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(57) Abstract: This application describes a system that captures 3D geometry commands from a first 3D graphics process and
stores them in a shared memory. A second 3D environment process creates a 3D display environment using a display and display
hardware. A third process obtains the 3D commands and supplies them to the hardware to place 3D objects in the 3D environment.
The result is a fused display environment where 3D objects are displayed along with other display elements. Input events in the
environment are analyzed and mapped to the 3D graphics process or the environment where they affect corresponding processing.
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TITLE OF THE INVENTION

INTEGRATION OF GRAPHICAL APPLICATION CONTENT INTO THE GRAPHICAL SCENE OF
ANOTHER APPLICATION

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001]  This application is related to U.S. application entitled Flexible Landscape Display
System For Information Display And Control having serial number 11/368 452, by Hughes, filed
March 7, 2008, and to U.S. application entitied Media Fusion Remote Access System having
serial number 11/368,625, by Hughes, filed March 7, 2006, and all incorporated by reference .
herein.

BACKGROUND OF THE INVENTION
1. Field of the Invention

[0002]  The present invention is directed to a system that integrates the graphical content
from one application into the graphical scene of another application and particularly a system
that extracts the 3D objects and materials that make up the images generated by a first
application from its graphics data stream and fuses them into the second application.

2. Description of the Related Art

[0003] Customers often have many forms of related data ingested and presented by
separate applications in éeparate windows, and even on separate computers in separate
locations. For example, in the automotive industry, aerodynamics and crash analysis for a
single car mlght be done using separate data sources and be analyzed in separate applications.
If these analyses could be more integrated, it would speed up the decision cycle. In practice
there may be many more than two data streams or two applications. This problem becomes
even more difficult when the data streams represent 3D information.

[0004] What is needed is a system that can integrate the view of these stovepipe
applications and particularly when three-dimensional (3D) displays are involved.

SUMMARY OF THE INVENTION

[0005] Itis an aspect of the embadiments discussed herein to provide a system that extracts
from one application its 3D objects and materials, which may either comprised of pixel data or
3D geometry and other graphics library definition data, such as textures, colors, surface
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materials, animations, vertex programs, shading algorithms, etc., and fuses them into another
application.

[0006] Itis also an aspect of the embodiments to receive user input device events from the
fusion environment, modify them as needed to correspond to user input events expected by the
graphics source application and supply them to the graphics source application.

[0007]  Afurther aspect of this invention is that an unmodified graphics application may serve
as the source of the graphics data or as the target of the graphics data. Furthermore, an
unmodified graphics application may serve as the target of user input events or as the source of
user input events. That is, a given graphics épplication may act as the sender or receiver of
graphics and input information without any modification to the code of the application, although
the application does not need to be unmodified to perform in either capacity.

[0008] The above aspects can be attained by a system that captures 3D graphics library
commands including 3D geometry from a first application or the color and depth imagery
produced by a first application and supplies them to a second application. In the second
application the 3D objects are combined into a scene that may include display elements from
other applications. The result is a fused display environment where 3D objects are displayed
along with other display elements, such as flat windows, each 3D object or display element
potentially coming from a different source application. Input events in the fused environment are
analyzed and mapped to the first application where they affect the processing of the first
application. In order to supply graphic information from an application to the other, the system
may go through an intermediary stage if placing the graphic stream data in a memory that is
shared between the two applications, using the operating system’s shared memory or using a
network protocol. This step actually allows more than two applications to access the graphic
stream at the same time, allowing therefore collaboration between the users of the various
applications.

[0009] These together with other aspects and advantages which will be subsequently
apparent, reside in the details of construction and operation as more fully hereinafter described
and claimed, reference being had to the accompanying drawings forming a part hereof, wherein
like numerals refer to like parts throughout.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0010]  Figure 1 illustrates a typical process by which a computer graphics program
generates an image on a computer display.

[0011]  Figure 2 shows a process by which two computer graphics programs generate
images on a computer display.

[0012]  Figure 3 the process of Figure 2 using two hardware graphics accelerators.

[0013]  Figure 4 shows capturing 3D graphics commands and transferring them to another
application.

[0014]  Figure 5 shows the capturing of color and depth imagery and transferring them to
another application.

[0015]  Figure 6 shows another approach to capturing and processing function calls and
environment inputs.

[0016] Figure 7 illustrates the graphics processing operations for the embodiment of Figure
4.

[0017]  Figure 8 illustrates the graphics processing operations for the alternate embodiment
shown in Figure 5.

[0018]  Figure 9 illustrates input processing operations when they come from the fusion
application and propagated to the source application.

[0019]  Figure 10 illustrates the internal structure of the Graphics Device in Figure 1 and
serves as an introduction background for the two next ﬁgu'res.

[0020]  Figure 11 is a more detailed view of Figure 4, based on the internal structure of the
Graphics Device as described in Figure 10

[0021] Figure 12 shows the algorithm that drives the alteration of Graphic commands based
on the example of real OpenGL calls and is a more detailed version of Figure 7.

[0022]  Figure 13 shows some methods by which a user can transition from 2D to 3D
representations of their application's graphics data.

[0023]  Figures 14 and 15 show dragging and drooping in the environment.



WO 2007/103386 PCT/US2007/005715

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0024]  Integration of graphical application content into the graphical scene of another
application or media fusion can solve the general problem of “stovepipe applications”. Using
various hardware and software sources of visual input, an integration system ingests, combines
("fuses"), and distributes various types of media streams (e.g. streams of pixels, polygons, user
input events), which originate from various sources (e.g. 3D applications, remote desktops/PCs,
video recordings, even other media fusion sessions). The system then "fuses" and displays the
media streams side-by-side, superimposed, or combined in any number of other ways. Such a
fusion session can also be recorded for later playback or visually served out for remote
interaction and collaboration. Visual serving is the ability to stream in real time a view of a
graphics application over a network with control passed back to the source application from the
remote client.

[0025]  The current Integration of graphical application content into the graphical scene of
another application, using video-input cards and Vizserver TM visual serving technology, brings
disparate applications into a common environment. However, the output of these applications
(models, drawings, statistics, etc.) is still contained within flat windows.

[0026] The embodiments of the present invention allow full integration of the application's 3D
data content into an integrated 3D landscape. This can be accomplished by intercepting an
application’s graphics data at any point in the graphics pipeline, which includes the creation and
processing of graphical objects, conversion to a raster (pixel) form, and finally the creation of
video image on a display surface. For example, near the end of the pipeline the system can
extract depth values for every pixel of the application's video output and represent each pixel at
a corresponding depth in the media fusion scene (instead of as a flat 2D window in the media
fusion scene). Alternatively, the system can extract the geometric primitives from the application
at some point prior to its image generation (e.g. before they are sent to the graphics hardware),
and insert the application’s 3D objects directly into the 3D Media Fusion scene. These methods
provide an improved way to comprehend and interact with applications’ data. For example,
instead of two 3D graphics applications displaying their visual output within two separate flat
windows, possibly on separate computer systems and displays, the 3D data of the two
applications is extracted and visually combined (“fused”) into a common 3D scene such thét the
data may mutually intersect or occlude each other. An extension of this is that the displayed
data may be some derivative of multiple captured streams, for example the sum or difference of
two streams of data.
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[0027]  Figure 1 illustrates a normal process by which a computer graphics program 100 of a
computer system 107 generates a live image on computer display 108 using modern computer
graphics hardware 106. Subsequent figures show a process by which the graphics commands
of the graphics program may be captured for the purpose of storing them, modifying them, or
transmitting them to other software programs. This is done without modifying the code of the
originating graphics program. The originating graphics program is unaware that its graphics
¢ommands are being captured and manipulated.

[0028]  Normally, a computer graphics program 100 utilizes standard graphics software
libraries 101, such as an OpenGL library, to command computer graphics hardware 106 to form
an image 110 in the program’s window 109 on the computer display 108. The logic of the
graphics program executes as a computer process 102. The process 102 invokes a sequence,
or stream, of graphics commands a1 that are interpreted by the computer graphics library 101,
namely the OpenGL library, and converted into hardware-specific graphics commands b1.

[0029]  Figure 2 shows the normal process by which two computer graphics programs 100
and 111 generate live images on computer display 108 using modern computer graphics
hardware 108. Normally, two computer graphics programs 100 and 111 (with process 112)
utilize standard graphics software libraries 101, such as the OpenGL library, to command
computer graphics hardware 106 to form images 110 and 113 in windows 109 and 114
respectively, on a computer display 108. The graphics software library 101 accepts both
command streams a1 and a2 and, while keeping the contents of the streams separate, it sends
them both to the graphics pipe as two intact streams, b1 and b2, destined for separate regions
of the output video signal, e.

[0030] Figure 3 illustrates the nofmal process by which two computer graphics programs 100
and 111 generate live images on a computer display using two hardware graphics accelerators
106a and 106b. This diagram shows the two graphics programs 100 and 111 utilizing the two
graphics hardware accelerators 106a and 106b to draw their data onto two separate computer
monitors 108a and 108b. In this case the OpenGL scene 113 drawn by the second graphics
application program is a media fusion environment. Since each hardware graphics accelerator
has its own graphics pipeline, each generates its own video signal, e1 and e2.

[0031]  Figure 4 shows a process by which the graphics commands of one graphics program
may be captured for the purpose of storing them, modifying them, or communicating them to
other software programs. F urthermore, the diagram shows a method for inserting the captured
graphics commands into the 3D scene (into the command stream) of another graphics program.
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This is done without modifying the code of the originating graphics program. The originating
graphics program is unaware that its graphics commands are being captured and manipulated.

[0032]  This embodiment captures the computer graphics commands a1 of a 3D graphics
program 100 and later integrates these commands with the commands a2 of another computer
graphics program 111, so that the visual output of both programs is combined, in reality or in
appearance only, into a single 3D scene that looks and behaves as if only one graphics program
had generated it. More generally, the graphics pipeline may be "tapped into" at any point
between a1 and e inclusive, not just at its end points (at command generation, pre-rasterization,
or post- rasterization).

[0033] First, intercept software 115, typically in the form of a software library, is loaded into
the computer process 102 of the first graphics program 100. The intercept software 115
converts the graphics program’s 3D graphics commands a1 into a format 1 that can be readily
transmitted to other processes. This process is typically called serialization, or encoding, or
packing. It is commonly performed on 3D graphics commands by software packages such as
OpenGL Multipipe, as sold by Silicon Graphics, Inc., or Chromium, created by Stanford
University. Preferably, this takes place application-transparently; that is, without quification of
code in graphics program 100. Graphics program 100 is unaware that a copy of its graphics
commands is being made. In their readily transmittable format f1 the graphics commands can
be stored on some permanent storage device for later retrieval, transmitted over a network, or
more preferably, placed in shared memory 112 that is shared between processes.

[0034]  In Figure 4, graphics program 111 generates the 3D media fusion environment 113
into which we wish to insert the graphics output of the first graphics program 100.

[0035] Computer process 118 contains a program 117 that reads the commands 1 out of
shared memory 116. Program 117 draws these graphics commands into the window of
graphics program scene 113. To do this, the two programs communicate about information in
the graphics command stream 1 that needs to be modified on the fly to be integrated into the
scene 113, of graphics program 111 .l Such modifications include correlating the 3D coordinate
systems and scene lighting of the two streams, and other visual effects that may require
changes to stream f1 to visually integrate the result 119 of graphics commands a1’ into the 3D
scene 113, that is produced by graphics commands a2. Notice, for example, the difference in
orientation and illumination of 3D object 110 when drawn by first graphics program 100, and
after it is modified and drawn as an object 119 as part of the 3D scene 113 of the second
graphics program 111. Additional detailed are provided with respect to Figures 9, 10, and 11 for
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the modifications to the OpenGL command stream to reconcile the 3D coordinate systems of
the two applications.

[0036] Depending on implementation, programs 111 and 117 may be combined into a single
program (that is a single thread of execution), a single process with separate threads of
-execution, or as pictured, in two separate processes 112 and 118 each with its own thread of
execution 111 and 117. Depending on the implementation, therefore, programs 111 and 117
may produce a single combined graphics command stream, a2+a1’, or as depicted here, they
may pfoduce separate graphics streams that are later only visually merged into b2+b1’ by the
graphics library 101. Each of these implementation alternatives has its set of advantages and
drawbacks that will be readily apparent to those skilled in the art.

[0037] The difference between the combining of graphics command streams b1 and b2 of
the two programs in Figure 2 and the combining of streams b2 and b1’ in this Figure 4 are: A. In
Figure 4, programs 111 and 117 coordinate their graphics commands (communicating via g). B.
In Figure 2, graphics programs 100 and 111 draw their 3D scenes into two separate windows
109 and 114, on the same monitor. In Figure 4, both graphics programs 111 and 117, draw their
3D scenes into the same window 114, so the drawn outputs 113 and 119 appear as if drawn by
a single program into a single window.

[0038]  Not only do graphics commands travel from the originating graphics program 100 to
the window of the receiving graphics program 111 but some user input (keyboard and mouse)
commands, received in the normal way by graphics prograrh 111, also need to be passed back
to the originating graphics program 100. To fully create the appearance of a single scene
produced by a single graphics program, the user is allowed to manipulate and control the
inserted 3D object or 3D scene 119, just as he would any other object in the 3D scene of .
graphics program 111. Control needs to be as seamless as if he was controlling the object in its
original window 109. Input events h are transformed from the 3D scene (“world space”) back
into the 2D coordinate system of the original application’s window. Depending on
implementation, input event transformafion may be handled in whole or in part by any of
graphics programs 111 or 117. A transformed event is decoded by input decoder process 120
and passed as a decoded event i from shared memory 116 back to application 100, often via a
regular window server (e.g. an X Window Server).

[0039] Figuré 5 shows a process by which depth and color values of the 3D output of one
graphics program, rather than its graphics commands, may be captured for the purpose of
storing them, modifying them, or communicating them to other software programs.
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Furthermore, the diagram shows a method for fusing the captured “video+depth” information
into the 3D scene of another graphics program. This is done without modifying the code of the
originating graphics program. The originating graphics program is unaware that its graphics
output is being captured and manipulated.

[0040]  Unlike the embodiment of Figure 4, which captures the computer graphics commands
a1 of a first 3D graphics program 100 before they are sent to graphics hardware 1086, the
embodiment of Figure 5 captures the fully drawn video output produced by graphics hardware
e as well as a depth image of each video image to make e1" a stream of 2D graphics output +
depth. The 2D graphics output + depth is later used to make graphics commands a3, which are
merged with the graphics commands a2 of a second computer graphics program 111, so that
the visual output of both programs is combined, in reality or in appearance only, into a single 3D
scene that looks and behaves as if only one graphics program had generated it.

[0041]  In this embodiment, graphics intercept library 115 listens for certain “trigger” graphics
commands, such as “gIXSwapBuffers” commands, rather than capturing all graphics
commands. This is so the intercept library can determine when it should retrieve a fully drawn
image from a video buffer on the graphics hardware. Imagery may be retrieved from the
graphics hardware using common graphics readback or video recording techniques such as
those used in the Vizserver collaboration software as sold by Silicon Graphics, Inc. In addition
to the normal “color image” that can be read back from the graphics hardware, this embodiment
also retrieves a “depth image”. The pixels in a depth image indicate the 3D positions of their
corresponding pixels in the color image. Intercept library 115 stores the combined color and
depth imagery e7'in shared memory 116, possibly in an efficient, encoded format, f1.

[0042]  Graphics program 117 in this embodiment reads color and depth imagery f7 out of
shared memory 118, then it constructs a 3D object from the depth image and applies the color
image onto the surface of the object. The program may make automated or semi-automated
modifications to f1, for example, to allow for parts of the imagery to be “cut out”, such as the
background of the image. As before, when program 117 communicates with graphics program
111 to map 3D coordinate systems and other visual effects of the first graphics application to
that of the second graphics application, it may require changes to stream f1. Then, it executes
graphics commands a3, which produce a visually composited image 119 in the 3D scene 113
that is produced by graphics commands a2. Notice in this embodiment that the orientation and
illumination of 119 is the same as in the original image 110 since it was derived from the
imagery e’ of the first application, rather than the 3D commands af that were used to generate
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image 110. While it is possible to alter image 119 so that it looks correct from various
viewpoints, this embodiment provides less flexibility between the viewpoints of applications 100
and 111 than the embodiment of Figure 4.

[0043]  User inputs are handled in the same manner as in the previous embodiment.

[0044]  Figure 6 illustrates in detail the process of decoding from a shared memory the
stream of OpenGL graphics commands from a remote application. The remote commands
arrive in stream f1 and are decoded by decoder 202. These calls are passed to a modification
step 300 where the OpenGL function calls may be modified here before they are sent to the
graphics library/driver 101. Process 302 provides input to the modification process for
controlling orientation and pose of objects in f1 and input events h from the media fusion
environment 111. Remote procedure call (RPC) facilities 301 are provided for ‘communication
between two drawing processes 111 and 117 for information, such as user input device events,
graphics context switches, other points of synchronization. The input encoder 303 places
filtered/application-window-relative input events h from the environment into shared memory
116. An input decoder 304 decodes the input events obtained from shared memory 116. The
input event process 305 acts as a proxy for the user of the fusion environment. It sends artificial
input events to an X Window System Server and/or to the graphics application 102 so that the
application 102 receives the input events in the normal way — as if a normal user had supplied
them.

[0045] Figure 7 llustrates a flowchart of actions that occur in the embodiment of Figure 4 as
a result of human interaction in the source graphics application program. The result of these
actions being a visual update in the fusion environment. Objects C1, C2, and C3 in the
flowchart correspond to items 100, 115, and 117 in Figures 4 and 5.

[0046] (o1) First the source application C1 waits for and eventually receives an event from a
user input device (e.g. a key is pressed on the keyboard). (02) The application may update
some internal information, such as the position of a 3D object or its color. (03) This causes the
application to issue new drawing commands to update the visual appearance of the 3D object.
(04) Now the graphics intercept library C2 captures the application’s drawing commands, and
(05) encodes or packs the commands into a transmittable format before (08) placing them in
shared memory. Now any process C3 can decode and draw C1's 3D commands that C2 stored
in shared memory, provided that it has (07) established a connection to the fusion environment
program, which draws the information on screen (in some embodiments, that may actually be
process C3). After (08) some further one-time setup procedures, a decoder process may begin
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to draw the graphics commands it reads from shared memory (09) as the fusion environment
program indicates that it is ready for the decoder to draw.

[0047]  (010) 3D objects and drawing commands are then drawn iteratively. After the first
frame, whose special treatment Figure 11 and its description cover more in depth, the.decoder
process makes a decision (t1) whether or not to alter the contents of the current drawing
command based on its type. If the command must be modified, (012) it retrieves information
about the drawing state of the fusion environment and (013) alters the command(s) accordingly
before (011) actually executing the drawing command. The decoding and drawing procedure is
repeated until (t2) the last graphics command for the current animation frame has been read
from the shared memory.

[0048]  Figure 8 illustrates a flowchart of actions that oceur in the embodiment of Figure 5 as
a result of human interaction in the source graphics application program. The result of these
actions being a visual update in the fusion environment. Objects C1, C2, and C3 in the
flowchart correspond to items 100, 115, and 117 in Figures 4 and 5. The flowchart in Figure 8 is
identical to Figure 7 with the following three exceptions: (033) the decoder process reads color
and depth images instead of graphics commands out of shared memory; the decoder process
always retrieves position and orientation information from the fusion program; and (035) the
decoder process is responsible for drawing the color and depth imagery in an appropriate way
and at the appropriate depth in the scene of the fusion program.

[0049]  The previous process describes the way that user input events on the source

application are propagated implicitly to the fusion application via the changes in the 3D content
carried by the 3D stream. Figure 9 describes another user input mechanism, this time when it
comes from within the fusion application, and is propagated to the source application, so that in
the end it influences the 3D data stream and content in both the source and fusion applications.

[0050]  The flowchart in Figure 9 diagrams the chain of events triggered by a user interaction
in the fusion environment program that are eventually propagated explicitly back to the graphics
data source application. We're supposing that the fusion application has a graphic user
interface that allows determining that the target of received user events is actually the fused 3D
content coming from the source application. In such case, since the 3D content of the source
application is drawn in the context of the fusion program, input events (037) must be reverse-
mapped (038, 039) back to the context of the source application. For example, the 3D content
from the source application may be applied some transformation by the fusion program, like a
rotation, in which case the mouse input events must be projected back to the original coordinate

10
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system of the source application, so to be sent back (040) to the source application in the right
context. Input events received (041) within the fusion program, and mapped to the source
application’s context, may have applied further processing (042) before being sent (043) to the
input program, so that although they are fake events from the source application’s standpoint,
they will be handled as real ones as if they would have come from direct user interaction on the
source application. Finally, the source application will handle (044) those fake user events as
real ones, which will cause changes in the 3D content, and these changes will be sent back
(045) to the fusion program, as described in Figures 7 and 8. From the fusion program user'’s
viewpoint, he’s directly interacting with the 3D content of the source application.

[0051]  The fusion environment is capable of presenting the data of a source application in
one of three modes: 1.) 2D mode, 2.) Partial 3D mode, and 3.) Full 3D mode. Referring to
Figures 4 and 5, in mode 1 only the captured image stream e1 produced by the graphics
hardware 106 is displayed in a 2D window suspended in the 3D fusion environment. In mode 2,
the cabtured color and depth images of the source graphics application are combined and
redrawn in the fusion environment to produce the same image as in mode 1, but with added 3D
“relief” from the stream of depth imagery, capable of providing novel views of the object. In
mode 3, the application’s 3D graphics data itself is captured and displayed as a true 3D object in
the fusion environment.

[0052] Figures 10, 11, and 12 explain the actions on the 3D commands that enable the
fusion of source applications’ 3D data into the destination application.

[0053] The implementation of the 3D fusion depends on the internal architecture of the
Graphics Device. Graphics devices can be classified into two categories: the scene graph
based devices, and the buffer-based devices. The first category, scene-graph based, includes
Raytracers and Radiosity processors, and is based on a an internal copy of the scene graph,
i.e. a full tree-like database of all the geometry of the scene, where the 3D commands are
actually explicit updates on the scene graph. The second category, buffer-based, includes most
of the Accelerated Graphics hardware sold in the market (Nvidia, ATI, etc.), and is based on
processing a flow of geometric primitives that are transformed into pixels and accumulated into
buffers.

[0054] When the Graphics device is based on a scene graph, the fusion is straightforward,
as it just implies encoding the scene tree of the source application, and decoding it in the
destination program before adding a branch in the target scene tree with the sub-scene tree of
the source application.

11
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[0055]  The buffer-based Graphics engine is less straightforward, as there is no global
knowledge of the scene within the device. In the following sections, we're detailing the process
of 3D fusion in this kind of Graphics Devices.

[0056]  Figure 10 provides a more detailed view of the Graphics Device’s black box, in the
buffer-based case. We should understand the graphics device has a pipeline of state machinés
acting as filters that transform geometric primitives into a video signal. The Geometry Engine
103 transforms and projects the flow b1 of geometric primitives (vertices, triangles, normals, etc)
into the coordinate system of the window, by “filtering” them via a transformation matrix stack.
Then, each transformed, projected polygon in stream c1 is rasterized into a pixilated
representation called a fragment by a Raster Engine, or Fragment Processor 104. The stream
of pixel fragments d1 is then accumulated in the video frame buffer of a Display Engine, or
Display Generator 105. At periodic intervals, typically every 60th of a second, the display -
generator 106 generates a video signal e from the pixels in its video frame buffer containing the
transformed and rasterized representation 110 of the program’s graphics commands a1 placed
in a window 109 on computer display 108 which is connected to computer 107.

[0057]  More specifically, the stream of graphics commands a1 from the application, and
likewise the set of hardware-specific graphics commands b1 from the graphics library, can be
subdivided into 4 types of actions on the graphics pipeline, depending on what part of the
Graphics Device they're acting on. The first set of commands, b1-G, contains the geometry and
other graphics primitives (vertices, polygons, normals, texture mapping coordinates, etc.).
These are pushed to the front of the pipeline. The second set, b1-M, operates on the Geometry
Engine’s state, typically on the internal transformation matrix stack applied to every geometric
primitive. The third, b1-S, operates on the Fragment Processor’s state (color, material,
textures). And the last ones, b1-F, are direct operations on the video frame buffer, including
clearing the buffer, drawing an image directly as, pixels.

[0058] Figure 11 illustrates the technique used to integrate the Graphic content of an
application into another one. It is a more detailed version of Figure 4, the detail being based on
the internal structure of the Graphic Device as illustrated in Figure 10. The Graphic Device
used by the fusion program basically mixes two contexts of graphic command: one from the
fusion scene, and the second from the Graphics commands received from the originating
application, and decoded locally. The Graphic commands are redirected differently depending
of which category, as detailed in Figure 10, they belong to. Basically, from the original stream,
only the matrix operations, and the direct actions on the video frame buffers, are “altered” before
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being sent to the Graphics Device. Others are sent unaltered. The alteration is mostly based on
the current transformation matrix of the fusion program at the moment when it starts processing
the Graphics commands stream.

[0059]  Figure 12 provides additional relative to Figure 7, i.e. the alteration of commands. It
is illustrated with the example of C functions of the OpenGL library, but it is easily generalizable
to other APIs like Microsoft's DirectX. Whenever the fusion program’s draw thread is ready
(014) to read a frame of the OpenGL commands stream from the source application, it first
stores (015) the full current state of the Graphics device. Then, depending on whether this is or
not the first time (t3) the fusion program processes a frame of the 3D commands stream, it will
respectively (016) create or restore (017) another instance of the Graphics device state,
reserved for the source application’s 3D commands stream. When processing each of the 3D
commands (018), the commands that will be altered (t4) are typically the non-incremental, non
projective operations on the transformation matrix of the Geometry Engine (namely
glLoadMatrix* and giLoadldentity when applied to the OpenGL's mode!l matrix, but (t5) not
glFrustum nor glOrtho), and the raster operations that directly modify the target color and depth
buffers (namely glClear, glScissor, glDrawPixels, glViewport, etc.). The matrix load operations
are replaced (019) with loading the destinatign’s transformation matrix before the current frame
of the shared 3D commands was started to be read, composed with the loaded matrix of the
source application. This small alteration is actually doing the 3D fusion, by integration the 3D-
content of the source application within the 3D coordinate system of the destination 3D world.
Projection operations should be ignored, as they are irrelevant in the fusion program, and they
would just corrupt its projection algorithm on the target window. Regarding raster operations,
coming from the 3D commands stream, they should be simply ignored, to avoid corrupting the
color and depth buffer of the fusion program. Another option is to use those commands,
together with projectidn commands, to draw (020) a “virtual frustum” that represents the
projection observed by the source application. The end of the commands for the current video
frame is detected (16) either by a break in the flow of commands from the shared stream, or by a
command that explicitly terminates the drawing for this video frame (namely gIXSwapBuffers in
the case of a double color buffer in the graphic device). Once all the commands for the video
frame have been processed,'we should store (022) the current state as the source application’s
state, as known as the graphic state of the 3D commands stream. Then, we restore (023) the
fusion program’s graphic device state, so that it could continue processing the geometry of its
local 3D virtual world.
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[0060] For more information regarding the process of manipulating OpenGL matrices for the
purpose of correcting the orientation or appearance of 3D objects without modifying the code of
an application, the reader may refer to U.S. patent 6,982,682, which utilizes a similar OpenGL
matrix manipulation process for correcting images drawn onto curved surfaces.

[0061]  In addition to manipulating graphics commands related to geometry transformation,
other graphics commands may be altered, added, or removed to improve the integration of a
foreign graphics stream into the fusion environment. This includes, for example, commands that
affect lighting, raster (2D) drawing, textures and other surface material properties, vertex -
programs, fragment shaders, and the recording and playback of command macros known as
display lists.

[0062] The diagrams in Figure 13 show that to transition between these three modes of
operation, a user may utilize menus, buttons, or other user interface elements or techniques,
including a method of dragging and dropping a 2D object or icon into a fusion environment to
begin to display the stream of 3D data. For example, the user may drag D1-D3 into the fusion
environment an icon of an application or stream he wishes to initiate, or he may drag E1-E3 the
contents of a 2D window into the 3D scene of the fusion environment to switch from mode 1 (2D
window) to modes 2 or 3 (partial or full 3D window).

[0063]  An implementation that supports such a 2D to full 3D transition (from mode 1 to
mode 3) must include the ability to retrieve on demand or track and record the changes to
important graphics state values in the source application such as transformation matrices,
lighting modes, current color information, and many other graphics state parameters. Even if the
application is only represented as a 2D picture, these states must be tracked from the moment
the source application begins making dfawing commands in case the user decides at a later
time to transition from a mode 1 window to a mode 3 “3D window”. Otherwise the source
application must temporarily suspend graphics operations and incur an expensive retrieval of
graphics state information for the decoder process or fusion environment to begin drawing the
remote application’s graphics commands.

[0064]  An implementation that supports a 2D to partial 3D transition (from mode 1 to mode
2) does not need to perform any graphics state tracking or retrieval. It is therefore more
convenient to create an implementation that converts from 2D to partial 3D in this way, but such
an implementation places limits on the motion of the user’s viewpoint without forcing the source
application to redraw the image as the viewpoint changes. |
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[0065] Figure 14 shows a method by which the user may utilize menus, buttons, or other
user interface elements or techniques, including a drag and drop F1-F3 methodology to initiate
a mode where the 3D application stream fills the entire 3D space of the fusion environment,
similar to the way a modern 2D computer application may have a “full screen” mode in which its
2D window covers other windows on the screen and takes over the entire computer screen.
Some elements of the user’s environment may remain visible while other interface elements
become obscured when the application fills the fusion environment.

[0066]  Figure 15 shows a method by which the user may utilize menus, buttons, or other
user interface elements or techniques, including a drag and drop methodology to initiate a mode
where the content is dragged G1-G3 into the 3D space of the fusion environment, similar to the
way a modern 2D computer application may have a “full screen” mode in which its 2D window
covers other windows on the screen and takes over the entire computer screen. Some
elements of the user’s environment méy remain visible while other interface elements become

obscured when the application fills the fusion environment.

[0067]  Other variations of the invention can be provided include the ability to replicate and
distribute the captured streams via a form of broadcast function. Also, the ability to use
captured streams as sources for some form of function, i.e. looking for interference, by doing a
difference, construction via addition or even some algorithmic process applied to the input
streams to create a derivative. Another aspect is the ability to use this to record states of
development, for example, where this capture process can create a permanent record of
different phases of a project by capturing and putting to storage. This may be used by capturing
versions from a number of users at a particular point in time and keeping this as a snapshot for
later review or audit. Another element to consider is the provision of a repository for common
parts that can generated once and then shared with remote users. Another aspect is shared
collaboration where data is captured via a fusion server and then made available to individuals
or collaborators to work on jointly.

[0068] Fused content from the fusion environment may be fed back into the original source
application as mentioned previously. This is so all applications supplying 3D objects into the
fusion environment will see in their 3D scenes, the 3D objects supplied by all the other
applications. Essentially, every participating application can also become a fusion environment.
This facilitates remote collaboration.

[0069]  With or without user assistance, meaningful "slices" of an OpenGL stream may be
selectively extracted and drawn in the fusion environment, where a "slice” could be of time or of
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space. This capability could be manifested as a cutaway view, "3D screen capture”, or 3D
movie recorder. Some of these 3D slicing capabilities may be found in the software HijackGL,
created by The University of Wisconsin-Madison. s

[0070]  The many features and advantages of the invention are apparent from the detailed
specification and, thus, it is intended by the appended claims to cover all such features and
advantages of the invention that fall within the true spirit and scope of the invention. Further,
since numerous modifications and changes will readily occur to those skilled in the art, it is not
desired to limit the invention to the exact construction and operation illustrated and described,
and accordingly all suitable modifications and equivalents may be resorted to, falling within the
scope of the invention. '
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CLAIMS
What is claimed is:

1. A process, comprising:

capturing first graphics commands produced by a first application; and

combining the graphics commands with second graphics commands of a second
application to drive display har;:lware.

2. Aprocess as recited in claim 1, wherein the first graphics commands comprise 3D
and the display hardware produces a 3D\scene.

3. Aprocess as recited in claim 2, further comprising modifying the first graphics
commands responsive to the 3D scene.

4. A process as recited in claim 1, wherein the first and second graphics commands
drive a same graphics accelerator hardware.

5. Aprocess as recited in claim 1, further comprising driving another display hardware
with the first graphics commands.

6. A process as recited in claim1, further comprising storing the first graphics commands
in a memory that is shared among different processing threads, or distributed over the network

between several computer hosts.

7. Aprocess as recited in claim 1, further comprising transforming data of the first
graphics commands from a first application data type to a second application data type.

8. Aprocess as recited in claim 1, further comprising the second application creating a
3D media fusion environment.

9. Aprocess as recited in claim 1, wherein the capturing comprises copying function
calls arriving at call entry points of the first application.
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10. A process as recited in claim 9, wherein the combining further comprises passing
the function calls to entry points of the second application.

11. Aprocess as recited in claim 10, wherein the combining further comprises quifying
the function responsive to a 3D fusion environment.

12. A process as recited in claim 1, further comprising converting input events of the
display of the second application into input events of the first application.

13. A process as recited in claim 12, further comprising determining whether the input
event corresponds to the first application.

14. A system, comprising: -

graphics hardware producing display signals;

a display producing a display using the display signals;

a shared memory; and

a computer comprising:

a 3D graphics process generating 3D graphics commands;

an intercept process capturing the 3D graphics commands and storing the 3D graphics
commands in the shared memory;

a 3D environment process generating graphics commands for a 3D fusion environment
and supplying the graphics commands to the graphics hardware;

a conversion process converting the 3D graphics commands stored in the shared
memory into commands for the graphics hardware; and

a mapping process mapping inputs to the 3D fusion environment to the 3D graphics
process and the 3D environment process.

15. A system as recited in claim 14, further comprising:
second graphics hardware receiving the 3D graphics commands; and
a second display producing a display for the 3D graphics commands.

16. Adisplay, comprising:

a fusion display environment window created by a second process; and
a 3D object created by a first process and presented in the window.

18
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17. Adisplay as recited in claim 16, wherein data can be dragged and dropped into the
window.

18. Adisplay as recited in claim 16, wherein transparent collaboration on the same 3D
content of the window can be performed without altering or recompiling source code of a source
application.

19. A computer readable storage for controlling a computer and comprising a process of
capturing 3D graphics commands produced by a 3D graphics application, and combining the 3D

graphics commands with 3D environment graphics commands of a 3D environment graphics
application to drive display hardware.
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FIG. 14-F3
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