fapareain

"'8L:0L 10-60-¢¢0T
uo pajesl)

LL-891At08 aulbug yoleag

Date Regue/Date Received 2023-11-16

d. 9l

801M188 paje|ay uondrisip saines LTUORINPOIL ™ ZL-89IMa8 Buibug yatess 0¥00E00DHD
Bujuoseay uonduasag wayl uoneanbyuoy \ Ajse] asne) jooy
©_H (0) spely (1) sebueyg
$9SnEed J00l 3|qeqold
asnen
TS - Suely |eano 1sow -| P> @ 1T uonoNPOId 7 L-901A18S sulbuz ys.ess
dnoib poddng Ajjesnus ssauisng Rjuanag sweN

$991A198 pajoeduw)

34S - susjy asnag uojealddy
dnoid uoddng sse|

LT uoOnpoLd 7 L-901MaS auibug (oieas
sweN

\ way uopeinbipuod

\ d
7L e

}Tuolonpold g} -9a1Alag aulbug YoJeags (sajnuiw G| Jse| Joj passeoold sayaless oN

uopduasag

\ anssi payuapj

\ Alewwung

spJooal pajejey sjeleqg MBIAIBAD

~:::
L
G a £2Z0100M3|Y

0l

Date Regue/Date Received 2023-11-16

J. Ol

4
aredwao)

jousdeUs D

Joysdeus uado

C

25'25:80 02-60-220¢ 1dp'8A Uo._n_m ﬁ a

00:57:91 LE-20-2Z0Z dp"2A pouid H

Gl ol
[

213es 1Nyl
1} 1}

» loysdeus jafiey

a1 ang L1 dag e 20 P8
Il [[l 1

4 10ysdeus sauaiajey

& pusban mayg

S0 oy foes Jaquardeg Le paps Gz uow
[[l [l [l f

] >

L2 -]

MmoN

%L

ol

E\Vcaaac

1512060 om.mo.mmom_ T 00:SHial R-%.NNDN_ ﬁ o abues Eemso_

2Ep pug sep s Q© « atues aeq

aulawiy JusuwiAojdap Joysdeug

1dp gA-poId poid aulbug yaseag
joysdeug ajqedoidag uaneayddy

safueya uoneinbiyuoa ajeliysaau|

"l sabueyo byuon “ 8pJ003I PIEIRY

syse} sbuey) selsq

paso|gy maq-g
[15Rduy A8

—x QP00E00OHD _ sjelaQ

+_ X £ze0L0oNelY _ awoH @

0L

Date Regue/Date Received 2023-11-16

il

dl ol

sBupegaines) ¢

g11ez1pysib 1aquinNpyeya|Booh papRy
RN — P of sBues A
woygfoohyaess - . [)nyaieaga|fooh pappy -
—— - . LI salMadolgdnieiguAl
pajgesip yoieags|fiood pappy uos/Byuagenel A
e moys (g wmc.ﬁuﬂcoﬁﬂ.mc:ao?m__a._>u8_>amzemwwa,Tnmmu_ﬁ\ven:mﬂmm/ 0" A-901A1GYJRSS A
"ZA-821u8gu06o
Joysdeus jabie] Joysdeus aguasajay v aweN Aoy A | ZA-8IIAI35UOR0)
@mN 0'|-esesal A
[0 24-poid
082 g/ iy VD i
A
(a0 [poid ﬁx ;emmm_
f
E sabueya uoneinbiyuo)

A

4
0¢L

(kL

Date Regue/Date Received 2023-11-16

3/ Old

Aouaunouos A

L AT UOJEDIUNLULIOD
UDIJEOIUNWWOD A

yeyo

afueys ¢

LA 8Yoeo
ayoes A

ZATwsq
wsq A

LA Buipuelq
Buipuelq A

ZA 1auueq
Jauueq A

ZATJuawssesse
JUSLUSSOSSE A

LA saphjeue

solAleue

>

sBumagaines; A
sbuijes A
sajadoigdnpelguial
uosl-Byuopenel A

0'LA-891A18GY01E3S A

|'ZA-991A19GU0A0| _

0'}-9sesjal A

S S

21 pappy L2l
3§7v4 |ua’ayaen za weals AJIAIe gNSjoe dus oo E
009¢ HUI Sy ZA° 8jel A)IAIJo. gnsjoe” oUS 0D peppy)
XK)¢
0002 000s Nwijunoo*ajer AJIAIOE" gNS)oe DUS oD payp3 <
pajajap @
6 oo
357w anydL JUOD™ Jnouey 9|qeud AJAloe qNSjIe IUS W09 LUl E
cl al HwiryoeyidesaijiAloe’ gnsjoe ous o payp3
XX KK s X =
INNL sqe} asn asodwaa Ajaloe apl B pajaleQ | véupao]
oo =l
387v4 ~AiojepuewTjsod " ueo asodwaon Ananoe-apif psj21eQ _]uuﬂ_mm\._
3nyL - : fopuiang & pajeleq [(Ea]
Buipes™ |ewnol”mo|jeasodwoa Ajaloe apl| B I
lumgﬂw o_
0 uaisiaa-ide-Ayaioe apl b pa98g ——
DX X i mus SO\
N Y Y N N Y hY N Y Y N N Y hY N Y Y N N Y h Y
£L1ezLpuaIb JaquinNplieys|food pappy Leof
T T T T T 1 T T T T T 11 U "o
D o B g
o P rrrrrrrrrrr PP R L
pajqeua yoleaga|booh peppy E
XXXXXXXXXX e moys (g) mm:_zmm\coﬂ.m:coOm>m_\o.v>.mo_>hmm52mmm5._‘.mmmm_m._%o._n_\;tmn_x E
Joysdeus jabie] joysdeus aguasajay v aweN uoay A
dp-ga-poid |dpza-poig
loysdeusiefile] joysdeus sovassiey
woya O /poid

[x]

yoleag _

0%,

Date Regue/Date Received 2023-11-16

1/ 'Ol

L1Senbas T 8buBYd TLBPIDUL., LS9DIAISS pajoediul YSa4 a4 SEY dUS IO, ec Heyo
abueya1sanbas obueyd 3Sey ws|qoid we|qoid ySey ISP ILISPIDUL, 421 SSeD jedidurid ySeraus oo, FAS
“188nbai sbueyd Wajqoid UapIaU], LLI9 9)BID0SSE N SEI IUS II0D, 1€ mmcmr_u <
“QudpLaqosd, L 1sanbas aBurydT ppeySeYdUS oI, 0g < _
edsyysey 1oaloid zdsyyser 10efoud L dsyysey weloid wd, [sannua yse) pauueid ssasoid SMEIS IUS WOID, 62 PP @ LA 943ed
L INYH3a. epLiieAcapoul uoneanse-uibnid-apib-wos, o4 suoEn A
W00 LE . HOISIAAT BLUBYDS Bljuoo -asuaiadxa yooqgAeid-apih-woo, f44 4
N1 AE[BAYHMIIEISSqeUS [Spow a0 ped aplB w0, 9z [a] ZAwsq
STV, [PIBZINSSID0IdMaNI|qeua [apowr-aiod-ped-apyb uoo, 14
IS TV [uSOUBIDIDIGMIIAINAUIAUARD YRIQESIP 1OpOUI9400 pRd-9pIB 0D, ¥ wsq A
STV, LP3Iqesip bupisen punoquno-apiib uios, (54
<] —
008G, .azis—A1enb xewrap6 oo, 2 [Poeien @ LA~ Bupuelq
‘JSTvd. Lpalqeus eoqfeunaplb uos, 17 B A
WG L. LUoneinpTdndeimTxew uonseiayuraplibuios, 0z ulpuelq
WINHL . LSdiysuone[ad a)eaiso)ne uonaeiajul-apiib oo, 6l E ZAIauueq
STV 1011090 oipoLiad ajqrua-uonsabbns xapui-apiib-woo, 21
IS TV WBngap-uopsabbns xapurapjbwos, m E lBuueq A
.06, L.auwl dasas1oajj02 0) sajqel sansnels uwnjos uonsaBbns xapurapibuos, 9] _
‘ol v EAIDIUITpa1EIBuah-soSNEIS uLINio0d-uosabBins xapurapyb oo, Gl E ¢A Jusuwissasse
‘A INVYE43g. LAPLIBAQBpOW aslojuaTuawauaapiib-uos, bl
9. LBdsST 10T gpLua suonied-iainsusapib-uion,, el JUBWSSITIE A
ssalppe di 15 qpuis suonied-iainsuaapiibuios, 7l o LA~ sonAeuR
auweu sup 19 gpuwosuoniied-isinsusapyb o, (A :
“INHL . BAST 197 QP IUSLINIUO0D 4124NSUIaPIB 10D, 0l mo_tﬂ_m:m A
TN a SSPPE AT 197 QPLUD JUALINOUO0D 12INSUd aPHB W0, [
L INH1 . LAWBU SUP 1D P IUS.NIU0D aINSuaaph-woo, 2 wmc_zwww._:ﬁ& ~
“Loul, L enapBouawnsopapiif-wios, /
‘. LSUORSANb Xew ajqey uoisiaep aplb o, 9 sbBupes A
Sindur xewrajqel uoisidap-apyb- o, G
‘3SV4. Sem TNy . Lo4dmEes) 91ehta|qe) uoisiaap- -apibiuos, v &£ wm_tmno‘_n_aztmym,rci.
‘ sem Bngep ‘o, BuiBBoj Bngep-ajqe) uoisIaop -apyb oo, [4 uos(-Byuogesel A
“INYL sem JSTvL. BAS ousTduoas yjas dsaapf oo, AR 4
) 0'LA-99IMBSYD/ERS A
= o) 1 ZA-S0IAIRGU omo_
0'L-9se9ja1 A
1dpga-poid dprza-poid
Joysdeus joble] joysdeus sausiajey poid ~
yalesg _

sebueyo Byuoy

spiodas pajeay syseiabueyy simaQ

Date Regue/Date Received 2023-11-16

800 in response to determining that a software service satisfies a
W degradation criterion, generate an alert that indicates the software
service and a change request specifying that configuration data
used by the software service was changed in a current snapshot of
the configuration data

\ 4

802
W based on the change request, determine a set of configuration
changes between the current snapshot and a previous snapshot of
the configuration data

A 4

804\ provide a representation of the set of configuration changes

indicating one or more parameters that were changed in the current

snapshot and one or more paths in a tree-based arrangement of the

configuration data that lead to the one or more parameters that were
changed in the current snapshot

FIG. 8

Date Regue/Date Received 2023-11-16

6 Ol

pa13jap// [90€€ “,Mod-aseqelep, ‘T

98ueyo ou// ‘[, 1°00T°0T'0T. ‘JONISS-95BGEIEP, ‘O

98ueyd ou// ‘[,s1unoddyiasn, ‘,Oseqeiep,

a8ueyd ou// ‘[yine/T°0°0T"0T//:d1y,, *, 4n-u3isi|, ‘0

aSueyd ou// ‘[, TIX-SMV,, ‘,3s0Y-13x20p,, ‘0

psups// ‘[.za-yine/mou,, ‘ yine/mou, ‘ Jsuleiuod-iaxdop,, ‘€

(@)

]
]
]
]
]
]

98ueyd ou// ‘[, JiymoN,, ‘ Alolisodas-aayoop,, ‘0]

o\

706

] : ,921AI3S0.D] A UOIIBDIIUSYINY WOISND/301AISS UISOT UOIIRDIIUBYINY 95N /AuswuoiiAug Suiisa] /Supjoog auljdly MON,

m 0“< EO‘_% u“v@“_“vw wj_m\/\\ ﬁ:ﬁ_wgmc‘_wm:_u___mgw_u: ~=ﬁ_®EmC‘_wm:_~___mE®_~_mmw‘_“v“vm_u= ~._WE_m_U= ~m~

pappe// ‘[‘Wujoi-1nessp, ‘T]
98ueyd ou// ‘[,19u19pinoid-yineoxoqpues//isdiiy,, ‘14N, ‘0l

)

N
206

]: Luoizei8a1u] Jopin0id HINVO/321A19S U0 UoedIuUayINy Jasn/iuawuodiaug Suiisa] /Sunjoog auljly MON,,

}

b\
006

Date Regue/Date Received 2023-11-16

0l OId

T 00 3SNOdSIY
JSNOJSIY T1GVLIVALEA
9e0} — 3avL |
_ 3SNOdSId —» TvnLuIA
€01 3SNOdS3Y J19VL IVNLAIA
u._m<h_._<:E_> "
< Z€0L A¥AND s
J1aVL IVNLYIA 0c0r _
«——— AyIND | —— 3201
379VL TVNLYIA — AHIND __|
J1avl 9201 A¥3ND
WALIA [31gy] TvnLdIA
¥Z01 ISNOdSIY
zeol asvaviva _
ozor [—ISNOdST¥—>
- —3SNOdSTu» FSVEVLVE
810 3SNOdSTY 5| 3svaviva
uw<mE<_a
9101 A¥IND
asvaviva viol
<€ ANIND AT
asvaviva . .
<« A¥IND 010t
IVAVIVA | ay3nD
asvaviva
SAeT arool 7001 S — SAAT
8001 — <001
9001 ¥3AINAG 9aA [¥3AING ga g9v00L WHO | v¥00L N3XJVE
3iavl asvaviva — IN9 32IA3A
TVNLYIA 7001 ¥3AY3S gIM IN3I9D

Date Regue/Date Received 2023-11-16

666 AYLN3

000Z AYLIN3
6661 AYLN3

0001 AMLINT
666 AYLN3

0 AYIN3

L} Old

80L1

arooi
d3ARIA 8aA

¥

—6661-000} SR INT— >

(0001=3ZIS" 2019
€«—'1=)2078 ‘FNHAN=aAl44I0——
AY3N0 37aVLIVNLYIA

Y0014
9011
¥
—6661-0001 SIRILNI—>|
I MOOTd
20 <1 Y0019 AR L—
N
voLlL
042014
00L1

FU4AN

b\
2011

Date Regue/Date Received 2023-11-16

¢l Ol

114}
W3L1SASTTIH
Z-V700} 3OIAN3S
ANINOVE [reeeeee ¢39vd < { z3a9vd < { 139vd <
NOILVYNIOVd
aiog 30V43dAL | a3aav vl
W00 || oot o ko] FYPO0F 30NNIS L]l
¥IARA 9aA aNaNove LSIT zéasn | wy3asn | am3asn | q3auwaa | om@w
700} ¥IANIS 9IM NIZ¥O | ¥0T109 | @3aiFiaa | omEw
3INVA | 3nvA
INZn0 | snomzyg | FWVN | NOWOV | Hivd
00Z1
JOV4YIINI ¥3SN TVOIHAVYD INI1D

Date Regue/Date Received 2023-11-16

1300 . . .
receive, at a web server application, a query specifying a file, a

block number of a block of data within the file, and a block size,
wherein the file includes entries representing differences between
snapshots of configuration data

1302 \ 4

identify, based on the block size, the block of data within the file

1304 A

N store the block in a non-transitory memory that is accessible to the
web server application

\ 4

1306
in response to the query, transmit, by the web server application, a

set of the entries within the block formatted for display in a list
component of a graphical user interface

FIG. 13

Date Regue/Date Received 2023-11-16

800

802

804

in response to determining that a software service safisfies a
degradation criterion, generate an alert that indicates the software
service and a change request specifying that configuration data
used by the software service was changed in a current snapshot of
the configuration data

Y

based on the change request, determine a set of configuration
changes between the current snapshot and a previous snapshot of
the configuration data

Y

provide a representation of the set of configuration changes
indicating one or more parameters that were changed in the current
snapshot and one or more paths in a tree-based arrangement of the
configuration data that lead to the one or more parameters that were
changed in the current snapshot

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - REPRESENTATIVE_DRAWING

