(54) 发明名称
一种PETG热收缩薄膜的制造方法

(57) 摘要
本发明公开一种具有低收缩应力、横向高收缩率、纵向低收缩率、低强度的聚对苯二甲酸乙二醇-1,4-环己二甲醇酯(PETG)热收缩薄膜的制造方法，PETG材料烘干后在挤出机中塑化熔融，经T形模头挤出形成均匀薄膜，在冷却轭上急冷定型，经7预热轭预热后进行1：1.1～1.5倍的纵向拉伸，再用4冷却轭冷却定型，纵向拉伸后的膜片预热后进行1：3～6倍的横向拉伸，再用冷却轭冷却定型，切边、电晕处理，收卷成为成品。
1. 一种 PETG 热收缩薄膜的制造方法，其特征在于，包括以下步骤：
 A. 选用特性粘度 0.55~0.85dL/g，维卡软化点 60~90℃，聚合物中乙二醇和 1,4-环己二甲醇单体的摩尔比为 1 : 4~7 的 PETG 材料，烘干后在挤出机中塑化熔融，经 260~280℃的 T 形模头挤出形成厚度 0.2~0.5 毫米的均匀薄膜，膜片在 20~60℃的冷却辊上急冷定型；
 B. 膜片经 70~90℃的预热辊预热后进行 1 : 1.1~1.5 倍的纵向拉伸，再用 40~65℃的冷却辊冷却定型；
 C. 纵向拉伸后的膜片在 75~90℃的预热后进行 1 : 3~6 倍的横向拉伸，再用 50~70℃冷却辊冷却定型，切边，电晕处理，收卷成为成品。

2. 根据权利要求 1 所述 PETG 热收缩薄膜的制造方法，其特征在于，所述 PETG 树脂中，乙二醇和 1,4-环己二甲醇单体的摩尔比为 1 : 4~5~5.5。

3. 根据权利要求 1 或 2 所述 PETG 热收缩薄膜的制造方法，其特征在于，步骤 A 中，膜片的上下表面还各有防粘层，防粘层材料按重量百分比由 90~97% 的 PETG 材料和 3~10% 的 PETG 防粘剂组成，防粘层材料经注塑机熔融后在 T 形模头中按上中下层 0.5~1.2 : 10 : 0.5~1.2 的流量比通过模唇的定型面与膜片同时层合挤出。

4. 根据权利要求 1 或 2 所述 PETG 热收缩薄膜的制造方法，其特征在于，所述膜片中，加入 PETG 材料重量的 2~5% 的 PETG 防粘剂。

5. 根据权利要求 1 或 2 所述 PETG 热收缩薄膜的制造方法，其特征在于，纵向拉伸比为 1 : 1.1~1.3 倍。

6. 根据权利要求 1 或 2 所述 PETG 热收缩薄膜的制造方法，其特征在于，横向拉伸比为 1 : 4~5 倍。
一种PETG热收缩薄膜的制造方法

技术领域
001. 本发明涉及一种包装用热收缩薄膜材料的制造方法，具体是聚对苯二甲酸乙二醇\(-1,4\)-环己二甲醇酯（PETG）热收缩薄膜的制造方法。

背景技术
002. PETG 是对苯二甲酸、乙二醇、1,4-环己二甲醇的缩聚物，在其生产过程中，由于一定数量的乙二醇被 1,4-环己二甲醇所取代，聚合物可预防结晶化，是一种非结晶性共聚聚酯。
003. 随着科技的进步和人们生活水平的不断提高，人们对高档产品的外包装要求越来越高。PETG 热收缩膜具有无毒、无味、高透明度、高收缩率、高包装效果美观。PETG 聚酯薄膜最大的优点是热封合性能佳，封合时易操作，封合效果好和易变以胶水黏合，同时光学性能与机械延伸性都很好。PETG 通过美国 FDA 关于食品接触标准，可以应用于食品及个人保健用品，医药卫生设备食品等领域的包装，还可用于电子器件包装，可符合环保回收需求。
004. 由 PETG 材料双向拉伸制成的 PETG 热收缩薄膜是一种高性能收缩膜，最终收缩率达到 70%，可制成复杂外形容器的包装，具有高吸塑力、高透明度、高光泽，低雾度，易于印刷，不易脱落，存储时自然收缩率低的优点，应用于饮料瓶、食品和化妆品的收缩包装及电子产品等的收缩标签。与 PVC 收缩膜相比，PETG 收缩膜还具有环保的优点。所以 PETG 热收缩薄膜在包装领域得到了广泛应用。目前世界上只有少数企业能加工生产这种产品，而且这些产品热收缩后率仍不高，产品透明度低，雾度达到 5% 以上，收缩应力大，提高产品的热收缩率和透明度，降低收缩应力是本领域所要攻克的技术难关。

发明内容
005. 本发明的目的是提供一种具有低收缩应力、高收缩率和低雾度的聚对苯二甲酸乙二醇\(-1,4\)-环己二甲醇酯（PETG）热收缩薄膜的制造方法。
006. 本发明包括下列步骤：
007. A. 选用特性粘度 0.55~0.85dL/g，维卡软化点 60~90℃，聚合物中乙二醇和 1,4-环己二甲醇单体的摩尔比为 1:4~7 的 PETG 材料，烘干后在挤出机中塑化熔融，经 260~280℃的 T 形模头挤出形成厚度 0.2~0.5 毫米的均匀膜片，膜片在 20~60℃的冷却辊上急冷定型；
008. B. 膜片经 70~90℃的预热辊预热后进行 1:1.1~1.5 倍的纵向拉伸，再用 40~65℃的冷却辊冷却定型；
009. C. 纵向拉伸后的膜片在 75~90℃的预热后进行 1:3~6 倍的横向拉伸，再用 50~70℃冷却辊冷却定型，切边、电晕处理，收卷成为成品。
010. 本发明的 PETG 树脂中，乙二醇和 1,4-环己二甲醇单体的摩尔比优选为 1:4.5~5.5。
011. 膜片的上下表面还可以设有防粘层，防粘层的材料按重量百分比由 90~97%
PETG 材料和 3~10% 的 PETG 防粘剂组成，防粘层经注塑机熔融后在 T 形模头中按上中下层 0.5~1.2: 10 : 0.5~1.2 的流量比通过模具的定型面层合挤出。

【0012】还可在膜片 PETF 材料中加入 PETG 材料重量的 2~5% 的 PETG 防粘剂。

【0013】纵向拉伸为优选 1: 1.1~1.2 倍，横向拉伸可为优选为 1: 4~5 倍。

【0014】本发明所述 PETG 防粘剂为来成重量百分比 2~3% 的纳米级高岭土和余量为 PETG 材料的共混组合物。

【0015】本发明在纵向和横向拉伸过程使聚合物分子链在这两个方向拉长、定向，使产品具有很高的横向收缩率（99℃，10 秒，横向 ≥ 78%），和较低的纵向收缩率（≤ 0.5%），透明度高（雾度 ≤ 1.5），有较好的机械特，强度高，坚挺度大，弹性模量大（纵向 MD ≥ 2000MPa，横向 TD ≤ 4000MPa），拉伸强度高（纵向 MD ≥ 500MPa，横向 TD ≥ 200MPa）。

【0016】尤其是，本发明生产的产品收缩应力可以低至 6MPa。低收缩力的优点是可以应用于薄化的被包装品，在收缩包装的过程更为均匀，可作为高档包装、印刷、电子电器、电缆包装、绝缘材料等工业领域的优质基材，以及各种罐装聚酯瓶、各种容器等外途标签。

具体实施方式

【0017】实施例 1

【0018】所用材料：PETG；透明，特性粘度 0.7dL/g，维卡软化点 69℃；

【0019】PETG 防粘剂；特性粘度 0.62dL/g，维卡软化点 63℃，高岭土含量 2wt%。

【0020】上述材料按重量比配置中间层物料：100 份 PETG；上下表面层材料：95 份 PETG，5 份 PETG 防粘剂。

【0021】中间层物料和表层材料分别均匀混合后，分别送至 65℃连续干燥器进行烘干（时间约 6 小时），去除原料表面水分，然后经过金属分离器，将物料中夹带的金属屑或颗粒分离出来，再各自送至一台挤出机塑化熔融，熔融温度 275℃，熔体在螺杆高速旋转下被均匀混炼和输送。在输送过程中，熔体中气体的低分子物质和分解出来的气体及水分通过挤出机的排气孔，由真空泵抽出吸入冷凝系统，使低分子物质等分离出去。再过滤除去塑化不良的材料和杂质，保证熔体的高度纯洁。熔体在 T 形模头中按上中下层 3: 34: 3 的流量比通过模具的定型面层合挤出，再经过高度光洁，温度为 35℃的冷却辊快速定型，成为由三层构成，厚度为 0.22 毫米的均质膜片，膜片厚度由模头调节确定。

【0022】急冷定型后的膜片经 80℃的多道预热辊预热，利用慢速辊和快速辊的速差按 1: 1.2 的拉伸倍率一次拉伸成形，经 60℃冷却辊冷却定型，完成纵向拉伸。

【0023】纵向拉伸后的膜片烘箱内预热至 85℃，利用可调压力由链夹牵引膜片，按 1: 4.5 的拉伸倍率完成横向拉伸，然后用 50℃冷却定型。

【0024】经过拉伸的薄膜，先用切边机将其两边切除，然后用电晕机进行高频电晕处理，以增加印刷油墨的附着力和摩擦力。电晕处理后的薄膜在收卷机上收卷成轴，然后自然放置一段时间，进行时效处理，使产品的性能趋向稳定。

【0025】经时效处理后的双向拉伸 PETG 膜片，利用分切机分切成用户要求的规格，然后进行包装，即得到双向拉伸 PETG 热收缩薄膜成品。

【0026】上述成品经检测，厚度 40.7μm，其中上下两表面层厚度各约 3μm，热收缩率（99℃，10 秒）横向（TD）79%，纵向（MD）0.5%，雾度 1.2%，光泽度（45°）126.4%，拉伸强度：纵向
实施例 2

所用材料：

PETG；透明，特性粘度 0.7dL/g，维卡软化点 69℃；PETG 防粘剂：特性粘度 0.62dL/g，维卡软化点 69℃，高岭土含量 2wt%。

上述材料按重量比配料，单层：97 份，PETG，3 份 PETG 防粘剂。

由一台双螺杆挤出机挤出熔融挤出形成 0.20 毫米厚的单层膜片，其它工艺步骤与实施例 1 相同，拉伸条件：

T 形模头挤出后的冷却辊温度 40℃；

纵向拉伸预热辊温度 78℃，拉伸倍率 1：1.15，纵向拉伸冷却定型温度 45℃；

横向拉伸预热温度 82℃，拉伸倍率 1：4.4，横向拉伸冷却定型温度 65℃。

上述成品经检测，厚度 39.6μm，热收缩率（99℃，10 秒）：横向 TD：78.2%，纵向 MD：0.3%；雾度 1.4%；光学度（45°）121.5%；拉伸强度：纵向 MD：52.6MPa，横向 TD：208.8MPa；弹性模量：纵向 MD：2093MPa，横向（TD）4210MPa，收缩应力 6MPa，是性能很好的 PETG 热收缩薄膜。