This invention has to do with spray nozzles and while not necessarily limited thereto the same is particularly directed to a spray attachment for a garden hose nozzle which is adapted to be detachably associated therewith for varying and directing the stream of water issuing therefrom.

While the common types of garden hose nozzles are provided with adjustable valve means for producing a fine spray, they are open to the objection that when the valve means is so adjusted the volume of water flowing from the hose is materially reduced and thus requires an extended period of time for completing the watering operation, while the spray assumes a widely scattered conical form, the direction of which cannot be properly controlled.

The present invention comprehends an attachment for a hose nozzle which is so constructed as to provide means arranged thereon for intersecting the stream of water issuing from the nozzle and for deflecting the same downwardly and laterally into a fan shaped spray without reducing the maximum volume of water flowing from the hose.

The invention further contemplates an attachment of the indicated character which includes a blade having resilient clamping engagement with and rocking movement relative to the nozzle and wherein the blade is adjustable so as to vary the angularity thereof and the degree of deflection of the water issuing from the nozzle.

As further feature the invention provides an attachment of the indicated character wherein the deflector blade may be set and retained at various angles and which is so constructed as to permit of the blade being manually retracted and held out of intersecting relation to the stream of water so that when released the blade returns to the set adjusted position.

Other objects of the invention reside in the provision of an improved spray attachment for hose nozzles which is extremely simple in its construction and mode of operation, which may be economically produced and which may readily associated with or removed from the hose nozzle without requiring the use of tools or requiring any alteration to the construction of the nozzle.

With the above enumerated and other objects in view, the invention is set forth in greater detail in the following specification and illustrated in the accompanying drawing in which:

Fig. 1 is a perspective view of a hose nozzle with a spray attachment constructed in accordance with the invention associated therewith.

Fig. 2 is a side view thereon with the attachment shown in longitudinal section and illustrating in full and dotted lines the deflector blade in active and inactive positions.

Fig. 3 is a transverse sectional view through the hose nozzle with the spray attachment applied thereto, the same being taken on the line 3—3 of Fig. 2.

Referring to the drawing by characters of reference, A designates a hose, B a hose nozzle and C generally the spray attachment.

The spray attachment C includes a deflector blade 10 which is herein shown as of rectangular configuration, but which may be of any desired shape and which is preferably constructed of sheet metal and formed with an integral rearwardly directed shank 11 of reduced width and extending medially from the rear edge of the blade 10. The shank 11 adjacent its juncture with the blade is provided with a pair of resilient fingers 12 depending from the opposite side edges of the shank and defining a spring clamp adapted to mount the deflector blade for rocking movement relative to the nozzle. The free lower terminals 13 of the spring fingers 12 are directed outwardly to provide a flared entrance mouth for facilitating the engagement of the fingers in straddling relation to the nozzle.

The spring fingers 12, as illustrated, are preferably formed integral with each other and joined by a connecting or bight portion 14 overlying or underlying the shank 11 and secured thereto by a rivet 15 or other equivalent fastening means. The shank 11 adjacent its free rear end is formed with a threaded opening 16 and receives therethrough the threaded stem 17 of a set screw 18, which stem is adapted to bear at its lower end on the hose nozzle B. By rotating the set screw in opposite directions, the shank 11 is swung upwardly and downwardly to rock the deflector blade 10 relative to the hose nozzle B, the outlet end of the hose nozzle serving as a fulcrum against which the blade is maintained in contact by the clamping action of the spring fingers with the opposite sides of the hose nozzle.

As the shank 11 is swung downwardly by rotation of the set screw in one direction, the deflector blade 10 is correspondingly swung upwardly and conversely, as the shank 11 is swung upwardly, the deflector blade is swung downwardly thus permitting of adjustment to vary the angularity of the deflector blade and the degree of deflection of the water issuing from the hose nozzle. As the stream of water issuing from the hose nozzle strikes the lower face of the deflector blade 10, it is deflected downwardly
and laterally into a fan shaped spray, the direction of which may be properly controlled by the operator so as to avoid contact of the water with the blossoms or flowers on bushes and shrubs. Due to the disposition of the deflector blade in intersecting relation to the stream of water issuing from the nozzle, the maximum volume of water may be permitted to flow from the nozzle so as to accomplish the watering operation in a minimum of time.

When the deflector blade is disposed in intersecting relation to the stream of water issuing from the hose nozzle, it may be temporarily swung to an inactive out-of-the-way position, as illustrated in dotted lines in Fig. 2, by manually depressing the rear end of the shank 11 to elevate the deflector blade by employing the lower end of the set screw stem as a fulcrum. The resiliency of the fingers 12 permits of this rocking movement as the same are spread apart and placed under tension so as to serve as means for returning the deflector blade to the normal full line position after the manual pressure is released from the rear end of the shank 11.

What is claimed is:

1. A spray attachment for hose nozzles including a deflector blade having a rearwardly extending shank and adapter to be disposed in the path of the water stream issuing from the nozzle, and means for detachably mounting said blade upon the hose nozzle for longitudinal rocking adjustments relative thereto consisting of a pair of resilient fingers depending from opposite side edges of the shank for clampingly engaging the hose nozzle and a set screw extending through said shank rearwardly of the fingers with the inner end of the screw depending from the shank and bearing upon the hose nozzle for rocking the blade on the outer end of the nozzle so as to adjust the angularity of the blade and thereby regulate the degree of deflection of the water.

2. A spray attachment for a hose nozzle including a deflector blade, a pair of resilient fingers depending therefrom for clamping engagement with the hose nozzle for mounting said blade for longitudinal rocking adjustments with reference to the nozzle in the path of the water stream issuing from the hose nozzle outlet so as to vary the angularity of the blade and regulate the degree of deflection of the water, and means carried by said deflector blade and adapted to bear against the hose nozzle for effecting longitudinal rocking adjustment of the blade and for retaining the same in adjuster positions, said blade and mounting means being so constructed and arranged as to permit of manual movement and retention of the blade in a position out-of-the-path of the water stream and the automatic return of said blade to its active adjusted deflecting position.

ALBERT JOHNSON.