a2 United States Patent

Marowsky-Bree et al.

US008903917B2

US 8,903,917 B2
Dec. 2, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(1)

(52)

SYSTEM AND METHOD FOR
IMPLEMENTING A CLUSTER TOKEN
REGISTRY FOR BUSINESS CONTINUITY

Inventors: Lars Marowsky-Bree, Hamburg (DE);
Andrew John Beekhof, Hallbergmoos

(DE)

Assignee: Novell, Inc., Provo, UT (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1031 days.

Appl. No.: 12/477,364

Filed: Jun. 3, 2009

Prior Publication Data

US 2010/0312915 Al Dec. 9,2010

Int. CL.

GO6F 15/16 (2006.01)

GO6F 15/177 (2006.01)

HO4L 29/08 (2006.01)

GO6F 1120 (2006.01)

HO4L 29/14 (2006.01)

GO6F 11/14 (2006.01)

U.S. CL

CPC ....... HO4L 67/1097 (2013.01); GO6F 112035

(2013.01); HO4L 67/1004 (2013.01); HO4L
69/40 (2013.01); GO6F 11/1425 (2013.01)

(58) Field of Classification Search
USPC 709/203-205
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,449,641 B1* 9/2002 Moiinetal. .............. 709/220

7,325,046 B1* 1/2008 Novaesetal. ......... 709/220
2002/0049845 Al* 4/2002 Sreenivasanetal. ... 709/223
2007/0033205 Al* 2/2007 Pradhan ... 707/100
2008/0126829 Al 5/2008 Robertson et al.

* cited by examiner

Primary Examiner — Patrice Winder
(74) Attorney, Agent, or Firm — Haynes and Boone, LL.P

(57) ABSTRACT

Method and system for implementing a cluster token registry
(“CTR”) process in a cluster comprising a plurality of inter-
connected nodes each having a CTR associated therewith are
described. In one embodiment, the method comprises,
responsive to a client signing in at one of the nodes, the client
registering a cluster-wide token with the CTR of the node,
thereby casting a vote in connection with the token; determin-
ing whether prerequisites for granting the token have been
met; and, responsive to a determination that the prerequisites
have been met, granting the token. The method further com-
prises periodically determining whether the vote in connec-
tion with the token vote has been refreshed by the client and,
responsive to a determination that the vote in connection with
the token has not been refreshed by the client, de-registering
the client.

USPC . 709/205; 709/221; 709/225 20 Claims, 3 Drawing Sheets

A

oo,

i

10\21 i

o=l - BUIDINGA y——————- ~
" \ 1
H ETHERNET SWITCH L i
L P  sssssesens ; 7 ;
| 1108 }
1
! SERVER i {
L | |
Lo i |
1 : i
| o CM !
1 1 1
1 ! i
1 1 i
| 1061 i
1
i P s !
: 1 7 1 ) :
| FIBRE CHANNEL 1110 ! FIBRE GHANNEL !
! SWITCH ; i SWITCH :
i 1

R ! ! “~ 1
\ FIBRE CHANNEL DISK ARRAYS ) N FIBRE CHANNEL DISK ARRAYS )

—_—— e e e ———



US 8,903,917 B2

Sheet 1 of 3

Dec. 2, 2014

U.S. Patent

I 314
4 SAVHYY YSI0 TINNVHO 3Hgld /_ “\ SAVHHY YSI0 TANNYHO Fudld N
“ i~ I | < _._.w "
| I I
i HOLIMS | " HOLIMS I
L aNNvHO Juald | 0tk TANNYHD JHd14 !
I (e e Stemme 04 |
_ S LONYS |
_ I | I
“.@or i 190 "
_ “ | |
_ S S L, !
" T _
_ " _ I
| “ ! PLL
_ _ _ Vi
“ L ! ! IS |
_ I
i YIAWIS | mw: “ |
||||||||||| 1 ]
" 70l I ONYM 7Ok |
L HOLIMS 1INHIHLI ! _, HOLIMS 1INHIHL3 !
/
/u....\n.....L gONIOTING fm=mm—m—m—m -7 e { vonalng T.i...n/nun\
| -
Ok % B % L] ¢0t
i joda i aoad
EE Uodd EE gaod
looog A \ooao

00+




U.S. Patent Dec. 2, 2014 Sheet 2 of 3

200~ CLIENT SIGNS
ON AT NODE

v
202~ CLIENT REGISTERS A
CLUSTER-WIDE TOKEN

204

QUOR%

YES

i \i

NO

3

US 8,903,917 B2

205~ TOKEN GRANTED TOKEN REVOKED

| 212

TOKEN
REFRESHED

TOKEN DEREGISTERED
2101 FOR CLIENT

Fig. 2




US 8,903,917 B2

Sheet 3 of 3

Dec. 2, 2014

t24

U.S. Patent

£ DIA
w._-Al lllllllllllll [N SO U .
_N.._. i
9] - - R
S s
Gg« e e
LA e
L
/A ST -
A -
L'g et
9¢«e-
< >
WAL
Glie-
veie-
blie-
A
Ll
9]l e ——1-=
e
s o
|20 —— e
gl
el -
[AS
LE -
AR e
A
F'E -~
FLg-
¢ he—1-
Plhie-
oo AN — O Oy O~ WLo < ™ o o [=p} O M~ WO O < o N ~
RS NN T REREERE DD D¢ = = = =T ==



US 8,903,917 B2

1
SYSTEM AND METHOD FOR
IMPLEMENTING A CLUSTER TOKEN
REGISTRY FOR BUSINESS CONTINUITY

BACKGROUND

The realities of the current economic and business envi-
ronment dictate that organizations must have in place a strong
Business Continuity Plan (“BCP”) to ensure that, in the event
of'a man-made or natural disaster, the operations and activi-
ties of the organization can continue with little to no interrup-
tion. In general, a well-designed BCP specifies how an orga-
nization will recover and restore partially or completely
interrupted critical functions within a predetermined time
after a disruption.

Business Continuity Clustering (“BCC”) ensures that in
the event of an isolated server problem or even a severe
calamity, an organization’s systems function normally and
without noticeable service interruption. BCC connects and
synchronizes independent, often geographically dispersed,
clusters of servers, or nodes. If a data center’s cluster fails for
any reason, the other clusters assume the workload thereofto
ensure non-stop access to mission-critical data and resources.
In short, BCC provides synchronization among geographi-
cally dispersed clusters; however, BCC does not provide
managerial functions for individual resources per se. In other
words, in BCC, when a primary cluster fails, the entire opera-
tions of the primary cluster are moved to one or more second-
ary clusters without regard to the particular resources being
employed. In the case of split-site clusters, the cluster at each
site generally needs only to determine whether it is authorized
to take over the resources at the remote site. Normally, clus-
ters perform only local decisions based on a “quorum” con-
cept.

SUMMARY

One embodiment is a cluster token registry (“CTR”) pro-
cess for use in a cluster comprising a plurality of intercon-
nected nodes each having a CTR associated therewith. The
process comprises, responsive to a client signing in at one of
the nodes, the client registering a cluster-wide token with the
CTR ofthe node, thereby casting a vote in connection with the
token; determining whether prerequisites for granting the
token have been met; and, responsive to a determination that
the prerequisites have been met, granting the token. The pro-
cess further comprises periodically determining whether the
vote in connection with the token vote has been refreshed by
the client and, responsive to a determination that the vote in
connection with the token has not been refreshed by the
client, de-registering the client.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a BCC system 100 comprising a split site
cluster for implementing a cluster token register process
(“CTR”) in accordance with one embodiment.

FIG. 2 illustrates operation of each of the CTRs of FIG. 1
in accordance with one embodiment.

FIG. 3 is an exemplary operational scenario in accordance
with one embodiment.

DETAILED DESCRIPTION

To better illustrate the advantages and features of the
embodiments, a particular description of several embodi-
ments will be provided with reference to the attached draw-

20

25

30

35

40

45

50

55

60

65

2

ings. These drawings, and other embodiments described
herein, only illustrate selected aspects of the embodiments
and are not intended to limit the scope thereof. Further,
despite reference to specific features illustrated in the
example embodiments, it will nevertheless be understood that
these features are not essential to all embodiments and no
limitation of the scope thereof is thereby intended. Any alter-
ations and further modifications in the described embodi-
ments, and any further applications of the principles of the
embodiments as described herein are contemplated as would
normally occur to one skilled in the art. Furthermore, some
items are shown in a simplified form, and inherently include
components that are well known in the art. Further still, some
items are illustrated as being in direct connection for the sake
of simplicity and clarity. Despite the apparent direct connec-
tion, it is understood that such illustration does not preclude
the existence of intermediate components not otherwise illus-
trated.

One embodiment comprises a cluster token registry pro-
cess (“CTR”). As previously noted, normally, clusters per-
form only local decisions based on a “quorum” concept. In
one embodiment, a CTR on each node maintains a cluster-
wide flag, or “quorum token,” that expires if not refreshed
periodically to protect against the process failing and the
cluster assuming that it had a token that it no longer should
own. The services from the cluster site depend on the token
being set.

FIG. 1 illustrates a BCC system 100 comprising a split site
cluster. In particular, a single cluster is dispersed across two
geographically distant sites 102, 102'. It will be recognized
that, the cluster may be spread across more or fewer sites. The
site 102 includes an Ethernet switch 104 for connecting a
plurality of servers, or nodes, 114, to a wide area network
(“WAN”) 108. The nodes 114 are connected to a storage area
network (“SAN”) 110 via a fiber channel switch 112. Simi-
larly, the site 102" includes an Ethernet switch 104' for con-
necting a plurality of servers, or nodes, 114", to the wide area
network (“WAN”) 108. The nodes 114' are connected to the
storage area network (“SAN”) comprising a fiber channel 110
and multiple fiber channel disk arrays 111, 111", via a fiber
channel switch 112".

In accordance with features of one embodiment, each node
114 at the site 102 includes a cluster token registry process
(“CTR”) 106 executing thereon in a manner to be described;
similarly, each node 114" at the site 102' includes a CTR 106'
executing thereon. It will be recognized that each of the CTRs
106, 106' may comprise software instructions stored on at
least one computer readable medium executable a respective
one of the nodes 114, 114'".

All of the CTRs at a site, such as the CTRs 106 at the site
102, communicate with each other using a virtual synchrony
protocol (“VSP”) provided by the cluster infrastructure. As
will be recognized by those of ordinary skill in the art, using
VSP, each of the CTRs multicasts messages to the group of
CTRs, thereby guaranteeing that each member receives an
identically ordered stream of messages. To obtain consistent
behavior, each member acts on messages in the order they are
received members send their own messages to the group but
do not act on them until they are self-delivered back.

Referring now for the sake of example solely to the cluster
102, each CTR 106 maintains a list of defined cluster-wide
tokens, which may be used for a variety of purposes, such as
that described in U.S. patent application Ser. No. 12/495,059,
now U.S. Pat. No. 7,925,761, entitled SYSTEM AND
METHOD FOR IMPLEMENTING A DEAD MAN
DEPENDENCY  TECHNIQUE FOR  CLUSTER
RESOURCES, which is assigned to the assignee of the



US 8,903,917 B2

3

present application and is hereby incorporated by reference in
its entirety. Associated with each such token is a precondition
required in order for the token to be granted (e.g., a number of
votes required to make a quorum) and a maximum age per
vote prior to expiry thereof. This “maximum age” may be
pre-configured for certain special tokens or may be dynami-
cally configured by client processes. In operation, a client
process signs in, or “registers,” with the CTR on its local
node. If the client process would like to contribute, refresh, or
retract a vote towards a specific token, it sends an appropriate
message to the CTR. It will be noted that client processes
must periodically refresh their vote in order to prevent their
vote, and hence the associated token, from expiring. Upon
receipt of the message, the CTR sends the message as an
ordered message to the ring of CTRs. When a CTR notices
that a token has expired, i.e., because one of the votes has
expired, it sends a message to the ring of CTRs informing
them of this result and retracting the vote. The VSP of the
communication medium then ensures that all CTRs reach the
same decision. Upon receipt of a message, each CTR deter-
mines whether the implication of the message is a change of
token state; that is, whether the threshold of the minimum
number of votes required for the token has been crossed, and
sends a message to all client process informing them of the
state change, if any. This message includes token name and
the processes/nodes that contributed a vote toward it. Ifa CTR
receives a message to retract an already retracted vote, which
could happen if several CTRs notice in parallel that a vote
expired, the CTR silently discards the message. VSP guaran-
tees thatall CTRs see all messages in the same order, ensuring
a consistent decision across the cluster. To map basic quorum
to this model, each CTR contributes one vote to the “quo-
rum”, with an expected vote count of (N/2)+1, where N is
maximum number of possible CTR processes. Typically, N is
pre-configured and set at the same time as other token
attributes during registration of the token. The period before
process votes expire serves to dampen quorum transitions.

FIG. 2 illustrates operation of each of the CTRs at each
node in accordance with one embodiment. Step 200 occurs
responsive to a new client signing in on the node. In step 202,
the client registers a cluster-wide token, for example, “quo-
rum token.” As used herein, registering a token constitutes a
vote in connection with the token. In step 204, the prerequi-
sites quorum token are checked and a determination is made
whether the prerequisites have been met. In particular, a
determination is made in step 204 whether the calculation of
votes for the quorum token has been met. If it is determined
that the token prerequisites have been met, the token is
deemed granted in step 205 and execution proceeds to step
206, in which a determination is made whether the token has
been refreshed by the client. As used herein, refreshing the
token is equivalent to refreshing the node’s vote in connection
with the token. If so, execution returns to step 204; otherwise,
execution proceeds to step 208, in which a determination is
made whether a timeout has occurred. If not, execution
returns to step 206; otherwise, execution proceeds to step 210.
In step 210, the token is de-registered for the client, at which
point execution returns to step 204. If it is determined in step
204 that the token prerequisites have not been met, the token
is revoked in step 212.

FIG. 3 illustrates an exemplary scenario in accordance with
one embodiment. Each event occurring at Node 1 is desig-
nated by a reference numeral 1.x. Similarly, each event occur-
ring at Nodes 2 and 3 is designated by a reference numeral 2.x,
3.x, respectively. Finally, each event occurring relative to a
token registry is designated by a reference numeral Tx.
Referring to FIG. 3, at a time t1, an event 1.1 occurs, at which

20

25

30

35

40

45

50

55

60

65

4

aclient signs in at node 1. At atime t2, an event 2.1 occurs, at
which a client signs in at node 2. At a time t3, an event 1.2
occurs, at which the client at node 1 registers a cluster-wide
token designated “quorum.” For purposes of example, it will
be assumed that the token requires at least 2 votes, token_re-
fresh is set to 5 seconds, token_timeout is set to 10 seconds,
and token_delay is set to 15 seconds. Token_refresh specifies
how often the token must be refreshed by the node to avoid
revocation. Token_delay specifies the delay between the
token’s conditions being satisfied and the actual token grant.
Token_timeout is the interval after which a node’s quorum
token “vote” (e.g., event 3.2) is deemed lost or withdrawn
(e.g., event T.6). At atime t4, an event 2.2 occurs, at which the
client at node 2 registers the quorum token described above.
At a time t5, an event T.1 occurs, at which time the token’s
pre-conditions are met. However the token is not yet granted
due to the delay introduced by token_delay.”

At a time t6, an event 3.1 occurs, at which a client signs in
at node 3. At a time t7, an event T.2 occurs, at which the
quorum token is granted after expiration of token_delay (i.e.,
15 seconds) and is “owned” by two nodes; i.e., nodes 1 and 2.
At atime t8, an event 3.2 occurs, at which the client at node 3
registers the quorum token. At a time t9, an event T.3 occurs,
at which the quorum token is retained and is owned by the
three nodes (nodes 1, 2, and 3).

At atime t10, events 1.3, 2.3, and 3.3 occur, at which the
client at each of the nodes 1, 2, and 3 refresh the token upon
expiration of the time period token_refresh. At a time t11, an
event T4 occurs, at which the quorum token is retained by the
three nodes. At a time t12, an event 2.4 occurs, at which the
client at node 2 de-registers the quorum token. Subsequent to
the time t12 but before a time t13, a fault event <F> occurs,
separating node 1 from nodes 2 and 3.

At a time t13, an event 2.5 occurs, at which the client at
node 2 signs out. Also at time t13, an event T5 occurs, at
which the quorum token is retained and owned by nodes 1 and
3. Atatimetl4, an event 1.4 occurs, at which the client at node
1 refreshes the quorum token. Also at a time t14, an event 3.4
occurs, at which the client at node 3 refreshes the quorum
token. Atatime t15, an event 2.6 occurs, at which the client at
node 2 signs in again. Shortly thereafter, at a time t16, an
event T6 occurs, at which the token vote for the client at node
3 times out after expiration of token_timeout, and an event
T.6' occurs, at which the token vote for the client at node 1
times out after expiration of token_timeout. At a time t17, an
event 2.7 occurs, at which the client at node 2 registers the
quorum token. At atime t18, an event T7 occurs, at which the
quorum token is revoked with respect to node 1, and an event
T7' occurs, at which the quorum token is revoked with respect
to node 3. At a time t19, an event 3.5 occurs, at which the
client at node 3 refreshes the token. Also at time t19, an event
1.5 occurs, at which the client at node 1 refreshes the token;
however, as node 1 was separated from nodes 2 and 3 by the
fault <F>, the node 1’s client’s vote is refreshed in node 1’s
token registry, which is not “seen” at nodes 2 and 3. Similarly,
node 1 does not “see” the token registries for nodes 2 and 3.

At a time 120, an event 2.8 occurs, at which the client at
node 2 refreshes the quorum token. At a time t21, an event 3.6
occurs, at which the client at node 3 refreshes the token.
Simultaneously, at the time t21, an event 1.6 occurs, at which
the client at node 1 refreshes the token at node 1’s token
registry; however, as described above, the token registries of
nodes 2 and 3 do not “see” node 1’s refresh of the token. Ata
time t22, an event 2.9 occurs, at which the client at node 2
refreshes the quorum token. At atime t23, anevent T.8 occurs,
at which the quorum token is granted after expiration of
token_delay and is owned by nodes 2 and 3. Finally, at a time



US 8,903,917 B2

5
123, events 1.7 and 3.7 occur. At event 1.7, at which the client
at node 1 refreshes the token; however, as described above,
the token registries of nodes 2 and 3 do not “see” node 1’s
refresh of the token. Similarly, at event 3.7, the client at node
3 refreshes the quorum token.

While the preceding description shows and describes one
or more embodiments, it will be understood by those skilled
in the art that various changes in form and detail may be made
therein without departing from the spirit and scope of the
present disclosure. For example, various steps of the
described methods may be executed in a different order or
executed sequentially, combined, further divided, replaced
with alternate steps, or removed entirely. In addition, various
functions illustrated in the methods or described elsewhere in
the disclosure may be combined to provide additional and/or
alternate functions. Therefore, the claims should be inter-
preted in a broad manner, consistent with the present disclo-
sure.

What is claimed is:

1. A cluster token registry (“CTR”) method comprising:

registering a cluster-wide token with a CTR associated
with a node of a plurality of interconnected nodes in a
cluster, the registering being performed by a client in
response to the client signing in at one of the nodes;

determining whether prerequisites for granting the token
have been met by determining whether a required num-
ber of votes are currently cast in connection with the
token;

responsive to a determination that the prerequisites have
been met, granting the token;

periodically determining whether the vote in connection
with the token vote has been refreshed by the client; and

responsive to a determination that the vote in connection
with the token vote has not been refreshed by the client,
de-registering the client,

wherein the registering comprises setting at least one of a
quorum parameter, a token_delay parameter, a token-
_refresh parameter, and a token_timeout parameter, and

wherein the vote in connection with the token vote is
refreshed by the client independent of communication
from the CTR associated with the node.

2. The method of claim 1 further comprising, responsive to

a determination that the prerequisites have not been met,
revoking the token.

3. The method of claim 1 wherein the required number of
votes is equal to (N/2)+1, wherein N is equal to a maximum
number of the nodes of the cluster.

4. The method of claim 1 wherein the token_delay param-
eter specifies a time delay between a time at which the token
prerequisites are met and a time at which the token is granted.

5. The method of claim 1 wherein the token_timeout
parameter specifies a time delay between a time at which the
vote in connection with the token was last refreshed and a
time at which the vote in connection with the token is deemed
withdrawn.

6. The method of claim 1 wherein the token_refresh param-
eter specifies a frequency with which the vote in connection
with the token must be refreshed to avoid being deemed
withdrawn.

7. A system comprising:

a cluster comprising a plurality of interconnected nodes
each having a cluster token registry (“CTR”) process
associated therewith;

a CTR of a node of the plurality of interconnected nodes
responsive to a client signing in at the node causing the

20

25

30

35

40

45

50

55

60

65

6

client to register a cluster-wide token with the CTR of
the node, thereby casting a vote in connection with the
token;

the CTR of the node determining whether prerequisites for

granting the token have been met by determining
whether a required number of votes are currently cast in
connection with the token;

the CTR of the node responsive to a determination that the

prerequisites have been met granting the token;

the CTR of the node periodically determining whether the

vote in connection with the token vote has been
refreshed by the client;

the CTR of the node responsive to a determination that the

vote in connection with the token has not been refreshed
by the client de-registering the client,

wherein the vote in connection with the token vote is

refreshed by the client independent of communication
from the CTR of the node.

8. The system of claim 7 further comprising the CTR ofthe
node responsive to a determination that the prerequisites have
not been met revoking the token.

9. The system of claim 7 wherein the required number of
votes is equal to (N/2)+1, wherein N is equal to a maximum
number of the nodes of the cluster.

10. The system of claim 7 wherein registering comprises
setting at least one of a quorum parameter, a token_delay
parameter, a token_refresh parameter, and a token_timeout
parameter.

11. The system of claim 10 wherein the token_delay
parameter specifies a time delay between a time at which the
token prerequisites are met and a time at which the token is
granted, the token_timeout parameter specifies a time delay
between a time at which the vote in connection with the token
was last refreshed and a time at which the vote in connection
with the token is deemed withdrawn, and the token_refresh
parameter specifies a frequency with which the vote in con-
nection with the token must be refreshed to avoid being
deemed withdrawn.

12. A computer program product comprising non-transi-
tory computer-readable medium having stored thereon
instructions executable by a computer for implementing a
cluster token registry (“CTR”) process in a cluster comprising
a plurality of interconnected nodes each having a CTR asso-
ciated therewith, the instructions executable by the computer
for causing the computer to:

responsive to a client signing in at one of the nodes, causing

the client to register a cluster-wide token with the CTR
ofthe node, thereby casting a vote in connection with the
token;

determine whether prerequisites for granting the token

have been met by determining whether a required num-
ber of votes are currently cast in connection with the
token;

grant the token responsive to a determination that the pre-

requisites have been met;
periodically determine whether the vote in connection with
the token vote has been refreshed by the client; and

de-register the client responsive to a determination that the
vote in connection with the token has not been refreshed
by the client,

wherein the vote in connection with the token vote is

refreshed by the client independent of communication
from the CTR of the node.

13. The computer program product of claim 12 wherein the
instructions further cause the computer to revoke the token
responsive to a determination that the prerequisites have not
been met.



US 8,903,917 B2
7

14. The computer program product of claim 12 wherein the
required number of votes is equal to (N/2)+1, wherein N is
equal to a maximum number of the nodes of the cluster.

15. The computer program product of claim 12 wherein the
instructions for causing the computer to register the client 5
further comprise instructions for causing the computer to set
a token_delay parameter.

16. The computer program product of claim 15 wherein the
token_delay parameter specifies a time delay between a time
at which the token prerequisites are met and a time at which 10
the token is granted.

17. The computer program product of claim 12 wherein the
instructions for causing the computer to register the client
further comprise instructions for causing the computer to set
a token_refresh parameter. 15

18. The computer program product of claim 17 wherein the
token_refresh parameter specifies a frequency with which the
vote in connection with the token must be refreshed to avoid
being deemed withdrawn.

19. The computer program product of claim 12 wherein the 20
instructions for causing the computer to register the client
further comprise instructions for causing the computer to set
a token_timeout parameter.

20. The computer program product of claim 19 wherein the
token_timeout parameter specifies a time delay between a 25
time at which the vote in connection with the token vote was
last refreshed and a time at which the vote in connection with
the token vote is deemed withdrawn.

#* #* #* #* #*



