
© 2020552

© B1 OCTROOI
(2?) Aanvraagnummer: 2020552 © Int. Cl.:

H04L 29/06 (2018.01)
© Aanvraag ingediend: 8 maart 2018

© Afsplitsing van aanvraag , ingediend

© Voorrang:

© Aanvraag ingeschreven:

© Aanvraag gepubliceerd:

© Octrooi verleend:
13 september 2019

© Octrooischrift uitgegeven:
15 november 2019

© Octrooihouder(s):
Forescout Technologies B.V. te EINDHOVEN

© Uitvinder(s):
Elisa Costante te EINDHOVEN

© Gemachtigde:
ir. J.C. Volmer c.s. te Rijswijk

54) Attribute-based policies for integrity monitoring and network intrusion detection

© A method of detecting anomalous behaviour in data traffic on a data communication network, a first host and a
second host being connected to the data communication network, the data traffic on the data communication
network forming a link between the first host and the second host, the method comprising:
a) parsing the data traffic to extract protocol field values of a protocol message of the data traffic;
b) deriving, from the extracted protocol field values, attribute values of attributes of one of the first host, the second
host, and the link;
c) selecting from a set of models, a model relating to the one of the first host, the second host, and the link,
wherein the selected model comprises a plurality of attributes to describe the one of the first host, the second host,
and the link, wherein at least one of the attributes is a semantic attribute, the semantic attribute expressing a
semantic meaning for the one of the first host, the second host, and the link,
d) updating the selected model with the derived attribute values, if the derived attribute values are not featured in
the selected model upon selection;
e) assessing if the updated, selected model complies with a set of attribute based policies, each attribute based
policy defining a security constraint of the data communication network based on at least one of the attributes of
the first host, the second host or the link, and
f) generating an alert signal in case the attribute based policies indicate that the updated selected model violates
at least one of the attribute based policies.

NL
 B

1 2
02

05
52

Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het
octrooischrift komt overeen met de oorspronkelijk ingediende stukken.

P33194NL00

5

10

15

20

25

30

Attribute-based policies for integrity monitoring and network intrusion detection

The present invention relates to a method of detecting anomalous behaviour in data traffic on a

data communication network and an intrusion detection system configured to perform the

method.

A data communication network, also identified as a computer network, may be understood as a

group of possibly heterogeneous devices (e.g. personal computers, tablets, phones, servers,

controllers, actuators) that are connected together and can exchange data with each other over

a communication channel. Companies rely more and more on computer networks to develop

and maintain their core business. Likewise, Industrial Control Systems (ICS) are also

increasingly adopting Information Technology (IT) technologies to improve the efficiency of their

processes. Although this trend improves efficiency and business possibilities, it also increases

the exposure to cyber-attacks. Intrusion Detection system (IDS) are widely-deployed security

tools used to detect cyber-attacks. A network-based IDS (NIDS) relies on the analysis of

network traffic for its detection technique.

Typically, a network monitoring system, such as a Network Intrusion Detection System can be

distinguished in: i) blacklisting systems and ii) whitelisting systems.

Blacklisting systems maintain a database of well-known attacks and raise an alert when

malicious network events that match a known attack are detected. These systems have the

advantage of exhibiting very few false positives. On the other hand, blacklisting systems are

limited in the sense that they can only detect well-known attacks for which a well-defined

specification is available. This means they are unable to detect 0-days attacks, namely attack

that exploits vulnerabilities still unknown. Further, the number of signatures that must be

managed and checked increases with the number of attacks.

On the other hand, whitelisting systems maintain a model of the normal behavior of a system

and compare the current activities with it: in case a mismatch occurs, an alert is raised.

Whitelisting solutions are becoming quite popular since they have the great potential of

detecting both known and unknown attacks. Unfortunately, they typically generate a high

number of false positives which are expensive to handle. Typically, whitelisting NIDSes adopt

2

5

10

15

20

25

30

an approach where a model of normal behavior is created (e.g. automatically learned or

manually specified) over a few weeks’ time period while the detection (that uses such model)

goes on forever. This general approach to whitelisting may lead to the following problems.

There is no structured way to deal with legitimate changes caused by the intrinsic dynamism of

any monitored network where things keep changing, legitimate behavior evolves and new

legitimate devices might appear. This lack of adaptability causes two issues: (i) every

(legitimate) change generates false positives which are expensive to handle since they require

operators’ manual inspection; and (ii) the model used by the whitelisting system needs to be

manually updated for each (legitimate) change in the monitored traffic, an expensive and

complex process. Some of the existing solutions allow for small manual updates to the model

over time but generally any behavior outside the model would trigger an alert.

The invention aims to provide an anomalous behavior detection that may be adapted more

easily to changes, e.g. upgrades, in the network.

According to an aspect of the invention, there is provided a method of detecting anomalous

behaviour in data traffic on a data communication network, a first host and a second host being

connected to the data communication network, the data traffic on the data communication

network providing a link between the first host and the second host, the method comprising:

a) parsing the data traffic to extract protocol field values of a protocol message of

the data traffic;

b) deriving, from the extracted protocol field values, attribute values of attributes of

one of the first host, the second host, and the link;

c) selecting from a set of models, a model relating to the one of the first host, the

second host, and the link, wherein the selected model comprises a plurality of

attributes to describe the one of the first host, the second host, and the link,

wherein at least one of the attributes is a semantic attribute, the semantic

attribute expressing a semantic meaning for the one of the first host, the second

host, and the link,

d) updating the selected model with the derived attribute values, if the derived

attribute values are not featured in the selected model upon selection;

e) assessing if the updated, selected model complies with a set of attribute based

policies, each attribute based policy defining a security constraint of the data

3

5

10

15

20

25

30

communication network based on at least one of the attributes of the first host,

the second host or the link, and

f) generating an alert signal in case the attribute based policies indicate that the

updated selected model violates at least one of the attribute based policies.

On the data communication network, data communication takes place between a first host and

a second host. The connection between the first host and the second host forms a link between

the hosts. The hosts may be any device capable of data communication, such as computers,

mobile telephones, wireless devices, programmable devices such as PLC, or any other device.

The hosts may take any possible role, such as a server, a client, a printer, a camera, a PLC, an

HMI, a SCADA server, etc. The hosts may be a sender or a receiver in the data

communication, or both a sender and a receiver. The data communication network may be any

data communication network, such as a wired or wireless network and may make use of any

type of communication protocol. The data communication (the link) between the first host and

the second host may be a one-to-one link, or a one-to-many, such as may be the case when

broadcasting data from a first host to plural second hosts.

The terms data traffic, link, network message, network message field, attribute, host model, link

model, model update, attribute based policy and alert may be defined as follows:

• data traffic: data traffic (or network traffic) is the data moving across a network at a

given point of time. Data traffic is mostly comprised of network messages.

• host: a network host, or simply host, is an element (computer or other device)

connected to a network;

• link: a network communication taking place between two network elements. Typically, a

link has a host source and a host target of the communication;

• network message: an element of data traffic, typically an information unit that is

transmitted by one host to another over a network;

• network message field: network messages are composed of several fields that carry

the message information. To every field it is associated a length (in bit) for its

representation, a value and a data type. For instance, source IP (32 bits or 128 bits,

depending on the IP version either 4 or 6) and destination IP (32 bits or 128 bits,

depending on the IP version either 4 or 6) are examples of fields in an IP message.

4

5

10

15

20

25

30

• attribute an attribute is a feature representing a host, a link or the contextual

environment. The attribute is obtained by mapping one or several network message

fields (possibly over several network messages at different points in time) to a more

abstract category. The attributes describe protocol generic features, i.e. features in

terms which are generic, thus not dependent of a specific protocol as may be applied.

• host model: a list of attributes used to describe the host wherein at least one attribute

is a semantic attribute

• link model: a list of attributes used to describe the link wherein at least one attribute is

a semantic attribute

• model update: the process of mapping network message fields to the host- and the

link-mocels. At every new network message, the model update process applies

heuristics and/or aggregation and/or classification techniques to update the current

host- and link-models by considering previous values of the attributes and the new

information carried by the current network message.

• attribute-based policy: a statement in the form if-condition-then-action[obligation],

where the condition contains attributes referring to the host and/or link models, the

action defines what has to be done in case of a positive match of the policy with the

data traffic (e.g., deny or permit) and obligation (optional) defines additional actions to

be taken in case of a match (e.g., send email= , set priority=high,

set criticality = medium). The attribute based policies define the condition and what has

to be done in a protocol generic way, i.e. not specific to the protocol as may be applied

in the communication on the data communication network, e.g. the communication

between the first host and the second host via the link.

name@domain.com

• whitelist policy: an attribute-based policy that describes acceptable data traffic (action

==permit);

• blacklist policy: an attribute-based policy that describes unacceptable data traffic

action ==deny);

• alert: semantic-enriched and context-aware information that expresses a possible

situation of danger of the system. For instance, an alert can express the fact a certain

threat to the network has been identified.

• policy-check: the process of matching attribute-based policies against data traffic and

take the action described by the policy in case of match.

mailto:name@domain.com

5

5

10

15

20

25

30

• protocol: a set of rules and guidelines for communicating data. Rules are defined for

each step and process during communication between two and more computers

(hosts). Networks follow these rules to transmit data.

The data traffic is parsed, such as by a parser. The parser extracts protocol fields and their

corresponding values from the data stream. The parser may relate to any suitable protocol

language. The term parsing may be understood as an analysis by a computer of a sentence or

other string of words into its constituents, resulting in a parser tree showing their syntactic

relation to each other, which may also contain semantic and other information.

Network protocols may include, as non-limiting examples, one or more of the following: low-

level protocols such as Ethernet frames, wireless (like WI-FI, Bluetooth or LTE) frames or

serial-bus (RS-232/485, CAN bus) frames; IP headers; TCP/UDP/ICMP/IGMP headers; higher-

level protocols such as HTTP, SMTP, FIX, LDAP SSL/TLS: protocols intended for carrying

industrial data, such as DNP3, MODBUS/TCP, MODBUS/RTU, BACnet, ANSI C12.22,

IEC61850; and others.

Attribute values are derived from the extracted protocol field values. The attributes values may

be derived from data (protocol fields) at any layer of the protocol. The attribute values express

values of attributes. The attributes represent features of the first host, the second host and/or

the link. For example, some of the attributes may relate to the first host, some of the attributes

may relate to the second host and some of the attributes may relate to the link between the first

host and the second host. The attributes values are protocol generic, i.e. the values form

descriptions that are not specific to a certain protocol. For example, a read operation is formed

by 4 in the Step 7 protocol, 45 in the IEC-104 protocol, and 23, 3 in the Modbus protocol. The

term read operation thus forms a protocol generic description of 4 in the Step 7 protocol, 45 in

the IEC-104 protocol, and 23, 3 in the Modbus protocol. Hence the attribute values provide

generic descriptions of the first host, the second host and the link.

Examples of host attributes are: operating system, vendor, role, firmware, model, applications,

services, type of network.

Examples of link attributes are: protocol, source port, destination port, function, message type,

payload parameters.

Plural models are provided. One of the models represents the first host, one of the models

represents the second host and one of the models represents the link between the first host

and the second host. Each model comprises a plurality of attributes, each model may be

6

5

10

15

20

25

30

formed by a collection of attributes. The models may for example initially be empty Each model

may be associated, by an identifier, with a particular host or a particular link. When data traffic

has been parsed, providing attribute values of the first host, second host and/or link, the

respective model that relates to the respective one of the first host, second host and link is

updated by adding the attribute value, in case the attribute value is not featured in the

respective model yet. Otherwise the model is left as is, or a level of confidence of the

respective attribute value may be increased. The model of a host may include, but not being

limited to, one or more of IP addresses, MAC address, MAC vendor, model, firmware, serial

number, applications, ports, protocols, services, sent data, received data, role, operating

system, first recorded activity, last recorded activity, network, criticality, sensitivity, owner,

geographical location, labels, username, agent name, URL(s), etc.. The model of a link may

include, but not being limited to, one or more of source port, destination port, Layer 1 protocol,

Layer 2 protocol, Layer 3 protocol, Layer 4 protocol, Layer 7 protocol, message code, message

type, number of connections, number of bytes, etc., where Layer refers to the ISO/OSI Layers .

The models are held against a plurality of attribute based policies. Each policy, i.e. each

attribute based policy, may define an outcome in case a condition is met, the condition being

defined in terms of one or more of the attributes of the first host, the second host and/or the

link. The outcome of the attribute based policy relates to an allowability of the data traffic. Each

attribute based policy thus defines security constraints on the basis of one or more host

attributes and/or link attributes. For example, if one or more of the policies indicate unallowable

behavior, an alert may be raised.

Examples of attribute based policies may comprise: a guest device may not send reprogram

commends to the e-mail server. The printer device may not transmit a scanned document to an

external e-mail server. The printer device may send operating status data to a remote

maintenance printer server. A Windows computer may not act as an e-mail server. A Windows

computer running a user profile may not have administrator rights. A Windows computer

running an administrator profile may send an update command to an e-mail server. The policies

may thus form whitelisting and/or blacklisting policies. The policies define conditions and

actions in a protocol generic way. Although the above examples provide the policies in a

generic description, them may be drafted in terms of if condition then action. For example, the

policy “The printer device may not transmit a pdf document to an external e-mail server” may

be noted as “If printer device transmits a pdf document to an external e-mail server” then

“generate alert message”. In this example, the printer device and the external e-mail server

may form host attributes, while pdf document transmission may refer to link attributes. The set

7

5

10

15

20

25

30

of policies may comprise policies relating to various hosts, links, etc. Thus, for a particular

protocol message, a particular model, etc., only a subset of the attribute based policies may be

relevant. The set of attribute based policies may define a security policy of the data traffic on

the data communication network.

The outcome of the policies hence provides a result relating to the allowability of the data

traffic. If the data traffic is found to be not allowable, an alert signal may be generated. The alert

signal may form a warning transmitted to an operator, may form an alert message logged in a

database, may form an optical warning (such as on a display) and/or an audible warning (such

as a beep or other acoustical alarm) to a user/operator, etc.

The process of parsing, extracting protocol field values, deriving attribute values, building

models, comparing against the attribute based policies and generating the alarm signal may be

performed automatically, i.e. in an embodiment, the process does not require human

intervention.

As the detecting of anomalous behavior is performed on the basis of attribute based policies,

the criteria for data traffic to be allowable or not may be defined in terms of attribute values.

Hence, the criteria may be defined at a higher level of abstraction, which may provide that the

criteria as set by the policies not just apply to one specific device/circumstance, but may have a

more general scope. The attribute based policies may apply rules at a higher level of

abstraction, and may correspondingly judge events that occur, even when changes have been

carried out in the data communication network.

For example, in case an attribute based policy holds that a printer/scanner may not forward a

document to an external device, the policy may not just be applied to one specific

printer/scanner, but may apply in any situation where a network host is recognized as being a

printer/scanner, and a model being correspondingly updated based on the attribute values.

As another example, in case a policy defines that a reprogram command may not be sent from

an external device to a PLC (i.e. may not be sent from a device external to a local network),

then any host that is modelled as being a PLC may be subject to this policy. Thus, when the

network is updated and a new PLC is connected, the policy may apply to this new PLC in case

the attribute of being a PLC can be extracted from the new PLC also. Similarly, in case the new

PLC appears to make use of a different protocol, e.g. appears to communicate using the IEC-

104 protocol instead of for example the Modbus protocol, the existing policy may be applied,

despite the fact that a similar operation may have a different coding in different protocols. Thus,

in case the attribute based policy would define that a PLC may respond to a read operation

8

5

10

15

20

25

30

only when the read operation has been sent from a local device, the policy may be applied

even when a new PLC which communicates using a different protocol would be found in the

network.

Thus, by building models of the host and link which define attributes of the host and link,

attribute based policies may asses the allowability of the data traffic at a higher level of

abstraction, enabling to define policies at a relatively high level of abstraction. Hence, the

policies may be applicable when changes in the network have taken place, as similar or the

same attributes may be extracted from data traffic, in the case of some changes to the network.

Thus, making use of the attribute based policies for monitoring, intrusion detection, detecting

anomalous behavior etc, may promote to detect an intrusion even when a certain degree of

changes in the network have been carried out.

In the prior art the model of normal behavior is typically defined per single network entity (i.e.

host) generally identified by its IP address. With this approach, the presence of a new host

would be always initially considered a threat even though it might just be the result of a network

upgrade. Although some NIDSs do support the creation of models for classes of elements (e.g.,

allow FTP access to all File servers), the classes of elements need to be defined (and

maintained) manually, an expensive and error-prone task. This means that it is not possible to

define models for classes of similar elements or elements with similar behavior. This also

means that, every time a new host is added to the network, it is necessary to define a new set

of models that determine what is acceptable and what is not acceptable for the given host.

Furthermore, using attribute based policies allows a passive observation, thus not introducing

additional data traffic and not disturbing a behavior of the hosts and the data network.

As attributes of the hosts and/or links may be used, a behavior (i.e. who does what?) may be

observed, as the sender, receiver and the link between sender and receiver may be taken into

account, and as the host and link attributes allow to define the policies in terms of behavior of

the hosts.

The detecting of anomalous behavior may include one or more of: intrusion detection,

discovering of network assets, characterizing network assets, identifying malicious activities by

users, identifying malicious activities by network assets, etc. In an embodiment, the detecting of

anomalous behavior provides for intrusion detection.

9

5

10

15

20

25

30

Applications may include the Internet of Things, Home Automation, Building Automation,

Industrial Control Systems networks (oil&gas, electric-power generation, transmission and

distribution, drinking and waste water, pharmaceutical/life sciences, chemical and

petrochemical, entertainment, etc.), Industry 4.0 and manufacturing networks, office and IT

networks, data center networks, in-car networks, car-to-x communications.

Some illustrative examples are provided below:

In an Internet of Things application, attribute extraction may be used to understand if a host is a

blood pressure sensor, a step counter, a geo-location device and to detect intrusions or

malicious activities by matching against attributes-based policies such as ‘Patient’s biometrics

(ECG, heart rate, respiration rate and activity Level) can only be sent to authorized devices’ or

‘Wearable devices can only have outbound communications’

In a Home Automation application, attribute extraction may be used to understand if a host is a

presence sensor, a fridge, an oven, a coffee machine, a thermostat, a smart phone etc., and to

detect intrusions or malicious activities by matching against attributes-based policies such as

‘A fridge cannot be connected to the Internet’ or ‘The oven can only be switched on or off from

a known smart phone’

In a Building Automation application, attribute extraction may be used to understand if a host is

a light, a thermostat, a controller, an IP-camera a card reader etc., and to detect intrusions or

malicious activities by matching against attributes-based policies such as ‘An IP-Camera

cannot receive inbound communication’ or ‘A light cannot receive more than one switch on/off

command per minute’ or ‘A controller can only be reprogrammed over a secure connection

(e.g., SSL, HHTPS)’;

In a Industrial Control Systems application, attribute extraction may be used to understand if a

host is a SCADA, a PLC, an engineering workstation, an HMI, etc., and to detect intrusions or

malicious activities by matching against attributes-based policies such as ‘A PLC can only be

reprogrammed by an engineering workstation’ or ‘a PLC can only be queried by a SCADA

system’;

In an Industry 4.0 and manufacturing application, attribute extraction may be used to

understand if a host is a robot arm, a 3D printer, a final product, a controller, a DCS, etc., and

to detect intrusions or malicious activities by matching against attributes-based policies such

as ‘A robot arm can only receive commands from a DCS in the same network’

In an office and IT application, attribute extraction may be used to understand a host is a

printer, a workstation, a virtual server, a rack server, a smart phone, an FTP server, etc., and

10

5

10

15

20

25

30

to detect intrusions or malicious activities by matching against attributes-based policies such

as ‘A printer can only receive print messages’ or ‘An FTP server can only receive files from

workstation and not from smart phones’

In a car-to-x application, attribute extraction may be used to understand if a host is a vehicle, a

traffic light, a controller, speed meter, a pedestrian, etc., and to detect intrusions or malicious

activities by matching against attributes-based policies such as ‘A traffic light can receive

command only from a controller’ or ‘A vehicle can speak to another vehicle only to

communicate its location’

At least one of the attributes is a semantic attribute, the attribute value of the semantic attribute

being a sematic attribute value, the semantic attribute expressing a semantic meaning for the

host and/or link to which the sematic attribute relates.

The term semantic attribute may be understood as an implicit attribute, it may not be derived

directly from a field of the protocol message. An attribute is implicit if it can only be derived by

performing an analysis that could possibly involves multiple messages or multiple

communications. Implicit attributes can be referred to as semantic attributes, since they allow

the semantic-enrichment of the information we have about hosts and/or links. For instance, a

host’s role, its Operating System (OS) or its Criticality are example of implicit attributes. In fact,

to derive the role of a host one should analyze multiple network activities, understand what

layer 7 protocols it speaks, whether it only starts or also serves new connections, which ports

are used involving that host, etc. In the same way, attributes such as the message type (e.g.,

whether the link represents a request for data, a command, a reprogramming action, etc.) or

the link type (e.g., whether the link is between hosts in the same collision domain or it goes

across networks) are examples of implicit attributes for the link.

Accordingly, the term semantic attribute may be defined as follows:

A semantic attribute is a feature representing a host, a link or the contextual environment that is

obtained by mapping one or several network message fields (possibly over several network

messages at different points in time) to a more abstract category. This representation leads to

the creation of a high-level semantic model of network activities. For instance, the role of a host

and the message type of a link are examples of semantic attributes: they can be obtained by

looking at several message field values over several messages and help to reason over

network activities with a higher level of abstraction. For instance, rather than saying IP 1 cannot

communicate with IP 2 (low level of abstraction), one can say the PLC can only communicate

with the SCADA or the coffee machine cannot communicate outside of the local network.

11

5

10

15

20

25

30

A semantic attribute may be described as an attribute which value cannot be extracted from a

direct map to a protocol field value. The extracting of an attribute value of a semantic attribute

may require to take into account for example the context, previous history, other protocol field

values and/or other attributes value, in order to be able to assign a value to the semantic

attribute. Examples of semantic attributes include but are not limited to:

• the role of a host (e.g., if it is a PLC, a master, a slave, a coffee machine, a printer, a

workstation, a web server, etc.)

• the operating system of a host (e.g., if it is a Linux, a Windows, a proprietary operating

system, etc.)

• the type of network of a host (e.g., if the host is in a public or private network, in an

enterprise or control or field network, etc.)

• the vendor of a host (e.g., if it is a Cisco, a Siemens, a Dell device etc.)

• the criticality of a host (e.g., if it is a high, medium or low criticality asset)

• the operation of a link (e.g., if it is a Read, a Write, a Notify, a Reprogram, operation,

etc.)

• the type of protocol of a link (e.g. if it is an operational, a vendor specific or an open

protocol, etc.)

• the message type of a message

Using semantic attributes, a higher level semantic model of network activities may be created,

enabling to define the attribute based policies as semantic based policies, thus allowing to

define the policies at a higher level of abstraction.

Attributes extraction may be described as to continuously and passively extract explicit and

implicit attributes from the network traffic. Attributes can refer either to network assets, i.e.,

hosts, or to network communications, i.e., links. Attributes are derived by passively listening to

the traffic, without injecting any additional traffic that although could help the analysis, could

also disturb the normal operation of the network. The extraction of implicit attributes allows to

enrich network events with semantic and contextual information. For instance, rather than

having an event saying that /P1 speaks to IP2, thanks to the attributes extraction we can say

we have seen a host of role Terminal speaking to a host of role PLC with a link containing a

reprogramming message type. In turns, this opens the door to the writing of attribute-based

detection policies.

12

5

10

15

20

25

30

Attribute-based policies may be described as to discern acceptable from non-acceptable

network activities by relying on non-obvious, automatically extracted hosts and links attributes.

An example of attribute-based policy is the following: Only hosts with role Engineering

Workstations (EW) can send reprogram messages to host with Role PLC’. i) the attributes on

which the policies is defined are automatically extracted from the network. This relieves the

user from the burden of manually associating a role to each host; ii) using attribute-based

rather than IP-based policies allow to write semantic-aware policies that, in a single statement,

might encompass several hosts (i.e. all those matching the attributes of the policy); and iii) by

using attributes, policies are expressed at a higher level of abstraction which increase their

understandability and portability.

An example of the above described process of parsing, attribute extraction, model updating,

holding the model(s) against attribute based policies, etc. is provided below.

Network traffic on a data network is monitored.

A host meta-model is provided which comprises the following attributes: {IP, operating system,

vendor, role, firmware, type of network}. A link meta-model is provided which comprises the

following attributes: {source IP, destination IP, protocol, source port, destination port,

operation, number of occurrences}

A network link L1 from host H1 to host H2 is observed. The network traffic is parsed and the

following protocol fields are extracted from the network message: {protocol name = Modbus,

source IP = 10.1.1.1, destination IP = 10.1.1.2, source port = 502, destination port = 502,

function code = 16}

The host and link models related to respectively H1, H2 and L are selected. Assuming the

models retrieved have the following current state:

Model for H1 = {I P = 10.1.1.1, operating system=?, vendor = Siemens, role=?,

firmware=?, type of network=?} where the symbol ‘?’ means there is no value for the

attribute

Model for H2 = {IP = 10.1.1.2, operating system=?, vendor = Siemens, role=?,

firmware=?, type of network=?}

Model for L is empty since L1= {source IP=?, destination I P=?, protocol?, source

port=?, destination port=?, operation=?, number of occurrences =0} where the symbol

‘?’ means there is no value for the attribute

13

5

10

15

20

25

30

Attribute values are extracted from the protocol field. For instance:

attributes forH1 = {IP = 10.1.1.1, role=master}. Note that the attribute role is a

semantic attribute since it is extracted by (in the present example) relying on heuristics

such as, ‘if there is a Modbus link with function code equal to 16 from host Hx to host

Hy, and the vendor for role Hy is equal to Siemens, then Hx has role equals to master

while host Hy has role slave’

attributes for H2 = {IP = 10.1.1.2, role=slave}. Note that the attribute role is a semantic

attribute since it is extracted by (in the present example) relying on heuristics such as, ‘if

there is a Modbus link with function code equal to 16 from host Hx to host Hy, and the

vendor for role Hy is equal to Siemens, then Hx has role equals to master while host Hy

has role slave’

attributes for L1 = {source IP=10.1.1.1, destination IP=10.1.1.2, protocol=Modbus,

source port=502, destination port=502, operation= change setpoint, number of

occurrences =1}. Note that the attribute operation is a semantic attribute since it is

extracted by (in the present example) relying on heuristics such as ‘If there is a Link L

where protocol name is equal to Modbus and function code is equal to 16 then the

value for the semantic attribute operation is equal to ‘change setpoint”

The selected models for H1, H2 and L are updated with the new attribute values. Hence:

Model for H1 = {IP = 10.1.1.1, operating system=?, vendor = Siemens, role=master,
firmware=?, type of network=?} where the symbol ‘7’ means there is no value for the

attribute

Model for H2 = {IP = 10.1.1.2, operating system=?, vendor = Siemens, role=slave,
firmware=?, type of network=?} where the symbol ‘7’ means there is no value for the

attribute

Model for L1={ source IP=10.1.1.1, destination IP=10.1.1.2, protocol=Modbus, source

port=502, destination port=502, operation=change setpoint, number of occurrences

=1} where the symbol ‘7’ means there is no value for the attribute

It is assessed if the updated models comply with existing attribute-based policies. For instance,

assuming that the attribute-based policy set consist of one policy saying that ‘If the source host

vendor is equal to Siemens and its role is equal to master and the destination host vendor is

equal to Siemens, then the source host can send ‘change setpoint1 operations to the host

destination’. In this case the updated models comply with the policy hence no alert is

generated.

14

5

10

15

20

25

30

Another example is provided below.

Network traffic on a data network is monitored.

A host meta-model comprises the following attributes: {IP, operating system, vendor, role,

firmware, type of network}.

A link meta-model comprises the following attributes: {source IP, destination IP, protocol,

source port, destination port, operation, number of occurrences}

A network link L2 from host H3 to host H4 is observed.

The network traffic is parsed.

The following protocol fields are extracted from the network message: {protocol name =

Modbus, source IP = 10.1.1.1, destination IP = 10.1.1.2, source port = 502, destination port =

502, function code = 16}

The host and link models related to respectively H1, H2 and L are selected. It is assumed the

models retrieved have the following current state:

Model for H2 = {IP = 10.1.1.1, operating system=?, vendor = Dell, role=?, firmware=?,

type of network=?} where the symbol '?’ means there is no value for the attribute

Model for H3 = {IP = 10.1.1.2, operating system=?, vendor = Dell, role=?, firmware=?,

type of network=?}

Model for L2 is empty since L= {source IP=?, destination IP=?, protocol?, source

port=?, destination port=?, operation=?, number of occurrences =0} where the symbol

‘?’ means there is no value for the attribute

Attribute values are extracted from the protocol field. For instance:

Attributes for H3 = {IP = 10.1.1.1, role=?}. Note that the attribute role in this case is not

assigned since the heuristic, ‘if there is a Modbus link with function code equal to 16

from host Hx to host Hy, and the vendor for role Hy is equal to Siemens, then Hx has

role equals to master while host Hy has role slave' is not met
Attributes for H4 = {IP = 10.1.1.2, role=?}. Note that the attribute role in this case is not

assigned since the heuristic, ‘if there is a Modbus link with function code equal to 16

from host Hx to host Hy, and the vendor for role Hy is equal to Siemens, then Hx has

role equals to master while host Hy has role slave’ is not met
Attributes for L2 = { source IP=10.1.1.1, destination IP=10.1.1.2, protocol=Modbus,

source port=502, destination port=502, operation= change setpoint, number of

occurrences =1}. Note that the attribute operation is a semantic attribute since it is

extracted by (in the present example) relying on heuristics such as ‘If there is a Link L

15

5

10

15

20

25

30

where protocol name is equal to Modbus and function code is equal to 16 then the value

for the semantic attribute operation is equal to ‘change setpoint"

The selected models are updated for H3, H4 and L2 with the new attribute values. Hence:

Model for H3 = {IP = 10.1.1.1, operating system=?, vendor = Dell, role=?, firmware=?,

type of network=?} where the symbol ‘7’ means there is no value for the attribute

Model for H4 = {IP = 10.1.1.2, operating system=?, vendor = Dell, role=?, firmware=?,

type of network=?} where the symbol ‘7’ means there is no value for the attribute

Model for L2 = {source I P=10.1.1.1, destination I P=10.1.1.2, protocol=Modbus, source

port=502, destination port=502, operation=change setpoint, number of occurrences

=1} where the symbol ‘7’ means there is no value for the attribute

It is assessed if the updated models comply with existing attribute-based policies. For instance,

assuming the attribute-based policy set consist of one policy saying that ‘If the source host

vendor is equal to Siemens and the destination host vendor is equal to Siemens, then the

source host can send ‘change setpoint operations to the host destination’. In this case the

updated models does not comply with the policy hence an alert is generated.

In an embodiment, at least one semantic attribute value is derived from a combination of

protocol field values obtained from at least two protocol messages transmitted over the data

communication network at different points in time. Hence, the semantic attribute may be

derived by observing a behavior and/or by combining data as transmitted at different points in

time, thus to be able to derive attributes that cannot be derived from a single protocol field as

such. For example, attributes relating to a behavior of a second host may be derived form a

protocol message sent from the first host to the second host in combination with the response

as sent from the second host to the first host. The semantic attributes derived at different points

in time may hence allow to derive more attribute related information and/or to derive higher

level abstractions from the information retrieved from the protocol data fields.

In an embodiment, the set of models comprises a model for the first host, a model for the

second host and a model for the link, wherein each of the models comprises at least one

semantic attribute. The models of a host respectively a link may be built using attribute values

of semantic attributes of the host respectively the link. Accordingly, the models may be built

taking semantic attribute values of semantic attributes into account. Using the semantic

attributes, the models may be more informative, more generic, and the models may enable the

creation of higher level of abstraction policies.

16

5

10

15

20

25

30

In an embodiment, the policies each define an outcome in case a condition is met, the condition

being defined in terms of a respective at least one of the attributes having a defined attribute

value, the outcome of the attribute based policies indicating if the selected model is allowable

or not allowable. By writing down the policies in the form of a condition and an outcome in case

the condition is met, the policies may conveniently be programmed and be amended when

learning, combining, updating policies as will be described in further detail below. The outcome

of the policy may for example comprise “allowable”’ or “not allowable” or “quarantine” or “log”,

or “quarantine, log”.

In an embodiment, the condition of each policy comprises at least one semantic attribute value.

Hence, each policy may have a higher level of abstraction, may be more easily

understood/interpreted by a user, and may be more generic.

In an embodiment, b) comprises applying rules to the protocol field values, the rules assigning

attribute values to attributes based on the protocol field values. Rules may allow to

automatically assign attribute values on the basis of extracted protocol field values. An example

of such a rule could be that hosts using the operating system “Linux” and having incoming

messages of protocol IMAP are to be assigned the attribute of having the role of an email

server. The rules may be domain specific and may be provided based on domain specific

knowledge.

In an embodiment, b) comprises direct mapping protocol fields on attribute values. Attributes

may be derived by direct observation of network data traffic, Attributes such as IP address may

be directly derived from the protocol field values.

In an embodiment, b) comprises applying a heuristic to the data traffic and deriving the

semantic attribute value using the heuristic.

In another embodiment, b) comprises applying a classifier to the data traffic and deriving the

semantic attribute value using the classifier.

The method may further comprise determining a level of confidence of the classifier and

wherein the attribute value is only derived from the classifier when the level of confidence is

above a predetermined confidence level. The attribute value obtained using the heuristic may in

an embodiment have priority over the attribute value obtained using the classifier.

17

5

10

15

20

25

30

Each semantic attribute can be derived by applying either heuristics or classifiers. Typically, the

results obtained by heuristics have priority over classifiers. An example of heuristic used to infer

the attribute Role is as follows: “If a conversation using the DNS protocol is observed, then the

target host of such link has role DNS server”. Clearly, several such heuristics can be put in

place. In addition, heuristics can be global or local to a specific deployment (e.g., heuristics that

are true only in a given sector). On the other hand, a classifier is a model that given a set of

features as input is able to associate a value (or class) to an attribute as output. Classifiers are

typically generated by applying machine learning algorithms to labeled datasets, namely

datasets where the association between features and class is known. Later, these classifiers

can be used to infer the class on un-labeled data. Generally, classifiers associate a confidence

level to their guessing: to keep our attribute extraction component highly reliable, we only

resolve the attribute if the class guessed by the classifier has a high level of confidence (e.g.,

more than 90%). Note that, it is possible that certain implicit attributes can stay unresolved for a

certain time, e.g., until enough information to assess their value is available.

In an embodiment, no stimulus is injected into the data communication network. By passively

listening to the data communication taking place on the network, no disturbance of the data

communication on the network takes place. Thus, on the one hand no additional load is placed

in the network, while on the other hand a better insight may be gained into the behaviour of the

data communication network. As no stimuli are injected, it may take some time to gather

desired information. Some messages may only be sent sporadically. Hence, the data traffic

may be monitored over a relatively long period of time, e.g. hours, days, weeks, to extract the

protocol field values that may enable to derive the attribute values as described.

In an embodiment, steps b), c), d) and e) are performed for the first host, for the second host

and for the link, the set of models comprising a model relating to the first host, a model relating

to the second host and a model relating to the link, the attribute based policies of the set of

attribute based policies defining conditions in terms of the attributes of the first host, the

attributes of the second host and the attributes of the link.

In an embodiment, the set of attribute based policies comprises whitelist policies, the outcome

of the whitelist policies indicating if the selected model is allowable. Hence, the whitelist policies

enable, in case of changes in the network configuration, such as updates, new devices, etc., if

allowable behaviour is observed, as the attribute based models and attribute based policies

18

5

10

15

20

25

30

may allow to define allowable behaviour at a high level of abstraction. Hence, legitimate

changes, such as upgrades or legitimate new devices, may, using the attribute based policies,

be found to show behaviour similar to the behaviour monitored for existing devices, respectively

before the upgrade, thus may be found to exhibit similar or the same attributes, thus to comply

with the whitelist policies. Hence, false alarms as a result of regular updates, upgrades, etc,

may to a large extent be avoided.

In another embodiment, the set of attribute based policies comprises blacklist policies, the

outcome of the blacklist policies indicating if the selected model is not allowable. Similarly to

above, once a particular behaviour of a host has been defined as malicious, similar attacks or

similar attempted attacks may provide that similar or the same attributes may be derived there

from, allowing to detect possibly malicious activities, even if the activities do not literally

correspond to the activities corresponding to the blacklist.

In case the model relating to the first host, the second host or the link cannot be matched to

any of the attribute based policies, the data communication relating to the respective one of the

first host, the second host and the link is stored in a quarantine.

The goal of the Attribute extraction component is to find as much information as possible about

the monitored network, a single host, a communication link, etc., by continuously and passively

monitoring the network traffic.

Attribute extraction can happen in different ways:

1. via an expert’s direct assignment: attributes are user-determined, through direct

assignment (e.g., “hostX has vendor equal to Honeywell and role equal to PLC version

Y”) or through the use of rules “all PLC at location Y have value K for attribute Z”).

2. via direct network mapping: attributes can be derived by direct observation of network

traffic (e.g., the IP address can be extracted from a specific network message field).

3. via heuristics and classifiers: there are rules mapping observables to attributes; where

observables may be unsolicited (passive sniffing) or solicited (active discovery). Rules

can be either created by an expert (heuristics) or extracted from the data with machine

learning or data mining algorithms (classifiers).

Attributes can refer either to host or to communication links, and they can be either explicit or

implicit. An explicit attribute can be directly observed, e.g., from network packets fields. For

example, the MAC and the IP addresses are explicit host attributes since they are contained in

specific fields of layer 2 datagrams and layer 3 packets. Likewise, the protocol, the port, or the

19

5

10

15

20

25

30

source and target are examples of explicit attributes for a link. To extract explicit attributes, one

can apply in-depth protocol inspection techniques. On the other hand, an attribute is implicit if it

can only be derived by performing an analysis that could possibly involves multiple messages

or multiple communications. Implicit attributes can be referred to as semantic attributes, since

they allow the semantic-enrichment of the information we have about hosts and/or links. For

instance, a host’s role, its Operating System (OS) or its Criticality are example of implicit

attributes. In fact, to derive the role of a host one should analyze multiple network activities,

understand what layer 7 protocols it speaks, whether it only starts or also serves new

connections, which ports are used involving that host, etc. In the same way, attributes such as

the message type (e.g., whether the link represents a request for data, a command, a

reprogramming action, etc.) or the link type (e.g., whether the link is between hosts in the same

collision domain or it goes across networks) are examples of implicit attributes for the link.

The present invention may adopt a passive approach that extract attributes by passively

sniffing network traffic. Using active probes has the main disadvantage of generating additional

traffic that in environments with limited resources and strong constraints such as industrial

networks might not be acceptable. In addition, by using a passive approach, the attribute

extraction might not be so straightforward: the network events necessary to match a heuristics

might never show up, hence the present invention may take countermeasure to address this

inconvenience (e.g., by using machine learning techniques as described elsewhere in the

present document).

The present invention may make use of the role (and the other attributes) to characterize the

normal behavio, of a host, and detects deviations from normality as possible infection (attacks).

This means the present invention does not need to define malicious roles, since the violations

of whitelist policies will automatically detect infections.

The present solution may infer implicit attributes based on characteristics of the traffic by

adopting a passive rather than an active approach. Using active probes generates additional

traffic that might not be acceptable in certain environments;

The present solution may apply an approach (heuristics and classifier) not only to infer role but

to extract several implicit attributes (e.g., role, vendor, operating system, location,

functionalities, and message type).

20

5

10

15

20

25

30

The present solution uses the role (and the other attributes) to characterize the acceptable

behavior, then we detect deviations from normality as possible infection (attacks). This means

the present solution does not need to define malicious roles, since the violations of whitelist

policies will automatically detect infections.

The attribute-based policy detection aims to enforce policies based on explicit and implicit hosts

and links attributes.

Attribute-based policies are used to express domain-specific security constraints. For instance,

in industrial control system, typically only Engineering Workstations can change the logic of

Programmable Logic Controller (PLC), while SCADA or DCS only issue commands to read or

write PLC memory. This domain knowledge can be translated into attribute-based policies and

an intrusion detection system can raise an alert in case a policy is violated. Example of

attribute-based policies are as follows:

Only hosts with role Engineering Workstation are allowed to send a reprogram

command to host with role PLC.

- A reprogram command cannot be send during the night.

- A reprogram command cannot be send over a cross-network link.

As can be seen, to express these policies, both host and link attributes are necessary. In

addition, it is desirable to define a language that is simple to understand, highly expressive,

able to identify conflicting policies and scalable with the increase of number of policies. Also,

such language may be needed to be able to account for both positive and negative policies. In

fact, positive policies permit the listing of a whitelist of acceptable behavior, while negative

policies permit the definition of a blacklist of non-acceptable behavior.

A possible way that can be used to express policies is in form of if condition then action

statements. Conditions can be boolean conditions that can evaluate true or false and can be

defined on link, hosts, or context attributes (e.g., time, location). Actions can be used to express

whether the network activity is acceptable or not acceptable (e.g., allow or discard). In addition,

policies can optionally have obligations (what to do in case the policy is matched). Example of

obligations include send email to admin user Jeff, set priority to medium, set criticality to high.

Attribute-based policies can be created in two-ways, a) by an expert with domain knowledge

and b) automatically from the raw traffic. In the first case, it is intended to provide visual aid to

the human expert to craft policies. For instance, the user could pick objects and attribute from a

graphical interface rather than writing the policy as a text. In the second case, is aimed at

21

5

10

15

20

25

30

developing an algorithm that automatically learns policies from network data, leveraging the

semantic enrichment provided by the attribute extraction component.

The Attribute-based policy P may be defined as follows:

Given a set of host- (Af/), link- (AL) and context-related (Ac) attributes A = AH u AL u Ac =<

ai = vai> a2 = va2>-->an = van > where a.; eA has value vci, e Vi with i e [1,n], we define an

attribute-based policy as:

P = < if < ATTRIBUTE OP VALUE [{LOGICOP ATTRIBUTE OP VALUE}]> then ACTION [{, OBLIGATION}]>

where:

• attribute can be any host-, link- or context-based attribute e A;

• op can be any comparison operation (e.g., >, <, ψ,=, etc.);

• value is any value να, e V, the attribute can take;

• logicOp is any logical operator (e.g.,and, or, not)

• action defines what has to be done in case of a positive match of the policy (e.g., deny

or permit)

• obligation defines additional actions to be taken in case of a match (e.g., send email=

, set priority=high, set criticality = medium).name@domain.com

Note that the argument of the //clause is an attribute-based boolean expression that refine the

applicability of the policy: meaning that only if the evaluation of the expression is true the action

will be enforced. Also, since the formalism [...] indicates optional elements and {...} indicates

repetition of elements, an attribute- based policy can have one or more attributed-based

expressions (i.e., attribute op value) and zero or more obligation. At least one of the

attributes in the if clause may be an implicit (i.e., semantic) attribute.

As such, attributes based policies may be used in Access Control (AC), where access to a

resource is granted or not according to the attributes possessed by the requester. In access

control, attributes are usually substantiated by certificates and according to how attributes are

modeled, different languages have been proposed and adopted. However all the available

solutions rely on the manual definition of attributes and no solution that defines attributed-based

policies by relying on the automatic extraction of attributes from network data is available.

mailto:name@domain.com

22

5

10

15

20

25

30

Thanks to the wide number of host and link attributes that may be taken into account, the

policies as described in the present document can be much more fine-grain than traffic-flow

based policies. For instance, while with flow-based policies one could only say that two hosts

can exchange a certain number of bytes over a certain port, with the presently disclosed

attribute-based policies one can express constraints that go much deeper, and that can say

what kind of messages can or cannot be exchanged. For instance, one could say that PLC

cannot be reprogrammed during the night, or that PLC cannot be reprogrammed over a cross­

network link.

in the present invention, host and link attributes may be automatically extracted from the

network traffic. This mean that no credentials mechanism needs to be in place to adopt the

attribute-based policies.

According to the invention, attributes do not need to be manually set per each component since

they can be automatically inferred from raw traffic by using the attribute extraction component.

The present invention combines the automatic and passive extraction of attributes from raw

traffic with attribute-based policies to create semantic-aware policies to discern acceptable from

malicious network activities. A single attribute-based policy can refer to several entities (all

those sharing the same attributes). The attribute based policies are easy to write and

understand.

In an embodiment, in case the model relating to the first host, the second host or the link

cannot be matched to any of the whitelist policies, the data communication relating to the

respective one of the first host, the second host and the link is stored in a quarantine. Storing

the data traffic that does not comply to a whitelist policy in quarantine, allows to suspend

judgement as to allowability of the data traffic. The data traffic as stored in quarantine may be

applied to learn new policies and/or to update existing policies as will be described in more

detail further below.

In an embodiment, the method further comprises providing a consistency rule, the consistency

rule defining consistent combinations of at least two attributes of one of the model relating to

the fist host, the model relating to the second host and the model relating to the link, comprising

• verifying, on the basis of the attributes derived from the monitored data traffic, if

the monitored data traffic complies to the consistency rule,

23

5

10

15

20

25

30

• storing the data traffic in a quarantine in case the data traffic does not comply to

the consistency rule.

Using the consistency rule, it can be verified if the attributes of a host are consistent with each

other.

The consistency rule may accordingly be defined as a rule that defines acceptable attribute

values or combination of attribute values in a host/link model. The consistency rules may on the

one hand be applied to detect inconsistencies, before even applying existing attribute based

policies. Thus, inconsistencies may be detected and the related data traffic may be stored in

quarantine in case an inconsistency is detected. Furthermore, when updating the attribute

based policies from the data traffic stored in quarantine, as will be described in more detail

further below, the consistency rules may be used to avoid to introduce errors in the host/link

models during the update process.

In an embodiment, the detecting, on the basis of the attributes derived from the monitored data

traffic, if the monitored data traffic complies to the consistency rule, is performed before step e).

Thus, data traffic may be handled accordingly, e.g. stored in quarantine, in case it appears that

the consistency rules are not complied with.

In an embodiment, the consistency rule includes at least one of a time of occurrence of the data

traffic and a location of occurrence of the data traffic. Hence, the consistency rules may take

account of time and location thus allowing to refine the consistency rules.

In an embodiment, the consistency rule relating to the first host comprises an attribute of

another host, preferably an attribute of the second host. Hence, the consistency rules relating

to one host may take into account attributes of another host. For example, if the first host is a

PLC and the second host is a PRINTER, then they cannot have the same value for the attribute

NETWORK. In other words, PLCs and PRINTERS cannot be placed in the same network

In an embodiment, a group of hosts is defined, wherein the method comprises determining if

the host to which the attributes relate, is comprised in the group, and applying the consistency

rule in case the host to which the attributes relate, is comprised in the group. Thus, consistency

rules may be defined locally, e.g. relating to a group of e.g. similar hosts. The group may be

defined using e.g. a clustering algorithm.

24

5

10

15

20

25

30

In an embodiment, the consistency rules are learned using machine learning, preferably using

association rules. The consistency rules may be predefined, e.g. entered by an operator based

on experience, security regulations, etc.. Alternatively, the consistency rules may be learned

from the data traffic.

Consistency rules can be of various types, such as:

general rules dictated by experience to e.g., identify combinations of attributes values

that are not permitted (e.g., “a host cannot be at the same time a PLC and an

Engineering workstation ”, or “the role of a host cannot be terminal if the vendor is

Honeywell”) ;

local rules to the particular site to e.g., identify combinations of attributes values that are

necessary, (e.g., “all host with role equal to PLC have vendor equal to Honeywell ”

implying that if there is a host with attributes role equal to PLC and attribute vendor

equal to Rockwell, this would be in violation of the rule;

may depend on security or governance policies, or on regulations;

may change over time, e.g., when the governance policy of a system can apply;

may depend on parameters of different kind, including time, location, and attributes of

other hosts;

may be either global, i.e., the consistency rule applies to every host in the network, or

local, i.e., the consistency rule is only true for a certain neighborhood, namely, a group

of similar hosts. Clearly, to define a local rules it is necessary to define a metric for

assessing the similarity between hosts and thus identify neighborhood of similar hosts

(e.g., by using clustering algorithms).

In many cases, a consistency rule will be a function that maps the attributes of a host into the

set consistent, inconsistent. More generally, a consistency rule is a function that maps all

attributes of all hosts and their environment into a set of acceptable values. This gives an

indication of the health or consistency state of the system at hand and it may also give an

indication on actions that may be taken in case an inconsistency is identified. For instance, it

could be useful to have rules mapping attributes into a set in which the members could be

consistent, inconsistent, suspicious, problematic etc. Consistency rules can be either manually

defined by an expert or inferred from the data. In the latter case, machine learning algorithms

can be used (e.g., association rules) to distinguish normal from unusual combination of

attributes.

25

5

10

15

20

25

30

Thus, applying consistency rules, the following may be achieved:

• guarantee that the algorithm used to automatically extract attributes, does not put the

system in a semantically invalid state.

• apply consistency check to detect when an attribute is ’strange’ not on its own but with

respects to other attributes of the same host or of the same neighborhood.

• machine learning techniques to distinguish normal from unusual values or combination

of attributes values.

The terms quarantine, quarantine and detection algorithm, consistency rule, and inconsistency

detection may be described as follows:

quarantine: the quarantine contains hosts and links that are in a limbo: the judgment of

whether they are legit or not is suspended until there is not enough evidence to classify them.

We represent the quarantine as a list of tuples containing the following elements:

o - an identifier for the tuple ;

o - a target, namely the host or the link that is in quarantine, with the associated

host/link model

o - the support to the hypothesis 0 that the host/link in quarantine is legit;

o - the support to the hypothesis 1 that the host/link in quarantine is malicious;

o - the list of events composing the evidence used to compute the support. Events

can be extracted from data traffic or can be generated by the system or provided

by the user. Example of events can include: New Host, New Host Attribute

Value, New Link, New Link Attribute Value, Alert, User feedback, etc.

o - the data traffic corresponding to the host/link in quarantine.

detection and quarantine algorithm: the process to detect incident and quarantining hosts

and/or links. The process works as follows:

o new data traffic is available,

o parse data traffic to extract host and link attributes

o select the corresponding hosts and/or link model(s)

o if there is no existing host/link model to associate with the data traffic, initialize

the model and add the hosts and/or links to the quarantine.

o otherwise, check for attribute inconsistencies

o in case of inconsistency add the correspondent hosts and/or links to the

quarantine

26

5

10

15

20

25

30

o otherwise match the network message with the attribute-based policies

o in case of match with a blacklist policy, raise an alert

o in case of match with a whitelist policy, do nothing

o in case the match cannot be evaluated (e.g., because not all the attributes in the

correspondent host/link models are yet featured) then put the host and/or link in

the quarantine

consistency rule: a rule that defines acceptable attribute values or combination of attribute

values in a host/link model. Consistency rules are used to avoid to introduce errors in the

host/link models during the update process.

inconsistency detection: the process of identifying consistency rule violations;

Inconsistency detection to verify that the values of the attributes we use to characterize a

host are not in a conflicting state. For instance, a host cannot have at the same time the

operating system equal to Linux and the Vendor equal to ABB. Examples of consistency rules

include the following: i) a combination of attributes values that is not possible, e.g., if Role is

Terminal then Vendor cannot be Honeywell;

ii) a combination of attributes values that is necessary, e.g., if Role is PLC then the Vendor has

to be Honeywell; iii) an attribute that has only certain values in a certain domain, e.g., Vendor

is only Dell and Honeywell in a certain network; and iv) a combination of attributes values that

is usual according to the attributes values of the neighborhood, e.g., all the hosts in a

neighborhood only speak certain protocols. The present aspect prevents the algorithm used to

extract hosts’ attributes to put the model in a semantically invalid state. In addition, in case a

malicious host is trying to mimic the behavior of a legit host, consistency check help to detect

such misbehavior. This is because the malicious host cannot perfectly mimic another host (e.g.,

information about the vendor and the operating system are difficult to mimic). Hence, its mimic

attempt will likely result in a consistency check violation.

In an embodiment, the method comprises learning the attribute based policy from the data

traffic, the learning comprising:

• monitoring the data traffic,

• deriving host attributes and link attributes from the monitored data traffic,

27

5

10

15

20

25

30

• transform the data traffic into a dataset of attribute-based transactions,

• generate rules by taking into account a frequency of item sets of the host

attribute values and link attribute values in the dataset, each one of the rules

comprising an antecedent defining a condition and a consequent defining an

action,

• determine for each rule a confidence that specifies how often the rule appears to

be true, and a support that specifies how often the item set underlying the rule

appears in the dataset,

• select rules based on a level of support and a level of confidence,

• translating the rules into the attribute based policy by

• defining the attribute-based policy condition by joining the antecedent

and the consequent of the selected rules, and

• defining the attribute-based policy action based on the level of support

and/or the level of confidence.

Policies may be learned e.g. in a learning phase. In the learning phase, (training) data traffic is

provided and policies are learned from the (training) data traffic. The (training) data traffic may

be formed by regular data traffic as observed during normal operation. Preferably, no stimuli

are injected, i.e. the data traffic is gathered by passively listening to the communication taking

place on the data communication network. Also, marking by an operator certain events as

allowable or not allowable may be omitted as the policies may be learned in an automatized

way.

The data traffic is monitored and attributes are extracted from the data traffic in a way as

described above. The attributes may be direct and/or indirect (semantic) attributes. Host

attributes as well as link attributes are extracted in order to have context available to enable the

generation of meaningful policies. The attributes as extracted are stored as a dataset of

attribute based transactions, in other words, instead of storing that a certain IP address sends

code OxOA to another IP address, it may be stored that a terminal of the vendor Dell using

Windows as operating system sends a read from file message to another terminal of the vendor

Dell using Windows as operating system, the link between the terminals using the SMB

protocol. Thus, the attributes as derived from the data traffic for transactions, i.e. for network

activities, are stored in the form of the dataset. The dataset is applied to generate rules.

Thereto, machine learning may be applied to extract rules in the dataset. Association rules are

derived from the dataset. The machine learning takes account of a frequency of item sets, i.e. a

28

5

10

15

20

25

30

frequency of sets of attributes stored in the dataset. Thus, relations between items in the

dataset may be discovered making use of the frequency of occurrence of such sets of items,

i.e. set of attributes.

Each one of the rules comprises an antecedent defining a condition and a consequent defining

an action, i.e. the action associated with the condition. Both the condition and the action are

defined in terms of one or more of the attributes. For example, the condition may specify a

certain protocol, while the action specifies a port (as it appears, from the data traffic, that the

data traffic using the specific protocol usually makes use of that particular port).

For each rule, a confidence and a support is determined. The confidence defines how often the

rule appears to be true. The support defines how often an item set, i.e. a set of attributes

underlying the rule, occurs in the dataset.

Then, the level of confidence and the level of support are used to select rules. In order for a

rule to be translated into a policy, the rule is required to have a certain level of support. For

example, only rules with a certain minimum level of support (e.g. a predetermined threshold)

are translated into a policy. The condition of the policy is formed from a combination of the

antecedent and consequent of the rule. The outcome of the policy (e.g. allow, deny) is formed

from the level of confidence. The rules that are often found to be true, i.e. with a high level of

confidence may result in an allow action, while the rules that are true only in a low number of

cases, i.e. with a low level of confidence may result in a deny action.

Thus, policies may be learned from the data traffic, whereby sets of attributes providing rules

that are mostly true may provide attribute based policies defining allowable traffic and sets of

attributes providing rules that are mostly not true may provide attribute based policies defining

traffic that is to be denied. Accordingly, in an embodiment, the selecting rules based on the

level of support and the level of confidence comprises:

selecting, for whitelist policies, rules having the level of confidence above a predetermined

positive level of confidence and having the level of support above a predetermined level of

support.

Similarly, in an embodiment, the selecting rules based on the level of support and the level of

confidence comprises:

selecting, for blacklist policies, rules having the level of confidence below a predetermined

negative level of confidence and having the level of support above a predetermined level of

support.

29

5

10

15

20

25

30

The rules may be generated from the attributes using any machine learning and/or data mining

technique. In particular, association rules and frequent item extraction may be applied.

Accordingly, in an embodiment, the generating rules from the host attributes and the link

attributes comprises applying association rules to the host attributes and the link attributes.

Furthermore, the generating rules from the host attributes and the link attributes comprises

applying frequent items set extraction to the host attributes and the link attributes.

In an embodiment, the translating the rules into the attribute based policy further comprises:

• reducing the number of policies by removing redundant policies, a policy being

redundant if its condition includes the whole condition of another policy.

• in case of conflict where two policies share the same condition while the two policies

comprise different actions, remove the policy that has less support and confidence.

The number of policies as generated may be reduced, as redundant policies may be removed,

assuming that the policies have a same action. In case of different actions, i.e. in case

contradicting behaviour may occur, the policy that has less support and/or confidence may be

removed..

learning of attribute-based policy may be described as the process of automatically

extracting attribute-based policies from data traffic. The process consisting of the following

steps:

1. extraction: capture data traffic from the network.

2. pre-processing: analyze data traffic and transform it into a dataset of attribute-based

transactions;

3. rule mining: apply rule mining algorithms (e.g., association rules) to the dataset in

order to extract association rules. Association rules are generated by taking into

account the number of times that certain item set of attributes are observed together

into the dataset. The support of a rule specifies how frequently an item set appears in

the dataset, while the confidence (expressed in percentage) is an indication of how

often the rule has been found to be true.

4. translation to policy: the rules generated by machine learning algorithms give an

indication of what attributes are more often seen together (antecedent) and what they

imply (consequent). This information needs to be translated into attribute-based policies

in line with our definitions. For a rule to become a policy, in our method we have to

30

5

10

15

20

25

30

decide what is the minimum confidence and support and whether a certain level of

confidence and support lead to a positive (i.e., allow) or negative (i.e., deny) policy. For

instance, let assume positive policies will be generated exclusively for rules with

confidence higher than 99% and negative rules will be generated exclusively for rules

with confidence lower than 1%.

5. policy reduction: some of the policies generated at the previous step can be

redundant. A policy Px is redundant if its condition includes the whole condition of

another policy Py and the action of the policy is the same. In such a case, Px can be

removed.

6. policy conflict resolution: a policy Px is in conflict with a policy Py if they share the

same condition to which correspond two different actions. To resolve the conflict, one of

the two policies need to be removed. To decide which policy to remove, the conflict

resolution process will take into account the confidence and the support of the rules that

led to the conflicting policies.

Learning of attribute-based policies may be described as to automatically infer new policies by

passively observing network traffic. We use learning techniques to automatically extract

attribute-based policies. Human intervention -to define policies for distinguishing acceptable

from non acceptable behavior - is limited or not required.

It may automatically infer new policies by passively observing network traffic, e.g., by learning

the relationships between certain attributes and certain behavior and automatically extract

policies from this.

Attributes-based policies can be either defined by a human expert, in which case extensive

knowledge about allowed and not allowed behavior is required, or inferred from the data with a

learning approach. While the first approach is time consuming and error-prone, the second can

be completely automatized and reduces the risks of error (e.g., duplicated or overlapping

policies). The present invention proposes an automatic technique to overcome the laborious

manual process of defining policies by deriving the policies from the observation of the network

traffic flow. Specifically, we mine the whitelist policies from the observation of benign network

messages, and the blacklist policies from the observation of network activities under attack

(when possible).

31

Table 1: Association Rules Example

ID Confidence (%) Antecedent Consequent Support (#)

1 99.9 L.Msrc.Role = SCADA & LHdst.OS =

Proprietary

L.MessageType =

reprogram

1500

2 100 L.Hsrc.Role = SCADA L.MessageType =

reprogram

1600

3 50 L.Proto=SMB L.DstPort = 139 850

4 0.7 L.Proto=HTTP L.DstPort = 815 2

5

10

15

20

Below, we describe an embodiment of the policy learning process:

1. extraction: capture traffic from the network. Network traffic (M) is a sequence of network

messages M = < m1,m2, ...,mw >;

2. pre-processing: network traffic is analyzed in order to extract host, link and context

attributes and it is transformed into a dataset of transactions;

3. rule mining: rule mining algorithms (e.g., association rules) can be applied to the dataset

in order to extract rules. Table 1 shows a small examples of association rules that can be

generated by analyzing the dataset of transactions. Association rules are generated by

taking into account the number of times that certain item set of attributes are observed

together into the dataset. The support of a rule specifies how frequently an item set

appears in the dataset, while the confidence (expressed in percentage) is an indication of

how often the rule has been found to be true.

4. translation to policy: the rules generated by machine learning algorithms give an

indication of what attributes are more often seen together (antecedent) and what they

imply (consequent). This information need to be translated into attribute-based policies in

line with our definitions. For a rule to become a policy, in our method we have to decide

what is the minimum confidence and support and whether a certain level of confidence

and support lead to a positive (i.e., allow) or negative (i.e., deny) policy. For instance, let

assume positive policies will be generated exclusively for rules with confidence higher

than 99% and negative rules will be generated exclusively for rules with confidence lower

than 1%. In this case, rule 1 and rule2 in Table 1 will be translated into a positive policy

32

5

10

15

20

25

30

(i.e., P1 and P2 below), while rule 4 will be translated into a negative policy (i.e., P3).

Following, we present the policies obtained as translation of the rules in Table 1:

P1: <if

L:Hsrc:role ==SCADA AND

L:Hdst:os == proprietary AND

LmessageType == reprogram

then allow>

P2: < if

L:Hsrc:role == SCADA AND

LmessageType == reprogram

then allow>

P3: <if

L:Proto == HTTP AND

LDstPort ==815

then deny >

5. policy reduction: some of the policies generated at the previous step can be redundant.

A policy Px is redundant if its condition includes the whole condition of another policy Py

and the action of the policy is the same. In such a case, Px can be removed. For

instance, policy P1 in the previous example is redundant as it contains the whole

condition of policy P2 and they share the same action. Hence, P1 can be removed.

6. policy conflict resolution: a policy Px is in conflict with a policy Py if they share the

same condition to which correspond two different actions. For instance, in case we have

a policy P1: </TLProto == HTTP AND LDstPort == 815 then deny> and a policy P2:<if

LProto == HTTP AND LDstPort == 815 then allow> then P1 and P2 are in conflict. To

resolve the conflict, one of the two policies need to be removed. To decide which policy

to remove, the conflict resolution process will take into account the confidence and the

support of the rules that led to the conflicting policies.

Accordingly, it is aimed to create policies that take context and semantic into account (e.g., not

only the attributes of the link but also those of the source and destination hosts).

since policies are expressed in a policy language that is able to detect and resolve conflict, we

insure the system does not fall in an inconsistency status.

33

5

10

15

20

25

30

association rules and frequent-item extraction algorithm cannot be applied as-is: In the present

case some features need to be part of the precedent (or the antecedent). In addition, pre­

cooked algorithm might have association rules with a variable number of attributes while we

might want this number to be fixed. In addition, the output of association rules and frequent-

item set might only serve as an input that needs to be translated into the actual policies.

In an embodiment, the set of attribute based policies comprises the whitelist policies, the

outcome of the whitelist policies indicating if the selected model is allowable. In case the model

relating to the first host, the second host or the link cannot be matched to any of the whitelist

policies, the data communication relating to the respective one of the first host, the second host

or link may be listed in a quarantine. Judgement may be suspended and further information

may be gathered to decide about the host or link as listed in quarantine. For example, policies

may be adapted based on the attribute values as gathered from the data traffic related to the

host or link in quarantine, as described in more detail below.

In an embodiment, in case the network message carries information about a host or link for

which no model is available the respective host or link is listed in a quarantine.

The quarantine may hence be used to log activities relating to yet unknown hosts or links. The

quarantine may be formed by a memory or memory part, where the network messages that

relate to the host or link in quarantine may be stored for future analysis.

The method may further comprise: deriving attribute values relating to the host or link listed in

the quarantine.

Hence, likewise to a known host or link, protocol field values are extracted from the protocol

message and attribute values are derived from the protocol field values. The attribute values

may relate to direct attributes as well as to semantic (indirect) attributes. The semantic

attributes may be derived in the same or similar way as described above in relation to known

hosts or links. Thus, a model for the unknown host or link may be formed based on the attribute

values.

The method may further comprise: calculating, from the attribute values relating to the host or

link listed in the quarantine, a support to a hypothesis that the host or link listed in the

quarantine is legit, and calculating, from the attribute values relating to the host or link listed in

the quarantine, a support to a hypothesis that the host or link listed in the quarantine is

34

5

10

15

20

25

30

malicious. The support to the hypothesis may for example be formed by a probability that the

hypothesis is true. The calculations may be performed using the attribute values of the host or

link in quarantine, and may for example be performed by comparing a similarity of the attributes

of the host or link in quarantine with the attributes of a known host or link.

The calculations may be repeated each time the attributes values of the host or link in

quarantine are updated. Thus, the support to the hypotheses may be updated every time new

evidence becomes available, Hence, as soon as sufficient support is derived from the attributes

values to enable to declare the host or link in quarantine as malicious or legit, following steps

may be taken as described below.

Accordingly, the quarantine may comprises, i.e. store, for the hosts and/or links listed in the

quarantine:

- an identification of the host or link,

- a list of known attribute values of the host or link,

- a support to a hypothesis that the host or link is legit,

- a support to a hypothesis that the host or link is malicious,

- an identification of data traffic used to determine the support to the hypotheses.

In an embodiment, the method further comprises: checking using the consistency rules, the

attribute values of the host or link in quarantine for consistency. The same consistency rules as

described above may be applied to the hosts or links in quarantine. Using the consistency

rules, potentially malicious activities may be recognized at an early stage, i.e. even before the

hypothesis to the fact that the host or link stored in quarantine is malicious, has reached a

sufficiently high level. Thus, malicious activities may be recognized at an early stage.

In an embodiment, the method further comprises: assessing, using the attribute based policies,

if the attribute values of the host or link in quarantine comply with the set of attribute-based

policies. The existing attribute based policies may hence be applied to the attribute values of

the host or link in quarantine. The outcome of holding the attribute values of the host or link in

quarantine against the attribute based policies may provide for evidence that the host or link in

quarantine is legit or malicious. The outcome may be used as evidence in the determination of

the support to the hypotheses that the host of link in quarantine is legit respectively malicious.

Thus, when assessing the new host or link in quarantine, existing attribute based policies may

35

5

10

15

20

25

30

be taken into account. In case a blacklist policy is violated, a corresponding alert may be

raised.

In an embodiment the method further comprises: deriving attribute based policies from the host

attributes and link attributes of the data traffic stored in the quarantine. Once the hypothesis

that the host or link stored in quarantine is legit respectively malicious has been found to

exceed a threshold, the attribute values of the host or link in quarantine may be used to learn

new polices and/or to update existing policies. Thereto, the same or similar learning

mechanisms may be applied as described above in relation to the learning phase. Hence, a

self-updating intrusion detection may be provided which learns new polices from the data

stored in quarantine. Thus, the intrusion detection system may on the one hand avoid

unnecessary alarms in that legitimate updates/changes relating to the data network may result

in new or updated whitelist policies. On the other hand, malicious activities that have not been

noted before, i.e. for which no specific blacklist policy is available yet, may be lead to new or

updated blacklist policies. As described above, white the potentially malicious activity is still in

quarantine for collection of attributes, evidence and assessment, an alarm may already be

raised based on either an inconsistency rule or based on an existing blacklist policy. Thus,

during the time that the malicious activity is in quarantine, actions may already be taken (e.g. by

a human operator triggered by an alarm signal or by the intrusion detection system

autonomously blocking related data traffic) to mitigate a risk of potential malicious actions

taking place.

According to an aspect of the invention, frequently occurring behaviour may result in whitelist

policies. Thus, when behaviour of a host or link in quarantine occurs frequently, this may,

according to an aspect of the invention, be considered as indication that the behaviour is

legitimate. Accordingly, a new whitelist policy may be derived from attribute values derived from

protocol messages relating to the host or link in quarantine, wherein a frequency of occurrence

of the protocol messages relating to the host or link in quarantine exceeds a whitelisting

threshold. Hence, the intrusion detection may relatively easy adapt to legitimate changes,

upgrades, etc., based on the insight that legitimate changes, upgrades, etc., may result in new

behaviour that occurs relatively frequently. A detection threshold may be applied, i.e. an e.g.

predetermined whitelisting threshold that expresses a frequency of occurrence above which

legitimate behaviour may be assumed. Frequently occurring behaviour may be qualified as

whitelist if a similarity with whitelist models or whitelist policies exceeds a similarity threshold.

36

5

10

15

20

25

30

In particular, the deriving attribute based polices from the host attributes and link attributes of

the data traffic stored in the quarantine may comprise:

• (re)compute the support to the hypothesis that the host or link in the quarantine is legit

or malicious every time data traffic related to host and/or links in quarantine is observed

• If the support to the hypothesis that the host or link in quarantine is legit is bigger than a

whitelist threshold, remove the host or link from the quarantine and use the data traffic

related to the host or link to extract new whitelist policies

• If the support to the hypothesis that a host/link in quarantine is malicious is bigger than

a blacklist threshold, raise an alert and use the data traffic related to the host or link to

extract new blacklist policies

• update the current policies using the extracted new whitelist or blacklist policies.

Once it has been found that the support to the hypothesis that the host or link is legit exceeds a

whitelisting threshold, i.e. a threshold indicating that the hypothesis that the host is link is legit

exceeds an (e.g. predetermined) threshold level, the host or link may be removed from

quarantine and new (whitelist) policies may be learned and./or existing policies updated using

the techniques described above.

Similarly, once it has been found that the support to the hypothesis that the host or link is

malicious exceeds a blacklisting threshold, i.e. a threshold indicating that the hypothesis that

the host is link is malicious exceeds an (e.g. predetermined) threshold level, an alert may be

raised and new (blacklist) policies may be learned and./or existing policies updated using the

techniques described above.

The (re)computing the support to the hypothesis that the host or link in the quarantine is legit or

malicious may comprise:

- computing a similarity of the host or link in quarantine with another host or link.

As explained above, the support to the hypothesis may for example be formed by a probability

that the hypothesis is true. The calculations may be performed using the attribute values of the

host or link in quarantine, and may for example be performed by comparing a similarity of the

attributes of the host or link in quarantine with the attributes of a known host or link.

Furthermore, the attributes values of the host or link in quarantine may be held against the

existing polices, and the outcome thereof may be used as evidence in the computation of the

support to the hypotheses. For instance, if the host or link in quarantine has most (e.g. higher

37

5

10

15

20

25

30

than 90%) of attribute values equal to a known host or link, then we increase the support to the

legit hypothesis. Similarly, if the host or link has attribute values rarely or never seen (e.g., less

than 1% of known host or link models have such values) then we increase the support to the

malicious hypothesis.

As mentioned, the using the data traffic related to the host or link to extract new whitelist

policies respectively the using the data traffic related to the host or link to extract new blacklist

policies may comprise learning the whitelist policies respectively the blacklist policies using the

above described learning techniques.

Hence, the learning of the attribute based policies may not only be performed at an initial stage,

e.g. in a learning phase, but may be continued during operation, so as to provide that the

intrusion detection system keeps learning to adapt to legitimate changes, new malicious

activities etc.

The process of self-updating of attribute-based policy may be described as follows:

the process to maintain and analyze the information contained in the quarantine in order to

extract new black/white list attribute-based policies from new emerging behavior. The algorithm

works in the following way:

1. Let qi be a host or a link in the quarantine.

2. Anytime new data traffic related to qi is observed:

- add the data traffic to the evidence related to qi

- (re)compute the support to the hypothesis that the quarantine item qi is legit

(hypothesis 0)

- (re)compute the support to the hypothesis that the quarantine item qi is malicious

(hypothesis 1)

3. For each item in quarantine, the user can provide feedback that will directly impact the

related value of hypothesis 0 or hypothesis 1.

4. When a trigger is fired (e.g., a certain period has passed or the user has provided

feedback), for each item q in quarantine and for a given threshold τ :

(a) if hypothesis 0 > τ , remove q from quarantine and add the network messages to the

set of legit messages;

(b) if hypothesis 1> τ , remove q from quarantine and add the network messages to the

set of malicious messages;

38

5

10

15

20

25

30

5. Give the set of legit messages as input to the attribute-based policy learning algorithm

to learn new whitelist policies;

6. Give the set of malicious messages as input to the attribute-based policy learning

algorithm to learn new blacklist policies;

7. Update the current whitelist and blacklist policies.

Self-updating policies may provide to keep policies and consistency rules up-to-date. This is

obtained by suspending the judgment of network events that do not explicitly violate existing

policies or consistency rules until ‘enough’ information is available. In addition, the information

collected during the ‘suspended judgment ’, is continuously analyzed in order to verify whether,

considered as a whole, such information does suggest the adherence to an acceptable or a

not-acceptable pattern. Finally, when the time comes, the information collected is also

aggregated and semantically interpreted for the presentation to the end user. In this way, rather

than presenting the user with a detailed lists of events (e.g., ‘New host 192.168.1.5', ‘New

communication of host 192.168.1.5 with host 192.168.1.4 ’, ‘New communication with protocol

Modbus ’,

...), we can reason about the events and present a single meaningful message (e.g., ‘New host

that looks like a legit RTU has been identified’). The system allows the reduction of false

positive caused by legitimate changes in the network behavior. This is achieved by

automatically recognizing new emerging legitimate behavior and by automatically embedding it

in new policies derived from the new information collected. By suspending judgment, collecting

additional evidence to gain more support before making a decision and using semantic

enrichment, we go beyond the general approach to anomaly detection. In fact, generally a

single anomaly is considered bad and many anomalies are considered worse. On the contrary,

in our case, many anomalies might be a good thing, suggesting that what we are observing is

not bad, but just the emerging of new legit behavior.

The inventors aim at addressing the problem that static, ‘defined once, valid forever’ security

policies are not able to deal with changes in dynamic environments. In addition, policies tend to

become suboptimal with time, as the operational requirements change. A goal of this

component is to keep policies and consistency rules in line with the current state of the system.

This means that if new behavior that does not explicitly violates existing policies and constraints

is observed and it is considered acceptable, then it needs to be embedded in the policy system.

39

5

10

15

20

25

30

Policies can be either defined by a human operator or generated by a learning algorithm. Both

approaches suffer from the problem of producing incomplete policies set. In case of a human

operator, incomplete policies are due to the fact that is difficult to list all acceptable or non-

acceptable behavior (e.g., 0-days attacks). In case of a learning algorithm, incomplete policies

are due to the fact that, during learning, it is possible that part of the acceptable activities does

not emerge (e.g., not all the operation scenarios are executed) or that the system has gone

under changes over time. This can eventually cause false positives, namely the

misclassification of legit behavior as malicious.

Generally, every system, including computer networks, evolves over time and such change is

known as concept drift. In some systems changes can occur faster (e.g., in IT networks) than in

other (e.g., in OT networks). In an OT network, examples of concept drift include updates to the

hardware (e.g., an old PLC is replaced) or to the underlining physical process. Most of the

available solutions for network monitoring, independently from the model they use to perform

detection, typically do not update such model or, in case they do, they require human

intervention to define the new legit emerging behavior. However, to maintain the optimality of a

detection model, it should be updated continuously. To this end, existing machine learning

algorithms need to be revised in order to account for continuous update, change or pruning

and, especially in network flows, for possible infinite stream of data. Our goal is to automatically

identify new legit emerging behavior and automatically update existing policies and consistency

rules. A first step towards this goal is the detection of malicious activities and the quarantining

of unknown emerging behavior, as described below.

A quarantine Q is a list of records q in the form q: <ID, Target, HypO, HypT E, M> where:

ID is the identifier of the record q;

Target e {Host, Link} is the host H or the link L that is in quarantine.

HypQ e {0, 1} is the support (e.g., a probability) to the hypothesis that the host/link in

quarantine is legit;

Hyp1 e {0, 1} is the support (e.g., a probability) to the hypothesis that the host/link in

quarantine is malicious;

E: <e1, e2, ..., en> is the list of events composing the evidence used to compute the

support. Example of events can include: New Host; New Host Attribute Value (role =

40

5

10

15

20

25

30

PLC); New Link; New Link Attribute Value (L.MessageType=reprogram); Alert; User

feedback, ...

M :<m1, m2,..., mn> is the set of network messages related to the host/link in

quarantine.

The detection and quarantining algorithm works as follows. Whenever a new network message

is available, host and link attributes are extracted and if the network messages carries

information about unknown hosts or links, they are added to the quarantine. Then, the

algorithm proceeds to check for attribute inconsistencies and to match the network message

with the attribute-based policies. In case a blacklist policy is matched, that means the network

activity is related to a well-known attack, hence a ‘blacklist alert’ is raised. Otherwise, the

activity is matched against the whitelist policies. In this case, the result of the matching can be

threefold: 1) the activity matches a policy in the whitelist, hence we can go back to observe new

network activities; 2) the activity does not match any policy, hence an alert is raised; or

3) the activity cannot be matched against the policies, e.g., because not all the attributes

necessary to evaluate the policy are available. In the last two cases, the activity is new to the

system, hence it is necessary to establish whether it is legitimate or not. To make such

decision, a single network activity might not be sufficient, hence we adopt a quarantine

approach that logs activities until enough information for emerging behavior is collected. The

quarantine contains hosts and links that are in a limbo: the judgment of whether they are legit

or not is suspended until there is not enough evidence to classify them.

This approach relies on the intuition that (too often) policies evaluation is made with a

pessimistic approach, namely alerts are raised even when that is not necessary (i.e., not

everything new is dangerous). Only in case evidence suggests the emerging of new

(il)legitimate activities, it is used to infer new policies.

The detection and quarantining algorithm may work as follows.

1. Let P be the set of attribute-based policies where pi e P is referred to as blacklist if

Pt.action == deny, while pj e P is referred to as whitelist if pj ,action== permit;

2. Let Q = < qlr q2,..., qn, > be the quarantine with qL e Q is in the form q£ = <

IDi,Targeti, HypQ^ Hyplh Ei, Ml >

3. For every new network message m:

41

5

10

15

20

25

30

(a) extract the source host Hsrc, the destination host Hdst and the link L from m;

i. if Hsrc (or Hdst or L) is not in the database of known hosts/links, add it to the

quarantine, namely create a quarantine item qn+1 = < (n + 1), Hsrc, 0,0, &,m >

and add qn+1 to Q (do the same for Hdst or L);

(b) extract explicit and implicit attributes for Hsrc, Hdst and L;

(c) if extracted attributes are not compliant with consistency rules, then create an alert

about a ‘consistency violation’;

i. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

ii. otherwise, add the alert to the list of alerts;

(d) else, update Hsrc, Hdst and L with the new attributes values;

i. if Hsrc, Hdst or L are in quarantine, update the respective quarantine items by

adding the new attribute values as evidence;

(e) match m against each attribute-based policy e P;

i. if m matches a blacklist policy, create an alert about a ‘blacklist violation’;

A. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

B. otherwise, add the alert to the list of alerts;

ii. else if m matches a whitelist policy, then go to analyze the next network

message;

iii. else if m does not match any whitelist policy, then create an alert

about a ‘not white-listed violation’;

A. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

B. otherwise, add the alert to the list of alerts;

iv. else if m match is undefined (namely no policy is matched e.g., because

some of the attributes are not defined) then update the respective quarantine

items by adding the candidate policies (e.g., policies that could in future be

matched) as evidence;

Human operators can view the quarantine and eventually provide feedback or add missing

information. This could help to collect more evidence about the (il)legitimacy of certain

hosts/links. When the right time arrives, the elements in the quarantine can be analyzed by our

self-updating algorithm to: extract new black- or white-list policies. Events that trigger the

42

5

10

15

20

25

30

analysis of the quarantine include but are not limited to: i) a user’s request, ii) the passing of a

time period; iii) the fact that too many entries have been recently added to the quarantine; or iv)

the observation of a specific event that, together with other events in the quarantine, permit to

confirm or reject a hypothesis (e.g., the recognition of an acceptable or a not-acceptable

pattern). For instance, let assume the system identifies a new host on the network. The new

host might either be a new legit device added to the network (hypothesis HypO) or an intruder

(hypothesis HypV). With a conservative detection approach, in this case one would immediately

raise an alert. On the contrary, with our self-learning approach, we decide to quarantine the

host and to wait for additional information before making any decision. For instance, if we

observe activities that show the new host is similar to existing profiles and it does not violate

any consistency rule nor blacklist policies, then the support to HypO increases. On the other

hand, if activities that show the host does not match any profile (e.g., it seems to belong to a

certain role but it acts not in line with such a role) then the support to Hypl increases. One

could then define a threshold for the support necessary to make a decision and to notify the

end-user with a semantically valid message. Clearly, the system has to be tuned in such a way

that, in case the pessimistic hypothesis Hyp1 is the correct one, the malicious host cannot stay

in quarantine for long enough to make any damage. To this end, we rely on the fact that

blacklist policies and consistency rules would immediately spot a condition of danger and raise

an alert.

The self-updating algorithm may be defined as follows. The self-updating algorithm maintains

and analyze the information contained in the quarantine in order to extract new black/white list

policies from new emerging behavior. The algorithm works in the following way:

1. Let Q = < q-L,q^, - ,qn<> be the quarantine with qt e Q is in the form qi=<

IDhTargeti, HypO^ Hypli, Eit Mt >

2. Anytime new evidence ei is added to the evidence Ei of a quarantine item qr.

(a) (re)compute the support to the hypothesis that the quarantine item qi is legit (HypOi)

or malicious (HypM) by accounting for the new evidence ei. In a possible

embodiment, the support can be computed based on the evidence type. For

instance, in case e/==New Host, we can compute the similarity of the new host with

known host and increase HypOi if the similarity is high while increasing HypM if the

similarity is low. Similar approaches can be taken in case of New Attribute Value or

New Link. In another embodiment, techniques such as First Order Logic,

43

5

10

15

20

25

30

Bayesian Inference or Dempster-Shafer Evidence Theory can be used to

compute the support.
2. For each item q e Q, the user can provide feedback that will directly impact the related

value of HypO and/or Hypï.

3. When a trigger is fired (e.g., a certain period has passed or the user has provided

feedback), for each item q e Q and for a given threshold τ:

(a) if q.HypQ > τ then remove q from Q and add the network messages q.M to the set of

legit messages Mlegit,

(b) if q.HypI -» rthen remove q from Q and add the network messages q.M to the set of

malicious messages Mmalicious·,

4. Give Mlegit as input to the learning algorithm to learn new whitelist policies;

5. Give Mmalicious as input to the learning algorithm to learn new blacklist policies;

6. Update the current whitelist and blacklist policies.

This approach amongst others differs from existing solutions in the sense that while, typically,

more anomalies means more ’alerts’, hence more ’risk’, in our case more anomalies can

actually lead to less alerts.

this approach has the advantage of coping with changes in dynamic operational environments

by continuously updating and refining policies.

adopt a quarantine algorithm that suspend the judgment about a new host attributes or

behavior until there is not enough evidence. In case evidence suggest the emerging of new

legitimate activities, it is used to derive new policies.

the system allows to automatically capture changes in the monitored network behavior with

reduced false alerts.

changes are automatically embedded in new policies derived from the new information

collected.

According to another aspect of the invention, there is provided an intrusion detection system

configured to perform the method according to the invention. The intrusion detection system

may comprise a data processing device such as a microprocessor, a memory in which program

instructions are stored to make the microprocessor perform the method, a network connection

for connecting to the data network in order to observe the data traffic. The memory may further

store models, policies, alarm messages, etc. Optionally, a user interface may be provided, e.g.

for alerting a user, etc.

44

5

10

15

20

25

30

The invention further provides a data communication network comprising the intrusion detection

system according to the invention.

Still further, the invention provides an apparatus comprising the intrusion detection system

according to the invention. Applications may for example include a host monitoring system, a

host characterization and classification, a standard compliance checking, a policy compliance

checking.

Further features, effects and advantages will follow from the appended drawing, illustrating a

non-limiting embodiment, wherein:

Fig. 1 illustrates an operating principle of a prior art intrusion detection system;

Fig. 2 illustrates an operating principle of an intrusion detection system according to an

embodiment of the invention;

Fig. 3 illustrates a possible attribute extraction according to an embodiment of the invention

Fig. 4 illustrates an overview of an intrusion detection according to an embodiment of the

invention;

Fig. 5 illustrates examples of host and link attributes according to an embodiment of the

invention;

Fig. 6 illustrates a model for a link attribute according to an embodiment of the invention;

Fig. 7 illustrates an example of inconsistency according to an embodiment of the invention;

Fig. 8 illustrates an example of a network traffic dataset according to an embodiment of the

invention;

Fig. 9 illustrates a process of policy learning according to an embodiment of the invention; and

Fig. 10 illustrates an example of a data structure as applied for policy updating according to an

embodiment of the invention.

Figure 1 depicts a schematic view of a prior art intrusion detection system. The intrusion

detection system is learned in a learning phase, and after the learning phase, the intrusion

detection system is applied for intrusion detection. Whitelisting and /or blacklisting models may

be learned.

All in all, an intuition behind the present invention is that a whitelisting model cannot be learned

once and remain static ever after anymore. In addition, relying on the operators for the manual

update and maintaining of the model is unrealistic since operators often lack the time and the

45

5

10

15

20

25

30

knowledge needed for the task. An idea underlying the present invention is to create a NIDS

that automatically updates the model as new traffic is observed. A key challenge for the system

is the capability of distinguishing what changes are legitimate (and can be added to the model)

and what changes are not (and therefore should still generate alerts). The solution as proposed

may form a radical change to the general approach to whitelisting NIDS by substituting the two-

phases (learn/detect) approach with a continuous process that is able to deal with legitimate

changes in the monitored traffic. The approach as proposed may include the following phases,

as schematically depicted in Figure 2:

1. learn: monitor the network for a short period of time and use the data collected to create

initial models, policies and constraints ;

2. observe: passively collect data from the network;

3. identify: use new available information to improve existing elements characterization or

to create an initial characterization of new elements;

4. reason: verify if new evidence is in line with existing models and constraints and if it

does suggest the emerging of new (legitimate) patterns;

5. react: if a mismatch with models and constraints is found generate an alert while in case

there is enough evidence of (legitimate) emerging patterns update the models.

To implement this model in a successful way, semantic enrichment is made use of. With

semantic enrichment, a NIDS is not only capable of communicating punctual facts about

network activities (e.g., ΊΡ 192.168.1.4 sends Step7 command 240 to IP 192.168.1.5 ’) but also

of interpreting such facts to make them more understandable and increase their information

gain (e.g., ‘A PLC is sending a reprogramming message to another PLC ’). The semantic

enrichment reduces the distance between technology and human operators: if operators get

more valuable information from the automatic system (e.g., more meaningful alerts) they are

also more inclined to provide feedback to tune the models that in turn improve the overall

system.

Overview

Fig 4 depicts an overview of the method as described in the present document. An initial set of

whitelist and blacklist policies, together with consistency rules, is given as input to the system

as soon as the network monitoring starts. Note that the whitelist and blacklist policy set,

together with the consistency rule set could be initially empty. For every new network activity

46

5

10

15

20

25

30

(A), the system extract hosts’ and links’ attributes (B). It is important to distinguish between

hosts’ and links’ attributes: while hosts’ attributes refer to characteristics of a host, links’

attributes refers to the communication taking place between hosts. Once attributes are

available, a consistency check (by using the available consistency rules) is performed (C). In

case the current attributes do not comply with the consistency rules, an alert is stored in the

alert list (L), otherwise the process continues. At this point the network action is matched

against the blacklist (D): if a match occurs an alert is generated (L), otherwise we can

distinguish two cases: if the system is still in learning mode (E) then the network activity is

given in input to the learning module to updated the whitelist policies and the consistency rules;

on the other hand, in case the learning phase is over, the network activity is matched against

the whitelist policies (G). In case a match occurs at this point, it means the network activity has

been already seen in the past (known host/behavior), otherwise we are in the situation where a

unknown hosts or behavior is emerging. Typical NIDS at this point would raise an alert. On the

contrary, we decide to use a quarantine system that logs network activities (I) until there is not

enough evidence to judge the activity legitimate or illegitimate (H). Note that, we also log alerts

in the quarantine (0) in case the alert is related to hosts or links that are in the quarantine. In

case enough information to make a decision is available, the system will use the events in

quarantine for self-updating, namely dynamic extraction of new white- or black-list policies (J).

The creation of new policies also produces an event (K) that can be added to the quarantine as

additional evidence. Finally, the alert list is analyzed in order to aggregate, correlate and

interpret (M) its content and to generate semantic-enriched and context-aware alerts addressed

to the end-users (N). The end-users can visualize the alerts and the quarantine items and they

can also provide feedback to the quarantine such as flag hosts and links as legitimate or

malicious.

In the following, we explain in details of the main components that help to implement the

system described above, namely Attributes extraction, Inconsistency detection, Attribute-based

policies, Learning of attribute- based policies and Self-updating policies.

Attribute extraction

Figure 3 shows a possible embodiment for the extraction of hosts and links attributes by

capturing network traffic. The first step is to extract explicit attributes. Once explicit attributes

are available, we can proceed to derive the implicit attributes, for which there is no trivial map

with message fields. Each implicit attribute can be derived by applying either heuristics or

classifiers. Typically, the results obtained by heuristics have priority over classifiers. An

47

5

10

15

20

25

30

example of heuristic used to infer the attribute Role is as follows: “If a conversation using the

DNS protocol is observed, then the target host of such link has role DNS served. Clearly,

several such heuristics can be put in place. In addition, heuristics can be global or local to a

specific deployment (e.g., heuristics that are true only in a given sector). On the other hand, a

classifier is a model that given a set of features as input is able to associate a value (or class)

to an attribute as output. Classifiers are typically generated by applying machine learning

algorithms to labeled datasets, namely datasets where the association between features and

class is known. Later, these classifiers can be used to infer the class on un-labeled data.

Generally, classifiers associate a confidence level to their guessing: to keep our attribute

extraction component highly reliable, we only resolve the attribute if the class guessed by the

classifier has a high level of confidence (e.g., more than 90%). Note that, it is possible that

certain implicit attributes can stay unresolved for a certain time, e.g., until enough information to

assess their value is available (see the vendor attribute in the first row in Figure 5).

Example of attribute modelling

Figure 6 shows how the implicit link attribute message type can be modeled. The attribute

message type expresses the semantic meaning that a specific network message can have in a

certain domain. For instance, if host A sends a Modbus message to host B with function code

23, it means that host A is reading a data value from host B. The reading operation, as shown

in figure, can be encoded differently for different protocols: e.g, in IEC-104 a read is encoded

with the number 45 and in STEP 7 with the number 4. By applying reasoning and semantic

labeling, one can enrich the raw traffic coming from the network. This enrichment can then be

used to express policies that are generic (not specific to a given protocol) and simpler to

understand. For instance, one could express the generic policy “Hosts with role Terminal do not

reprogram a PLC” and such policy can be monitored without the policy maker knowing how the

reprogramming operation is actually encoded at the network level.

Example 1
Let assume we have the following host-related attributes Att, link-related attributes AL, context-

related attributes Ac where the symbol ? means the attribute value is unknown, and a network

message m1 where:

• s = < ip =?,mac =?,os =?,role = ?>

• Al = < proto =?, srcPort =?, dstPort =?, messageType =?, linkType =? >

48

5

10

15

20

25

30

• A(: = < location =2,netwrokType =2, time =2 msg Frequency =2 >

• m,=< protold = Modbus, srclp = 10.1.1.1, dstlp = 10.1.1.2, srcPort —

22; dstPort = 44; functionCode = 16 > where the fields are in the order: the identifier

of the protocol used (e.g., Modbus, HTTP, IOEC104), the IP address and the port for

the sender and the destination, and the function code of the message.

Given the message mx, we can extract the following host and link information:

• =< id = 1, AH = < ip = 10.1.1.1, mac =2 ,os =2, role = 2 »

• H2 =< id = 2, AH = < ip = 10.1.1.2,mac =?,os =2,role = 2»

• Lr =< id = 1, Hsrc = = H2, AL =< proto = Modbus, srcPort = 22, dstPort =

44,messageType =2 .linkType =2»

In this example, we can see that the link-related attribute Lproto is an explicit attribute since

there is a direct mapping between its value (Modbus) and the field protold of ml. On the other

hand, the host-related attribute /-/.role is an example of implicit attribute since to derive its

value one should look at multiple messages and multiple message fields. In fact, given a single

message, this attribute stays undefined. For instance, to be able to say that the role of a host is

server or client, one has to look at the functionCode and the protold fields of different

messages and at the number of messages with a certain functionCode (e.g., server typically

are the destination of a high number of messages on certain ports with certain message

codes). Under these conditions, an example of attribute-policy P is as follows:

<if

L.Hsrc.ro\e = = Engineering Workstation AND

L Wrist role == PLC AND

L.messageType == reprogram AND

C.networkType == industrial

then

allow,

send email = name@)rdomain.com, set priority = high>

Inconsistency detection

Figure 7 shows some example of inconsistency detection. The upper part of the figure shows

the ’normal’ situation of an example network composed of 4 hosts: 2 DCSs and two PLCs. The

rdomain.com

49

5

10

15

20

25

30

table shows examples of consistency rules. Specifically, rule number 1 says that if a host has

role equal to PLC then its protocols can only be Modbus, while rule number 2 says that if a host

has role that includes the value PLC, then it can only have Master and RTU as additional role

(recall that a host can have multiple roles). Finally rule number 3 says that if a host has OS

equal to Windows then its vendor can only be Dell. Under these conditions, in case there is

evidence that a certain device (e.g., host F in figure) having role equals to PLC is behaving as a

host with role DNS server, there is a violation of consistency rule number 2. This might suggest

that a PLC is corrupted and malicious code is generating the anomalous change of role.

Likewise, if the protocols associated to a host contain values DNS and FTP client while the role

for the same host is PLC, there is a violation of consistency rule number 1, also suggesting a

corruption of the PLC. On the other hand, in case the vendor of a host is detected to be HP,

then rule number 3 is violated. Generally, consistency violations might either indicate that there

is a legit change in the system (e.g., the management decided to change its hardware provider)

or that a host is compromised hence the consistency rule violation is a signal that something is

wrong. Understanding which of the two situations is true is a task for the self-updating policies

component.

Learning of attribute based policies

Figure 8 shows an example of how legitimate network messages can be structured after the

attributes extraction had took place. As we can see, every row represents a network activity

and the associated at- tributes (or features). To this data structure, machine learning and data

mining techniques can be applied to extract attribute-based policies. For instance, one could

apply association rules learning, a rule-based machine learning method for discovering

interesting relations between elements in large datasets. Association rules are if condition then

action statements (as our policies) that help uncover relationships between seemingly

unrelated data.

However, association rules and frequent items set extraction are approaches that can aid our

policies generation but do not cover the entire process as shown in Figure 9. In fact, after an

association rules algorithm has been applied to network data, the information extracted from

the data needs to be translated in policies. In addition, since association rules tend to generate

a high number of rules, an algorithm for policy reduction and conflict resolution needs to be put

in place as well.

50

Table 1: Association Rules Example

ID Confidence (%) Antecedent Consequent Support (#)

1 99.9 L.Msrc.Role = SCADA & LHdst.OS =

Proprietary

L.MessageType =

reprogram

1500

2 100 L.Hsrc.Role = SCADA L.MessageType =

reprogram

1600

3 50 L.Proto=SMB L.DstPort = 139 850

4 0.7 L.Proto=HTTP L.DstPort = 815 2

5

10

15

20

Quarantine

Figure 10 shows an example of how the quarantine could look like.

The detection and quarantining algorithm works as follows. Whenever a new network message

is available, host and link attributes are extracted and if the network messages carries

information about unknown hosts or links, they are added to the quarantine. Then, the

algorithm proceeds to check for attribute inconsistencies and to match the network message

with the attribute-based policies. In case a blacklist policy is matched, that means the network

activity is related to a well-known attack, hence a ‘blacklist alert’ is raised. Otherwise, the

activity is matched against the whitelist policies. In this case, the result of the matching can be

threefold:

1) the activity matches a policy in the whitelist, hence we can go back to observe new network

activities; 2) the activity does not match any policy, hence an alert is raised; or 3) the activity

cannot be matched against the policies, e.g., because not all the attributes necessary to

evaluate the policy are available. In the last two cases, the activity is new to the system, hence

it is necessary to establish whether it is legitimate or not. To make such decision, a single

network activity might not be sufficient, hence we adopt a quarantine approach that logs

activities until enough information for emerging behavior is collected. The quarantine contains

hosts and links that are in a limbo: the judgment of whether they are legit or not is suspended

until there is not enough evidence to classify them.

This approach relies on the intuition that (too often) policies evaluation is made with a

pessimistic approach, namely alerts are raised even when that is not necessary (i.e., not

51

5

10

15

20

25

30

everything new is dangerous). Only in case evidence suggests the emerging of new

(il)legitimate activities, it is used to infer new policies.

Self-updating policies

Let consider the quarantine example in Figure 10. The first row contains a host (id=1) and the

relative evidence to support the fact that it is legit (HypO) or malicious (Hyp1). Specifically, the

host was first unknown to the system with no attributes associated yet (first line in column

evidence). Additional network activities added evidence about its role equal to PLC (line 2 of

column evidence) and later also about its vendor being equal to ABB (line 3 of column

evidence). The quarantine also contains a link (quarantine id 2) going from host with id=2 to

host with id= 1. The evidence says that the link goes from a host id=2 with role Terminal to the

host id= 1 with role PLC. In addition, a reprogramming messageType is observed. Every time

new evidence for a host or a link in quarantine is collected, the support to HypQ and Hyp1 is

updated. Let assume an attribute-based policy says that hosts with role Terminal cannot

reprogram hosts with role PLCs. This means that this policy can only be matched (and hence

an alert raised) when evidence that the attribute role for the host id=1 is PLC is collected.

Hence, the quarantine helps to detect cases where past activities have violated policies

currently in places.

In addition, at any time, the user is allowed to provide feedback about the quarantine. For

instance, the user could say that host with id=1 is legit. In this case, the self-learning module

needs to account for all the activities performed by host with id=1 while in quarantine, as input

for the extraction of possibly new white-listing policies.

Possible definitions as may be applied to define various terms applied in the present patent

application are provided below.

Definition 1 (Attributes A)

A sequence of attributes A is defined as Α·.<α1 = να1, α2 = να2,αη = ναη, > where ναί e 7έ

with i e [Ι,η] is the value taken by attribute α,-in the co-domain V).

Definition 2 (Host H and host attributes AH)

A network host H, is defined as H = <id, AH > where id is an unique identifier for the host, and

Ah-.< a/η = vhl, ah2 = vh2,.., ahn = vhn,> is a sequence of host-related attributes. Examples

52

5

10

15

20

25

30

of host-related attributes include the IP address, the MAC address, the operative system, the

role, etc. We write Hj .ahi to refer to a specific attribute of a specific host, e.g., Hj .role to refer to

the attribute role of the host Hj.

Definition 3 (Link L and link attributes AL)

A network link is a direct communication between a source and a destination hosts. We define

a link L=<id, Hsrc, Hdst, AL> where id is an unique identifier for the link, Hsrc is the host

source of the link, Hdst is the host destination of the link and AL- < αΙΊ = utl, al2 = vl2,.., alm =

vlm,> is the sequence of link-related attributes. Example of link-related attributes include the

protocol, the src port, the dst port, the message type, the link type, etc. We write Lj .ali to refer

to a specific attribute of a specific link, e.g., Lj .proto to indicate the attribute proto of the link Lj.

We also write Lj .Hsrc.ahi to refer to a specific attribute of the source (respectively the

destination) host of the link, e.g., L.Hsrc.'vp to refer to the IP address of the source host of the

link (respectively L.Hdst.ahi to refer to an attribute of the host destination, e.g., L.Hdst.'vp).

Definition 4 (Context attributes AC)

A context C is a set of circumstances surrounding network activities, and it can be represented

by a set of attributes related to the network or the system. A context is denoted as Ac: < ac, =

vcl, ac2 = vc2,.., acn = vck,>. Examples of context-related attributes include the time, the geo­

graphical location, the type of monitored network (e.g., utility, manufacturing, automation), the

number of similar messages over a certain period, etc.

Definition 5 (Network message m)

A communication protocol is a system of rules that allows two or more hosts to exchange

information via the usage of elements with a well-defined structure. The structure of these

elements changes greatly from one protocol to another and their terminology changes too: they

can be referred to as packets, frames or messages. Independently from the protocol, we use

the term message to refer to the basic elements of network communications. Given a

sequence of fields < flr f2i, ...fz, >, we define a field value vfj e Vj with j e [l,z] as the value

taken by field ƒ)· in the co-domain Vj and we define a message m as a sequence of field values

m = < A = vfi, f2 = vf2, ...fz = vTz >.

Definition 6 (Explicit attributes)

53

5

10

15

20

25

30

Given a set of host- and link-related attributes A = An \j AL =< a± = val, a2 = va2,..,an =

van > where g A has value val e Vr with i e [l,n] and a sequence of messages M = <

m1,m2, ...,mw > where mj G M is in the form mj = < = v^, f2j = Vf2j, —,fZj = VfZj > with

j g [1, iv], ye say that the attribute a± is explicit if its value is equal to a single field value of

any of the messages in M , namely vai = vfkj with / index of the attribute, k index of the

message field, and j index of the message. We will refer to an explicit attribute as ae.

Definition 7 (Implicit (or semantic) attributes)

Given a set of host- and link-related attributes A = AH u AL =< a1 = val, a2 = va2,..,an =

van > where e A has value val e V± with i g [l,n] and a sequence of messages M = <

..., mw > where mj G M is in the form mj = < f-y = Vfij.foj = Vf2j,..., fZj = VfZj > with

j g [1, w], we say that: the attribute ar is implicit or semantic if its value is a function of
multiple field values and context-related attributes Ac over (possibly) multiple messages,

namely if it exists a function g() such that = vai where M' c m xAc

We will refer to an implicit attribute a£ αέ.

Definition 8 (Attribute based policy)
The Attribute-based policy P may be defined as follows:

Given a set of host-, link- and context-related attributes A = AH u AL u Ac =< ar = val, a2 =

va2,..,an = van > where g A has value val e 14 with i g [1,n], we define an attribute­

based policy as:

P : if < ATTRIBUTE OP VALUE [{LOGICOP ATTRIBUTE OP VALUE}]> then ACTION [{, OBLIGATION}]>

where:

• attribute can be any host-, link- or context-based attribute ai P A;

• op can be any comparison operation (e.g., P t—►, $, X, P equals, etc.);

• value is any value vai E Vi the attribute ai can take;

• logicOp is any logical operator (e.g., t{,), vB)

• action defines what has to be done in case of a positive match of the policy (e.g., deny

or permit)

• obligation defines additional actions to be taken in case of a match (e.g., send email=

, set priority=high, set criticality = medium).name@domain.com

Definition 9 (Quarantine)

mailto:name@domain.com

54

5

10

15

20

25

30

A quarantine Q is a list of records q in the form q: <ID, Target, HypQ, HypT E, M> where:

ID is the identifier of the record q;

Target e {Host, Link} is the host H or the link L that is in quarantine.

HypQ g {0, 1} is the support (e.g., a probability) to the hypothesis that the host/link in

quarantine is legit;

Hypl g {0, 1} is the support (e.g., a probability) to the hypothesis that the host/link in

quarantine is malicious;

E: <e1, e2, ..., en> is the list of events composing the evidence used to compute the

support. Example of events can include: New Host; New Host Attribute Value (role =

PLC); New Link; New Link Attribute Value (L.MessageType=reprogram); Alert; User

feedback, ...

M :<m1, m2,..., mn> is the set of network messages related to the host/link in

quarantine.

Definition 10 (Detection and quarantining algorithm)
The detection and quarantining algorithm may work as follows.

1. Let P be the set of attribute-based policies where g P is referred to as blacklist

if pi.action == deny, while pj e P is referred to as whitelist if pj .action== permit;

2. Let Q = < q1(q2,..., qn, > be the quarantine with qr g Q is in the form qt = <

IDi.Targeti.HypO^Hypli.Ei.Mi >

3. For every new network message m:

(f) extract the source host Hsrc, the destination host Hdst and the link L from m;

i. if Hsrc (or Hdst or L) is not in the database of known hosts/links, add it to the

quarantine, namely create a quarantine item qn+1 = <(n + T),Hsrc, 0,0, &,m >

and add qn+i to Q (do the same for Hdst or L);

(g) extract explicit and implicit attributes for Hsrc, Hdst and L;

(h) if extracted attributes are not compliant with consistency rules, then create an alert

about a ‘consistency violation’;

i. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

ii. otherwise, add the alert to the list of alerts;

(i) else, update Hsrc, Hdst and L with the new attributes values;

55

5

10

15

20

25

30

i. if Hsrc, Hdst or L are in quarantine, update the respective quarantine items by

adding the new attribute values as evidence;

(j) match m against each attribute-based policy pt e p·,

i. if m matches a blacklist policy, create an alert about a ‘blacklist violation’;

A. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

B. otherwise, add the alert to the list of alerts;

ii. else if m matches a whitelist policy, then go to analyze the next network

message;

iii. else if m does not matches any whitelist policy, then create an alert

about a ‘not white-listed violation’;

A. if the alert involves hosts or links that are in quarantine, update the respective

quarantine items by adding the alert as evidence;

B. otherwise, add the alert to the list of alerts;

iv. else if m match is undefined (namely no policy is matched e.g., because

some of the attributes are not defined) then update the respective quarantine

items by adding the candidate policies (e.g., policies that could in future be

matched) as evidence;

Definition 11 (Self-updating algorithm)
The self-updating algorithm maintains and analyze the information contained in the quarantine

in order to extract new black/white list policies from new emerging behavior. The algorithm

works in the following way:

1. Let Q = < qlt q2, ...,qn, > be the quarantine with q1 e Q is in the form qt=<

IDt.Targeti, HypOr, Hyplt, Ei,Mi >

2. Anytime new evidence ei is added to the evidence Ei of a quarantine item qr.

(a) (re)compute the support to the hypothesis that the the quarantine item qi is legit

(HypOi) or malicious (Hyp^i) by accounting for the new evidence ei. In a possible

embodiment, the support can be computed based on the evidence type. For

instance, in case e/==New Host, we can compute the similarity of the new host with

known host and increase HypOi if the similarity is high while increasing HypM if the

similarity is low. Similar approaches can be taken in case of New Attribute Value or

New Link. In another embodiment, techniques such as First Order Logic,

56

Bayesian Inference or Dempster-Shafer Evidence Theory can be used to

compute the support.
3. For each item q e Q, the user can provide feedback that will directly impact the related

value of HypO and/or Hyp1.

5 4. When a trigger is fired (e.g., a certain period has passed or the user has provided

feedback), for each item q e Q and for a given threshold τ:

a. if q.HypQ > τ then remove q from Q and add the network messages q.M to the

set of legit messages Mlegit,

b. if q.HypI -* rthen remove q from Q and add the network messages q.M to the

10 set of malicious messages Mmalicious·,

5. Give Mlegit as input to the learning algorithm to learn new whitelist policies;

6. Give Mmalicious as input to the learning algorithm to learn new blacklist policies;

7. Update the current whitelist and blacklist policies.

57

5

10

15

20

25

30

35

P33194NL00

CONCLUSIES

1. Werkwijze voor het detecteren van abnormaal gedrag in dataverkeer op een data­

communicatienetwerk, waarbij een eerste host en een tweede host zijn verbonden met het

datacommunicatienetwerk, waarbij het dataverkeer op het datacommunicatienetwerk een

link verschaft tussen de eerste host en de tweede host, waarbij de werkwijze omvat:

a) het parsen van het dataverkeer voor het extraheren van protocolveldwaarden

van een protocolbericht van het dataverkeer;

b) het afleiden, uit de geëxtraheerde protocolveldwaarden, van attribuutwaarden

van attributen van één van de eerste host, de tweede host, en de link;

c) het selecteren uit een set met modellen, van een model dat betrekking heeft

op de ene van de eerste host, de tweede host, en de link, waarbij de geselec­

teerde host meerdere attributen omvat voor het beschrijven van ene van de

eerste host, de tweede host, en de link, waarbij ten minste één van de attribu­

ten een semantisch attribuut is, waarbij het semantische attribuut een seman­

tische betekenis uitdrukt voor de ene van de eerste host, de tweede host, en

de link,

d) het updaten van het geselecteerde model met de afgeleide attribuutwaarden,

wanneer de afgeleide attribuutwaarden niet zijn opgenomen in het geselec­

teerde model bij selectie;

e) het beoordelen of het ge-update, geselecteerde model voldoet aan een set

attribuut gebaseerde policies, waarbij elke attribuut gebaseerde policy een

veiligheidsrandvoorwaarde definieert van het datacommunicatienetwerk ge­

baseerd op ten minste één van de attributen van de eerste host, de tweede

host of de link, en

f) het genereren van een alert signaal in het geval dat de attribuut gebaseerde

policies aangeven dat het ge-update geselecteerde model ten minste één van

de attributen gebaseerde policies schendt.

2. Werkwijze volgens conclusie 1, waarbij de ten minste ene semantische attribuut­

waarde is afgeleid uit een combinatie van protocolveldwaarden die zijn verkregen van ten

minste twee protocolberichten die over het datacommunicatienetwerk op verschillende pun­

ten in tijd zijn verzonden.

58

5

10

15

20

25

30

35

3. Werkwijze volgens conclusie 1 of 2, waarbij de set met modellen een model omvat

voor de eerste host, een model voor de tweede host en een model voor de link, waarbij elke

van de modellen ten minste één semantisch attribuut omvat.

4. Werkwijze volgens een van de voorgaande conclusies, waarbij de policies elk een

uitkomst definiëren in het geval aan een conditie is voldaan, waarbij de conditie is gedefini­

eerd in termen dat een respectieve ten minste ene van de attributen een gedefinieerde attri­

buutwaarde heeft, waarbij de uitkomst van de attribuut gebaseerde policy aangeeft of het

geselecteerde model toelaatbaar of niet toelaatbaar is.

5. Werkwijze volgens een van de voorgaande conclusies, waarbij de conditie van elke

policy ten minste één semantische attribuutwaarde omvat.

6. Werkwijze volgens een van de voorgaande conclusies, waarbij b) het toepassen van

regels omvat op de protocolveldwaarden, waarbij de regels attribuutwaarden toekennen aan

attributen gebaseerd op de protocolveldwaarden.

7. Werkwijze volgens een van de voorgaande conclusies, waarbij b) het direct meppen

van protocolvelden op attribuutwaarden omvat.

8. Werkwijze volgens een van de voorgaande conclusies, waarbij b) het toepassen om­

vat van een heuristic op het dataverkeer en het afleiden van de semantische attribuutwaar­

de gebruikmakend van de heuristic.

9. Werkwijze volgens een van de voorgaande conclusies, waarbij b) het toepassen van

een classifier op het dataverkeer omvat en het afleiden van de semantische attribuutwaarde

gebruikmakend van classifier.

10. Werkwijze volgens conclusie 9, verder omvattende het bepalen van een niveau van

vertrouwen van de classifier en waarbij de attribuutwaarde alleen uit de classifier wordt afge­

leid wanneer het niveau van vertrouwen boven een tevoren bepaald vertrouwensniveau is.

11. Werkwijze volgens een van conclusies 8-10, waarbij de attribuutwaarde die is ver­

kregen gebruikmakend van heuristic prioriteit heeft boven de attribuutwaarde die is verkre­

gen gebruikmakend van de classifier.

59

5

10

15

20

25

30

35

12. Werkwijze volgens een van de voorgaande conclusies, waarbij geen stimulus wordt

geïnjecteerd in het datacommunicatienetwerk.

13. Werkwijze volgens een van de voorgaande conclusies, waarbij stappen b), c), d) en

e) worden uitgevoerd voor de eerste host, voor de tweede host en voor de link, waarbij de

set met modellen een model omvat dat gerelateerd is aan eerste host, een model dat gere­

lateerd is aan de tweede host, en een model dat gerelateerd is aan de link, waarbij de attri­

buut gebaseerde policies van de set met attribuut gebaseerde policies condities definiëren

in termen van de attributen van de eerste host, de attributen van de tweede host en de attri­

buten van de link.

14. Werkwijze volgens een van de voorgaande conclusies, waarbij de set met attribuut

gebaseerde policies witte lijst policies omvat, waarbij de uitkomst van de witte lijst policies

aangeeft of het geselecteerde model toelaatbaar is.

15. Werkwijze volgens een van de voorgaande conclusies, waarbij de set met attribuut

gebaseerde policies zwarte lijst policies omvat, waarbij de uitkomst van de zwarte lijst poli­

cies aangeeft of het geselecteerde model niet toelaatbaar is.

16. Werkwijze volgens een van de voorgaande conclusies, verder omvattende het ver­

schaffen van een consistentieregel, waarbij de consistentieregel consistente combinaties

definieert van ten minste twee attributen van één van het model gerelateerd aan de eerste

host, het model gerelateerd aan de tweede host en het model gerelateerd aan de link, om­

vattende

• het verifiëren, op basis van de attributen die zijn afgeleid uit het gemonitorde

dataverkeer, of het gemonitorde dataverkeer voldoet aan de consistentiere­

gel,

• het opslaan van de dataverkeer in een quarantaine in het geval het dataver­

keer niet aan de consistentieregel voldoet.

17. Werkwijze volgens conclusie 16, waarbij het detecteren, op basis van de attributen

die zijn afgeleid uit het gemonitorde dataverkeer, of het gemonitorde dataverkeer voldoet

aan de consistentieregel, wordt uitgevoerd voorafgaand aan stap e).

18. Werkwijze volgens conclusie 16 of 17, waarbij de consistentieregel ten minste één

omvat van een tijd van optreden van het dataverkeer en een locatie van optreden van het

dataverkeer.

60

5

10

15

20

25

30

35

19. Werkwijze volgens een van conclusie 16-18 waarbij de consistentieregel die is gere­

lateerd aan de eerste host een attribuut van een andere host, bij voorkeur een attribuut van

de tweede host, omvat.

20. Werkwijze volgens een van conclusies 16-19, waarbij een groep met hosts is gedefi­

nieerd, waarbij de werkwijze het bepalen omvat of de host waaraan de attributen relateren is

opgenomen in de groep, en het toepassen van de consistentieregel in het geval de host

waaraan de attributen relateren, in de groep is opgenomen.

21. Werkwijze volgens een van conclusies 16-20, waarbij de consistentieregels worden

geleerd gebruikmakend van machine-leren, bij voorkeur gebruikmakend van associatiere-

gels.

22. Werkwijze volgens een van de voorgaande conclusies, waarbij de attribuut geba­

seerde policy verder ten minste één van een tijd voor het uitvoeren van de actie, en een link

via welke de actie wordt uitgevoerd, uitdrukt.

23. Werkwijze volgens een van de voorgaande conclusies, omvattende het leren van de

attribuut gebaseerde policy uit het dataverkeer, waarbij het leren omvat:

• het monitoren van het dataverkeer,

• het afleiden van het host-attributen en linkattributen uit het gemonitorde data­

verkeer,

• het transformeren van het dataverkeer in een dataset met attribuut gebaseer­

de transacties,

• het genereren van regels door het rekening houden met een frequentie van

itemsets van de host-attribuutwaarden en link-attribuutwaarden in de dataset,

waarbij elk van de regels een antecedent omvat die een conditie definieert en

een consequent die een actie definieert, een vertrouwen en een supportni-

veau,

• het bepalen voor elke regel van een vertrouwen dat specificeert hoe vaak de

regel waar blijkt te zijn, en een support die specificeert hoe vaak de itemset

die onderliggend is aan de regel in de dataset voorkomt,

• het selecteren van regels gebaseerd op een niveau van support en een ni­

veau van vertrouwen,

• het vertalen van de regels in de attribuut gebaseerde policy door

61

5

10

15

20

25

30

35

• het definiëren van de attribuut gebaseerde policy-conditie door het

samenvoegen van de antecedent en de consequent van de geselecteerde

regels, en

• het definiëren van de attribuut gebaseerde policy-actie gebaseerd op

het niveau van support en/of het niveau van vertrouwen.

24. Werkwijze volgens conclusie 23, waarbij het selecteren van regels gebaseerd op het

niveau van support en het niveau van vertrouwen omvat:

het selecteren, voor witte lijst policies, van regels waarvan het niveau van vertrouwen boven

een tevoren bepaald positief niveau van vertrouwen is en met een niveau van support bo­

ven een tevoren bepaald niveau van support.

25. Werkwijze volgens conclusie 23 of 24, waarbij het selecteren van regels gebaseerd

op het niveau van support en het niveau van vertrouwen omvat:

het selecteren, voor zwarte lijst policies, van regels waarvan het niveau van vertrouwen on­

der een tevoren bepaald negatief niveau van vertrouwen is en met een niveau van support

boven een tevoren bepaald niveau van support.

26. Werkwijze volgens een van conclusies 23-25, waarbij het genereren van regels uit de

host-attributen en de linkattributen het toepassing van associatieregels op de host-attributen

en de link-attributen omvat.

27. Werkwijze volgens een van conclusies 23-26, waarbij het genereren van regels uit de

host-attributen en de link-attributen het toepassen van frequente items-set-extractie op de

host-attributen en de link-attributen omvat.

28. Werkwijze volgens een van conclusies 23-27, waarbij het vertalen van de regels in

de attributen gebaseerde policy verder omvat:

het reduceren van het aantal policies door het verwijderen van redundante policies, waarbij

een policy redundant is wanneer de conditie daarvan de gehele conditie van een andere

policy omvat,

in het geval van conflict waarbij twee policies dezelfde conditie delen terwijl de twee policies

verschillende acties omvatten, verwijderen van de policy die minder support en vertrouwen

heeft.

29. Werkwijze volgens een van de voorgaande conclusies, waarbij de set met attribuut

gebaseerde policies de witte lijst policies omvat, waarbij de uitkomst van de witte lijst policies

62

5

10

15

20

25

30

35

aangeven of het geselecteerde model toelaatbaar is, en waarbij, in het geval het model dat

betrekking heeft op de eerste host, de tweede host of de link niet kan worden gematched

met enige van de witte lijst policies, de datacommunicatie die betrekking heeft op de respec­

tieve ene van de eerste host, de tweede host of de link wordt opgenoemd in een quarantai­

ne.

30. Werkwijze volgens een van de voorgaande conclusies, waarbij, in het geval het net-

werkbericht informatie draagt over een host of link waarvoor geen model beschikbaar is, de

respectieve host voor link in een quarantaine wordt opgenoemd.

31. Werkwijze volgens conclusie 30, verder omvattende:

het afleiden van attribuutwaarden die gerelateerd zijn aan de host of link die in de quaran­

taine is opgenoemd.

32. Werkwijze volgens conclusie 31, verder omvattende:

het berekenen, uit de attribuutwaarden die gerelateerd zijn aan de host of link die in de qua­

rantaine is opgenoemd, van een support voor een hypothese dat de host of link die in de

quarantaine is opgenoemd legaal is, en

het berekenen, uit de attribuutwaarden die gerelateerd zijn aan de host of link die in de qua­

rantaine is genoemd, van een support voor een hypothese dat de host of link die in de qua­

rantaine is opgenoemd kwaadaardig is.

33. Werkwijze volgens conclusie 32, waarbij het berekenen van de supports voor de hy­

pothesen wordt herhaald wanneer de attribuutwaarden die gerelateerd zijn aan de host of

link die in de quarantaine is genoemd geupdated zijn.

34. Werkwijze volgens een van conclusies 30- 33, waarbij de quarantaine omvat, voor de

host en/of links die in de quarantaine zijn opgenoemd:

een identificatie van de host of link,

een lijst met bekende attribuutwaarden van de host of link,

een support voor een hypothese dat de host of link legaal is,

een support voor een hypothese dat de host of link kwaadaardig is,

een identificatie van dataverkeer dat is gebruikt voor het bepalen van de support voor de

hypotheses.

35. Werkwijze volgens een van conclusies 31-34, waarbij de werkwijze verder omvat:

63

5

10

15

20

25

30

35

het checken, gebruikmakend van de consistentieregels, van de attribuutwaarden van de

host of link in quarantaine op consistentie.

36. Werkwijze volgens een van conclusies 31-35, waarbij de werkwijze verder omvat:

het beoordelen, gebruikmakend van de attribuut gebaseerde policies, of de attribuutwaar­

den van de host of link in quarantaine voldoen aan de set met attribuut gebaseerde policies.

37. Werkwijze volgens een van conclusies 31-36, verder omvattende:

het afleiden van attribuut gebaseerde policies uit de host-attributen en de linkattributen van

het dataverkeer dat in de quarantaine is opgeslagen.

38. Werkwijze volgens conclusie 37, waarbij een nieuwe witte lijst policy wordt afgeleid

uit attribuutwaarden die zijn afgeleid uit protocolberichten die gerelateerd zijn aan de host of

link in quarantaine, waarbij een frequentie van voorkomen van de protocolberichten die ge­

relateerd zijn aan de host of link in quarantaine, een witte lijst drempel overschrijdt.

39. Werkwijze volgens conclusie 37 of 38, waarbij het afleiden van attribuut gebaseerde

policies uit de host-attributen en linkattributen van het dataverkeer dat in de quarantaine is

opgeslagen omvat:

• het (her) berekenen van de support voor de hypothese dat de host of link in

de quarantaine legaal of kwaadaardig is elke keer dat dataverkeer dat gerelateerd is aan de

host en/of links in quarantaine wordt waargenomen,

• wanneer de support voor de hypothese dat de host of link in quarantaine le­

gaal is groter is dan een witte lijst drempel, verwijderen van de host of link uit de quarantaine

en gebruiken van het dataverkeer dat gerelateerd is aan de host of link voor het extraheren

van nieuwe witte lijst policies,

• wanneer de support voor de hypothese dat een host/link in quarantaine

kwaadaardig is groter is dan een zwarte lijst drempel, genereren van een alert en gebruik

maken van het dataverkeer dat gerelateerd is aan de host of link voor het extraheren van

nieuwe zwarte lijst policies,

• updaten van de huidige policies gebruikmakend van de geëxtraheerde nieu­

we witte lijst of zwarte lijst policies.

40. Werkwijze volgens conclusie 39, waarbij het (her)berekenen van de support voor de

hypothese dat de host of link in de quarantaine legaal of kwaadaardig is omvat:

64

het berekenen van een soortgelijkheid van de host of link in quarantaine met een

andere host of link.

41. Werkwijze volgens conclusie 39 of 40, waarbij het gebruiken van het dataverkeer dat

5 gerelateerd is aan de host of link voor het extraheren van nieuwe witte lijst policies respec­

tievelijk het gebruiken van het dataverkeer dat gerelateerd is aan de host of link voor het

extraheren van nieuwe zwarte lijst policies omvat:

het leren van de witte lijst policies respectievelijk de zwarte lijst policies volgens een

van conclusies 23-28.

10

42. Een intrusie-detectiesysteem dat ingericht is voor het uitvoeren van de werkwijze

volgens een van de voorgaande conclusies.

43. Een datacommunicatienetwerk omvattende het intrusie-detectiesysteem volgens

15 conclusie 42.

44. Een inrichting omvattende het intrusie-detectiesysteem volgens conclusie 42.

1

Figure 1

2

Figure 2

3

network traffic
__ /

message 1 message 2 message n

M odels Update

Policy Check

Figure 3

4

Observe

Learn

^Learn policies
© &
consistency rules

END

whitelist policies

Identify

consistency rules

N ew networkact i vit y

0 Extract host and linksattributes

blacklist policies

Λ Are attributes consistent w.r.t no” consistencyrules? ----- -CreateAlert—
iyes Λ

yes
Act ivity matches blacklist policies?—►Create Alert—

I no
yes ’— Are we st ill learning?

I no

yes Activitymat cheswhitelist?-^

Reason undefined (?)
Qoowe have enough evidence(in quarantine) no

to classify t he act ivity?
yes

React & Adapt

Self learning (using quarantine)

Ishostorlink__ n°.-------------
inquarantine? i—► alert list

yes

Log
(J) Analyze

alerts

quarantineθυ pdate quarantine Alert

END END END

Figure 4

5

Hosts DB

Host OS IP vendor role

A windows 10.10.1.1 ? SCADA

B windows 10.10.1.2 Dell Terminal

C linux 10.10.2.3 Dell DNS

D proprietary 172.1.41.5 Siemens PLC

Link DB

Source Target Proto Port Message type Link type

A B SMB 139 read file cross-network

B A SMB 139 open file cross-network

A D Modbus 502 read value local

A D STEP7 53 reprogram local

A C DNS 60 solve name local

Figure 5

6

Figure 6

7

OS = Windows
IP = 10.10.1.1

vendor = Delta V Emerson

A
Host

role= DCS
protos= {Modbus, SMB}

OS = Windows
IP = 10.10.1.2

vendor = Delta V Emerson

Host

B

role = DCS
protos= {Modbus, SMB}

vendor = Delta V Emerson
role = PLC

OS = na
IP = 172.1.41.5

Host

C
protos= {Modbus} Host

D

OS = na
IP= 172.1.41.6

vendor = Delta V Emerson
role = PLC
protos= {Modbus}

ID Consistency rule

1 if host.role c {PLC} then host.protos c {Modbus}

2 if host.role c {PLC} then host.role c {Master, RTU}

3 if host.OS == Windows then host.vendor c. {Dell}

Figure 7

8

Network traffic dataset

ID L.H .OS
Src

L.H .
Src

vendor

L.H ..
Src

role

L.H .OS dst L.H .
dst

vendor

L.H .role
dst

L.Proto L.DstPort L.Message
Type

1 windows Dell Terminal windows Dell Terminal SMB 139 read file

2 windows Dell Terminal windows Dell Terminal SMB 139 open file

3 windows Dell SCADA proprietary Siemens PLC Modbus 502 read value

4 windows Dell SCADA proprietary Siemens PLC STEP7 53 reprogram

Figure 8

9

network
traffic

rule mining
rules translation to

policy
—► policy reduction -►

policy conflict
resolution

final
policies set

Figure 9

10

Quar<intine

ID Target
(G)

Support
legit

(Hyp0)

Support
malicious

(HypJ

Evidence
(E)

Traffi
c

(M)

1 Host={id = 1,..} 0.60
0.80
0.81
1.00

0.00
0.00
0.00
0.00

New Host
New Host Attribute Value (role = PLC)
New Host Attribute Value (vendor=
ABB)
User feedback (host is legit)

2 Link={ id=3,
L.H.src.id = 2
L.H.dst.id =1,..}

0.00
0.00
0.00
1.00

0.25
0.70
0.90
0.00

New Link (from host 2 (role=terminal)
to host 1 (role =PLC))
New Link Attribute Value
(L.MessageType = reprogram)
Alert (terminal reprograms PLC)
User feedback (Terminal can
reprogram PLC)

3 Link= {id=2,
H.src.id = 1
H.dst.id =15, ...}

0.50 0.10 New Link Attribute Value
(L.MessageType=read)

Figure 10

65

5

10

15

20

ABSTRACT

A method of detecting anomalous behaviour in data traffic on a data communication network, a

first host and a second host being connected to the data communication network, the data

traffic on the data communication network forming a link between the first host and the second

host, the method comprising:

a) parsing the data traffic to extract protocol field values of a protocol message of

the data traffic;

b) deriving, from the extracted protocol field values, attribute values of attributes of

one of the first host, the second host, and the link;

c) selecting from a set of models, a model relating to the one of the first host, the

second host, and the link, wherein the selected model comprises a plurality of

attributes to describe the one of the first host, the second host, and the link,

wherein at least one of the attributes is a semantic attribute, the semantic

attribute expressing a semantic meaning for the one of the first host, the second

host, and the link,

d) updating the selected model with the derived attribute values, if the derived

attribute values are not featured in the selected model upon selection;

e) assessing if the updated, selected model complies with a set of attribute based

policies, each attribute based policy defining a security constraint of the data

communication network based on at least one of the attributes of the first host,

the second host or the link, and

f) generating an alert signal in case the attribute based policies indicate that the

updated selected model violates at least one of the attribute based policies.

SAMENWERKINGSVERDRAG (PCT)

RAPPORT BETREFFENDE NIEUWHEIDSONDERZOEK VAN INTERNATIONAAL TYPE

Form PCT/ISA 201 A (11/2000)

IDENTiFiCATlE VAN DE NATIONALE AANVRAGE KENMERK VAN DE AANVRAGER OF VAN DE GEMACHTIGDE

P33194NL.00/HSE

Nederlands aanvraag nr. 1r>dientngsdaiöffr

2020552 08-03-2018
..

tngeroepen voenangsöstum

Aanvrager (Maart;;

Security Matters B.V.

Datum vat hei verzoek voor een onderzoek van Door de Instantie voor Internalionaai Qndetzoek san
internaiionasi type het verzoek voer een onderzoek van jnternalionaat type

toegekend nr.

26-05-2018 SN71303

I. CLASSIFICATIE VAN HET ONDERWERP (bij toepas j van v'sssphtiteutte el&ssificatiss, atte ctassi^saitesyrMen epgsven)

Voigen’S de internaliöna-e etaseificirtie (IPC)

H04L2öms

tl. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK
Onderzochte minimumdociimentatie

Classificatiesysteem C ■ assi fic at; esym beien

IPC H04L

Onderzochte andere 'Jocui<p$Wfc e. voet- ,wyet ifergeiijks; ctacBmerteri .in cte Gncterzochfe geöiecfen zijn

.apfjenörnen.

BI. GEEN ONDERZOEK MOGEUJK VOOR BEPAALDE CONCLUSIES (opmrterfrjen r,p

IV. GEBREK AAN EENHESD VAN UtTViNDING (opmerkingen op atarwu&ngatitetd)

ONDERZOEKSRAPPORT BETREFFENDE HET
RESULTAAT VAN HET ONDERZOEK NAAR DE STAND
VAN DE TECHNIEK VAN HET INTERNATIONALE TYPE

1

fiUmtnw van t> etwtóek om een onderzoek naar
de stand van ds techniek

HL 2020552

Pom^ns-t ?0Τ/ίέςΑ/2.0ί roanu&fr^X^)

I NV. H04L29/06

Velgen® d» Iniematforrste öiassitfcai® van octrooien (’IPS) of Eowei vólgens d» nationale oiassrfeafe ai» voigens de -iFC.:

ft. ^PE^PPHT6«8B!6P^tVANPET«PHWK
C-nderzechte irumiwn docymenfatte^iassifieaife gevolgd dooreisesifesttesymfeci»)
H04L

Ondarzashte stïideae d&Dufflientatie dan <te döcurnerrtatffe, vöö? tfenjei tfKe dcrcumant&n. voor zcwer tawitón in de onderzötïbte
gabtecfen ϊμ]» opg^notmn

Tijdens het onderzoek geraatêpteegde eiektra-nisoke gegevensbeataadsn (naam van de gegevensbestanden en, waar uitvoerbaar, gebruikte trefwoorden)

EPO-Internal, COMPENDEX, INSPEC, 1BM-TDB, WPI Data

C. VA» SELAN® GEACMTê ÓOCÜMÊNTÊW

Oategc fié15 doQwrrïsmteiïj everóuee: met eanciuK&ng ven apeaieai ven behang aijnde passages Van belang vw>r
cc netste nr

X

A

A

EP 1 986 391 Al (MITSUBISHI ELECTRIC CORP
[OP]; MITSUBISHI ELECTRIC INF TECH FNL])
29 oktober 2008 (2008-10-29)
* alineas [0035] - [0053]; figuur 3b *

US 2017/195197 Al (ZAMBON EMMANUELE [Hl])
6 juli 2017 (2017-07-06)
* alineas [0015] - [0033], [0044],
[0045], [0056], [0059], [0069], [0070]
Sr

US 2011/167493 Al (SONG YING80 [US] ET AL)
7 juli 2011 (2011-07-87)
* alineas [0053] - [0056], [0069],
[0071] *

1-44

1-44

1-44

1 Vardere ctaeumentett warden vermeld in hei vervoig van vsk C | J Lsd&fi van daïaifcia ootrooifanrötë zijn verred m bijJage

’ Speotafe cstegorieSii van aangehaafdeitaoums-riter! η·» M jndrsningsdaluntrj-f tfe vronangedasum gapubiieeetrte

» ·. , , ;< i < < / ■.. ·, ,.:. . j liierateur die niet bezwarend is voor de odrooiaanvrage.
A 'TT* * behorende Ifererttar d® da' stand van de o .aar vermeid ter tsrtataatina van detneone of

tefinhte-Kbesenrrjn het principe dat ten grondsteg ;;gt aan de uitvinding
"D’in de ocirooiaanwagevermeid

“X’ de eottaiwefe werdt ais friet nieuw of niét iiivéntiéf beseitowd
"6’ Mn ootrooiteiftijvtdae}, geptmtoei-d opuf na tfe wdteninssdatuin, ten opsiahts van dezeftaatuur

waarin dezelftfe uitvinding wondt besdhrevéri
"'C de conciusis wordt at» niet inventief besahauwd ten opzichte

X’ ewandefe rsdeneh veitrwtófe iftefa.uur vaB com&nstie van d·» titwatuur met anders- gswtee-rcfe
4,-\·! ■ i .i -i. >■< i i „ i > i Hu, Staatnur ven dezelfde oategoüe. waarbij de combinatie voor“O*: rtó-sc hnttehite etaad van de taohmek v(Amep

'F" :tus«it tfe vöörrang&datbm en de iadteningSiMurn gepubiiceenas fitewstuur lid vatf dezelfde odtrooitamife cf overeenkdmstise odtitso^bliiatie

Daiur*' waai i3£ onderzoek naa* 0¾ stand van oe tecnnrek van
tn^rnafionaisJ type >y«rrf yoltooid

23 oktober 2Θ18

Vei'ze»düfltcfn van riei nappon van net onderhoek naar de stand van
de techniek[van<HiénT<»tk>n^.type>-'

Maam en adres van rie imtafsife
Eiuropsw- Patent Qffi-óe, P.ft. dSW Patentfean 2
NL-228Ö HV RW«< '
Tel. i+31-?G) 340-ZG-1Ö,
F'ör (+31-7Ö)

Öe bevoegde ambtenaar

Agudü Cortada, E

bladzijde 1 van 2

ONDERZOEKSRAPPORT BETREFFENDE HET
RESULTAAT VAN HET ONDERZOEK NAAR DE STAND
VAN DE TECHNIEK VAN HET INTERNATIONALE TYPE K 2029559

0 {V&rvoig) VAN SSLANG<3LACHTE DOCUMENTEN

Gategoiis'' G»eitêer:de0Aun>srttan,:®vertiy&ei BWt-saiKjMidw’ig^vsrt.spèeiaaUsii belarig zy«de psseBgas: Van betang voor
ccifiduai» nr.

A

A

US 2017/163666 Al (VENKATRAHANI ANJAN [US]
ET AL) 3 juni 2Ο17 (2017-06-08)
* samenvatting *
* alineas [0038], [0039]. [0048].
[ΟΘ7δ] - Γ0092]f [0144] *

GARCIA-TEODORÖ P ET AL; "Anomaly-based
network intrusion detection: Techniques,
systems and challenges'*,
COMPUTERS & SECURITY. ELSEVIER SCIENCE
PUBLISHERS. AMSTERDAM, HL,
deel 28, nr. 1-2,
1 februari 2009 (2009-02-01), bladzijden
18-28, XPÖ25839371,
ÏSSN; 0167-4048, 001:
10.1016/J.COSE.2008.08.003
[gevonden op 2008-08-27]
* section 2.2 *

Λ* <M> W *»

1-44

1-44

'*£ϊ/ΐ£;Α/2ΰ1

bladzijde 2 van 2

'Nummêrèanietvêrïoek cm^nonÊfejzisek naar
de startd jas·· de techniek

NL 2020552

ONDERZOEKSRAPPORT BETREFFENDE HET
RESULTAAT VAN HET ONDERZOEK NAAR DE STAND
VAN DE TECHNIEK VAN HET INTERNATIONALE TYPE

ins' osmete over teders van de zei kfe oetruoifamilie

in het rapport
genoemd octrooigeschrift

Öataït van
pubiioshe

Overeenkomend'^)
gesohnftfeaj

Datum van
pLibhaatia

EP 1986391 Al 29-10-2()08 EP 1986391 Al 29-10-2008
OP 2008306706 A 18-12-2008
US 2008263661 Al 23-10-2008

US 2017195197 Al 06-07-2017 BR .112014001691 A2 13-06-2017
CA 2842465 Al 31-01-2013
CN 103748853 A 23-04-2014
EA 201490333 Al 30-06-2014
EP 2737683 Al 04-06-2014
ES 2581053 T3 31-08-2016
n 23044G A 31-10-2017
II 254829 A 28-06-2018
OP 6117202 B2 19-04-2017
OP 2014522167 A 28-08-2014
NL 20Ö7180 C 29-01-2013
ÜS 2014090054 Al 27-03-2014
US 2814297572 Al 02-10-2014
US 2017195197 Al Θ6-Θ7-2017
WO 2013015691 Al 31-01-2013

LIS 2011167493 Al 07-07-2011 US 2011167493 Al 07-07-2011
US 2014373150 Al 18-12-2014
US 2016366169 Al 15-12-2016
WO 2010011411 Al 28-01-2010

US 2017163666 Al 08-06-2017 EP 3387517 Al 17-10-2018
US 2017163666 Al 08-06-2017
WO 2017100364 Al 15-06-2017

FóiGTutef o^troo^nciie) (Januari 2004)

WRITTEN OPINION

Fife No.

SN713D3
Filing date

08 03.2018
I Priority date fdayttianihy^ri i Application No.

NL2020552

international Patent C-assif

INV, H04L29,06
cation (IPC)

Applicant

Security Metiers 8.V,

This opinion contains indications relating tn the tollowing items:

id industrial applicability

Ë3 Box No. i Sasic of the opinion
□ Box No. II Priority
□ Box No. ill Non-establishmer;l of opinion with regard to noveiiy, inventive step an
□ Box No. IV Lack of unity of invention

Box No. V Reasoned statement with regard to novelty, snveniive step oi industria
applicability: citations and explanations supporting sunn statement

□ Box No. VI Certain documents cited
Box No. VI: Certain detects m ths application
Box No. VI:I Certain observations on the application

Form ML237A iOsBtdadi (Jui

Examiner

Agudo Cortada. E

AppSfCafcn riurrttw

NL2020552WRITTEN OPINION

Box No. IBasis of this opinion

T, This opinion has been established on the basis of the latest set of claims hied before the start of the search.

2. With regard to any nucleotide and/or amino acid sequence disclosed in the application and necessary to the
claimed invention, this opinion has been established on the basis of:

a, type of material:

□ a sequence listing

□ tablets) related to the sequence listing

b< format of material:

□ on paper

□ tn electronic form

c. time of filirigiurnishing;

□ contained in the application as filed.

□ filed together with the apptication in electronic form.

O furnished subsequently tor the purposes of search;

3. □ In addition, in the case that more than one version or copy of a sequence listing andtor table relating thereto
has been filed or furnished., the required statements that the information in the subsequent or additional
copies is identical to that in the application as hied or does not go beyond the application as filed, as
appropriate, were furnished.

4. Additional comments:

Bex No. V Reasoned statement with regard to novelty, inventive step or industrial applicability;
Citations and explanations supporting such statement

I, Statement

Novelty Yes: Claims
Fta: Claims

1-44

Inventive step Yes- Claims
No; Claims 1-44

industrial applicability Yes. Claims
No; Claims

144

.2., Citations and explanations

see separate sheet

NL23ZB (July'2006)

AppSfCafcn riurrttw

NL2020552WRITTEN OPINION

Box No; VII Certain defects tn the application

see separate sheet

Box No, Vlit Certain observations on the application

see separate sheet

NL23ZB (J«ty '2006)

WRITTEN OPINION
(SEPARATE SHEET)

Application number

NL2020552

Re Item V

Reasoned statement with regard to novelty, inventive step or industrial
applicability; citations and explanations supporting such statement

Reference is made to the following documents:

Di EP 1 986 391 A1 (MITSUBISHI ELECTRIC CORP [JPj; MITSUBISHI
ELECTRIC INF TECH [ML·]) 29 oktober 2008 (2008-10-29)

D2 US 2017/195197 A1 (ZAMBÖN EMMANUELE [NL]) 6 juli 2017
(2017-07-06)

D3 US 2011Z167493 A1 (SONG YINGBO [US] ET AL) 7 juli 2011
(2011-07-07)

D4 US 2017/163666 A1 (VENKATRAMANI AN JAN [US] ET AL) 8 juni 2017
(2017-06-08)

D5 GARCIA-TEODORÖ P ET AL: /’Anomaly-based network intrusion
detection: Techniques, systems and challenges’',
COMPUTERS & SECURITY, ELSEVIER SCIENCE PUBLISHERS.
AMSTERDAM,NL
deel 28, nr. 1-2, 1 februari 2009 (2009-02-01), bladzijden 18-28.
XP025839371,
!SSN: 0167-4048, DOI: 10.1016/J.COSE.2008.08.003
[gevonden op 2008-08-27]

1 The present application does not meet the criteria of patentability, because
the subject-matter of claim 1 does not involve an inventive step.

1.1 D1 is regarded as being the prior art closest to the subject-matter of claim 1
and discloses a method of detecting anomalous behaviour in data traffic on a
data communication network, a first host and a second host being connected
to the data communication network, the data traffic on the data
communication network providing a li nk between the first host and the second
host, the method comprising:

a) parsing the data traffic to extract protocol field values of a protocol
message of the data traffic (see d:i, paragraph 50: "i.n step

w© WLSCWJ YEew received
■aTansjiyïg da dos®: as·· eYpYtótteii
a-Pave·· Lb S'dep 20·®’*:«·· vtoitoh·· :;a.

•Fïiitk •biLSSi'S issparate sh®stjrtJuly StSSS) (shael; iJ

WRITTEN OPINION
(SEPARATE SHEET)

Application number

NL2020552

parsing of the data traffic);
b) deriving, from the extracted protocol field values, attribute values of
attributes of one of the first host, the second host, and the link n-v di,
paragraph par -Shg' attWpatO ppp Sl'rsA: il-app:
i.?i?rresp-<?22d to oaiitsroot stt^ibutas toss are intrïnsic
IB -&-fie ;piWPpaP, Ρρ·οΡ;ί.ορ4Ρ<ρ2ρ Sb Table- 1
pPepentP a: pop sshaasblw; Past bf aMri&Sss ob b®S::
oPap®::" ancl (pafagpapii 4pr -,r3Se: aborabpSe:® pf■ bi®;

P't < * on aio 2 - a\.' c nri ,i
< v o< ϊ i o' r a f c'1 i > v u λ© i*

pr'popding ft© curre.ri o?’p using S'© ο i f forent.· vsiues
pf t'fie; a8bribu:&ea IndinaCpb:; Pur t'p®<: farot plaaa’-);
c) sol octifig· ■ from· a so W-medele·, a ■ model relating to the o no of ■ the first
hesS-ths-seecH^^ wherein fhe-eele^ed a model
comprises a plurality of attributes to describe the one of the first host,
the second host, and the link (see Di, table 1, wherein some
of: tSe -ilelbs:: /imlapp: tp tBp· bust.® ® tp tfe
wherein at least one of the attributes is a semantic attribute, the
semantic attribute expressing a semantic meaning for the one of the first
Dost, the second host, and the link (see di, table® i and 2 m
paragraphs 38 and 40, wherein the second column is
Ch® peanlng; ©nd bag scpip aODpihupes spch a® th© WÏ
wipte a.p -Wa aadfar the Mrs, push ap- thongs
th® /port MdipatMn)·;
d) updating the selected model with the derived attribute values, if the
derived attribute values are not featured in the selected model upon
Selection l ^1, . ©a-ractrak'' v-: " f ': : 7 att-_< <. i a
apiraptpd/ tp<g :rsggl::vgd ρΡρρρρΑρρ Ogp· :.ip·· plagslplpd·
de· plpp Al® pa®p< öp: tpe:< p3ppp:r<;fi<i;ïa:ta®7ï paPgl. built
®ab.ï.lp:ps 3:P:< gt;gp:: ΜΡρΡΡίΏ ppp darlbpd .attblptte
valtibs Pro blip prbvlbua PWp Ao-- Input - inb:b.<
St βεΙΟΤ .piGrrbepo'hdinfg .bcSatadn: fob the. aSHSS®,
bbioli ban nS cPap-Wareb ©mpty arid- updatób :-bV: :Se
derlWS atSsiWtS SalWa);
e) assessing if the updated, selected model complies with a set of
attribute based policies, each attribute based policy defining a security
constraint of the data communication network, based on at least one of
the attributes of the first host, the second host or the link (sa® „.·.:,

■Fcwm-141:337-3 fssparata sSisetj i JiJv FtKSS) (-sheet 3)

WRITTEN OPINION
(SEPARATE SHEET)

Application number

NL2020552

paragraph 51 rr:-?nt i cned in the previous step), and
f) generating an alert signal in case the attribute based policies indicate
that the updated selected model violates at least one of the attribute
based policies (see DI, paragraph 52: Mïn step .723 it is

fed A Af QW 2® ASA c?ase>
‘ .c ' < >+ t ," \ ' ' 5 ' U ' ’ ’ ■, J ’ ï")

1 2 The subject-matter of claim 1 therefore differs from this known method in that
a selection is made from a set of models of a model relating to the one of the
first host, the second host, and the link and is therefore new.

1.3 The problem to be solved by the present invention may therefore be regarded
as the use of the method known from D1 for a plurality of hosts or for a
different, type of link having a distinct behaviour which warrant a different
model.

1.4 The solution proposed in claim 1 of the present application cannot be
considered as involving an inventive step for the following reasons;

1.4.1 D1 already defines a decision tree classifier (see paragraph 58 and figure 5)
which produces a set of branching policy conditions. In the example of figure
5,. tho kind of message(Request/Response) is determined at the root and the
corresponding of two different (sub-)models for testing the anomalous
behaviour depending on the type of message is selected.

1.4.2 It is straight-forward to have a first condition at the root for hosts or links
having a clearly distinct behaviour which warrant a different model. Actually,
even the derivation of the model known from D1 (see paragraphs 43-49)
would naturally produce a decision tree with the transmitting/receiving host or
the link type at the root if the hosts or links exhibit a distinguishing behaviour
for the purpose of anomalous behaviour detection.

1.4.3 It is worth pointing out that the attributes corresponding to the the
transmitting/receiving host or the link for which the model is specific could
already comprise the corresponding attributes from the transmitting/receiving
host or the link which need not be obtained from the data traffic. This is in
relation to the condition "if the derived attribute values are not featured in the
selected model upon selection” in step d) of the claim.

2 The same reasoning applies, mutatis mutandis, to the subject-matter of the
corresponding independent claims 42-44, which therefore are also
considered not inventive.

:ML237'3 {separate sh®st{ {Jtily StSSS) (sheetsJ:

WRITTEN OPINION Application number
(SEPARATE SHEET)___ NL2020552

3 Dependent claims 2-41 do not contain any features which, in combination
with the features of any ciaim to which they refer, meet the requirements of
inventive step.

Ciaim 2 is known from D1 (see D1, paragraph 40). Ciaim 3 and 5 are
derivable from the above argumentation regarding claim 1. Ciaim 4 and is
known from D1 (se for instance figure 5). Ciaim 7 is known from D1,
paragraph 38. Claim 8 is known from D1 (see 01, paragraph 40, wherein the
correlation operations can be considered/^ be .an heuristic). Claim 9. is known
from D1 (see D1, paragraph 38, wherein a classification is implicit by the
obtention of the attributes). Claim 10 is customary in the art of data
processing, wherein a non-reliable information input is disregarded, wherein
the reliability can be considered to be a level of confidence. Ciaim 11 defines
a feature lacking a technical significance since it makes no sense to obtain
two attribute values, one employing heuristic methods and another employing
a classifier, if the latter is always discarded as defined in the claim.. Claim 12
is known from D1, which does not define a passive detection. Claim 13 is
derivable from the above argumentation regarding claim 1. Claims 14 and 15
are known from D1 (paragraphs 53 and 52 respeotiveiy). Ciaim 16 is
derivable from D2. paragraph 20 or from D3 (paragraph 69), whose teachings
can be straight-forwardly used in the method known from D1. Claim 17-41
merely define additional implementation details.

Certain defects in the internatienal application

1 The independent claims should be cast in the two-part form, with those
features known in combination from the prior art (see document DI) being
placed in a preamble and with the remaining features being included in a
characterising part.

2 Documents D1 to D3 should be identified in the description and the relevant
background art disclosed therein briefly discussed.

3 The opening part of the description should be brought into conformity with
any amended independent claims.

4 Furthermore, following the disclosure of document D1, the statement
indicating the technical problem to be solved by the invention, requires
revision.

■■fxwRi :^1:237-3 (separata sh®st((Jijly SÖÖS) (sheet 4)

WRITTEN OPINION
(SEPARATE SHEET)

Application number

NL2020552

5 Due care should be taken not to add any subject-matter which extends
beyond the content of the application as originally filed,

6 Reference signs placed in parentheses should be inserted into ail the claims
to increase their intelligibility. This applies to both the preamble and the
characterising portion,

ÉalimïlM
Certain observations on the application

1 Independent claim 1 is not clear for the following reasons (wherein the
deficiencies mentioned also applies to dependent claims employing the
unclear expressions mentioned below);

1.1 Reference is made in step a) to a "protocol field” and to a "protocol message",
which lacks a well-defined meaning, rendering the scope of the claim unclear,
in particular, it is not clear which characteristics should be satisfied by a field
and by a message in order to be considered to qualify as being of the
’‘protocoi" type.

1.2 Step c) refers to a "semantic value" expressing a "semantic meaning" of the
first host, the second host, and the link, which is unclear. In particular, it is not
understood what is a "semantic meaning" of hosts or links.

1.3 Step d) refers to updating the selected model with the derived attribute
values, ”if the derived attribute values are not featured in the selected model”,
which is broader than justified by the description, since according to the
wording the attribute values could appear in a different attribute in order for
the condition to be met (for instance, the value of the source IP attribute
obtained by the deriving step in b) of claim 1 could correspond to the
destination IP attribute of the model for the link, in the example in page 12,
line 13-page 13, fine 33). However, support exists only for the condition being
instead that a value for the corresponding attribute in the selected model has
not been defined (represented by a question tag "?” as the value of the
attribute in the example of pages 12-13)

1.4 The claim indicates in the introductory part that the data traffic provides a link
between the first and the second host, which is unciear, since a link needs to
exist in order to enable data traffic to exists between the two hosts and
therefore the traffic cannot provide a link.

;Mt237'3 (separate Jiily StSSS) (sftaet/SJ

WRITTEN OPINION Application number
(SEPARATE SHEET)___ NL2020552

2 The reference to injecting a "stimulus" into the network made in dependent
claim 12 is unclear. In particular which kind of signals are considered to be a
stimulus.

3 Dependent claim 16 refers to "combinations of at least two attributes" as
being consistent or not, but it appears that it intends to refer to the
combination of attribute values as being consistent or not (see for instance
claim 18).

4 Dependent claim 17 specifies that the “the detecting, on the basis of the
attributes derived from the monitored data traffic, if the monitored data traffic
complies to the consistency rule, is performed before step e)”.

First of ail, no detecting step has been previously defined, rendering the
reference to "the detecting" unclear. Secondly, step e) of claim 1 defines
assessing if the updated, selected model complies with a set of attribute
based policies and the feature which, according to claim 17, should occur
before, i.e. detecting whether the traffie complies to the consistency rule, is
itself a particular manner to perform step e), since the consistency rule is a
specific type of policy. This claim is therefore unclear, since it defines that a
sub-step of a step occurs prior to the step.

5 Dependent claim 18 refers to a "location" of data traffic which is unclear, This
wording is sometimes used to refer to the time at which the data traffic
occurs, but since the claim also refers to the time of occurrence of the data
traffic as an alternative., the "location" necessarily should have a different
meaning.

6 Dependent claim 19 specifies that the consistency rule related to the first host
comprises an attribute of another host. This is unclear for a plurality of
reasons. First of all, claim 16 on which it depends does not define a
"consistency rule related to the first host" but rather a consistency rule which
"defines consistent combinations of at least two attributes of the model
related to the first host". Secondly, assuming that the wording of claim 19
intends to refer to the consistency rule defining consistent combinations of at
least two attributes of the model related to the first host, according to claim 1,
the model related to the first host comprises attributes of the first host,
whereas claim 19 specifies the opposite, namely that it comprises an attribute
of another host.

7 Claim 22 refers to "the action”, whereas no action has been previously
defined.

NL2S7'S (separate (shaet-SJ

