
JP 5113967 B2 2013.1.9

10

20

(57)【特許請求の範囲】
【請求項１】
　データベースに記憶されたデータにアクセスする方法であって、
　該方法は、プロトコルサーバが、オペレーティングシステムの１つ以上のルーチンから
の、１つ以上のＩ／Ｏコマンドを受取るステップを含み、前記プロトコルサーバは、前記
オペレーティングシステムで動作するよう構成されており、
　前記１つ以上のルーチンは、アプリケーションから前記オペレーティングシステムへの
、ファイルへアクセスするための１つ以上のコールに応答して、１つ以上のＩ／Ｏコマン
ドを生成しており、
　該方法は、
　前記プロトコルサーバが、前記１つ以上のＩ／Ｏコマンドを１つ以上のＤＢファイルシ
ステムコマンドに変換するステップと、
　ＤＢファイルサーバが、前記１つ以上のＤＢファイルシステムコマンドに応答して、１
つ以上の第１のデータベースコマンドを、生成するとともに前記データベースを管理する
データベースサーバに対して発行するステップとを含み、
　前記データベースサーバは、前記１つ以上の第１のデータベースコマンドを実行して前
記データベースから第１のデータを検索し、前記第１のデータから生成されたファイルを
第１のアプリケーションに提供し、該方法はさらに、
　第２のアプリケーションに対してＤＢファイルＡＰＩを提供するステップと、
　前記ＤＢファイルサーバが、前記ＤＢファイルＡＰＩを介して、前記第２のアプリケー



(2) JP 5113967 B2 2013.1.9

10

20

30

40

50

ションからの１つ以上の第２のＤＢファイルシステムコマンドを直接受取るステップとを
含み、
　前記１つ以上の第２のＤＢファイルシステムコマンドに応答して、１つ以上の第２のデ
ータベースコマンドが、生成されるとともに前記データベースサーバに対して発行され、
　前記データベースサーバは、前記１つ以上の第２のデータベースコマンドを実行して前
記データベースから第２のデータを検索し、前記第２のデータから生成されたファイルを
前記第２のアプリケーションに提供する、方法。
【請求項２】
　前記ファイルをアプリケーションに提供する処理は、前記オペレーティングシステムに
おける１つ以上のルーチンによって実行される、請求項１に記載の方法。
【請求項３】
　前記ＤＢファイルサーバが、前記ＤＢファイルＡＰＩを介して、複数のファイルオペレ
ーションを行なうためのコールを受取るステップを含み、前記複数のファイルオペレーシ
ョンは、少なくとも、前記データベースに記憶された第１のファイルに対する第１のファ
イルオペレーションと、前記データベースに記憶された第２のファイルに対する第２のフ
ァイルオペレーションとを含み、該方法はさらに、
　前記ＤＢファイルサーバが、前記複数のファイルオペレーションを、次のステップを行
なうことによって、単一のトランザクションとして行なうステップを含み、該次のステッ
プは、
　　もし前記複数のファイルオペレーションのうちすべてのファイルオペレーションが失
敗なく完了すれば、前記複数のファイルオペレーションによってなされたすべての変化を
永久のものとするステップと、
　　もし前記複数のファイルオペレーションのうち何らかのファイルオペレーションが失
敗すれば、前記複数のファイルオペレーションのすべてによってなされたすべての変化を
無効にするステップとを含む、請求項２に記載の方法。
【請求項４】
　前記複数のファイルオペレーションは、前記データベースに記憶された単一のファイル
に対する複数の書込オペレーションを含む、請求項３に記載の方法。
【請求項５】
　前記複数のファイルオペレーションを行なうステップは、前記データベースサーバに対
して１つ以上のデータベースステートメントを発行するステップを含み、前記データベー
スサーバは前記１つ以上のデータベースステートメントを実行して前記複数のファイルオ
ペレーションを行なう、請求項３に記載の方法。
【請求項６】
　前記複数の書込オペレーションは、前記単一のファイルを前記データベースに記憶する
ためにネットワーク接続にわたって転送することに相当する、請求項４に記載の方法。
【請求項７】
　前記プロトコルサーバは、デバイスドライバインターフェイスとして機能する、請求項
１～６のいずれか１項に記載の方法。
【請求項８】
　データベースに記憶されたデータにアクセスするための命令を記憶した１つ以上のコン
ピュータ読取可能媒体であって、該命令は、１つ以上のプロセッサによって実行されると
、以下のステップを生じさせ、
　該以下のステップは、プロトコルサーバが、オペレーティングシステムの１つ以上のル
ーチンからの、１つ以上のＩ／Ｏコマンドを受取るステップを含み、前記プロトコルサー
バは、前記オペレーティングシステムで動作するよう構成されており、
　前記１つ以上のルーチンは、アプリケーションから前記オペレーティングシステムへの
、ファイルへアクセスするための１つ以上のコールに応答して、１つ以上のＩ／Ｏコマン
ドを生成しており、
　該以下のステップは、



(3) JP 5113967 B2 2013.1.9

10

20

30

40

50

　前記プロトコルサーバが、前記１つ以上のＩ／Ｏコマンドを１つ以上のＤＢファイルシ
ステムコマンドに変換するステップと、
　ＤＢファイルサーバが、前記１つ以上のＤＢファイルシステムコマンドに応答して、１
つ以上の第１のデータベースコマンドを、生成するとともに前記データベースを管理する
データベースサーバに対して発行するステップとを含み、
　前記データベースサーバは、前記１つ以上の第１のデータベースコマンドを実行して前
記データベースから第１のデータを検索し、前記第１のデータから生成されたファイルを
第１のアプリケーションに提供し、該以下のステップはさらに、
　第２のアプリケーションに対してＤＢファイルＡＰＩを提供するステップと、
　前記ＤＢファイルサーバが、前記ＤＢファイルＡＰＩを介して、前記第２のアプリケー
ションからの１つ以上の第２のＤＢファイルシステムコマンドを直接受取るステップとを
含み、
　前記１つ以上の第２のＤＢファイルシステムコマンドに応答して、１つ以上の第２のデ
ータベースコマンドが、生成されるとともに前記データベースサーバに対して発行され、
　前記データベースサーバは、前記１つ以上の第２のデータベースコマンドを実行して前
記データベースから第２のデータを検索し、前記第２のデータから生成されたファイルを
前記第２のアプリケーションに提供する、コンピュータ読取可能媒体。
【請求項９】
　前記ファイルをアプリケーションに提供する処理は、前記オペレーティングシステムに
おける１つ以上のルーチンによって実行される、請求項８に記載のコンピュータ読取可能
媒体。
【請求項１０】
　前記ＤＢファイルサーバが、前記ＤＢファイルＡＰＩを介して、複数のファイルオペレ
ーションを行なうためのコールを受取るステップを含み、前記複数のファイルオペレーシ
ョンは、少なくとも、前記データベースに記憶された第１のファイルに対する第１のファ
イルオペレーションと、前記データベースに記憶された第２のファイルに対する第２のフ
ァイルオペレーションとを含み、該以下のステップはさらに、
　前記ＤＢファイルサーバが、前記複数のファイルオペレーションを、次のステップを行
なうことによって、単一のトランザクションとして行なうステップを含み、該次のステッ
プは、
　　もし前記複数のファイルオペレーションのうちすべてのファイルオペレーションが失
敗なく完了すれば、前記複数のファイルオペレーションによってなされたすべての変化を
永久のものとするステップと、
　　もし前記複数のファイルオペレーションのうち何らかのファイルオペレーションが失
敗すれば、前記複数のファイルオペレーションのすべてによってなされたすべての変化を
無効にするステップとを含む、請求項９に記載のコンピュータ読取可能媒体。
【請求項１１】
　前記複数のファイルオペレーションは、前記データベースに記憶された単一のファイル
に対する複数の書込オペレーションを含む、請求項１０に記載のコンピュータ読取可能媒
体。
【請求項１２】
　前記複数のファイルオペレーションを行なうステップは、前記データベースサーバに対
して１つ以上のデータベースステートメントを発行するステップを含み、前記データベー
スサーバは前記１つ以上のデータベースステートメントを実行して前記複数のファイルオ
ペレーションを行なう、請求項１０に記載のコンピュータ読取可能媒体。
【請求項１３】
　前記複数の書込オペレーションは、前記単一のファイルを前記データベースに記憶する
ためにネットワーク接続にわたって転送することに相当する、請求項１１に記載のコンピ
ュータ読取可能媒体。
【請求項１４】



(4) JP 5113967 B2 2013.1.9

10

20

30

40

50

　前記プロトコルサーバは、デバイスドライバインターフェイスとして機能する、請求項
８～１３のいずれか１項に記載のコンピュータ読取可能媒体。
【発明の詳細な説明】
【０００１】
【優先権主張および関連出願の参照】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「インターネットファイルシステム（"Internet File System"）」
と題された１９９９年８月５日出願の先行米国仮特許出願連続番号第６０／１４７，５３
８号に関し、米国特許法第１１９条（ｅ）によりその国内優先権を主張する。
【０００２】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「関係システム内に階層状に構成された情報にアクセスするための
階層索引付け（"Hierarchical Indexing for Accessing Hierarchically Organized Info
rmation in a Relational System"）」と題された１９９９年２月１８日出願の米国特許
出願連続番号第０９／２５１，７５７号に関連する。
【０００３】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「トランザクションをサポートするファイルシステム（"File Syste
m that Supports Transactions"）」と題された２０００年５月１５日出願の米国特許出
願連続番号第０９／５７１，４９６号に関連する。
【０００４】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「記憶されたクエリディレクトリ（"Stored Query Directories"）
」と題された２０００年５月１５日出願の米国特許出願連続番号第０９／５７１，０６０
号に関連する。
【０００５】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「ファイルシステムに結合されたイベント通知システム（"Event No
tification System Tied to a File System"）」と題された２０００年５月１５日出願の
米国特許出願連続番号第０９／５７１，０３６号に関連する。
【０００６】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「ファイルがタイプ付けされたオブジェクトファイルシステム（"Ob
ject File System with Typed Files"）」と題された２０００年５月１５日出願の米国特
許出願連続番号第０９／５７１，４９２号に関連する。
【０００７】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「オンザフライ・フォーマット変換（"On-the-fly Format Conversi
on"）」と題された２０００年５月１５日出願の米国特許出願連続番号第０９／５７１，
５６８号に関連する。
【０００８】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric SedlarおよびMichael J. Robertsによる「インターネットファイルシステムにお
けるバージョニング（"Versioning in Internet File System"）」と題された２０００年
５月１５日出願の米国特許出願連続番号第０９／５７１，６９６号に関連する。
【０００９】
本願は、その全文が本明細書中に完全に述べられているかのように引用により援用される
、Eric Sedlarによる「データへのマルチモデルアクセス（"Multi-Model Access to Data
"）」と題された２０００年５月１５日出願の米国特許出願連続番号第０９／５７１，５
０８号に関連する。



(5) JP 5113967 B2 2013.1.9

10

20

30

40

50

【００１０】
【発明の分野】
本発明は一般に電子ファイルシステムに関し、特定的には、データベースシステムを用い
てオペレーティングシステムファイルシステムを実現するシステムに関する。
【００１１】
【発明の背景】
ヒトは情報をカテゴリに分類する傾向にあり、情報が分類されるそれらカテゴリ自体は典
型的に、何らかの階層状に互いに関連付けて構成される。たとえば、個々の動物は種に属
し、種は属に属し、属は科に属し、科は目に属し、目は綱に属する。
【００１２】
コンピュータシステムの出現に伴ない、このような階層構成（hierarchical organizatio
n）を望むヒトの欲求を大いに反映する電子情報の記憶技術が開発されてきた。従来のオ
ペレーティングシステムは、たとえば、階層ベースの構成原理を使用するファイルシステ
ムを提供する。具体的には、典型的なオペレーティングシステムファイルシステム（「Ｏ
Ｓファイルシステム」）においては、ディレクトリは階層に配され、文書（ドキュメント
）はそれらディレクトリに記憶される。理想的には、ディレクトリ間の階層的関係は、そ
れらディレクトリに割当てられた意味間の何らかの直観的な関係を反映する。同様に、各
ドキュメントがディレクトリに記憶される場合、そのドキュメントの内容と、そのドキュ
メントが記憶されるディレクトリに割当てられた意味との間の何らかの直観的関係に基づ
いて、記憶されると理想的である。
【００１３】
図１は、（ワードプロセッサ等の）ファイルを作成して使用するソフトウェアアプリケー
ションがそのファイルを階層的ファイルシステム内に記憶する際に用いられる、典型的な
機構を示す。図１を参照して、オペレーティングシステム１０４は、アプリケーション１
０２に対してアプリケーションプログラミングインターフェイス（ＡＰＩ）を開く（expo
se）。そうして開かれたＡＰＩにより、アプリケーション１０２はそのオペレーティング
システムによって提供されるルーチンをコールすることができる。以後、ＯＳ　ＡＰＩの
、ＯＳファイルシステムを実現するルーチンに関連する部分を、ＯＳファイルＡＰＩと称
する。アプリケーション１０２は、ＯＳファイルＡＰＩを介してファイルシステムルーチ
ンをコールして、データを検索してディスク１０８に記憶する。オペレーティングシステ
ム１０４の方は、ディスク１０８へのアクセスを制御するデバイスドライバ１０６に対し
てコールを行なって、ディスク１０６からファイルを検索させたりディスク１０６にファ
イルを記憶させたりする。
【００１４】
ＯＳファイルシステムルーチンは、ファイルシステムの階層的構成を実現する。たとえば
、ＯＳファイルシステムルーチンは、ファイル間の階層的関係に関する情報を維持し、ア
プリケーション１０２にファイルへのアクセスを、階層内における当該ファイルの場所に
基づいて与える。
【００１５】
電子情報を階層的に構成するのに対して、関係データベース（relational database）は
、情報を行列からなるテーブルに記憶する。各行は独自のRowIDによって識別される。各
列は記録の属性を表わし、各行は特定の記録を表わす。データベースからのデータの検索
は、データベースを管理するデータベース管理システム（ＤＢＭＳ）にクエリを提示する
ことによって行なわれる。
【００１６】
図２は、データベースアプリケーションがデータベース内の情報にアクセスする際に用い
られる典型的な機構を示す。図２を参照して、データベースアプリケーション２０２は、
データベースサーバ２０４によって提供されるＡＰＩ（「データベースＡＰＩ」）を通じ
てデータベースサーバ２０４と対話する。このように開かれたＡＰＩにより、データベー
スアプリケーション２０２は、データベースサーバ２０４によってサポートされたデータ



(6) JP 5113967 B2 2013.1.9

10

20

30

40

50

ベース言語により構築されたクエリを用いて、データにアクセスすることができる。多く
のデータベースサーバによってサポートされる言語の１つに、構造化クエリ言語（Struct
ured Query Language, SQL）がある。データベースサーバ２０４は、データベースアプリ
ケーション２０２に対して、すべてのデータがテーブルの行に記憶されているように見せ
る。しかし、データベースアプリケーション２０２にトランスペアレントなことに、デー
タベースサーバ２０４は実際にはオペレーティングシステム１０４と対話して、データを
ファイルとしてＯＳファイルシステム内に記憶する。オペレーティングシステム１０４の
方では、デバイスドライバ１０６に対してコールを行なって、ファイルをディスク１０８
から検索させたりファイルをディスク１０８に記憶させたりする。
【００１７】
各種記憶システムにはそれぞれ、利点および限界がある。階層的に構成された記憶システ
ムは、簡単、直観的、かつ実現が容易であって、大半のアプリケーションプログラムによ
って使用される標準的なモデルである。しかし、残念ながら、この階層的構成の簡易性は
、複雑なデータ検索オペレーションに求められるサポートを提供することができない。た
とえば、特定日に作成された特定的なファイル名を有するすべてのドキュメントを検索す
るのに、すべてのディレクトリの内容を検査せねばならないことがあり得る。すべてのデ
ィレクトリをサーチせねばならないので、階層的構成は検索プロセスを容易にすることは
できない。
【００１８】
関係データベースシステムは、大量の情報を記憶したり、非常に柔軟にデータにアクセス
するのに、好適である。階層的に構成されたシステムに対して、複雑なサーチ基準に合致
するデータでさえも、関係データベースシステムからは容易にかつ効率的に検索すること
が可能である。しかし、クエリを公式化（formulate）してデータベースサーバに提示す
るプロセスは、ディレクトリの階層を単に通り抜けるのに比して直観的ではなく、多くの
コンピュータユーザにとっての技術的快適度を越えるものである。
【００１９】
現時点において、アプリケーションの開発者は、それらのアプリケーションによって作成
されるデータを、オペレーティングシステムによって提供される階層的ファイルシステム
を通じてアクセス可能としたいか、それともデータベースシステムによって提供されるよ
り複雑なクエリインターフェイスを通じてアクセス可能としたいか、どちらかを選択する
よう求められる。一般に、データベースシステムの複雑なサーチ能力を要求しないアプリ
ケーションについては、オペレーティングシステムによって提供されるより一般的かつよ
り簡単な階層的ファイルシステムを使用して、それらのデータを記憶するように設計され
る。この場合、アプリケーションの設計およびアプリケーションの使用がどちらも簡素化
されるものの、それらデータにアクセスすることのできる柔軟性およびパワーの面で制限
が課されてしまう。
【００２０】
これに対し、複雑なサーチ能力が求められる場合には、アプリケーションは、データベー
スシステムによって提供されるクエリ機構を使用してそれらのデータにアクセスするよう
に設計される。この場合、データにアクセスすることのできる柔軟性およびパワーは増す
が、それと同時に、アプリケーションの複雑性が、設計者の観点からもユーザの観点から
も増す。さらに、データベースシステムの存在も求められ、アプリケーションユーザに対
して付加的な費用がかかることになる。
【００２１】
以上に鑑みて、アプリケーションが比較的簡単なＯＳファイルＡＰＩを使用してデータに
アクセスすることができることが明らかに望ましい。また、より強力なデータベースＡＰ
Ｉを使用して同じデータにアクセスすることができることがさらに望ましい。
【００２２】
【発明の概要】
データベースに記憶されたデータにアクセスするための技術が提供される。一技術に従え



(7) JP 5113967 B2 2013.1.9

10

20

30

40

50

ば、アプリケーションはオペレーティングシステムに対して１または複数のコールを行な
ってファイルにアクセスする。該オペレーティングシステムは、オペレーティングシステ
ムファイルシステムを実現するルーチンを含む。該１または複数のコールは、該オペレー
ティングシステムファイルシステムを実現するルーチンに対して行なわれる。該１または
複数のコールに応答して、１または複数のデータベースコマンドがデータベースを管理す
るデータベースサーバに対して発行される。該データベースサーバはそのデータベースコ
マンドを実行して、データベースからデータを検索する。該データからファイルが生成さ
れて、該アプリケーションに与えられる。
【００２３】
本発明を以下に限定のためではなく例示の目的で、添付の図面を参照して説明する。図中
、同一の参照符号は同一の要素を表わす。
【００２４】
【好ましい実施例の詳細な説明】
同じデータの組に対して、データベースＡＰＩおよびＯＳファイルシステムＡＰＩを含む
種々のインターフェイスを介してアクセスすることを可能にする、方法およびシステムが
提供される。以下に、説明の目的で、本発明が完全に理解されるように多数の具体的な詳
細が述べられるが、当業者には、本発明がそれらの具体的な詳細を伴なわずに実施され得
ることは明らかであろう。他の例においては、本発明を不必要にあいまいにすることのな
いように、周知の構造および装置はブロック図により示される。
【００２５】
アーキテクチャ的な概観
図３は、本発明の一実施例に従って実現されるシステム３００のアーキテクチャを表わす
ブロック図である。図２に示すシステムと同様、システム３００は、データベースＡＰＩ
を提供するデータベースサーバ２０４を含み、このデータベースＡＰＩを通じて、データ
ベースアプリケーション３１２が、データベースサーバ２０４により管理されるデータに
アクセスし得る。データベースＡＰＩを通じてデータベースサーバ２０４により管理され
るデータにアクセスするすべてのエンティティの観点から、データベースサーバ２０４に
より管理されるデータはデータベースサーバ２０４（たとえばＳＱＬ）によりサポートさ
れるデータベース言語を用いて照会され得る関係テーブルにストアされる。これらのエン
ティティに対してトランスペアレントに、データベースサーバ２０４はこのデータをディ
スク１０８にストアする。一実施例によれば、データベースサーバ２０４は、データを直
接ディスクにストア可能にすることによってオペレーティングシステム１０４のＯＳファ
イルシステムに伴うオーバヘッドを回避できるようにする、ディスク管理論理を実現する
。したがって、データベースサーバ２０４は、（１）オペレーティングシステム１０４に
より提供されたＯＳファイルシステムをコールするか、または（２）データを直接ディス
クにストアすることでオペレーティングシステム１０４を迂回するかのいずれかによって
、データがディスクにストアされるようにし得る。
【００２６】
図２のシステムとは異なって、システム３００はトランスレーションエンジン３０８を提
供し、これはオペレーティングシステム３０４ａおよび３０４ｂから受けたＩ／Ｏコマン
ドを、トランスレーションエンジン３０８がデータベースサーバ２０４へ発するデータベ
ースコマンドへ変換する。Ｉ／Ｏコマンドがデータのストレージを求める場合、トランス
レーションエンジン３０８はデータベースコマンドをデータベースサーバ２０４へ発し、
データベースサーバ２０４により管理される関係テーブルにデータがストアされるように
する。Ｉ／Ｏコマンドがデータの検索を求める場合、トランスレーションエンジン３０８
はデータベースコマンドをデータベースサーバ２０４に発し、データベースサーバにより
管理される関係テーブルからデータを検索する。その後トランスレーションエンジン３０
８は、こうして検索されたデータを、Ｉ／Ｏコマンドを発したオペレーティングシステム
に与える。
【００２７】



(8) JP 5113967 B2 2013.1.9

10

20

30

40

50

オペレーティングシステム３０４ａおよび３０４ｂに対しては、トランスレーションエン
ジン３０８に伝達されたデータがデータベースサーバ２０４により管理される関係テーブ
ルに最終的にストアされるという事実はトランスペアレントである。これは、オペレーテ
ィングシステム３０４ａおよび３０４ｂにトランスペアレントであるので、それらのオペ
レーティングシステムを含むプラットホーム上で実行されているアプリケーション３０２
ａおよび３０２ｂに対してもトランスペアレントである。
【００２８】
たとえば、アプリケーション３０２ａのユーザがアプリケーション３０２ａにより与えら
れる「ファイルの保存」という選択肢を選択する場合を想定する。アプリケーション３０
２ａはＯＳファイルＡＰＩを通じてコールを行ない、オペレーティングシステム３０４ａ
にファイルを保存させる。オペレーティングシステム３０４ａはトランスレーションエン
ジン３０８にＩ／Ｏコマンドを発し、ファイルをストアさせる。トランスレーションエン
ジン３０８はこれに応答して、データベースサーバ２０４に１つ以上のデータベースコマ
ンドを発し、データベースサーバ２０４に、ファイル内に含まれるデータをデータベース
サーバ２０４が保持する関係テーブルにストアさせる。データベースサーバ２０４は、こ
のデータを直接ディスクにストアしてもよく、またはオペレーティングシステム１０４を
コールしてオペレーティングシステム１０４により提供されるＯＳファイルシステムにデ
ータをストアさせてもよい。データベースサーバ２０４がオペレーティングシステム１０
４をコールすると、オペレーティングシステム１０４はこれに応答して、デバイスドライ
バ１０６にコマンドを送ることによりデータをディスク１０８にストアさせる。
【００２９】
別の例として、アプリケーション３０２ａのユーザがアプリケーション３０２ａにより与
えられる「ファイルのロード」という選択肢を選択する場合を想定する。アプリケーショ
ン３０２ａはOS File APIを通じてコールを行ない、オペレーティングシステム３０４ａ
にファイルをロードさせる。オペレーティングシステム３０４ａはＩ／Ｏコマンドをトラ
ンスレーションエンジン３０８に発し、ファイルのロードを行なわせる。トランスレーシ
ョンエンジン３０８は、１つ以上のデータベースコマンドをデータベースサーバ２０４に
発し、データベースサーバ２０４に、検索すべきファイルを備えるデータをデータベース
サーバ２０４が保持する関係テーブルから検索させる。データの検索中、データベースサ
ーバ２０４はデータディレクトリを検索してもよく、またはオペレーティングシステム１
０４をコールしてディスク１０８上のＯＳファイルからデータを検索させてもよい。一旦
データが検索されると、この検索されたデータから所望のファイルが「構築される」。具
体的には、この検索されたデータはファイルをリクエストしたアプリケーション３０２ａ
により予測されたフォーマットにされる。こうして構築されたファイルは、トランスレー
ションエンジン３０８およびオペレーティングシステム３０４ａを通じて、アプリケーシ
ョン３０２ａまで伝達される。
【００３０】
システム３００には数多くの新規な特徴が組入れられる。以下のセクションでは、これら
の特徴をより詳細に説明する。しかしながら、当然、特定の実施例はこれらの特徴を説明
するために用いられるのであり、本発明がこれらの特定の実施例に限定されることはない
。
【００３１】
関係づけてストアされたデータへのＯＳファイルシステムアクセス
本発明のある局面によれば、システム３００により、アプリケーションが従来のＯＳファ
イルＡＰＩを通じて、データベースにストアされたデータにアクセスできるようになる。
すなわち、オペレーティングシステムにより提供される標準ＯＳファイルＡＰＩをコール
することによりファイルをロードするように設計されている従来のアプリケーションが、
関係テーブルにストアされたデータからオンザフライで構築されたファイルをロードでき
るようになる。さらに、関係テーブルからデータが発生するという事実は、アプリケーシ
ョンに対しては完全にトランスペアレントである。



(9) JP 5113967 B2 2013.1.9

10

20

30

40

50

【００３２】
たとえば、データベースアプリケーション３１２が、データベースサーバ２０４により保
持されるデータベース中のテーブルに１行のデータを挿入するというデータベースコマン
ドを発すると想定する。一旦その行が挿入されると、オペレーティングシステム３０４ａ
により提供される比較的単純なＯＳファイルＡＰＩを用いてデータにアクセスするように
しか設計されていないアプリケーション３０２ａは、「ファイルを開く」というコマンド
をオペレーティングシステム３０４ａに発する。これに応答して、オペレーティングシス
テム３０４ａはＩ／Ｏコマンドをトランスレーションエンジン３０８に発し、トランスレ
ーションエンジン３０８は、１つ以上のデータベースコマンドをデータベースサーバ２０
４に発することにより応答する。データベースサーバ２０４は、データベースコマンド（
典型的にはデータベースクエリの形式）を実行することにより、データベースサーバ２０
４に、データベースアプリケーション３１２により挿入された行を検索させる。アプリケ
ーション３０２ａにより予測されるファイルタイプのファイルがその行に含まれるデータ
から構築され、こうして構築されたファイルが、トランスレーションエンジン３０８およ
びオペレーティングシステム３０４ａを通じて再びアプリケーション３０２ａへ戻される
。
【００３３】
システム３００により、従来のＯＳファイルシステムアクセスしかサポートしていないア
プリケーションが、関係づけてストアされたデータをロードできるようになるだけでなく
、従来のＯＳファイルシステムアクセスしかサポートしないアプリケーションによりスト
アされた情報に、データベースアプリケーションが従来の照会技術を用いてアクセスでき
るようになる。たとえば、アプリケーション３０２ａがＯＳのコールを行ない、作成され
たファイルを保存させるとする。その「ファイルの保存」コマンドはオペレーティングシ
ステム３０４ａおよびトランスレーションエンジン３０８を通じてデータベースサーバ２
０４へ伝達される。データベースサーバ２０４は「ファイルの保存」コマンドをトランス
レーションエンジン３０８により発せられたデータベースコマンドの形で受け、そのファ
イルに含まれるデータを、データベースサーバ２０４により管理されるデータベース中に
含まれる１つ以上のテーブルの１行以上の行中にストアする。データが一旦その態様でデ
ータベース内にストアされると、データベースアプリケーション３１２はデータベースサ
ーバ２０４にデータベースクエリを発し、データベースからデータを検索することができ
る。
【００３４】
データベースにおけるＯＳファイルシステム構成のエミュレート
上記で説明したように、オペレーティングシステム３０４ａおよび３０４ｂのファイルシ
ステムルーチンに対するコールは、最終的に、トランスレーションエンジン３０８がデー
タベースサーバ２０４に対して発するデータベースコマンドに変換される。本発明の一実
施例によれば、これらの変換を行なう処理は、オペレーティングシステム３０４ａおよび
３０４ｂにより実現されたファイルシステムの特徴をデータベースサーバ２０４内でエミ
ュレートすることにより単純化される。
【００３５】
この構成モデルに関して、ほとんどのオペレーティングシステムは、ファイル階層構造で
ファイルを構成するファイルシステムを実現する。したがって、アプリケーション３０２
ａおよび３０２ｂが行なったこのＯＳファイルシステムのコールは、典型的には、ＯＳフ
ァイル階層構造内のその場所という観点からあるファイルを特定するだろう。このような
コールから対応するデータベースのコールへの変換を単純化するために、関係のあるデー
タベースシステム内の階層ファイルシステムをエミュレートするための機構が設けられる
。このような機構の１つが、１９９９年２月１８日にエリック・セドラー（Eric Sedlar
）により出願され「関係のあるシステムおいて階層的に構成された情報にアクセスするた
めの階層的インデクシング（HIERARCHICAL INDEXING FOR ACCESSING HIERARCHICALLY ORG
ANIZED INFORMATION IN A RELATIONAL SYSREM）」と題された米国特許出願番号０９／２



(10) JP 5113967 B2 2013.1.9

10

20

30

40

50

５１，７５７号に詳細に記載されており、この全内容をここに引用により援用する。
【００３６】
具体的には、「HIERARCHICAL INDEXING」の出願には、階層インデックスを作成、保持、
および使用して、パス名に基づいて関係のあるシステム内の情報に効率的にアクセスする
ことにより、階層的に構成されたシステムをエミュレートするための技術が記載される。
エミュレートされた階層システムに何らかの子を有する各アイテムは、そのインデックス
にインデックスエントリを有する。インデックス中のインデックスエントリは、これらの
インデックスエントリに関連付けられたアイテム中の階層的な関係を反映するような方法
で互いにリンクされる。具体的には、２つのインデックスエントリに関連付けられたアイ
テム間に親子関係が存在すれば、親アイテムに関連付けられたインデックスエントリはそ
の子アイテムに関連付けられたインデックスエントリへの直接のリンクを有する。
【００３７】
結果的に、パス名中のファイル名のシーケンスに従って、そのパス名におけるアイテムに
関連付けられたインデックスエントリ間の直接のリンクに沿って進むことにより、パス名
の導出（resolution）が行なわれる。インデックスエントリがこの態様でリンクされるイ
ンデックスを用いることにより、それらのパス名に基づいてアイテムにアクセスする処理
は著しく加速され、また、その処理中に行われるディスクアクセスの数は著しく減少する
。
【００３８】
階層インデックス
本発明と整合性のある階層インデックスは、パス名により特定されるように、親アイテム
からそれらの子へ移動するという、階層システムのパス名に基づいたアクセス法をサポー
トする。一実施例によれば、本発明の原理に合う階層インデックスは、次の３つのフィー
ルドを含むインデックスエントリを採用する。RowID、FileID、およびDir＿entry＿list
（アレイとしてストアされる）。
【００３９】
図５は、データベース内の階層ストレージシステムをエミュレートするのに用いられ得る
階層インデックス５１０を示す。図６は、階層インデックス５１０がエミュレートしてい
る特定のファイル階層構造を示す。図７は、図６に示すファイルを関係データベース内に
ストアするのに用いられるファイルテーブル７１０を示す。
【００４０】
階層インデックス５１０はテーブルである。RowID欄はシステムにより生成されるＩＤを
含み、データベースサーバ２０４がディスク上でその行の場所を突きとめ得るようにする
ディスクアドレスを特定する。この関係データベースシステムによると、RowIDは、ディ
スクドライブにストアされたデータの場所を突きとめるためにＤＢＭＳが用いる暗示的に
規定されたフィールドであり得る。インデックスエントリのFileIDフィールドは、このイ
ンデックスエントリに関連付けられたファイルのFileIDをストアする。
【００４１】
本発明の一実施例によれば、階層インデックス５１０は、子を有するアイテムに対するイ
ンデックスエントリのみストアする。したがって、エミュレートされた階層ファイルシス
テムという面において、階層インデックス５１０にインデックスエントリを有するアイテ
ムは、他のディレクトリに対して親であるディレクトリおよび／または現在ドキュメント
をストアしているディレクトリのみである。子を有さないそれらのアイテム（たとえば、
図６のExample.doc、Access、Appl、App2、App3）は含まれないのが好ましい。所与のフ
ァイルに対するインデックスエントリのDir＿entry＿listフィールドは、あるアレイ中に
、所与のファイルの子ファイルの各々に対する「アレイエントリ」をストアする。
【００４２】
たとえば、インデックスエントリ５１２はWindows（Ｒ）ディレクトリ６１４に対するも
のである。Wordディレクトリ６１６およびAccessディレクトリ６２０はWindows（Ｒ）デ
ィレクトリ６１４の子である。よって、Windows（Ｒ）ディレクトリ６１４に対するイン



(11) JP 5113967 B2 2013.1.9

10

20

30

40

50

デックスエントリ５１２のDir＿entry＿listフィールドは、Wordディレクトリ６１６に対
するアレイエントリと、Accessディレクトリ６２０に対するアレイエントリとを含む。
【００４３】
一実施例によれば、Dir＿entry＿listフィールドが各子に対してストアする特定の情報は
、その子のファイル名およびその子のFileIDを含む。階層インデックス５１０にそれら自
体のエントリを有する子に対して、Dir＿entry＿listフィールドは子のインデックスエン
トリのRowIDもストアする。たとえば、Wordディレクトリ６１６は階層インデックス５１
０にそれ自体のエントリを有する（エントリ５１４）。したがって、インデックスエント
リ５１２のDir＿entry＿listフィールドは、ディレクトリ６１６の名称（“Word”）、階
層インデックス５１０におけるディレクトリ６１６に対するインデックスエントリのRowI
D（“Ｙ３”）、およびディレクトリ６１６のFileID（“Ｘ３”）を含む。より詳細に説
明するように、Dir＿entry＿listフィールドに含まれる情報により、パス名に基づいた情
報へのアクセスがより速くより容易になる。
【００４４】
階層インデックスのいくつかの主要な原理は以下のとおりである。
・所与のディレクトリに対するインデックスエントリのDir＿entry＿list情報はできるだ
け少数のディスクブロックとしてまとめて保たれる。これは、最も頻繁に用いられるファ
イルシステムオペレーション（パス名の導出、ディレクトリのリスティング（listing）
）は、あるディレクトリが参照されると常にそのディレクトリ内の多数のエントリを見る
必要が生じることになるからである。言換えれば、特定のディレクトリエントリが参照さ
れると同じディレクトリ内の他のエントリもまた参照されることが多いので、ディレクト
リエントリは参照に対して高い局所性を有するべきである。
【００４５】
・階層インデックスのインデックスエントリにストアされる情報は、特定のディスクブロ
ック中のエントリの最大数に適合するように、最小に保たれなければならない。ディレク
トリエントリを、それらが含まれるディレクトリを特定するキーを反復する必要のないア
レイ手段にまとめてグループ分けすると、ディレクトリ内のすべてのエントリが同じキー
を共有することになる。
【００４６】
・パス名の導出に要する時間は、ファイルシステム内のファイルの総数ではなく、パス内
のディレクトリの数に比例すべきである。これにより、ユーザは、頻繁にアクセスされる
ファイルをアクセス時間の少ないファイルシステムツリーの頂上の方に保つことが可能に
なる。
【００４７】
これらの要素はすべて、ｉノードおよびディレクトリのUNIX(R)システムなどの典型的な
ファイルシステムディレクトリ構造において存在する。ここに記載のような階層インデッ
クスを用いることにより、それらの目的と、関係のデータベースが理解しかつ照会し得る
構造とが一致し、データベースサーバが、パス名の導出に用いられたものとは別の態様で
ファイルのアドホックサーチを行なうことが可能になる。これを行なうためには、あるイ
ンデックスのデータベース概念を用いなければならない。すなわち、ある特定の方法（こ
の場合、階層ツリーにおけるパス名の導出）を介したアクセスを最適化するよう設計され
た別の態様で別個のデータ構造に配置された下位情報（この場合ファイルデータ）の部分
の複製である。
【００４８】
階層インデックスの使用
ファイルのパス名に基づいてファイルにアクセスするために階層インデックス５１０がい
かに用いられ得るかについて、ここで図８のフローチャートを参照して述べることにする
。説明の目的で、ドキュメント６１８がそのパス名を介してアクセスされると仮定する。
このファイルのパス名は/Windows（Ｒ）/Word/Example.docであり、これは以下「入力パ
ス名」と称する。このパス名が与えられると、パス名導出処理は、この入力パス名中の第



(12) JP 5113967 B2 2013.1.9

10

20

30

40

50

１の名称に対するインデックスエントリの場所を階層インデックス５１０において突きと
めることにより開始する。あるファイルシステムの場合、パス名における第１の名称はル
ートディレクトリである。したがって、エミュレートされたファイルシステム内のファイ
ルの場所を突きとめるためのパス名導出処理は、ルートディレクトリ６１０のインデック
スエントリ５０８の場所を突きとめることにより始まる（ステップ８００）。すべてのパ
ス名導出オペレーションがルートディレクトリのインデックスエントリ５０８にアクセス
することにより始まるので、ルートディレクトリ６１０（インデックスエントリ５０８）
に対するインデックスエントリの場所を示すデータは、あらゆるサーチの開始時において
ルートディレクトリのインデックスエントリ５０８の場所を素早く突きとめるために、階
層インデックス５１０外部の都合よい場所に保持され得る。
【００４９】
ルートディレクトリ６１０に対するインデックスエントリ５０８の場所が一旦突きとめら
れると、ＤＢＭＳは、入力パス名中にまだ何らかのファイル名があるかを判定する（ステ
ップ８０２）。入力パス名中にもうファイルがなければ、制御はステップ８２０へと進み
、インデックスエントリ５０８にストアされたFileIDが用いられてファイルテーブル７１
０中のルートディレクトリエントリを捜す。
【００５０】
この例では、ファイル名「Windows（Ｒ）」は、入力パス名においてルートディレクトリ
の記号「／」の後に続く。したがって、制御はステップ８０４へと進む。ステップ８０４
で、次のファイル名（たとえば「Windows（Ｒ）」が入力パス名から選択される。ステッ
プ８０６でＤＢＭＳはインデックスエントリ５０８のDir＿entry＿list欄を見て、選択さ
れたファイル名に関するアレイエントリの場所を突きとめる。
【００５１】
この例では、入力パス名においてルートディレクトリの後に続くファイル名は「Windows
（Ｒ）」である。したがって、ステップ８０６は、ファイル名「Windows（Ｒ）」のアレ
イエントリに対するインデックスエントリ５０８のDir＿entry＿listをサーチすることを
伴う。Dir＿entry＿listが選択されたファイル名のアレイエントリを含まなければ、制御
はステップ８０８からステップ８１０へと進み、ここで入力パス名が無効であることを示
すエラーが生成される。この例では、インデックスエントリ５０８のDir＿entry＿listは
「Windows（Ｒ）」のアレイエントリを含んでいる。したがって、制御はステップ８０８
からステップ８２２へと移る。
【００５２】
インデックスエントリ５０８のDir＿entry＿list中の情報は、ルートディレクトリ６１０
の子の１つが実際「Windows（Ｒ）」という名称のファイルであることを示す。さらに、D
ir＿entry＿listアレイエントリはこの子についての次の情報を含む。すなわち、これはR
owIDＹ２に一致するインデックスエントリであり、このFileIDはＸ２である。
【００５３】
ステップ８２２において、入力パス名にまだ何らかのファイル名があるか否かが判定され
る。もうファイル名がなければ、制御はステップ８２２からステップ８２０へと移る。こ
の例では、「Windows（Ｒ）」は最後のファイル名ではないので、制御は代わりにステッ
プ８２４へ移る。
【００５４】
「Windows（Ｒ）」は入力パス中の最後のファイル名ではないので、Dir＿entry＿listに
含まれるFileID情報は、このパス導出オペレーション中には用いられない。むしろ、Wind
ows（Ｒ）ディレクトリ６１４は特定されたパスの部分にすぎず、ターゲットではないの
で、ファイルテーブル７１０はこの時点では調べられない。代わりに、ステップ８２４で
、インデックスエントリ５０８のDir＿entry＿list中に見つけられる「Windows（Ｒ）」
に対するRowID（Ｙ２）が用いられて、Windows（Ｒ）ディレクトリ６１４に対するインデ
ックスエントリの場所が突きとめられる（インデックスエントリ５１２）。
【００５５】



(13) JP 5113967 B2 2013.1.9

10

20

30

40

50

インデックスエントリ５１２のDir＿entry＿listを調べて、このシステムは、入力パス名
中の次のファイル名をサーチする（ステップ８０４および８０６）。この例では、ファイ
ル名「Word」が入力パス中でファイル名「Windows（Ｒ）」の後に続く。したがって、こ
のシステムは「Word」のアレイエントリに対するインデックスエントリ５１２のDir＿ent
ry＿listをサーチする。このようなエントリはインデックスエントリ５１２のDir＿entry
＿list中に存在し、「Windows（Ｒ）」が実際「Word」という名称の子を有していること
を示す（ステップ８０８）。ステップ８２２において、入力パス中にまだファイル名があ
ると判定され、よって制御はステップ８２４へと進む。
【００５６】
「Word」に対するアレイエントリを見つけると、このシステムは、そのアレイエントリ中
の情報を読出し、Wordディレクトリ６１６に対するインデックスエントリが階層インデッ
クス５１０中のRowIDＹ３で見つかるということと、Wordディレクトリ６１６に属する特
定の情報がファイルテーブル７１０中の行Ｘ３で見つかるということとを決定する。ワー
ドディレクトリ６１６は単に特定されたパスの部分でありターゲットではないので、ファ
イルテーブル７１０は調べられない。その代わり、このシステムはRowID（Ｙ３）を用い
てWordディレクトリ６１６に対するインデックスエントリ５１４の場所を突きとめる（ス
テップ８２４）。
【００５７】
階層インデックス５１０のRowIDＹ３で、このシステムはインデックスエントリ５１４を
見つける。ステップ８０４において、入力パス名から次のファイル名「Example.doc」が
選択される。ステップ８０６において、インデックスエントリ５１４のDir＿entry＿list
がサーチされて、「Example.doc」に対するアレイエントリがあることを見つけ（ステッ
プ８０８）、これは「Example.doc」がWordディレクトリ６１６の子であることを示す。
このシステムはまた、Example.docが階層インデックス５１０においてインデックス付け
の情報を全く有さないことと、Example.docに関する特定の情報をFileIDＸ４を用いてフ
ァイルテーブル７１０中に見つけることができるということも見つける。Example.docは
アクセスされるターゲットファイル（すなわち入力パス中の最後のファイル名）であるの
で、制御はステップ８２０へ移り、ここでシステムはFileIDＸ４を用いてファイルテーブ
ル７１０中の適切な行にアクセスし、かつその行の本体欄にストアされたファイル本体（
ＢＬＯＢ）を抽出する。こうして、Example.docファイルがアクセスされる。
【００５８】
このファイルのアクセスには、階層インデックス５１０のみが用いられた。テーブルのス
キャンは必要なかった。ブロックのサイズおよびファイル名の長さが典型的なものであれ
ば、少なくとも６００のディレクトリエントリが１つのディスクブロックに適合すること
になり、典型的なディレクトリは６００エントリ未満を有する。つまり、所与のディレク
トリ中のディレクトリエントリのリストは、典型的には単一のブロックに適合することに
なる。言換えれば、インデックスエントリのDir＿entry＿listアレイ全体を含む階層イン
デックス５１０の各インデックスエントリは、典型的には単一のブロックに適合すること
になり、したがって単一のＩ／Ｏオペレーションにおいて読出され得る。
【００５９】
階層インデックス５１０中のインデックスエントリからインデックスエントリへの移動に
おいて、インデックス中のさまざまなインデックスエントリが種々の異なるディスクブロ
ックに存在する場合、ディスクアクセスをいくらか行なう必要があるという可能性もある
。しかしながら、各インデックスエントリが単一のブロックに完全に適合すれば、ディス
クアクセスの数は、そのパス中のディレクトリの数以下となる。平均のインデックスエン
トリのサイズが単一のディスクブロックに適合しなくとも、ディレクトリごとのディスク
アクセスの数は一定の項（term）となり、ファイルシステム中のファイルの総数に伴って
増加することはない。
【００６０】
いくつかのファイルシステムが所有する階層的特徴をエミュレートするための技術につい



(14) JP 5113967 B2 2013.1.9

10

20

30

40

50

ての以上の記述は単に例示的なものである。いくつかのファイルシステムおよびプロトコ
ルの階層的な特徴をエミュレートするために他の技術も用いられ得る。さらに、階層的特
徴を所有することさえないプロトコルもあり得る。このように、本発明は、いくつかのプ
ロトコルの階層的特徴をエミュレートするための何らかの特定の技術に限定されることは
ない。さらに、本発明は、本質的に階層的であるプロトコルに限定されることもない。
【００６１】
データベースにおける他のＯＳファイルシステム特徴のエミュレート
ＯＳファイルシステムの階層的な構成以外に、ほとんどのＯＳファイルシステムの別の特
徴は、それらがストアするファイルについて特定のシステム情報を保持していることであ
る。一実施例によれば、このＯＳファイルシステム特徴もまた、データベースシステム内
でエミュレートされる。具体的には、トランスレーションエンジン３０８が、あるファイ
ルの「システム」データをデータベースサーバ２０４により管理されるファイルテーブル
（たとえばファイルテーブル７１０）のある行にストアさせるコマンドを発する。一実施
例によれば、ファイル内容のすべてまたは大部分が、その行のある欄に大規模バイナリオ
ブジェクト（ＢＬＯＢ）としてストアされる。このＢＬＯＢの欄に加えて、このファイル
テーブルはさらに、ＯＳファイルシステムで実現されるものに対応する属性値をストアす
るための欄を含む。このような属性値は、たとえば、ファイルの所有者または作成者、フ
ァイルの作成日、ファイルの最終変更データ、ファイルへのハードリンク、ファイル名、
ファイルサイズ、およびファイルタイプを含む。
【００６２】
トランスレーションエンジン３０８がデータベースサーバ２０４に対して何らかのファイ
ルオペレーションを行なわせるようにデータベースコマンドを発する場合、それらのデー
タベースコマンドは、そのオペレーションに伴うファイルに関連付けられた属性を適切に
変更させるステートメントを含む。たとえば、新たに作成されたファイルに対するファイ
ルテーブル中に新たな行を挿入することに応答して、トランスレーションエンジン３０８
はデータベースコマンドを発し、（１）誰がそのファイルを作成しているかをユーザに示
す値をその行の「所有者」欄にストアし、（２）現在の日付を示す値をその行の「作成日
」欄にストアし、（３）現在の日付および時刻を示す値を「最終変更」欄にストアし、（
４）ＢＬＯＢのサイズを示す値を「サイズ」欄にストアする。このファイルにおける後続
のオペレーションに応答して、これらの欄中の値はこれらのオペレーションにより要求さ
れたとおり変更される。たとえば、トランスレーションエンジン３０８が特定の行にスト
アされたファイルの内容を変更するデータベースコマンドを発すると、同じオペレーショ
ンの部分として、トランスレーションエンジン３０８は、その特定の行の「最終変更」値
を更新するデータベースコマンドを発する。さらに、この変更がファイルサイズを変える
ものであれば、トランスレーションエンジン３０８は、その特定の行の「サイズ」値を更
新するデータベースコマンドも発する。
【００６３】
ほとんどのＯＳファイルシステムの別の特徴は、各ファイルごとにセキュリティを提供す
る能力である。たとえば、Windows（Ｒ）ＮＴ、ＶＭＳおよびＵＮＩＸ（Ｒ）のいくつか
のバージョンは、各ファイルに関してさまざまなエンティティが有する権利を示すアクセ
ス制御リストを保持する。本発明の一実施例によれば、このＯＳファイルシステム特徴は
、「セキュリティテーブル」を保持することによりデータベースシステム内でエミュレー
トされ、このセキュリティテーブルの各行は、アクセス制御リストのあるエントリと同様
の内容を含む。たとえば、このセキュリティテーブル中の行がファイルを特定する値をス
トアするためのある欄と、許可タイプ（たとえば読出、更新、挿入、実行、変更の許可）
を表わす値をストアするための別の欄と、その許可が与えられたか否かを示すフラグをス
トアする別の欄と、そのファイルに対する許可の所有者を表わす値をストアする所有者欄
とを含む。この所有者とは、ユーザＩＤ（userid）で特定される単一のユーザでも、グル
ープＩＤ（groupid）で特定されるグループでもよい。グループの場合は、１つ以上の追
加テーブルを用いてそのグループＩＤをそのグループのメンバーのユーザＩＤにマッピン



(15) JP 5113967 B2 2013.1.9

10

20

30

40

50

グする。
【００６４】
データベースサーバ２０４により管理されるファイルテーブルにストアされたあるファイ
ルにアクセスするデータベースコマンドを発する前に、トランスレーションエンジン３０
８は、アクセスを要求しているユーザが特定されたファイルに対して要求されたアクセス
のタイプを実行する許可を有することを検証するデータベースコマンドを発する。このよ
うなプリアクセスデータベースコマンドにより、セキュリティテーブルからデータが検索
され、アクセスを要求しているユーザにそのアクセスの実行が許可されているか否かが判
定される。このように検索されたデータが、ユーザが要求された許可を有していないと示
せば、トランスレーションエンジン３０８は要求されたオペレーションを実行するコマン
ドを発しない。その代わりに、トランスレーションエンジン３０８は要求の発生元のオペ
レーティングシステムへエラーメッセージを返す。このエラーメッセージに応答して、オ
ペレーティングシステムは、アクセスを要求したアプリケーションに、そのアプリケーシ
ョンがそのオペレーティングシステムのＯＳファイルシステムに保持されるあるファイル
に許可なしにアクセスしようと試みた場合に送るであろうものと同じＯＳエラーメッセー
ジを送る。このように、エラー状況下でも、データがＯＳファイルシステムではなく関係
データベース中にストアされるという事実は、アプリケーションにはトランスペアレント
である。
【００６５】
異なるオペレーティングシステムにはファイルについての異なるタイプのシステム情報が
ストアされる。たとえば、あるオペレーティングシステムは「アーカイブ」フラグをスト
アするがアイコン情報はストアしない場合もあり、また別のものはアイコン情報をストア
しアーカイブフラグをストアしない場合もある。ここに記載の技術を実現するデータベー
スシステムにより保持されるシステムデータの特定のセットは、各実現例ごとに変化し得
る。たとえば、データベース２０４はオペレーティングシステム３０４ａのＯＳファイル
システムによりサポートされるシステムデータのすべてをストアし得るが、オペレーティ
ングシステム３０４ｂのＯＳファイルシステムによりサポートされるシステムデータはい
くつかしかストアし得ない。これに代えて、データベースサーバはオペレーティングシス
テム３０４ａおよび３０４ｂの両者によりサポートされるシステムデータの全部をストア
してもよく、またはオペレーティングシステム３０４ａおよび３０４ｂのいずれか１つに
よりサポートされるシステムデータの一部をストアしてもよい。
【００６６】
図３に示すように、データベースサーバ２０４は多数の別々のＯＳファイルシステムから
発生したファイルをストアする。たとえば、オペレーティングシステム３０４ａはオペレ
ーティングシステム３０４ｂとは異なっていてもよく、また、オペレーティングシステム
３０４ａおよび３０４ｂの両者がオペレーティングシステム１０４とは異なっていてもよ
い。ＯＳファイルシステム３０４ａおよび３０４ｂは対比する特徴を有し得る。たとえば
、ＯＳファイルシステム３０４ａはファイル名に文字「／」を含むことを可能にし得るの
に対し、ＯＳファイルシステム３０４ｂは可能にし得ない。一実施例によれば、このよう
な状況において、トランスレーションエンジン３０８はＯＳファイルシステム特有の規則
を実現するよう構成される。このように、アプリケーション３０２ａがファイル名に文字
「／」を含むファイルをストアしようと試みると、トランスレーションエンジン３０８は
データベースサーバ２０４にそのオペレーションを実行させるデータベースコマンドを発
する。一方、アプリケーション３０２ｂがファイル名に文字「／」を含むファイルをスト
アしようと試みると、トランスレーションエンジン３０８はエラーを生じさせる。
【００６７】
これに代えて、トランスレーションエンジン３０８は、すべてのオペレーティングシステ
ムに対する規則の単一のセットを実現するよう構成され得る。たとえば、トランスレーシ
ョンエンジン３０８は、ファイル名がトランスレーションエンジン３０８によりサポート
される１つのオペレーティングシステムにおいてさえも無効な場合には、たとえそのファ



(16) JP 5113967 B2 2013.1.9

10

20

30

40

50

イル名がそのファイル名を特定したコマンドを発したオペレーティングシステムにおいて
有効であっても、エラーを生じさせることになる、という規則を実現し得る。
【００６８】
ＯＳファイルシステムコールのデータベースクエリへの変換
ＯＳファイルシステム特徴をデータベースシステム内でエミュレートするための機構を構
築することにより、ＯＳファイルシステムのコールが、ＯＳファイルシステムのコールを
行なっているアプリケーションにより予期される機能性を失うことなく、トランスレーシ
ョンエンジン３０８によってデータベースクエリへ変換され得る。それらのアプリケーシ
ョンによりなされたこのＯＳファイルシステムコールは、それらが実行されているオペレ
ーティングシステムにより提供されるＯＳファイルＡＰＩを通じて行なわれる。たとえば
、「Ｃ」プログラミング言語で書かれたプログラムに対しては、あるオペレーティングシ
ステムのＯＳファイルＡＰＩのインターフェイスを特定するために「stdio.h」と題され
たソースコードファイルが用いられる。このstdio.hファイルはアプリケーションに含ま
れるので、これらのアプリケーションはＯＳファイルＡＰＩを実現するルーチンをいかに
呼出すかを知ることになる。
【００６９】
ＯＳファイルＡＰＩを実現する特定のルーチンはオペレーティングシステムごとに変化し
得るが、典型的には次のオペレーションを行なうためのルーチンを含む。ファイルを開く
、ファイルから読出す、ファイルへ書込む、ファイル内をシークする、ファイルをロック
する、およびファイルを閉じる。一般に、これらのＩ／Ｏコマンドから関係データベース
コマンドへのマッピングは、
ファイルを開く＝トランザクションを開始する、パスネームを導出しファイルを含む行の
場所を突きとめる
ファイルへ書込む＝更新する
ファイルから読出す＝選択する
ファイルをロックする＝ファイルに関連付けられた行をロックする
ファイル内へシークする＝カウンタを更新する
ファイルを閉じる＝トランザクションを完遂させる（Windows（Ｒ）ＯＳファイルシステ
ムプロトコルは、ファイルデータが書込まれる直前にディレクトリエントリが完遂するよ
う要求する。他のプロトコルは要求しない。）
以下により詳細に説明するように、ファイルの内容を受ける前であってもファイルの名称
を可視にすることを予期するファイルシステムもある。これらのファイルシステムの関連
で、「ファイルを開く」Ｉ／Ｏコマンドは、名称を書込むためのトランザクションの開始
、名称を書込むためのトランザクションの完遂、および内容を書込むためのトランザクシ
ョンの開始に対応する。
【００７０】
一実施例によれば、カウンタを用いてファイル内の「現在場所」が追跡される。ファイル
がＢＬＯＢとしてストアされる実施例において、カウンタはＢＬＯＢの始めからオフセッ
トの形態をとり得る。「ファイルを開く」コマンドが実行されると、カウンタが作成され
、問題のＢＬＯＢの実行開始アドレスを示す値に設定される。ＢＬＯＢのカウンタはこの
後データがＢＬＯＢから読出されるかまたはＢＬＯＢに書込まれることに応答して増分さ
れる。シークオペレーションは、このシークオペレーションのパラメータにより指示され
たＢＬＯＢ内の場所を指すようにカウンタを更新させる。一実施例によれば、これらのオ
ペレーションは、ノリ（Nori）他により１９９７年１０月３１日に出願され「ＬＯＢロケ
ータ（LOB LOCATORS）」と題された米国特許出願番号０８／９６２，４８２号に記載され
るようなＬＯＢロケータを用いることにより容易になり、この出願の全内容をここに引用
により援用する。
【００７１】
いくつかのオペレーティングシステムにおいて、ＯＳのロックはファイルを閉じても続く
場合がある。この特徴をエミュレートするためには、ロックファイルコマンドが、セッシ



(17) JP 5113967 B2 2013.1.9

10

20

30

40

50

ョンロックのリクエストに変換される。この結果、「トランザクションの完遂」がこのフ
ァイルを閉じるコマンドに応答して実行される場合、そのファイルに関連付けられた行に
おけるロックは自動的に解除されない。このように確立されたロックは、ファイルのロッ
クを解除するコマンドに応答して明示的に、またはロックが得られたデータベースセッシ
ョンの終了に応答して自動的に、のいずれかで解除される。
【００７２】
進行中のＩ／Ｏオペレーション
あるファイルが作成されると、そのファイルが作成されるディレクトリはそのファイルの
存在を示すように更新される。いくつかのＯＳファイルシステムにおいて、新たなファイ
ルを示すようにディレクトリを変更することは、新たなファイルが完全に生成される前に
完遂される。それらのＯＳファイルシステム用に設計されたアプリケーションには、その
特徴をうまく利用するものもある。たとえば、あるアプリケーションは第１のファイルハ
ンドルで新たなファイルを開き、そのファイル中へのデータの書込みへと進み得る。デー
タが書込まれている間、同じアプリケーションが第２のファイルハンドルでそのファイル
を開くことができる。
【００７３】
この特徴をデータベース内でエミュレートすることには特殊な問題が伴う。というのは、
一般に、データベーストランザクションが完遂するまで、別のトランザクションはそのト
ランザクションによりなされた変更を見ることができないからである。たとえば、第１の
データベーストランザクションが第１の「開く」コマンドに応答して開始されたとする。
第１のトランザクションは特定のディレクトリ中にファイルが存在することを示すように
ディレクトリテーブルを更新し、その後、ファイルを含む行を挿入するようにファイルテ
ーブルを更新する。同じアプリケーションが発した第２の「開く」コマンドに応答して第
２のデータベーストランザクションが開始されると、第２のデータベーストランザクショ
ンには、ディレクトリテーブルに対する変更も、ファイルテーブル中の新たな行も、第１
のトランザクションが完遂するまで見えない。
【００７４】
本発明の一実施例によれば、作成進行中のファイルのディレクトリエントリを見る能力は
、そのファイルに対する行をファイルテーブル中に挿入するのに用いるトランザクション
とは別のトランザクションとしてディレクトリテーブルの更新を行なわせることにより、
データベースシステム内でエミュレートされる。このように、第１の開くコマンドに応答
して、トランスレーションエンジン３０８はデータベースコマンドを発し、（１）第１の
トランザクションを開始させ、（２）新たなファイルの存在を示すようにディレクトリテ
ーブルを変更し、（３）第１のトランザクションを完遂させ、（４）第２のトランザクシ
ョンを開始させ、（５）このファイルのある行をファイルテーブル中に挿入し、（６）第
２のトランザクションを完遂させる。ディレクトリテーブルに対する変更をファイルテー
ブルに対する変更とは別に完遂させることにより、第２の開くコマンドに応答して開始さ
れる第３のトランザクションは、ファイルテーブル中への挿入がまだ進行している間にデ
ィレクトリテーブル内のエントリを見ることができる。第２のトランザクションに失敗す
れば、このディレクトリは内容を持たずにファイルのエントリとともに残されることにな
る。
【００７５】
トランスレーションエンジン
本発明の一実施例によれば、トランスレーションエンジン３０８は２つの層で設計される
。これらの層は図４に示される。図４を参照して、トランスレーションエンジン３０８は
、プロトコルサーバ層およびＤＢファイルサーバ４０８層を含む。ＤＢファイルサーバ４
０８は、アプリケーションが代替的なＡＰＩ（ここではＤＢファイルＡＰＩと称す）を通
じて、データベースサーバ２０４により管理されるデータベースにストアされたデータに
アクセスできるようにする。ＤＢファイルＡＰＩは、ＯＳファイルＡＰＩとデータベース
ＡＰＩとの両方の局面を組合せる。具体的には、ＤＢファイルＡＰＩは、従来のＯＳファ



(18) JP 5113967 B2 2013.1.9

10

20

30

40

50

イルＡＰＩによりサポートされたものと同様のファイルオペレーションをサポートする。
【００７６】
しかしながら、ＯＳファイルＡＰＩとは異なり、ＤＢファイルＡＰＩはトランザクション
のデータベースＡＰＩの概念を組入れる。すなわち、ＤＢファイルＡＰＩにより、アプリ
ケーションが、ファイルオペレーションのセットが原子単位で実行されることを特定でき
るようになる。トランザクションが行なわれたファイルシステムを有することの利点につ
いて、以下により詳細に述べる。
【００７７】
ＤＢファイルサーバ
ＤＢファイルサーバ４０８は、ＤＢファイルＡＰＩコマンドをデータベースコマンドに変
換するという役割を担う。ＤＢファイルサーバ４０８が受けたＤＢファイルＡＰＩコマン
ドは、トランスレーションエンジン３０８のプロトコルサーバ層から来るものであっても
よく、または、ＤＢファイルＡＰＩを通じてコールを発することによりファイルオペレー
ションを行なうよう特に設計されたアプリケーション（たとえばアプリケーション４１０
）から直接のものであってもよい。
【００７８】
一実施例によれば、ＤＢファイルサーバ４０８はオブジェクト指向である。このように、
ＤＢファイルサーバ４０８により供給されるルーチンがあるオブジェクトのインスタンス
生成により、またそのオブジェクトに関連付けられた方法をコールすることにより呼出さ
れる。ある実現例において、ＤＢファイルサーバ４０８は次の方法を含む「トランザクシ
ョン」オブジェクトクラスを規定する。挿入、保存、更新、削除、完遂およびロールバッ
ク。ＤＢファイルＡＰＩは、外部エンティティがこのトランザクションオブジェクトクラ
スのインスタンス生成を行ない使用できるようにする、インターフェイスを提供する。
【００７９】
具体的には、外部エンティティ（たとえばアプリケーション４１０またはプロトコルサー
バ）がＤＢファイルサーバ４０８のコールを行ないトランザクションオブジェクトのイン
スタンスを生成すると、ＤＢファイルサーバ４０８はデータベースサーバ２０４に新たな
トランザクションを始めさせるデータベースコマンドを送る。この外部エンティティはこ
の後トランザクションオブジェクトの方法を呼出す。ある方法を呼出すことは、結果とし
てＤＢファイルサーバ４０８に対するコールとなる。ＤＢファイルサーバ４０８はこのコ
ールに応答して、データベースサーバ２０４に対応のデータベースコマンドを発する。所
与のトランザクションオブジェクトの方法の呼出に応答して行なわれるデータベースオペ
レーションはすべて、この所与のトランザクションオブジェクトに関連付けられたデータ
ベーストランザクションの部分として行なわれる。
【００８０】
重要なことには、ある単一のトランザクションオブジェクトに対して呼出された方法は複
数のファイルオペレーションを伴う場合がある。たとえば、アプリケーション４１０は以
下のようにＤＢファイルサーバ４０８と対話し得る。アプリケーション４１０は、ＤＢフ
ァイルＡＰＩを通じてコールすることによりトランザクションオブジェクトＴＸＯ１のイ
ンスタンス生成を行なう。これに応答して、ＤＢファイルサーバ４０８は、データベース
サーバ２０４内でトランザクションＴＸ１を開始するデータベースコマンドを発する。ア
プリケーション４１０はＴＸＯ１の更新方法を呼出し、データベースサーバ２０４により
管理されるデータベース中にストアされたファイルＦ１を更新する。これに応答して、Ｄ
Ｂファイルサーバ４０８はデータベースサーバ２０４に、要求された更新をトランザクシ
ョンＴＸ１の部分として行なわせるデータベースコマンドを発する。アプリケーション４
１０はＴＸＯ１の更新方法を呼出し、データベースサーバ２０４により管理されるデータ
ベース中にストアされた第２のファイルＦ２を更新する。これに応答して、ＤＢファイル
サーバ４０８は、データベースサーバ２０４に、要求された更新をトランザクションＴＸ
１の部分として行なわせるデータベースコマンドを発する。この後アプリケーション４１
０は、ＴＸＯ１の完遂方法を呼出す。これに応答して、ＤＢファイルサーバ４０８は、デ



(19) JP 5113967 B2 2013.1.9

10

20

30

40

50

ータベースサーバ２０４にＴＸ１を完遂させるデータベースコマンドを発する。ファイル
Ｆ２への更新に失敗した場合、ＴＸＯ１のロールバック方法が呼出され、ファイルＦ１の
更新を含む、ＴＸ１によりなされたすべての変更がロールバックされる。
【００８１】
ここではトランザクションオブジェクトを用いるＤＢファイルサーバを参照して技術が述
べられてきたが、他の実現例も可能である。たとえば、ＤＢファイルサーバ内で、トラン
ザクションではなくファイルを表わすのにオブジェクトを用いることもできる。このよう
な実現例において、ファイルオブジェクトの方法を呼出すことにより、またオペレーショ
ンが実行されようとするトランザクションを特定するデータをそれへ渡すことにより、フ
ァイルオペレーションが行なわれ得る。したがって、本発明は、オブジェクトクラスの何
らかの特定のセットを実現するＤＢファイルサーバに限定されない。
【００８２】
説明の目的で、図４に表わす実施例は、データベースＡＰＩを通じてデータベースサーバ
２０４と通信する処理実行外部データベースサーバ２０４としてＤＢファイルサーバ４０
８を示す。しかしながら、代替的実施例によれば、ＤＢファイルサーバ４０８の機能性は
データベースサーバ２０４に組込まれている。ＤＢファイルサーバ４０８をデータベース
サーバ２０４に組込むことにより、ＤＢファイルシステムの使用中に生成される処理間通
信の量が減じられる。ＤＢファイルサーバ４０８をデータベースサーバ２０４に組込むこ
とにより作り出されるデータベースサーバは、したがって、データベースサーバ２０４に
より管理されるデータにアクセスするための２つの代替的なＡＰＩを、すなわちＤＢファ
イルＡＰＩおよびデータベースＡＰＩ（ＳＱＬ）を提供する。
【００８３】
プロトコルサーバ
トランスレーションエンジン３０８のプロトコルサーバ層は、特定のプロトコルとＤＢフ
ァイルＡＰＩコマンド間での変換を行なうという役割を担う。たとえば、プロトコルサー
バ４０６ａは、オペレーティングシステム３０４ａから受けたＩ／Ｏコマンドを、それが
ＤＢファイルサーバ４０８に送るＤＢファイルＡＰＩコマンドに変換する。プロトコルサ
ーバ４０６ａはまた、ＤＢファイルサーバ４０８から受けたＤＢファイルＡＰＩコマンド
を、それがオペレーティングシステム３０４ａに送るＩ／Ｏコマンドに変換する。
【００８４】
実際には、プロトコルとオペレーティングシステムとは１対１対応になっていない。むし
ろ、オペレーティングシステムの多くは１より多い数のプロトコルをサポートし、またプ
ロトコルの多くは、１より多い数のオペレーティングシステムによりサポートされる。た
とえば、単一のオペレーティングシステムが１つ以上のネットワークファイルプロトコル
（ＳＭＢ、ＦＴＰ、ＮＦＳ）、Ｅメールプロトコル（ＳＭＴＰ、ＩＭＡＰ４）、およびウ
ェブプロトコル（ＨＴＴＰ）に対して固有のサポートをもたらす場合もある。さらに、異
なるオペレーティングシステムがサポートするプロトコルのセット間にはオーバーラップ
がよく起こる。しかしながら、例示の目的で、オペレーティングシステム３０４ａがある
プロトコルをサポートし、オペレーティングシステム３０４ｂが別のプロトコルをサポー
トするという、単純化された環境が示される。
【００８５】
Ｉ／Ｏ　ＡＰＩ
上述したように、Ｉ／ＯコマンドをＤＢファイルコマンドに変換するためにプロトコルサ
ーバが用いられる。プロトコルサーバとそれらの通信相手のＯＳファイルシステムとの間
のインターフェイスは、包括的にラベル付けされたＩ／Ｏ　ＡＰＩである。しかしながら
、あるプロトコルサーバにより与えられた特定のＩ／Ｏ　ＡＰＩは、（１）プロトコルサ
ーバの通信相手のエンティティおよび（２）プロトコルサーバがいかにそのエンティティ
に現れるようにするか、にともに依存する。たとえば、オペレーティングシステム３０４
ａはMicrosoft Windows（Ｒ）ＮＴであってもよく、プロトコルサーバ４０６ａはMicroso
ft Windows（Ｒ）ＮＴに対するデバイスドライバとして出現するよう設計されてもよい。



(20) JP 5113967 B2 2013.1.9

10

20

30

40

50

この状況下で、プロトコルサーバ４０６ａによってオペレーティングシステム３０４ａに
提示されたＩ／Ｏ　ＡＰＩは、Windows（Ｒ）ＮＴにより理解されるデバイスインターフ
ェイスのタイプとなるであろう。Windows（Ｒ）ＮＴは、何らかのストレージ装置と通信
するのと同じように、プロトコルサーバ４０６ａと通信するとされる。プロトコルサーバ
４０６ａにストアされたファイルおよびそこから検索されたファイルが実際にはデータベ
ースサーバ２０４により保持されるデータベースにストアされまたそこから検索されてい
るという事実は、Windows（Ｒ）ＮＴには完全にトランスペアレントである。
【００８６】
トランスレーションエンジン３０８により用いられるいくつかのプロトコルサーバがそれ
らのそれぞれのオペレーティングシステムにデバイスドライバインターフェイスを提示し
得るのに対し、他のプロトコルサーバは他のタイプのエンティティとして出現し得る。た
とえば、オペレーティングシステム３０４ａはMicrosoft Windows（Ｒ）ＮＴオペレーテ
ィングシステムであってもよく、プロトコルサーバ４０６ａはそれ自身をデバイスドライ
バとして提示するのに対し、オペレーティングシステム３０４ｂはMicrosoft Windows（
Ｒ）９５オペレーティングシステムであって、プロトコルサーバ４０６ｂがそれ自身をシ
ステムメッセージブロック（ＳＭＢ）サーバとして提示することもある。後者の場合、プ
ロトコルサーバ４０６ｂは、典型的にはオペレーティングシステム３０４ｂとは別のマシ
ン上で実行していることになり、オペレーティングシステム３０４ｂとプロトコルサーバ
４０６ｂとの間の通信はネットワーク接続を介して起こることになる。
【００８７】
上記の例において、プロトコルサーバにより扱われるＩ／ＯコマンドのソースはＯＳファ
イルシステムである。しかしながら、トランスレーションエンジン３０８はＯＳファイル
システムのコマンドとともに用いることに限定されない。むしろ、ＤＢファイルコマンド
と何らかのタイプのＩ／Ｏプロトコルとの間で変換を行なうために、プロトコルサーバが
設けられ得る。ＯＳファイルシステムにより用いられるＩ／Ｏプロトコル以外にも、プロ
トコルサーバがそれに対して設けられ得る他のプロトコルとしては、たとえば、ファイル
転送プロトコル（ＦＴＰ：File Transfer Protocol）や、電子メールシステム（ＰＯＰ３
またはＩＭＡＰ４）により用いられるプロトコルが挙げられる。
【００８８】
ＯＳファイルシステムとともに働くプロトコルサーバにより提供されるインターフェイス
が特殊なＯＳにより指示されるのと同様、非ＯＳファイルシステムとともに働くプロトコ
ルサーバにより提供されるインターフェイスは、Ｉ／Ｏコマンドを発するであろうエンテ
ィティに基づいて変化することになる。たとえば、ＦＴＰプロトコルに従ってＩ／Ｏコマ
ンドを受けるように構成されたプロトコルサーバは、ＦＴＰサーバのＡＰＩを提供するで
あろう。同様に、ＨＴＴＰプロトコル、ＰＯＰ３プロトコルおよびＩＭＡＰ４プロトコル
に従ってＩ／Ｏコマンドを受けるように構成されたプロトコルサーバは、それぞれ、ＨＴ
ＴＰサーバ、ＰＯＰ３サーバおよびＩＭＡＰ４サーバのＡＰＩを提供するであろう。
【００８９】
ＯＳファイルシステムと同様、非ＯＳファイルプロトコルの各々は、そのファイルに対し
て保持される特定の属性を予測する。たとえば、ほとんどのＯＳファイルシステムが、あ
るファイルの最終変更日を示すデータをストアするのに対し、電子メールシステムは各Ｅ
メールメッセージに対して、そのＥメールメッセージが読まれたか否かを示すデータをス
トアする。特定のプロトコルの各々に対するプロトコルサーバは、そのプロトコルのセマ
ンティクスが確実にデータベースファイルシステム中でエミュレートされるために要求さ
れる論理を実現する。
【００９０】
トランザクション処理されたファイルシステム
データベースシステム内で、オペレーションは一般にトランザクションの部分として行な
われる。データベースシステムは、あるトランザクションの部分であるオペレーションの
すべてを単一の原子操作（atomic operation）として行なう。すなわち、オペレーション



(21) JP 5113967 B2 2013.1.9

10

20

30

40

50

のすべてがうまく完了するか、またはオペレーションのいずれも実行されないか、のいず
れかである。トランザクションの実行中、あるオペレーションが実行され得なければ、そ
のトランザクションの以前実行されたオペレーションがすべて取消されるか、または「ロ
ールバックされる」。
【００９１】
データベースシステムとは対照的に、ＯＳファイルシステムはトランザクションに基づく
ものではない。したがって、大規模なファイルオペレーションに失敗すれば、そのオペレ
ーションのうちその失敗以前に実行された部分は残る。不完全なファイルオペレーション
を取消すことに失敗すると、ディレクトリ構造およびファイルの破損につながるおそれが
ある。
【００９２】
本発明の一局面によれば、トランザクション処理されたファイルシステムが設けられる。
上述したように、トランスレーションエンジン３０８はＩ／Ｏコマンドをデータベースサ
ーバ２０４に送られるデータベースステートメントへとコンバートする。特定されたＩ／
Ｏオペレーションを実行するためにトランスレーションエンジン３０８によって送られた
一連のステートメントは、トランザクション開始（begin transaction）ステートメント
により先行され、トランザクション終了（close transaction）ステートメントで終わる
。結果として、データベースサーバ２０４によるそれらのステートメントの実行中に何ら
かの失敗が起これば、そのトランザクションの部分としてデータベースサーバ２０４によ
りなされる変更はすべてその失敗の時点までロールバックされることになる。
【００９３】
トランザクションの失敗を引起す事態は、Ｉ／Ｏコマンドの発生元のシステムに基づいて
変化し得る。たとえば、ＯＳファイルシステムは署名の概念をサポートすることができ、
ここであるファイルのソースを特定するデジタル「署名」はそのファイルに付加される。
署名されたファイルをストアするために開始されたトランザクションは、たとえば、その
ストアされているファイルの署名が予測どおりの署名でない場合、失敗するおそれがある
。
【００９４】
オンザフライ・インテリジェントファイルのコンバート
本発明の一実施例によれば、ファイルは、関係データベースに挿入される前に処理され、
それらがその関係データベースから検索されると再び処理される。図９はインバウンドお
よびアウトバウンドのファイル処理を行なうのに用いられるＤＢファイルサーバ３０８の
機能的構成要素を示すブロック図である。
【００９５】
図９を参照して、トランスレーションエンジン３０８は、レンダリングユニット９０４お
よびパーシングユニット９０２を含む。一般に、パーシングユニット９０２は、ファイル
のインバウンド処理を行なう役割を担い、レンダリングユニット９０４はファイルのアウ
トバウンド処理を行なう役割を担う。これらの機能的ユニットの各々について、ここでよ
り詳細に述べることにする。
【００９６】
インバウンドのファイル処理
インバウンドのファイルは、ＤＢファイルＡＰＩを介してＤＢファイルサーバ４０８に渡
される。インバウンドのファイルを受取ると、パーシングユニット９０２はそのファイル
のファイルタイプを特定し、その後、そのファイルタイプに基づいてそのファイルをパー
シングする。パーシング処理中、パーシングユニット９０２はパーシングされているファ
イルから構造化された情報を抽出する。この構造化された情報とは、たとえば、パーシン
グされているファイルについての情報、またはこのファイルの論理的に別個の構成要素も
しくはフィールドを表わすデータを含み得る。この構造化情報は、構造化情報の発生元の
ファイルととともにデータベース中にストアされる。その後、データベースサーバに対し
てクエリが出され、このように抽出された構造化情報が特定のサーチ条件を満たすか否か



(22) JP 5113967 B2 2013.1.9

10

20

30

40

50

に基づいてファイルを選択かつ検索し得る。
【００９７】
ある文書のパーシングを行なうためにパーシングユニット９０２により用いられる特定の
技術、およびそれにより生成される構造化されたデータは、パーシングユニット９０２に
渡された文書のタイプに基づいて変化することになる。したがって、何らかのパーシング
オペレーションを行なう前に、パーシングユニット９０２はこの文書のファイルタイプを
特定する。あるファイルのファイルタイプを決定するには、さまざまな要因が考慮され得
る。たとえば、ＤＯＳまたはWindows（Ｒ）のオペレーティングシステムでは、あるファ
イルのファイルタイプは、そのファイルのファイル名中の拡張子により示されることが多
い。すなわち、ファイル名が「．ｔｘｔ」で終わる場合、パーサユニット９０２はそのフ
ァイルをテキストファイルであると分類し、テキストファイル特有のパーシング技術をそ
のファイルに与える。同様に、ファイル名が「．ｄｏｃ」で終わる場合は、パーサユニッ
ト９０２はそのファイルをMicrosoft Word文書であると分類し、Microsoft Word特有のパ
ーシング技術をそのファイルに与える。これに対して、Macintoshオペレーティングシス
テム（Macintosh Operating System）は、あるファイルに対するファイルタイプ情報をそ
のファイルとは別に保持される属性としてストアする。
【００９８】
あるファイルのファイルタイプを決定するためにパーシングユニット９０２が考慮し得る
他の因子として、たとえば、そのファイルが位置付けられるディレクトリが挙げられる。
したがって、パーサユニット９０２は、WordPerfect文書として＼WordPerfect＼文書ディ
レクトリにストアされるすべてのファイルを、それらのファイルのファイル名にかかわら
ず、分類およびパーシングするよう構成され得る。
【００９９】
これに代えて、インバウンドのファイルのファイルタイプとリクエスト元のエンティティ
が要求するファイルタイプとの両者が、ＤＢファイルサーバ４０８に対して提供される情
報によって特定されるかまたはそれを通じて推定される場合もある。たとえば、あるウェ
ブブラウザがメッセージを送る場合、そのメッセージは典型的にはそのブラウザについて
の情報（たとえばブラウザのタイプ、バージョンなど）を含む。あるウェブブラウザがＨ
ＴＴＰプロトコルサーバを通じてあるファイルをリクエストする場合、この情報はＤＢフ
ァイルサーバ４０８に伝達される。この情報に基づいて、レンダリングユニット９０４は
そのブラウザの能力（capability）についての情報を調べ、またそれらの能力から最良の
ファイルタイプを推定してブラウザへ運ぶこともできる。
【０１００】
上述したように、パーシングユニット９０２により用いられる特定のパーシング技術、お
よびこのように生成された構造化データのタイプは、パーシングされているファイルのタ
イプに基づいて変化することになる。たとえば、パーシングユニット９０２により生成さ
れた構造化データは、埋込メタデータ、導出（derived）メタデータおよびシステムメタ
データを含み得る。埋込メタデータはファイル自体に埋込まれた情報である。導出メタデ
ータは、ファイル内に含まれておらずそのファイルを解析することにより導出され得る情
報である。システムメタデータは、ファイルの発生元のシステムにより提供されたファイ
ルについてのデータである。
【０１０１】
たとえば、アプリケーション４１０がMicrosoft Word文書をパーシングユニット９０２に
渡すとする。パーシングユニット９０２はその文書をパーシングしてそのファイル内に埋
込まれているファイルについての情報を抽出する。Microsoft Word文書に埋込まれる情報
としては、たとえば、文書の作者、文書が割当てられるカテゴリ、および文書についての
コメントを示すデータが挙げられる。
【０１０２】
Word文書についての埋込情報の場所を突きとめ抽出するのに加えて、パーサ９０２はその
文書についての情報の導出もし得る。たとえば、パーサ９０２はこのWord文書をスキャン



(23) JP 5113967 B2 2013.1.9

10

20

30

40

50

してこの文書に含まれるページ数、段落数および語数を決定し得る。最後に、この文書が
発生したシステムは、この文書のサイズ、作成日、最終変更日、およびファイルタイプを
示すデータをパーシングユニット９０２に供給し得る。
【０１０３】
ある文書のファイルタイプがより構造化されるほど、この文書から構造化されたデータの
特定のアイテムを抽出しやすくなる。たとえば、ＨＴＭＬ文書は典型的には、特定のフィ
ールド（タイトル、ヘッディング１、ヘッディング２など）の初めと終わりとを特定する
デリミタまたは「タグ」を有する。これらのデリミタはパーシングユニット９０２により
用いられ、ＨＴＭＬ文書をパーシングすることによって、区切られたフィールドのいくつ
かまたはすべてに対してメタデータのアイテムをもたらし得る。同様に、ＸＭＬファイル
は高度に構造化されており、ＸＭＬパーサはＸＭＬ文書中に含まれるフィールドのいくつ
かまたはすべてに対するメタデータの別のアイテムを抽出することができるであろう。
【０１０４】
一旦あるファイルに対してパーシングユニット９０２が構造化データを生成していれば、
ＤＢファイルサーバ４０８はデータベースサーバ２０４にデータベースコマンドを発し、
そのファイルをファイルテーブル（たとえばファイルテーブル７１０）のある行に挿入さ
せる。一実施例によれば、このように発せられたデータベースコマンドはこのファイルを
その行のある欄におけるＢＬＯＢとしてストアし、そのファイルについて生成された構造
化データのさまざまなアイテムを同じ行の他の欄にストアする。
【０１０５】
これに代えて、あるファイルに対する構造化データアイテムのいくつかまたはすべてをフ
ァイルテーブルの外部にストアすることもできる。このような状況下で、あるファイルに
関連付けられた構造化データをストアする行は、そのファイルを特定するデータを典型的
に含むことになる。たとえば、Word文書がファイルテーブルの行Ｒ２０にストアされ、そ
のWord文書に対するシステムメタデータ（たとえば作成日、変更日など）がシステム属性
テーブルの行Ｒ３４にストアされると想定する。このような状況において、ファイルテー
ブルのＲ２０およびシステム属性テーブルのＲ３４の両者が典型的にはWord文書に対する
固有の識別子をストアするFileID欄を含むことになる。それから、クエリにより、ファイ
ルテーブル中の行とシステム属性テーブル中の行とをFileID値に基づいて結合する結合ス
テートメントを発することで、そのファイルとそのファイルについてのシステムメタデー
タとの両方を検索することができる。ファイル「クラス」に関連付けられたテーブル中の
ファイル属性をストアするための技術について以下により詳細に説明する。
【０１０６】
アウトバウンドのファイル処理
アウトバウンドのファイルは、データベースサーバ２０４に送られたデータベースコマン
ドに応答して検索される情報に基づいてレンダリングユニット９０４により構築される。
一旦構築されると、アウトバウンドのファイルはＤＢファイルＡＰＩを通じてそれをリク
エストしたエンティティへと運ばれる。
【０１０７】
重要なことには、レンダリングユニット９０４により生じたアウトバウンドファイルのフ
ァイルタイプ（ターゲットファイルタイプ）は、必ずしもそのアウトバウンドファイルを
構築するのに用いられたデータを生じたファイルと同じファイルタイプ（ソースファイル
タイプ）でなくてもよい。たとえば、レンダリングユニット９０４はもともとデータベー
ス内にWordファイルとしてストアされていたデータに基づいてテキストファイルを構築し
得る。
【０１０８】
さらに、アウトバウンドファイルを要求するエンティティは、そのアウトバウンドファイ
ルが構築されるもとのファイルを生じたエンティティとは全く別のプロトコルを用いて全
く別のプラットフォーム上にあってもよい。たとえば、プロトコルサーバ４０６ｂがＩＭ
ＡＰ４サーバインターフェイスを実現し、プロトコルサーバ４０６ａがＨＴＴＰサーバイ



(24) JP 5113967 B2 2013.1.9

10

20

30

40

50

ンターフェイスを実現する場合を想定する。これらの状況下で、Ｅメールアプリケーショ
ンから発生するＥメール文書はプロトコルサーバ４０６ｂを通じてデータベース内にスト
アされ、プロトコルサーバ４０６ａを通じてWebブラウザによりデータベースから検索さ
れ得る。この筋書きでは、パーシングユニット９０２がこのＥメールのファイルタイプ（
たとえばＲＦＣ８２２）に関連付けられたパーシング技術を呼出し、レンダリングユニッ
トがデータベースから検索されたＥメールデータからＨＴＭＬ文書を構築するレンダリン
グルーチンを呼出すであろう。
【０１０９】
パーサおよびレンダラの登録
上述したように、あるファイルに施されるパーシング技術はそのファイルのタイプにより
指示される。同様に、あるファイルに施されるレンダリング技術はそのファイルのソース
タイプとそのファイルのターゲットタイプとの両者により指示される。すべてのコンピュ
ータプラットホームにわたって存在するファイルタイプの数は莫大である。したがって、
すべての公知のファイルタイプを扱うパーシングユニット９０２を築くのも、ファイルタ
イプからファイルタイプへのすべての可能なコンバートを扱うレンダリングユニット９０
４を築くのも実用的でない。
【０１１０】
本発明の一実施例によれば、ファイルタイプの急増により引き起こされる問題は、タイプ
特有のパーシングモジュールをパーシングユニット９０２に登録可能にすることにより、
またタイプ特有のレンダリングモジュールをレンダリングユニット９０４に登録可能にす
ることにより、対処される。タイプ特有のパーシングモジュールとは、ある特定のファイ
ルタイプに対してパーシング技術を実現するモジュールのことである。たとえば、Word文
書は、Word文書パーシングモジュールを用いてパーシングされるのに対し、ＰＯＰ３のＥ
メール文書はＰＯＰ３　Ｅメールパーシングモジュールを用いてパーシングされる。
【０１１１】
タイプ特有のパーシングモジュールと同様、タイプ特有のレンダリングモジュールとは、
１つ以上のソースファイルタイプに関連付けられたデータを１つ以上のターゲットファイ
ルタイプにコンバートするための技術を実現するモジュールのことである。たとえば、タ
イプ特有のレンダリングモジュールは、Word文書をテキスト文書にコンバートするために
設けられ得る。
【０１１２】
ソースファイルタイプとターゲットファイルタイプとが同じであってもコンバートが必要
となる場合もある。たとえば、パーシングされデータベース内に挿入されると、ＸＭＬ文
書の内容は単一のＢＬＯＢには保持されず、多数のテーブルの多数の欄にわたって広がり
得る。その場合は、たとえそのデータがもはやＸＭＬファイルとしてストアされていなく
とも、ＸＭＬがそのデータのソースファイルタイプである。タイプ特有のレンダリングモ
ジュールは、そのデータからＸＭＬ文書を構築するために設けられ得る。
【０１１３】
パーシングユニット９０２がインバウンドのファイルを受けると、パーシングユニット９
０２はそのファイルのファイルタイプを決定し、タイプ特有のパーシングモジュールがそ
のファイルタイプに対して登録されているか否かを判定する。タイプ特有のパーシングモ
ジュールがそのファイルタイプに登録されていれば、パーシングユニット９０２はそのタ
イプ特有のパーシングモジュールにより与えられたパーシングルーチンをコールする。そ
れらのパーシングルーチンはインバウンドファイルをパーシングしてメタデータを生成し
、このメタデータはこの後そのファイルとともにデータベース内にストアされる。タイプ
特有のパーシングモジュールがそのファイルタイプに対して登録されていなければ、パー
シングユニット９０２はエラーを生じるか、あるいは汎用のパーシング技術をそのファイ
ルに施し得る。この汎用のパーシング技術にはファイルの内容についての知識が何もない
ので、そのファイルに対して生成できる有用なメタデータに関してこの汎用のパーシング
技術が制限されることになる。



(25) JP 5113967 B2 2013.1.9

10

20

30

40

50

【０１１４】
レンダリングユニット９０４がファイルリクエストを受けると、レンダリングユニット９
０４はデータベースコマンドを発し、そのファイルに関連付けられるデータを検索する。
そのデータは、ファイルのソースファイルタイプを示すメタデータを含む。レンダリング
ユニット９０４はこの後、タイプ特有のレンダリングモジュールがそのソースファイルタ
イプに対して登録されているか否かを判定する。タイプ特有のレンダリングモジュールが
そのソースファイルタイプに対して登録されていれば、そのタイプ特有のレンダリングモ
ジュールにより与えられたレンダリングルーチンを呼出してファイルを構築し、こうして
構築されたファイルを、そのファイルをリクエストしているエンティティへ与える。
【０１１５】
タイプ特有のレンダリングモジュールによってどのターゲットファイルタイプを選択すべ
きかを決定するためにさまざまな因子が用いられ得る。ファイルをリクエストしているエ
ンティティが、それが要求するファイルのタイプを明示的に示す場合もある。たとえばテ
キスト編集者はテキストファイルのみ扱うことができる。テキスト編集者はソースファイ
ルタイプがWord文書であるファイルをリクエストできる。このリクエストに応答して、Wo
rd特有のレンダリングモジュールが呼出され、これが、要求されたターゲットファイルタ
イプに基づいて、このWord文書をテキストファイルにコンバートする。このテキストファ
イルはその後テキスト編集者へ運ばれる。
【０１１６】
他には、ファイルをリクエストしているエンティティが多数のファイルタイプをサポート
し得る場合もある。一実施例によれば、タイプ特有のレンダリングモジュールは、（１）
リクエスト元のエンティティとタイプ特有のレンダリングモジュールとの両者によりサポ
ートされるファイルタイプのセットを特定し、（２）そのセットにおいて最良のターゲッ
トファイルタイプを選択する、という論理を組込む。この最良のターゲットファイルの選
択には、問題のファイル特有の特徴を含む、さまざまな因子を考慮に入れることができる
。
【０１１７】
たとえば、（１）ＤＢファイルサーバ４０８があるファイルに対するリクエストを受け、
（２）そのファイルのソースファイルタイプがそのファイルは「ＢＭＰ」イメージである
と示し、（３）このリクエストが「ＧＩＦ」、「ＴＩＦ」および「ＪＰＧ」イメージをサ
ポートするエンティティにより開始されており、（４）ＢＭＰソースタイプ特有のレンダ
リングモジュールが「ＧＩＦ」、「ＪＰＧ」および「ＰＣＸ」のターゲットファイルタイ
プをサポートする、と仮定する。このような状況下で、ＢＭＰソースタイプ特有のレンダ
リングモジュールは、「ＧＩＦ」および「ＪＰＧ」の両者が可能性のあるターゲットファ
イルタイプであると決定する。これら２つの可能性のあるターゲットファイルタイプから
選択するために、ＢＭＰソースタイプ特有のレンダリングモジュールは、そのファイルに
ついての情報（その解像度および色の深みを含む）を考慮に入れ得る。この情報に基づい
て、ＢＭＰソースタイプ特有のレンダリングモジュールはＪＰＧが最良のターゲットファ
イルタイプであると決定でき、このＢＭＰファイルをＪＰＧファイルにコンバートするよ
う進むことができる。その結果生じるＪＰＧファイルはこの後、リクエスト元のエンティ
ティに運ばれる。
【０１１８】
一実施例によれば、タイプ特有のパーシングおよびレンダリングモジュールは、データベ
ーステーブルにモジュールの能力を示す情報をストアすることにより登録される。たとえ
ば、タイプ特有のレンダリングモジュールに対するエントリは、ソースファイルタイプが
ＸＭＬでありリクエスト元のエンティティがWindows（Ｒ）に基づいたWebブラウザである
場合に用いるべきであることを示し得る。タイプ特有のパーシングモジュールに対するエ
ントリは、ソースファイルタイプが.GIFイメージである場合にそれを用いるべきであると
いうことを示し得る。
【０１１９】



(26) JP 5113967 B2 2013.1.9

10

20

30

40

50

ＤＢファイルサーバ４０８がＤＢファイルＡＰＩを通じてあるファイルに関係するコマン
ドを受けると、ＤＢファイルサーバ４０８は発生時のファイルタイプと、そのコマンドを
発したエンティティのアイデンティティとを決定する。ＤＢファイルサーバ４０８はこの
後データベースサーバ２０４にデータベースコマンドを発し、これによってデータベース
サーバ２０４に、登録されたモジュールのテーブルをスキャンさせ、現状で用いるのに適
切なモジュールを選択させる。インバウンドのファイルの場合、適切なパーシングモジュ
ールが呼出され、データベースに挿入される前にファイルをパーシングする。アウトバウ
ンドのファイルの場合、適切なレンダリングモジュールが呼出され、データベースから検
索されたデータからアウトバウンドのファイルを構築する。
【０１２０】
本発明のある実施例によれば、ＤＢファイルシステムにより、オブジェクト指向技術を用
いてファイルのクラスを規定することが可能になり、ここで各ファイルタイプは１つのフ
ァイルクラスに属し、ファイルクラスは他のファイルクラスからの属性を継承することが
できる。このようなシステムにおいて、あるファイルのファイルクラスはそのファイルに
対する適切なパーサおよびレンダラを決定するのに用いられる因子となり得る。ファイル
クラスの使用については以下により詳細に述べることにする。
【０１２１】
ストアドクエリディレクトリ
上記で説明したように、階層ディレクトリ構造は、各行が１つのファイルに対応するファ
イルテーブル７１０を用いて、データベースシステムにおいて実現され得る。特定された
ファイルに関連付けられた行の場所をファイルのパス名に基づいて効率的に突きとめるた
めに階層インデックス５１０が採用され得る。
【０１２２】
図５および図７に示す実施例において、各ディレクトリの子ファイルが明示的に列挙され
る。特に、各ディレクトリの子ファイルはそのディレクトリに関連付けられるインデック
スエントリのDir＿entry＿listにおいて列挙される。たとえば、インデックスエントリ５
１２はWindows（Ｒ）ディレクトリ６１４に対応し、インデックスエントリ５１２のDir＿
entry＿listは「Word」および「Access」をWindows（Ｒ）ディレクトリ６１４の子ファイ
ルとして明示的に列挙する。
【０１２３】
本発明の一局面によれば、いくつかまたはすべてのディレクトリの子ファイルが、明示的
に列挙されるのではなく、ストアドクエリのサーチ結果に基づいて動的に決定される、フ
ァイルシステムが提供される。このようなディレクトリはここではストアドクエリディレ
クトリと称す。
【０１２４】
たとえば、ファイルシステムのユーザが拡張子.docを有するすべてのファイルを単一のデ
ィレクトリにグループ分けしたいとする。従来のファイルシステムでは、ユーザはディレ
クトリを作成し、拡張子.docを有するすべてのファイルをサーチし、その後このサーチで
見つかったファイルを新たに作成したディレクトリへ移動させるか、新たに作成したディ
レクトリとサーチで見つけたファイルとの間にハードリンクを作成するか、のいずれかを
行なう。残念ながら、この新たに作成されたディレクトリの内容はサーチが行なわれた時
点でのシステムの状態を正確に反映しているにすぎない。仮に、.doc拡張子を有さない名
称に変えたとしても、フィールドはディレクトリ内に残ることになる。さらに、新規ディ
レクトリが確立された後に他のディレクトリ内に作成された.doc拡張子を有するファイル
は、この新規ディレクトリには含まれない。
【０１２５】
新規ディレクトリのメンバーシップを統計的に規定するのではなく、このディレクトリの
メンバーシップはストアドクエリにより規定され得る。拡張子.docを有するファイルを選
択するストアドクエリは以下のように現われ得る。
【０１２６】



(27) JP 5113967 B2 2013.1.9

10

20

30

40

50

Ｑ１：
SELECT* from files＿table
但し、
files＿table.Extension = “doc”
図７を参照して、テーブル７１０に対して実行されると、クエリＱ１は、Example.doc」
と題された２つの文書に対する行である、行Ｒ４および行Ｒ１２を選択する。
【０１２７】
本発明の一実施例によれば、クエリＱ１などのクエリを階層インデックス５１０における
ディレクトリエントリにリンクするための機構が設けられる。階層インデックス５１０の
横断中、そのようなリンクを含むディレクトリエントリに遭遇すると、このリンクにより
特定されるクエリが実行される。このクエリにより選択された各ファイルは、ちょうどそ
のファイルがディレクトリエントリをストアするデータベーステーブル中の明示的なエン
トリであったかのように、ディレクトリエントリに関連付けられるディレクトリの子とし
て扱われる。
【０１２８】
たとえば、ユーザがWord６１６の子であるディレクトリ「Documents」の作成を望み、こ
のドキュメントディレクトリが拡張子.docを有するすべてのファイルを含むことを望むと
する。本発明の一実施例によれば、このユーザは、このディレクトリに属することになる
ファイルに対する選択条件を特定する、クエリを設計する。この例では、ユーザはクエリ
Ｑ１を生成し得る。このクエリはこの後データベースシステム内にストアされる。
【０１２９】
他のタイプのディレクトリと同様、Documentディレクトリに対する行がファイルテーブル
７１０に加えられ、このDocumentディレクトリに対するインデックスエントリが階層イン
デックス５１０に加えられる。さらに、Wordディレクトリに対するインデックスエントリ
のDir＿Entry＿listは、新規なDocumentディレクトリがWordディレクトリの子であること
を示すように更新される。Dir＿Entry＿listにおける子を明示的にリストするのではなく
、このDocumentディレクトリに対する新規ディレクトリエントリは、ストアドクエリに対
するリンクを含む。
【０１３０】
図１０および図１１はそれぞれ、Documentsディレクトリに対して適切なエントリが作成
された後の階層インデックス５１０とファイルテーブル７１０との状態を示す。図１０を
参照して、Documentsディレクトリに対してインデックスエントリ１００４が作成されて
いる。Documentsディレクトリの子はストアドクエリの結果セットに基づいて動的に決定
されるので、インデックスエントリ１００４のDir＿entry＿listフィールドはヌル（null
）である。子ファイルを静的に列挙する代わりに、インデックスエントリ１００４は、Do
cumentsディレクトリの子ファイルを決定するために実行されることになっているストア
ドクエリ１００２へのリンクを含む。
【０１３１】
Documentsディレクトリに対するインデックスエントリ１００４の作成に加えて、Wordデ
ィレクトリに対する既存のインデックスエントリ５１４は、DocumentsがWordディレクト
リの子であることを示すように更新される。具体的には、インデックスエントリ５１４に
Dir＿entry＿listアレイエントリが加えられ、名称「Documents」、Documentsディレクト
リに対するインデックスエントリのRowID（すなわちＹ７）、およびDocumentsディレクト
リのFileID（すなわちＸ１３）を特定する。
【０１３２】
図示した実施例では、階層インデックス５１０に２つの欄が加えられている。具体的には
、ストアドクエリディレクトリ（ＳＱＤ：Stored Query Directory）欄は、ディレクトリ
エントリがストアドクエリディレクトリに対するものであるかを示すフラグを含む。スト
アドクエリディレクトリに対するディレクトリエントリにおいて、クエリポインタ（ＱＰ
：Query Pointer）欄に、ディレクトリに関連付けられるストアドクエリへのリンクが記



(28) JP 5113967 B2 2013.1.9

10

20

30

40

50

憶される。ストアドクエリディレクトリ以外のディレクトリに対するディレクトリエント
リにおいては、ＱＰ欄はヌルである。
【０１３３】
リンクの性質は各実現例ごとに変化し得る。たとえば、ある実現例によれば、このリンク
は、ストアドクエリがストアされているストレージ場所に対するポインタであり得る。別
の実現例によれば、このリンクは、単に、ストアドクエリテーブル中のストアドクエリを
調べるのに用いられ得る固有のストアドクエリ識別子であり得る。本発明は、何らかの特
定のタイプのリンクに限定されることはない。
【０１３４】
図１１を参照して、ここには、Documentsディレクトリに対する行（Ｒ１３）を含むよう
に更新されたファイルテーブル７１０が図示される。一実施例によれば、従来のディレク
トリに対して保持されたものと同じメタデータがDocumentsディレクトリに対してもまた
保持される。たとえば、行Ｒ１３は、作成日、最終変更日などを含み得る。
【０１３５】
図１２はファイル階層構造のブロック図である。図１２に示す階層構造は図６のものと同
じであるが、Documentsディレクトリ１２０２が加えられている。何らかのアプリケーシ
ョンがDocumentsディレクトリ１２０２の内容の表示をリクエストすると、データベース
はそのDocumentsディレクトリ１２０２に関連付けられたクエリを実行する。クエリは、
このクエリを満足するファイルを選択する。このクエリの結果はその後、Documentsディ
レクトリ１２０２の内容としてアプリケーションに提示される。図１２に示された時点で
は、ファイルシステムはDocumentsディレクトリ１２０２に関連付けられたクエリを満足
するファイルを２つしか含まない。これら２つのファイルはともにExample.docと題され
ている。したがって、これら２つのExample.docファイル６１８および６２２はDocuments
ディレクトリ１２０２の子として示される。
【０１３６】
ＯＳファイルシステムの多くにおいて、同じディレクトリは同じ名称の２つの異なるファ
イルをストアできない。したがって、Documentsディレクトリ１２０２内にExample.docと
題された２つのファイルがに存在すると、ＯＳファイルシステムの規則が破られるおそれ
がある。この問題に対処するためにさまざまな技術が用いられ得る。たとえば、ＤＢファ
イルシステムは各ファイル名に文字を付加して固有のファイル名を作ることができる。し
たがって、Example.doc６１８はExample.doc１として提示され得るのに対し、Example.do
c６２２はExample.doc２として提示される。特定の情報を伝えない文字を付加するのでは
なく、意味を伝えるように付加文字を選択してもよい。たとえば、付加する文字により、
そのファイルが静的に位置づけられるディレクトリへのパスを示してもよい。すなわち、
Example.doc６１８はExample.doc＿Windows（Ｒ）＿Wordと表わすことができ、一方、Exa
mple.doc６２２はExample.doc＿VMS＿App４と表わされる。これに代えて、単にストアド
クエリディレクトリにＯＳファイルシステムの規則を破らせることも可能である。
【０１３７】
図１０に示す実施例では、所与のディレクトリの子ファイルはすべて静的に規定されるか
、またはすべてストアドクエリにより規定されるかのいずれかである。しかしながら、本
発明の一実施例によれば、ディレクトリはいくつかの静的に規定された子ファイルと、ス
トアドクエリにより規定されたいくつかの子ファイルとを有し得る。たとえば、ヌルのDi
r＿entry＿listを有するのではなく、インデックスエントリ１００４は、１つ以上の子フ
ァイルを静的に特定するDir＿entry＿listを有し得る。したがって、アプリケーションが
データベースシステムにDocumentsディレクトリの子を特定するように要請すると、デー
タベースサーバは静的に規定された子ファイルとストアドクエリ１００２を満足する子フ
ァイルとの集合をリストすることになる。
【０１３８】
重要なことには、あるディレクトリの子ファイルを特定するストアドクエリが他のディレ
クトリおよび文書を選択してもよい。そのような他のディレクトリのいくつかまたはすべ



(29) JP 5113967 B2 2013.1.9

10

20

30

40

50

ては、それら自体がストアドクエリディレクトリであり得る。ある状況下では、ある特定
のディレクトリのストアドクエリがその特定のディレクトリ自体を選択し、そのディレク
トリを自身の子にするという場合もある。
【０１３９】
ストアドクエリディレクトリの子ファイルはオンザフライで決定されるので、子ファイル
のリスティングは常にデータベースの現状を反映するものとなろう。たとえば、「Docume
nts」ストアドクエリディレクトリが上述のとおり作成されたとする。拡張子.docを有す
る新規ファイルが作成されるたびに、そのファイルは自動的にDocumentsディレクトリの
子になる。同様に、あるファイルの拡張子が.docから.txtに変わると、そのファイルは自
動的にDocumentsディレクトリの子としての資格をなくすことになる。
【０１４０】
一実施例によれば、ストアドクエリディレクトリに関連付けられたクエリは、ディレクト
リの子ファイルとなる特定のデータベース記録を選択し得る。たとえば、「Employees（
従業員）」と題されたディレクトリは、データベース内のEmployeesテーブルからすべて
の行を選択するストアドクエリにリンクされ得る。あるアプリケーションが仮想従業員フ
ァイルのうちの１つの検索をリクエストすると、レンダラは対応の従業員記録からのデー
タを用いて、リクエストを出しているアプリケーションが予期するファイルタイプのファ
イルを生成する。
【０１４１】
ストアされたクエリ文書
ストアドクエリをディレクトリの子ファイルを特定するのに用いることができるのと同様
に、ストアドクエリはまた、文書の内容を特定するのに用いることもできる。図７および
図１１を参照して、これらの図はBody（本体）欄を有するファイルテーブル７１０を示し
ている。ディレクトリに対し、Body欄はヌルである。文書に対し、Body欄は文書を含むBL
OBを含む。ストアドクエリによって内容が特定されるファイルに対して、Body欄はストア
ドクエリに対するリンクを含んでいてもよい。アプリケーションがストアされたクエリ文
書の検索を要求すると、ストアされたクエリ文書に関連付けられる行にリンクされたスト
アドクエリが実行される。文書の内容はそこで、クエリの結果のセットに基づいて構成さ
れる。ある実施例によれば、クエリ結果から文書を構成するプロセスは上述のようにレン
ダラによって行なわれる。
【０１４２】
ストアドクエリの結果によってその内容が完全に決められる文書に対するサポートをもた
らすことに加えて、サポートはまた、ある部分はクエリの結果によって決められるが他の
部分はそうではない文書に対してもたらされてもよい。たとえば、文書ディレクトリにお
ける行のBody欄はBLOBを含んでいてもよく、その際、別の欄はストアドクエリへのリンク
を含む。その行に関連付けられるファイルに対するリクエストを受取った際、クエリは実
行されてもよく、クエリの結果はファイルをレンダリングする際にBLOBと組合されてもよ
い。
【０１４３】
複数レベルのストアドクエリディレクトリ
上述のように、ストアドクエリはディレクトリの子ファイルを動的に選択するのに用いら
れてもよい。ディレクトリの子ファイルはすべて、ファイル階層構造における同じレベル
（すなわち、ストアドクエリと関連付けられるディレクトリの真下のレベル）に属する。
ある実施例によれば、あるディレクトリに関連付けられるストアドクエリはディレクトリ
の下の複数のレベルを規定し得る。複数のレベルを規定するクエリに関連付けられるディ
レクトリはここで、複数レベルのストアドクエリディレクトリと称するものとする。
【０１４４】
たとえば、複数レベルのストアドクエリディレクトリは、従業員テーブルにおけるすべて
の従業員記録を選択し、これらの従業員記録を部門および地域ごとにグループ分けするク
エリと関連付けられていてもよい。これらの条件のもとで、各グループ分けキー（部門お



(30) JP 5113967 B2 2013.1.9

10

20

30

40

50

よび地域）および従業員記録に対して別個の階層レベルを設けてもよい。具体的には、こ
のようなクエリの結果はファイル階層構造における３つの異なるレベルとして表わされて
もよい。ディレクトリの子ファイルは第１のグループ分け基準によって定められる。この
例においては、第１のグループ分け基準は「部門」(department)である。よって、ディレ
クトリの子ファイルは、さまざまな部門の値、すなわち「Dept1」、「Dept2」および「De
pt3」であってもよい。これらの子ファイルはそれら自体がディレクトリとして表わされ
る。
【０１４５】
部門ディレクトリの子ファイルは第２のグループ分け基準によって定められることになる
。この例においては、第２のグループ分け基準は「地域」(region)である。したがって、
各部門ディレクトリは「North」、「South」、「East」、「West」などの地域値の各々に
対する子ファイルを有することとなる。地域ファイルもまたディレクトリとして表わされ
る。最後に、各地域ディレクトリの子ファイルは、地域ディレクトリに関連付けられるあ
る特定の部門／地域の組合せに対応するファイルとなる。たとえば、＼Dept1＼Eastディ
レクトリの子はEast地域におけるDepartment1における従業員であることとなる。
【０１４６】
ストアドクエリディレクトリの子ファイルに対する
ファイルオペレーションの取扱い
上記のように、ストアドクエリディレクトリの子ファイルは、従来のディレクトリの子フ
ァイルと同様の態様でアプリケーションに対して示される。しかしながら、従来のディレ
クトリの子ファイルに対して行なわれ得るあるファイルオペレーションは、ストアドクエ
リディレクトリの子ファイルに対して行なわれると特殊な問題点を生じることとなる。
【０１４７】
たとえば、ユーザがストアドクエリディレクトリの子ファイルを別のディレクトリに移動
すべきであることを特定する入力をしたと仮定する。子ファイルはディレクトリに関連付
けられるストアドクエリにおいて特定される基準を満たしているという事実によってスト
アドクエリディレクトリに属しているため、このオペレーションは問題を生じる。ファイ
ルがその基準をもはや満たさなくなるような態様でファイルを変更するのでなければ、そ
のファイルはストアドクエリディレクトリの子ファイルとしての資格を有し続けることに
なる。
【０１４８】
あるファイルをストアドクエリディレクトリに移動する試みがなされる際に同様の問題が
生じる。そのファイルが既にストアドクエリディレクトリの子ではないのであれば、その
ファイルはストアドクエリディレクトリに関連付けられるストアドクエリを満たさない。
ストアドクエリにより特定される基準をファイルが満たすようにする態様でそのファイル
を変更するのでなければ、そのファイルはストアドクエリディレクトリの子とされるべき
ではない。
【０１４９】
これらの問題点を解決するのにさまざまなアプローチをとることができる。たとえば、フ
ァイルをストアドクエリディレクトリの中へまたはその中から移動することを試みるオペ
レーションに応答してエラーを出すようにＤＢファイルシステムを構成してもよい。代わ
りに、ＤＢファイルシステムはこのような試みに応答して、問題のファイル（またはファ
イルとして表わされているデータベース記録）を削除してもよい。
【０１５０】
さらに別のアプローチでは、ストアドクエリディレクトリの中へ移動されたファイルはこ
れらがディレクトリに関連付けられるストアドクエリの基準を満たすように自動的に変更
されてもよい。たとえば、ストアドクエリディレクトリに関連付けられるストアドクエリ
が既婚のすべての従業員を選択しているものと仮定する。ある従業員記録に対応するファ
イルがそのストアドクエリディレクトリに移動されると、その従業員記録の「既婚」フィ
ールドが更新され、その従業員が既婚であることを示す。



(31) JP 5113967 B2 2013.1.9

10

20

30

40

50

【０１５１】
同様に、ストアドクエリディレクトリの外へ移動されたファイルはこれらがディレクトリ
に関連付けられるストアドクエリの基準をもはや満たさないように自動的に変更されても
よい。たとえば、「既婚の従業員」のストアドクエリディレクトリにおけるファイルがそ
のディレクトリの外へ移動された場合、対応する従業員記録の「既婚」フィールドが更新
されその従業員が既婚ではないことを示すようにする。
【０１５２】
ストアドクエリの基準を満たさないファイルを対応のストアドクエリディレクトリの中へ
移動する試みがなされた場合、別のアプローチとしては、ストアドクエリディレクトリの
インデックスエントリを更新してそのファイルをストアドクエリディレクトリの子として
統計的に確立することが挙げられる。こうした状況のもとでは、ストアドクエリディレク
トリは、ストアドクエリを満たしていることから子ファイルであるいくつかの子ファイル
と、ストアドクエリディレクトリに手動で移動されたために子ファイルとなった他の子フ
ァイルとを有することとなる。
【０１５３】
プログラム的に規定されたファイル
ストアドクエリディレクトリおよびストアされたクエリ文書はプログラム的に規定された
ファイルの例である。プログラム的に規定されたファイルとは、ファイルシステムに対し
てファイルとして表わされたエンティティ（たとえば文書またはディレクトリ）であるが
、その内容および／または子ファイルがコードを実行することによって定められるもので
ある。ファイルの内容を定めるために実行されるコードとは、ストアされたクエリファイ
ルの場合のようにストアされたデータベースクエリを含んでいてもよく、および／または
他のコードを含んでいてもよい。一実施例によれば、プログラム的に規定されるファイル
に関連付けられるコードは以下のルーチンを実現する。
【０１５４】

resolve＿filenameルーチンは、「filename」の名を有しかつプログラム的に規定された
ファイルの子であるファイルのファイルハンドル(file handle)を戻す。list＿directory
ルーチンは、プログラム的に規定されたファイルのすべての子ファイルのリストを戻す。
fetchルーチンは、プログラム的に規定されたファイルの内容を検索する。putルーチンは
、プログラム的に規定されたファイルの中へデータを挿入する。deleteルーチンは、プロ
グラム的に規定されたファイルを削除する。
【０１５５】
一実施例によれば、「resolve＿pathname(path):file＿handle」ルーチンも提供される。
resolve＿pathnameルーチンはパスを受け、パスにおける各ファイル名(filename)に対し
てresolve＿filename機能を反復的にコールする。
【０１５６】
一実施例によれば、ＤＢファイルシステムは、従来のファイル（すなわち、プログラム的
に規定されていないファイル）に対する、上に列挙したルーチンを実現するオブジェクト
クラスをもたらす。説明の目的で、そのオブジェクトクラスはここで「ディレクトリクラ
ス」と称することにする。プログラム的に規定されたファイルを実現するため、ディレク
トリクラスのサブクラスが確立される。そのサブクラスはディレクトリクラスのルーチン
を継承するが、これらのルーチンの実現をプログラマがオーバーライドすることを可能に
する。サブクラスによりもたらされる実現は、プログラム的に規定されたファイルにかか
わるファイルオペレーションに応答してＤＢファイルシステムによって行なわれるオペレ
ーションを決める。



(32) JP 5113967 B2 2013.1.9

10

20

30

40

50

【０１５７】
ファイルシステム内でのイベント通知
この発明の一局面によれば、あるファイルシステムイベントの発生の際にユーザが先を見
越して(proactively)通知されるファイルシステムが提供される。これらは先を見越して
通知されるため、関心のあるイベントが起こったことを示す条件を検出するため繰返され
るポーリングのオーバーヘッドを引起さずにすむ。ファイルシステムイベントの発生の際
に通知を受けるという能力は、たとえば、ユーザにとってある特定のファイルシステムイ
ベントが重要な意味を有している場合などに非常に有用である。
【０１５８】
たとえば、ある文書の複数のコピーが異なる場所において維持され（「キャッシュされ」
）、その文書に対してより効率のよいアクセスをもたらすようにすることは一般的である
。こうした条件のもとで、そのコピーのうちの１つが更新された場合、残りのコピーは古
くなってしまう（すなわち、これらのコピーはもはやその文書の現在の状態を反映してい
ない）。以下説明するイベント通知手法を用いて、１つのコピーが更新された際に、他の
コピーが存在するサイトではその更新について先を見越して通知を受けることができる。
これらのサイトにおけるプロセスまたはユーザはそこで、その状況下で適当である何らか
の処置をとることができる。キャッシュの場合、適当な処置とはたとえば、文書のキャッ
シュされたバージョンを更新されたバージョンで置き換えることであるかもしれない。
【０１５９】
別の例としては、ある特定のユーザがある会社の技術文書のすべてをそれらが出版される
前に見直す責任がある場合がある。その会社のテクニカルライタは、すべての技術文書を
そのユーザによる見直しのための準備が整った際に「見直し準備完了」ディレクトリの中
へ記憶するように指示を受けているかもしれない。事前対応型の(proactive)通知システ
ムがなければ、技術文書を「見直し準備完了」ディレクトリに単に記憶するだけでは新し
い文書の見直しの準備ができたことをユーザに気づかせることにはならない。むしろ、テ
クニカルライタがそのユーザにその文書が見直されるための準備が整ったことを知らせる
か、またはユーザが「見直し準備完了」ディレクトリを定期的にチェックするなどの何ら
かの追加の作業が必要となる。これに対し、ここに説明するイベント通知手法を実現する
ファイルシステムでは、技術文書を「見直し準備完了」ディレクトリの中へ入れるという
行為により、新しい技術文書が見直しされる準備が整ったことをユーザに通知するための
ユーザに対するメッセージの生成を引起すことができる。
【０１６０】
この発明の一実施例によれば、ファイルシステムイベントに対して先を見越してメッセー
ジを生成するためのルールを定義付けてもよい。このようなイベントには、たとえば、あ
る特定のディレクトリにおけるファイルの記憶または作成、ある特定のディレクトリにお
けるファイルの削除、ある特定のディレクトリからのファイルの移動、ある特定のファイ
ルの変更または削除およびある特定のディレクトリへファイルをリンクすることなどが含
まれる。これらのファイルシステムオペレーションは単に代表として表わすものである。
事前対応型の通知ルールが作成され得る特定のオペレーションは実現例ごとに異なり得る
。この発明はどんなある特定のセットのファイルシステムオペレーションに対してイベン
ト通知サポートをもたらすことにも限定されない。
【０１６１】
一実施例によれば、event＿idがファイルシステムイベントに割当てられる。そこで、あ
るevent＿idおよび１以上の加入者の組を特定する通知ルールが作成されてもよい。ある
ルールがファイルシステムに一旦登録されると、ルールのevent＿idによって識別される
ファイルシステムイベントの発生に応答して、そのルールにおいて識別される消費者の組
に自動的にメッセージが送られる。
【０１６２】
たとえば、あるユーザはいつファイルがある特定のディレクトリに追加されるかを知るこ
とについて関心を登録するかもしれない。この関心を記録するため、データベースサーバ



(33) JP 5113967 B2 2013.1.9

10

20

30

40

50

は、（１）「登録ルール」テーブルの中に行を挿入し、（２）ディレクトリに関連付けら
れるフラグを設定して、少なくとも１つのルールがそのディレクトリに対して登録された
ことを示す。登録されたルールのテーブルに挿入される行はエンティティを識別しそのエ
ンティティが関心を持っているイベントを示す。行はまた、そのエンティティと通信する
のに用いるべきプロトコルなどの追加の情報を含んでいてもよい。あるルールがディレク
トリに当てはまることを示すフラグは、ディレクトリに関連付けられるファイルのテーブ
ルの行において、またはディレクトリに関連付けられる階層インデックスエントリにおい
て、またはその両方において記憶されてもよい。
【０１６３】
ファイルをディレクトリに挿入する際、データベースサーバはディレクトリと関連付けら
れるフラグを検査してそのディレクトリに対して何らかのルールが登録されているかどう
かを判定する。そのディレクトリに対してルールが登録されている場合、登録されたルー
ルのテーブルをサーチしてそのディレクトリに当てはまる特定のルールを見出す。登録さ
れたルールがディレクトリに対して行なわれている特定のオペレーションに当てはまるル
ールを含んでいる場合、これらのルールに識別される関心を持っているエンティティにメ
ッセージが送られる。エンティティに対してメッセージを送るのに用いられるプロトコル
はエンティティごとに異なり得る。たとえば、あるエンティティに対しては、メッセージ
はＣＯＲＢＡを介して送られてもよく、その一方、他のエンティティに対しては、メッセ
ージはＨＴＴＰを介するＨＴＭＬページの形で送られてもよい。
【０１６４】
一実施例によれば、通知機構は、その内容のすべてがここに引用により援用される、１９
９７年１０月３１日にチャンドラ（Chandra）他によって提出された「データベースシス
テムにおけるメッセージ待ち行列のための装置および方法」（APPARATUS AND METHOD FOR
 MESSAGE QUEUING IN A DATABASE SYSTEM）と題された米国特許出願第０８／９６１，５
９７号に記載される待ち行列機構のような待ち行列機構を用いて、上述のように、データ
ベース実現型ファイルシステムとともに実現される。
【０１６５】
そのような実施例の１つによれば、データベースサーバの外部で実行されるイベントサー
バがデータベースサーバによって管理される待ち行列に対して加入者として登録される。
イベントサーバが加入する待ち行列はここでファイルイベント待ち行列と称することとす
る。ある特定のファイルシステムイベントに関心があるエンティティはその関心をイベン
トサーバに登録する。イベントサーバはデータベースＡＰＩを介してデータベースサーバ
と通信し、関心を持っているエンティティと、それらのエンティティがサポートするプロ
トコルを介して通信する。
【０１６６】
データベースサーバがファイルシステムに関連するオペレーションを行なう際、データベ
ースサーバファイルイベント待ち行列の中に、オペレーションに関連付けられるevent＿i
dを示すメッセージを入れる。待ち行列機構は、イベントサーバがファイルイベント待ち
行列の中に関心を登録したことを判定し、イベントサーバにメッセージを送信する。イベ
ントサーバは関心を持っているエンティティのリストをサーチしていずれかのエンティテ
ィがそのメッセージにおいて識別されるイベントに関心を登録していないかどうかを判定
する。イベントサーバは次に、そのイベントに関心を登録したすべてのエンティティに対
してファイルシステムイベントの発生を示すメッセージを送信する。
【０１６７】
関心を持っているエンティティへメッセージを転送するのにイベントサーバを用いる実施
例において、イベントサーバはある特定の最大数のユーザをサポートするように構成され
てもよい。関心を持っているユーザの数が最大数を超えた場合、追加のイベントサーバを
開始して追加のユーザに対してサービスをもたらす。単一のイベントサーバのケースと同
様に、複数イベントサーバのシステムにおける各イベントサーバはファイルイベント待ち
行列への加入者として登録される。



(34) JP 5113967 B2 2013.1.9

10

20

30

40

50

【０１６８】
代替の実施例によれば、ファイルシステムイベントに関心を持っているエンティティはフ
ァイルイベント待ち行列への加入者として直接登録される。登録情報の一部として、エン
ティティはそれらが関心を持っているファイルシステムイベントのevent＿idを示す。待
ち行列機構がファイルイベント待ち行列の中にメッセージを入れる際、待ち行列機構はす
べての待ち行列加入者に自動的にメッセージを送るわけではない。むしろ、待ち行列機構
は登録情報を検査してどのエンティティがそのメッセージに関連付けられる特定のイベン
トに関心を登録しているかを判定し、それらのエンティティのみに選択的にメッセージを
送る。データベースＡＰＩをサポートとしていないエンティティの場合、登録情報にはこ
れらのエンティティがサポートするプロトコルについての情報が含まれる。待ち行列機構
はこれらのエンティティに対し、それらの登録情報にリストされているプロトコルを用い
てファイルイベントメッセージを送信する。
【０１６９】
ファイルシステムイベント通知はさまざまなコンテキストにおいて適用され得る。たとえ
ば、時には第１のマシンに第２のマシンに存在するファイルのキャッシュを記憶すること
が望ましいことがある。そのようなファイルキャッシュを実現する現在利用可能な機構の
１つはMicrosoft Windows（Ｒ）オペレーティングシステムにより提供される「ブリーフ
ケース」機能である。ブリーフケース機能により、ユーザがあるマシン上で特殊なフォル
ダ（「ブリーフケース」）を作成し、そのブリーフケースの中へ他のマシン上に記憶され
ているファイルをコピーすることが可能となる。各々のブリーフケースは「更新」オプシ
ョンを有しており、これが選択されると、ブリーフケース内のファイルのコピーと元の場
所にあるファイルのコピーとをファイルシステムに比較させる。もしファイルが同じ変更
日を有していない場合、ファイルシステムはユーザがその２つのコピーを同期化するのを
可能にする（典型的に、より新しいコピーをより古いコピーに上書きすることによって）
。
【０１７０】
ブリーフケース機構とは異なり、ファイルシステムイベント通知機構は、ファイルキャッ
シュを先を見越して更新することを可能にし、これによってファイルキャッシュが常に、
元の場所にあるファイルの現在の状態を反映するようにする。たとえば、ファイルキャッ
シュを管理するプロセスは、キャッシュに含まれているファイルの元のコピーに対する更
新について関心を登録してもよい。これにより、元のファイルのいずれかが更新された際
にはプロセスは自動的にこれを知らされることとなり、即刻これに応答して更新されたフ
ァイルをファイルキャッシュの中へコピーすることができる。同様に、ファイルシステム
イベント通知機構を用いて、第１のマシン上に第２のマシン上に存在する１つ以上のディ
レクトリをミラー化してもよい。ファイルシステムイベント通知機構をこのような態様で
用いるため、ミラー化された(mirrored)ディレクトリを維持するためのプロセスは最初に
ディレクトリおよびその中に含まれるすべてのファイルのコピーを作り、次に、ディレク
トリおよびディレクトリに含まれるファイルに対して加えられた変更についてその関心を
登録する。変更がディレクトリに加えられたことを知らされると、プロセスはディレクト
リのコピーに対し対応する変更を加える。同様に、ミラー化されたディレクトリ内のファ
イルのいずれかに対する変更を知らされた際には、プロセスはファイルのコピーに対して
対応する変更を加える。
【０１７１】
たとえば、ミラー化されたディレクトリからミラー化されていないディレクトリへファイ
ルが移動された場合、プロセスはミラー化されたディレクトリからファイルのコピーを削
除し、そのファイルについての関心の登録を解除する。したがって、プロセスはファイル
が更新された際も引続き通知されるということはない。同様に、ミラー化されていないデ
ィレクトリからミラー化されているディレクトリへファイルが移動された場合、プロセス
はディレクトリが変わったことを知らされることとなる。そのメッセージに応答して、プ
ロセスは新しいファイルを識別し、ミラー化されたディレクトリ内に新しいファイルのコ



(35) JP 5113967 B2 2013.1.9

10

20

30

40

50

ピーを作り、その新しいファイルについてその関心を登録する。
【０１７２】
ファイルシステムにおけるバージョン管理
職場においては、大勢の人が長期間にわたってともに作業することになる大型の仕事を「
プロジェクト」と称する。プロジェクトに取組んでいる際、社員は典型的に多数の文書を
作成し、その各々は何らかの態様でそのプロジェクトに関係がある。
【０１７３】
同様に、コンピュータシステム内では、ユーザはしばしば、すべてがあるプロジェクトに
関係のある多数の電子文書を作成する。たとえば世界中の多数のサイトに位置しているプ
ログラマがそれぞれ、同じコンピュータプログラムの異なる部分に取組んでいるかもしれ
ない。そのコンピュータプログラムに対して彼らが生成する電子文書は典型的にソースコ
ードファイルを含むが、単一のプロジェクトに属する。すなわち、この議論の文脈では、
プロジェクトとは関連するファイルの集まりのことである。
【０１７４】
典型的に、プロジェクトのファイルは特定のフォルダの中へ整理されることとなる。たと
えば、図１３は、プロジェクト「Big Project」に関連するファイルがどのようにさまざ
まなフォルダに整理されているかの一例を示している。図１３を参照して、Big Project
と題されたフォルダ１３０２は、そのプロジェクトに関連するすべてのファイル（ディレ
クトリおよび文書）を保持するように作成されたものである。Big Project１３０２のす
ぐ下の子ファイルはフォルダsource code１３０４およびフォルダdocs１３０６である。s
ource code１３０４は、ロサンゼルスに位置するプログラマのsource code１３１６およ
びsource code１３１８を記憶するためのLA code１３１２と、サンフランシスコに位置す
るプログラマのsource code１３２０を記憶するためのSF code１３１４との２つのディレ
クトリを含む。docs１３０６は、specs１３０８およびuser manual１３１０の２つのフォ
ルダを含む。specs１３０８はspecs１３２２およびspecs１３２４を含む。user manual１
３１０はＵＭ１３２６を含む。
【０１７５】
しばしば、あるプロジェクト内のファイルは同じプロジェクト内の他のファイルへの参照
(reference)（たとえばＨＴＭＬリンク）を含んでいるであろう。これらの参照は典型的
に、他の文書をその文書の完全なパス名を用いて識別している。したがって、文書がディ
レクトリ階層構造におけるある場所から別の場所へ移動された場合、あるいはその文書の
名称が変更された場合、その文書へのすべての参照が無効となってしまう。
【０１７６】
文書間参照の存在により、ファイルの新しいバージョンは典型的に、それらが置換するよ
り古いバージョンと同じ名前で同じ場所に記憶される。従来のファイルシステムでは、こ
のプロセスによってファイルのより古いバージョンは上書きされ、これを回復するのが不
可能になる。残念ながら、ファイルのより古いバージョンを回復することが望ましい場合
は多々ある。たとえば、より新しいバージョンから重大な情報がうっかり削除されてしま
ったかもしれない。もしより古いバージョンを回復することが不可能であれば、ユーザは
その失われた資料を再現するのに、それも再現できるのであればの話であるが、かなりの
リソースを費やさなければならないかもしれない。さらに、多くの場合、ファイルに対す
る変更履歴を復元することが可能であったり、ある特定の変更がいつ加えられたものであ
るかを判断することが可能であったり、またはある時点で何が変更されたかを判断するこ
とが可能であることは望ましい。
【０１７７】
この発明の一局面によれば、ファイルの新しいバージョンがより古いバージョンを上書き
することなく、より古いバージョンと同じ名称を用いてディレクトリ階層構造における同
じ場所に保存されるバージョニング(versioning)機構が提供される。より古いバージョン
を上書きするのではなく、より古いバージョンは保持され、ユーザは選択的にファイルの
より古いバージョンを検索することができる。さらに、より古いバージョンはディレクト



(36) JP 5113967 B2 2013.1.9

10

20

30

40

50

リ階層構造におけるそれらの元の場所において保持される。以下により詳細に説明するよ
うに、ファイルシステムがディレクトリ階層構造内の同じ場所において同じファイルの複
数のバージョンを同じ名称で保持することを可能にする新規のディレクトリバージョニン
グ手法が提供される。
【０１７８】
新しいバージョンの作成によって元のバージョンの名称または場所が変更されないため、
ファイルの最初のバージョンに対するどんな参照も、ファイルのより新しいバージョンが
作成された場合でもファイルの最初のバージョンを示し続けることとなる。したがって、
文書内に含まれるファイル間参照は、参照された文書のより新しいバージョンが作成され
たとしても、引続き参照された文書の正しいバージョンを指す。バージョニングプロセス
においてファイル間参照が有効なままである（すなわち、引続き、参照されたファイルの
正しいバージョンを参照する）という事実は、ファイル検索の効率にかなり有益な影響が
ある。具体的には、参照されたファイルの適切なバージョンを探すためにルックアップオ
ペレーションを行なうことを必要とするのではなく、参照されたファイルは他のファイル
内に含まれるそれらへの参照をたどることによって直接検索することができる。
【０１７９】
同様に、ある特定の時点におけるディレクトリの内容を判定するプロセスにルックアップ
オペレーションが関与する必要がない。ディレクトリはそれら自体がバージョン付け（ve
rsioned）されているため、ディレクトリのある特定のバージョンを選択することは単に
ディレクトリのメンバを選択することになる。ディレクトリの選択されたバージョンは、
ディレクトリのそのバージョンに属する正しいファイルへの、よってファイルの正しいバ
ージョンへの、直接リンクを含むことになる。
【０１８０】
また、バージョンごとにファイルの名称が変わる場合でも同じファイルのバージョン間の
関係を追跡するための手法が提供される。以下により詳細に説明するように、ファイルの
名称に加えて、各ファイルの各バージョンに対してFileIDおよびバージョンナンバが維持
される。２つのファイルが同じFileIDを有している場合、それらは異なる名称を有してい
たとしても同じファイルの異なるバージョンである。
【０１８１】
この発明の一局面によれば、ユーザが見たいと思うプロジェクトの「ビュー」(view)をユ
ーザが選択することを可能にする機構が提供される。プロジェクトのビューはある特定の
時点において存在していた状態でのプロジェクトのファイルを表わす。たとえば、ユーザ
に提示されるデフォルトビューはすべてのファイルの最新のバージョンを表わしてもよい
。別のビューでは、１日前の時点で最新であったファイルのバージョンを表わしているか
もしれない。別のビューでは、一週間前の時点で最新であったファイルのバージョンを表
わしていてもよい。
【０１８２】
一実施例によれば、あるプロジェクトにおける各ファイルとともにバージョンナンバを記
憶することによってバージョン追跡機構が提供される。たとえば、ファイルテーブル７１
０などの、ファイルテーブルを用いるデータベースシステムにおいて実現されるファイル
システムにおいて、あるファイルに関連付けられる行の１つの欄はそのファイルに対する
バージョンナンバを記憶してもよい。ファイルが作成されるたびに、ファイルに対する行
がファイルテーブル７１０の中に挿入され、予め定められた最初のバージョンナンバ（た
とえば１）がその行のバージョン欄に記憶される。
【０１８３】
ファイルが更新されると、ファイルの前のバージョンは上書きされない。その代わり、フ
ァイルの新しいバージョンのために新しい行がファイルテーブルに挿入される。新しいバ
ージョンのための行には元の行と同じFileID、NameおよびCreation Dateが含まれるが、
より高いバージョンナンバ（たとえば２）、新しいModification Dateおよび場合によっ
ては異なるファイルサイズなどが含まれる。さらに、ファイルの内容を記憶するBLOBは更



(37) JP 5113967 B2 2013.1.9

10

20

30

40

50

新を反映することとなるが、元のエントリのBLOBは変わらない。
【０１８４】
一実施例によれば、ファイルとそのファイルが存在するディレクトリとがともにあるプロ
ジェクトに属している場合、ファイルへの変更によってディレクトリの新しいバージョン
が実効的に作成される。これにより、ディレクトリにおけるファイルの更新により、ファ
イルの新しいバージョンのためのファイルテーブルの行が作成されるだけでなく、ディレ
クトリの新しいバージョンのためのファイルテーブルの行も作成されることとなる。階層
インデックスを用いる一実施例において、ディレクトリの新しいバージョンに対するイン
デックスエントリもまた階層インデックスに追加されることとなる。
【０１８５】
もしあるディレクトリと親ディレクトリとがともに同じプロジェクトに属しているなら、
ディレクトリの新しいバージョンの作成によって親ディレクトリの新しいバージョンが実
効的に作成される。これにより、ディレクトリの親ディレクトリに対するファイルテーブ
ルおよび階層インデックスにも新しい行が追加される。このプロセスは続けられ、あるプ
ロジェクトに属しかつファイル階層構造において更新されたファイルの上に存在するすべ
てのディレクトリに対して新しいバージョンが作られることとなる。
【０１８６】
バージョニング機構がプロジェクトに属するファイルの更新にどのように応答するかを示
すため、図１３に示されるすべてのファイルがバージョン１であると仮定し、かつcode１
３２０に対して更新が行なわれたと仮定する。図１４に示されるように、バージョニング
機構はcode１３２０の元のバージョンを削除することなく新しいバージョンのcode１３２
０′を作成することによって更新に応答する。code１３２０はSF codeディレクトリ１３
１４に属し、そのため元のバージョンを削除することなく新しいバージョンのSF codeデ
ィレクトリ１３１４′が作成される。SF codeディレクトリ１３１４はsource codeディレ
クトリ１３０４に属するため新しいバージョンのsource codeディレクトリ１３０４′が
元のバージョンを削除することなく作成される。最後に、source codeディレクトリ１３
０４はbig projectディレクトリ１３０２に属するため、新しいバージョンのbig project
１３０２′が元のバージョンを削除することなく作成される。
【０１８７】
図１４に示されるように、親ファイルの新しいバージョンが子ファイルの新しいバージョ
ンに応答して作成される際、親ファイルの新しいバージョンは更新されたファイルの元の
バージョンではなく、更新されたファイルの新しいバージョンが子であることを除いて、
引続き更新前に有していたのと同じ子を有する。たとえば、新しいバージョンのcode１３
２０′は新しいバージョンのSF code１３１４′の子である。新しいバージョンのSF code
１３１４′は、新しいバージョンのsource code１３０４′の子である。しかしながら、
元のsource code１３０４の変わらない子ファイル（たとえばLA code１３１２）は引続き
新しいバージョンのsource code１３０４′の子ファイルであり続ける。同様に、新しい
バージョンのsource code１３０４′は新しいバージョンのbig project１３０２′の子で
あるが、元のbig projectの変わらない子ファイル（たとえばdocs１３０６）はbig proje
ct１３０２の新しいバージョンの子ファイルであり続ける。
【０１８８】
ファイルシステムが階層インデックスを用いて実現される実施例では、ディレクトリの新
しいバージョンに対して作成されたインデックスエントリは、更新された子ファイルに対
するアレイエントリが子ファイルの新しいバージョンに対するアレイエントリで置換され
ることを除いて、ディレクトリの前のバージョンに対するインデックスエントリと同じDi
r＿entry＿listを含むことになる。更新された子ファイルが子ディレクトリであった場合
、新しいディレクトリに対するDir＿entry＿listアレイエントリは、子ディレクトリの新
しいバージョンに対するインデックスエントリの、階層インデックス内の、RowIDを含む
こととなる。
【０１８９】



(38) JP 5113967 B2 2013.1.9

10

20

30

40

50

あるプロジェクトに属するファイルがそのプロジェクトにおける１つのディレクトリから
そのプロジェクトにおける別のディレクトリに移動された場合、ファイルそのものは変更
されていないため、ファイルの新しいバージョンは作成されない。しかしながら、ファイ
ルが移動された元のディレクトリおよびファイルが入れられたディレクトリはともに変更
されている。このため、これらのディレクトリおよび同じプロジェクトにあるこれらのデ
ィレクトリのすべての先祖ディレクトリに対して新しいバージョンが作成される。図１５
は、LA code１３１２からSF code１３１４へ移動される図１３のcode１３１８に応答して
作られることになる新しいディレクトリを示す。具体的には、新しいバージョンのLA cod
e１３１２′およびSF code１３１４′が作成されることになる。新しいバージョンのLA c
ode１３１２′はその子としてcode１３１８を有さない。むしろ、code１３１８は新しい
バージョンのSF code１３１４′の子となる。新しいsource codeディレクトリ１３０４′
が作成され、新しいバージョンのLA code１３１２′およびSF code１３１４′にリンクさ
れる。新しいbig projectディレクトリ１３０２′が作成され、新しいsource code１３０
４′および元のdocsディレクトリ１３０６にリンクされる。
【０１９０】
上述のバージョニング手法を用いて、あるプロジェクト（たとえばbig project１３０２
）に対して変更が加えられる度にそのプロジェクトのルートディレクトリの新しいバージ
ョンが作成される。ルートプロジェクトディレクトリの各バージョンから派生するリンク
はある特定の時点においてそのプロジェクトに属していたすべてのファイルを互いにリン
クし、このようにリンクされたファイルのバージョンはそのある特定の時点において存在
していたバージョンである。たとえば、図１４を参照して、big project１３０２から派
生するリンクはcode１３２０に対する更新の前に存在していた状態でのプロジェクトを反
映している。big project１３０２′から派生するリンクは、code１３２０に対する更新
の直後に存在していた状態でのプロジェクトを反映する。同様に、図１５において、big 
project１３０２から派生するリンクは、code１３１８をLA code１３１２からSF code１
３１４へ移動する前に存在していた状態でのプロジェクトを反映する。big project１３
０２′から派生するリンクは、code１３１８をLA code１３１２からSF code１３１４へ移
動した直後に存在していた状態でのプロジェクトを反映する。
【０１９１】
タグ付け
残念なことに、上述のバージョニング手法により、特にプロジェクトのより上位のレベル
におけるディレクトリの、ファイルバージョンの大幅な急増が起きる。状況によっては、
このような急増は必要ではなく望ましくもないかもしれない。したがって、この発明の一
実施例によれば、ファイルのバージョンに「タグ付けする」ための機構が提供される。フ
ァイルのバージョンのタグ付けによりファイルのそのバージョンを保持すべきであること
を示す。すなわち、より新しいバージョンが作成される際にファイルのより古いバージョ
ンを常に保持するのではなく、ファイルのより古いバージョンはタグ付けされている場合
にのみ保持される。そうでなければ、これらはより新しいバージョンが作成される際に置
換される（上書きされる）。
【０１９２】
図１３を参照して、code１３２０がタグ付けされていないものと仮定する。code１３２０
が更新された場合、codeの新しいバージョンは単にcodeの古いバージョンで置換される。
code１３２０がタグ付けされている場合にのみ、図１４に示されるように、code１３２０
、SF code１３１４、source code１３０４およびbig project１３０２の別個の新しいバ
ージョンが作られることとなる。
【０１９３】
多くの場合、タグはあるプロジェクト内のすべてのファイルに対して同時に適用されるこ
とになる。たとえば、あるソフトウェアプログラムのある特定のバージョンがリリースさ
れた場合、プログラムのリリースされたバージョンを作成するのに用いられたすべてのソ
ースコードはその時点でタグ付けされてもよい。これにより、ソースコードファイルへの



(39) JP 5113967 B2 2013.1.9

10

20

30

40

50

その後の改訂にかかわらず、リリースされたバージョンに関連付けられる正確に同じソー
スコードの組が後に参照するために利用可能となる。
【０１９４】
タグが常に全体としてのプロジェクトに適用される実施例において、単一のタグがルート
プロジェクトディレクトリに対して維持されてもよい。タグ付けされているルートプロジ
ェクトディレクトリのバージョンを用いてあるファイルの場所を確認する場合、そのファ
イルに対するいかなる変更もそのファイルの新しいバージョンを作成することにつながり
、その一方でそのファイルの元のバージョンが保持される。逆に、タグ付けされていない
ルートプロジェクトディレクトリのバージョンを用いてファイルの場所が確認される場合
、そのファイルに対するいかなる変更も単にファイルの前のバージョンを上書きすること
になる。
【０１９５】
別の実施例によれば、タグをファイルに適用することはファイル階層構造においてそのフ
ァイルより下にあるすべてのファイルにタグを実効的に適用する。たとえば、タグがLA c
ode１３１２に適用されるものと仮定する。code１３１８がLA code１３１２から外へ移動
される場合、LA code１３１２の新しいバージョンが作成される。code１３１８が更新さ
れる場合、code１３１８およびLA code１３１２の双方の新しいバージョンが作成される
。このような実施例において、すべてのタグ付きファイルを通してファイル階層構造をト
ラバースすることによってファイルの場所が確認される場合、そのファイルに対するどん
な変更によってもファイルの新しいバージョンが作成されることになる。階層構造におけ
るタグ付けされたいずれのファイルもトラバースすることなくファイルの場所が確認され
る場合、そのファイルに対するどんな変更もそのファイルの前のバージョンを上書きする
こととなる。
【０１９６】
パージカウント
タグ付けの代わりにまたはタグ付けに加えて用いることができるバージョンの急増を低減
するための別の手法には、パージカウントを維持することが含まれる。パージカウントは
、いずれかの所与のファイルに対して保持されることとなるバージョンの最大数を示す。
既にバージョンの数がパージカウントに達しているファイルに対して新しいバージョンが
作成される場合、そのファイルの新しいバージョンはそのファイルの保持される最も古い
バージョンを上書きする。パージカウントはファイルごとのシステム、プロジェクトごと
のベースまたはファイルごとのベースで実現されてもよい。ファイルごとのシステムのベ
ースで実現される場合、単一のパージカウントがファイルシステムにおいて維持されるす
べてのファイルに適用される。プロジェクトごとのベースでは、所与のプロジェクトにお
けるすべてのファイルは同じパージカウントを有するが、異なるプロジェクトは異なるパ
ージカウントを有し得る。ファイルごとのベースでは、各ファイルに対して異なるパージ
カウントが特定され得る。
【０１９７】
タグ付けと組合せて用いられる場合、パージカウント機構はさまざまな態様で実現され得
る。一実施例によれば、タグ付けされたファイルは、ファイルの新しいバージョンを作成
することによってパージカウントを超えることになるかどうかを判定する目的では無視さ
れ、タグ付けされたファイルはパージカウント機構によっては削除されることは決してな
い。たとえば、あるファイルに対するパージカウントが５であり、すなわちそのファイル
の５つのバージョンが存在すると仮定し、かつこれらの５つのバージョンのうちの１つに
タグ付けがされていると仮定する。そのファイルに対して更新がなされると、パージカウ
ント機構は、現在そのファイルの既存のタグなしバージョンは４つしかないと判断し、よ
って、既存のバージョンのいずれをも削除することなくファイルの別のバージョンを作成
する。同じファイルが再び更新された場合は、パージカウント機構は、ファイルの既存の
タグなしバージョンは５つであると判定し、よって、新しいバージョンを作成することに
応答してファイルの最も古いタグなしバージョンを削除する。



(40) JP 5113967 B2 2013.1.9

10

20

30

40

50

【０１９８】
プロジェクト間リンク
各リンクはソースファイル（そのリンクが拡張される元のファイル）およびターゲットフ
ァイル（そのリンクが指し示すファイル）を有する。ファイル階層構造において、リンク
のソースファイルはしばしばディレクトリであり、リンクのターゲットファイルはディレ
クトリ内のファイルである。しかしながら、リンクのすべてがディレクトリとその子との
間のものであるわけではない。たとえばＨＴＭＬファイルは、グラフィック画像および他
のＨＴＭＬファイルへのハイパーリンクを含み得る。階層インデックスを用いて実現され
るファイルシステムでは、これらのハイパーリンクはディレクトリ－文書間リンクと同様
の態様で扱うことができる。
【０１９９】
ファイルシステムのビューにより、ファイルシステムにおける各プロジェクトがある特定
の時点においてどのように存在していたかが示される。しかしながら、あるビューにおけ
る１つのプロジェクトに関連付けられるその時点は、同じビューにおける別のプロジェク
トに関連付けられる時点とは異なるかもしれない。このことにより、リンクのソースファ
イルがリンクのターゲットファイルとは異なるプロジェクトに属する場合に問題が生じる
。たとえば、ビューが、ファイルＦ１を含むプロジェクトＰ１に対する時間Ｔ１とファイ
ルＦ２を含むプロジェクトＰ２に対する後の時間Ｔ２とを特定すると仮定する。さらに、
ファイルＦ２がファイルＦ１へのリンクを有すると仮定する。Ｆ２のＴ２バージョンに含
まれるリンクはＰ１のＴ２バージョンへ行くのであり、Ｐ１のＴ１バージョンに行くので
はない。しかしながら、そのビューはＰ１に対するＴ１を特定するため、そのビューを介
してＰ１におけるいずれのファイルに対して行なわれるどんなオペレーションに対しても
Ｐ１のＴ１バージョンが用いられるべきである。
【０２００】
この発明の一実施例によれば、各リンクに対して「プロジェクト間境界」フラグが維持さ
れる。リンクのプロジェクト間境界フラグは、そのリンクのソースファイルおよびターゲ
ットファイルが同じプロジェクトにあるかどうかを示す。階層インデックス５１０などの
階層インデックスを用いるファイルシステムにおいて、プロジェクト間境界フラグはたと
えば、インデックスエントリのDir＿entry＿listの各アレイエントリに記憶されてもよい
。
【０２０１】
ファイル階層構造のトラバース(traversal)において、すべてのリンクのプロジェクト間
境界フラグはそのリンクをたどる前に検査される。あるリンクのプロジェクト間境界フラ
グが設定されている場合、ソース側ファイルが属しているプロジェクトの要求されるバー
ジョン時間はターゲット側ファイルが属しているプロジェクトの要求されるバージョン時
間と比較される。所望のバージョン時間が同じである場合、そのリンクはトラバースされ
る。所望のバージョン時間が同じではない場合、ターゲット側ファイルが属しているプロ
ジェクトの要求されるバージョン時間に対応するターゲットファイルのバージョンを探し
てサーチが行われる。
【０２０２】
たとえば、Ｆ２とＦ１との間のリンクのプロジェクト間境界フラグが設定されることとな
る。これにより、Ｐ２の要求されるバージョン時間とＰ１の要求されるバージョン時間と
が比較される。Ｐ２の要求されるバージョン時間はＴ２であり、これはＰ１の要求される
バージョン時間であるＴ１と同じではない。したがって、Ｐ１はリンクをたどることによ
ってその場所を確認することはできないであろう。その代わり、時間Ｔ１に対応するＰ１
のバージョンの場所を確認するためにサーチが行われることとなる。
【０２０３】
代替の実施例によれば、プロジェクト間境界フラグは全く維持されない。代わりに、リン
クに遭遇するたびに、ソースファイルの要求されるバージョン時間がターゲットファイル
の要求されるバージョン時間と比較される。ソースファイルとターゲットファイルとが同



(41) JP 5113967 B2 2013.1.9

10

20

30

40

50

じプロジェクトにある場合、または同じ要求されるバージョン時間を有する異なるプロジ
ェクトにある場合、そのリンクをたどる。そうでなければ、ターゲットファイルの正しい
バージョンを探してサーチが行なわれる。
【０２０４】
オブジェクト指向ファイルシステム
近年、オブジェクト指向プログラミングが標準のプログラミング規範となっている。オブ
ジェクト指向プログラミングでは、世界はオブジェクトの観点からモデル化される。オブ
ジェクトとは、記録を操る手続きおよび機能と組合される記録である。あるオブジェクト
クラスにおけるすべてのオブジェクトは同じフィールド（「属性」）を有し、同じ手続き
および機能（「方法」）により操られる。オブジェクトはそれが属するオブジェクトクラ
スの「インスタンス」であるといわれる。
【０２０５】
ときおり、アプリケーションは、類似であるが同一ではないオブジェクトクラスの使用を
必要とすることがある。たとえば、イルカと犬との両方をモデル化するのに用いられるオ
ブジェクトクラスには鼻、口、長さおよび年齢の属性が含まれるかもしれない。しかしな
がら、犬オブジェクトクラスは毛色属性を必要とする一方、イルカオブジェクトクラスは
ひれの大きさの属性を必要とするかもしれない。
【０２０６】
あるアプリケーションが複数の類似の属性を必要とする状況におけるプログラミングを容
易にするため、オブジェクト指向プログラミングでは「継承」をサポートする。継承がな
ければ、プログラマは犬オブジェクトクラスに対して１つのコードのセットを書き、イル
カオブジェクトクラスに対して第２のコードのセットを書かなければならなくなる。双方
のオブジェクトクラスに共通した属性および方法を実現するコードは双方のオブジェクト
クラスに重複して現われることとなる。このような態様でコードが重複しているのは、特
に、共通の属性および方法の数が独特の属性の数よりはるかに多い場合に非常に効率が悪
い。さらに、オブジェクトクラス間のコード重複によりコードを改訂するプロセスが複雑
になる。これは、その属性を有するすべてのオブジェクトクラス間で整合性を維持するた
めに、共通の属性に対して加えられた変更はコードにおける複数の位置において複製され
なければならないためである。
【０２０７】
継承により、オブジェクトクラス間に階層構造を確立することが可能となる。所与のオブ
ジェクトクラスの属性および方法は、自動的に階層構造における所与のオブジェクトクラ
スに基づいたオブジェクトクラスの属性および方法となる。たとえば、「動物」オブジェ
クトクラスは関連付けられた方法とともに、鼻、口、長さおよび年齢属性を有するものと
して定義付けられ得る。これらの属性および方法をイルカおよび犬オブジェクトクラスに
追加するため、プログラマはイルカおよび犬オブジェクトクラスが動物オブジェクトクラ
スを「継承する」のを特定することができる。このような状況の下で、イルカおよび犬オ
ブジェクトクラスは動物オブジェクトクラスの「サブクラス」であるといえ、動物オブジ
ェクトクラスは犬およびイルカオブジェクトクラスの「親」クラスであるといわれる。
【０２０８】
この発明の一局面によれば、ファイルシステムに対して、継承を含むオブジェクト指向規
範を適用するための機構が提供される。具体的には、ファイルシステムにおける各ファイ
ルはあるクラスに属する。ファイルシステムのクラスは、とりわけ、ファイルシステムが
そのファイルについて記憶している情報のタイプを定める。一実施例によれば、ベースク
ラスが設けられる。ファイルシステムのユーザはそこで他のクラスを登録してもよく、こ
れはベースクラスまたはいずれかの前に登録したクラスのサブクラスとして定義付けられ
てもよい。
【０２０９】
新しいファイルクラスがファイルシステムに登録される際、ファイルシステムは新しいタ
イプのファイルおよび新しいタイプのファイルシステムとの対話をサポートするよう実効



(42) JP 5113967 B2 2013.1.9

10

20

30

40

50

的に拡張される。たとえば、ほとんどの電子メールアプリケーションは電子メール文書が
「優先度」プロパティを有していることを期待する。ファイルシステムが優先度プロパテ
ィのための記憶をもたらしていない場合、電子メールアプリケーションはそのファイルシ
ステムに記憶される電子メール文書に対して正しく動作しないかもしれない。同様に、あ
るオペレーティングシステムは、あるタイプのシステム情報がファイルとともに記憶され
ていることを期待するかもしれない。ファイルシステムがその情報を記憶していない場合
、オペレーティングシステムは問題に遭遇し得る。ある特定のタイプのシステムまたはプ
ロトコル（たとえば、特定のオペレーティングシステム、ＦＴＰ、ＨＴＰＰ、ＩＭＡＰ４
など）をサポートするのに必要とされるすべての属性を含むクラスを登録することによっ
て、そのシステムまたはプロトコルとの正確かつ透過的な対話が可能となる。
【０２１０】
クラスを登録するために、そのクラスについての情報がもたらされ、これはそのクラスの
親クラスを識別し親クラスが有していない属性でそのクラスが有しているどんな属性をも
記述するデータを含む。その情報はまた、そのクラスのインスタンスに対して動作する特
定の方法を特定してもよい。
【０２１１】
ユーザがファイルクラスを登録することを可能にし、ファイルクラス間での継承をサポー
トし、ファイルが属するクラスに基づいてファイルについての情報を記憶するオブジェク
ト指向ファイルシステムは、ファイルシステムそのものが実現されるコンテキストに応じ
てさまざまな態様で実現され得る。一実施例によれば、オブジェクト指向ファイルシステ
ムは上述のようにデータベース実現型ファイルシステムのコンテキストにおいて提供され
る。オブジェクト指向ファイルシステムのさまざまな局面をデータベース実現型の実施例
に関連して説明するが、ここで説明するオブジェクト指向ファイルシステム手法はそのよ
うな実施例に限定されるものではない。
【０２１２】
オブジェクト指向ファイルシステムのデータベース実現
一実施例によれば、データベース実現型ファイルシステムはベースクラスを設けており、
そのベースクラスのサブクラスをファイルシステムに登録することが可能である。図１６
を参照して、ファイルクラスの例示的なセットが示される。ベースクラスは「Files」と
題され、名称、作成日および変更日を含むすべてのファイルに一般的に共通である属性を
含む。同様に、Filesクラスの方法には、すべてのファイルに対して行われ得るオペレー
ションのための方法が含まれる。
【０２１３】
一実施例によれば、Filesクラスの属性は、データベース実現型ファイルシステムがとも
に用いられることになるオペレーティングシステムによって維持されるすべての属性の合
併である。たとえば、図３に示されるようにサーバ２０４によって維持されるデータベー
スにおいてファイルシステムが実現されていると仮定する。そのファイルシステムに記憶
されるファイルはオペレーティングシステム３０４ａおよびオペレーティングシステム３
０４ｂから生じたものであるが、これらのオペレーティングシステムは必ずしも同じファ
イル属性のセットをサポートするわけではない。このため、データベースサーバ２０４に
よって実現されるファイルシステムのFilesクラスの属性のセットは２つのオペレーティ
ングシステム３０４ａおよび３０４ｂによってサポートされる属性のセットの合併となる
。
【０２１４】
代替の実施例によれば、Filesクラスの属性はデータベース実現型ファイルシステムがと
もに用いられるオペレーティングシステムによって維持されるすべての属性の交差である
。そのような実施例においては、Filesクラスのサブクラスを各オペレーティングシステ
ムに対して登録することができる。所与のオペレーティングシステムに対して登録された
サブクラスは、ベースのFilesクラスに既に含まれていない所与のオペレーティングシス
テムによってサポートされる属性のすべてを追加することによってベースのFilesクラス



(43) JP 5113967 B2 2013.1.9

10

20

30

40

50

を拡張することとなる。
【０２１５】
図１６に例示される実施例では、「Document」クラスおよび「Folder」クラスの、Files
の２つのサブクラスが登録されている。DocumentクラスはFilesクラスの属性および方法
のすべてを継承し、かつ文書ファイルに特有の属性を追加する。例示される実施例では、
Documentクラスは属性「サイズ」を追加する。
【０２１６】
Folderクラスは、Filesクラスの属性および方法のすべてを継承し、フォルダファイル（
すなわち、他のファイルを含むことが可能である、ディレクトリなどのファイル）に特有
である属性および方法を追加する。例示される実施例では、Folderクラスは新しい属性「
max＿children」および新しい方法「dir＿list」を導入している。max＿children属性は
たとえば、所与のフォルダ内に含まれ得る子ファイルの最大数を示していてもよい。dir
＿list方法はたとえば、所与のフォルダの子ファイルのすべてのリストを提供するように
してもよい。
【０２１７】
図１６に例示されるクラス階層構造では、Documentクラスは、e-mailおよびTextの２つの
登録されたサブクラスを有する。これらのサブクラスは両方ともDocumentクラスの属性お
よび方法のすべてを継承する。さらに、e-mailクラスは、Read＿flag、優先度および送信
者の３つの追加のプロパティを含む。Textクラスは１つの追加の属性であるCR＿Flagと追
加の方法Typeとを有する。CR＿Flagは、テキスト文書が「復帰」(carriage return)記号
を含むかどうかを示すフラグであってもよい。Type方法は、コンピュータモニタなどの入
出力デバイスへテキスト文書を出力する。
【０２１８】
ファイルクラスおよびファイル形式
ファイルの内部構造はファイルの「形式」と称される。典型的に、ファイルの形式はファ
イルを作成するアプリケーションにより決められる。たとえば、あるワードプロセッサに
より作成された文書は別のワードプロセッサによって作成された別の文書と同じ意味内容
を有していても、全く異なる形式を有しているかもしれない。いくつかのファイルシステ
ムでは、文書形式とファイル名拡張子との間にマッピングが維持されている。たとえば、
.docで終わるファイル名を有するすべてのファイルはある特定のワードプロセッサにより
作成されたファイルであると推定され、よって、そのワードプロセッサによって強いられ
る内部構造を有するものと推定される。他のファイルシステムでは、文書の形式について
の情報はその文書に関連付けられる別個のメタファイルにおいて維持される。
【０２１９】
ファイル形式とは対照的に、ここに説明するファイルクラス機構は文書の内部構造に関連
しない。むしろ、ファイルのファイルクラスはファイルシステムがそのファイルに対して
どんな情報を維持するか、かつファイルシステムがファイルにどんなオペレーションを行
なえるかを決める。たとえば、多数のワードプロセッサによって作成された文書はすべて
Documentクラスのインスタンスであり得る。このため、ファイルシステムは文書の内部構
造が完全に異なっていても、文書について同じ属性情報を維持し、文書に対して同じオペ
レーションを行なうことを可能にする。
【０２２０】
クラステーブル
一実施例によれば、オブジェクト指向ファイルシステムは、ファイルの各クラスに対して
関係テーブルが作成される関係データベースシステムにおいて実現される。図１７は、図
１６に例示されるクラスに対して作成され得るテーブルの一例である。具体的には、File
sテーブル１７０２、documentテーブル１７０４、E-mailテーブル１７０６、Textテーブ
ル１７０８およびFolderテーブル１７０８はそれぞれ、Filesクラス、Documentクラス、E
-mailクラス、TextクラスおよびFolderクラスに対応する。
【０２２１】



(44) JP 5113967 B2 2013.1.9

10

20

30

40

50

一実施例によれば、所与のクラスに対するクラステーブルは、（１）その所与のクラスに
属するファイルおよび（２）その所与のクラスのいずれかの子孫(descendant)クラスに属
するファイルのための行を含む。たとえば、例示されるシステムにおいて、Filesクラス
はベースクラスである。したがって、ファイルシステムにおけるすべてのファイルはFile
sクラスまたはその子孫クラスのメンバとなる。したがって、Filesテーブルはファイルシ
ステムにおけるすべてのファイルに対する行を含むこととなる。一方、E-mailクラスおよ
びTextクラスはDocumentクラスの子孫であるが、FilesクラスおよびFolderクラスはそう
ではない。したがって、Documentテーブル１７０４は、クラスDocument、E-mailまたはTe
xtのすべてのファイルに対する行を含むが、クラスFilesまたはFolderのものであるファ
イルに対する行は含まない。
【０２２２】
各クラスに対するテーブルは、そのクラスにより導入された属性に対する値を記憶する欄
を含む。たとえば、DocumentクラスはFilesクラスの属性を継承し、これらの属性にサイ
ズ属性を追加する。したがって、Documentテーブルには、サイズ属性に対するサイズ値を
記憶するための欄が含まれる。同様に、E-mailクラスはDocumentクラスの属性を継承し、
read＿flag、優先度および送信者属性を導入する。したがって、E-mailテーブル１７０６
には、read＿flag値、優先度値および送信者値を記憶するための欄が含まれる。
【０２２３】
図１７に示されるファイルシステムにおいて５つのファイルが記憶されている。File1と
名づけられたファイルはFilesテーブル１７０２におけるRowID X1に記憶される。File1の
FileIDはＦ１である。File1のクラスはFileクラスであり、これは行Ｘ１のClass欄に記憶
される値によって示されるとおりである。File1はFilesクラスのインスタンスであるため
、Filesテーブル１７０４はFile1に対する情報を含む唯一のクラステーブルである。した
がって、File1に対して記憶される唯一の属性値はFilesクラスに関連付けられる属性に対
する値である。
【０２２４】
File2と名付けられたファイルはFilesテーブル１７０２におけるRowID X2に記憶される。
File2のFileIDはＦ２である。File2のクラスはDocumentクラスであり、これは行Ｘ２のCl
ass欄に記憶される値によって示されるとおりである。File2はDocumentクラスのインスタ
ンスであるため、Filesテーブル１７０２およびDocumentテーブル１７０４はFile2に対す
る情報を含む。すなわち、File2に対して記憶される属性値は、Filesクラスから継承され
た属性を含む、Documentクラスと関連付けられる属性に対する値である。
【０２２５】
File3と名付けられるファイルはFilesテーブル１７０２におけるRowID X3に記憶される。
File3のFileIDはＦ３である。File3のクラスはE-mailクラスであり、これは行Ｘ３のClas
s欄に記憶される値によって示されるとおりである。File3はE-mailクラスのインスタンス
であるため、Filesテーブル１７０２、Documentテーブル１７０４およびE-mailテーブル
１７０６はすべてFile3に対する情報を含む。すなわち、File3に対して記憶される属性値
は、DocumentクラスおよびFilesクラスから継承された属性を含む、E-mailクラスに関連
付けられる属性に対する値である。
【０２２６】
File4と名付けられたファイルはFilesテーブル１７０２におけるRowID X4に記憶される。
File4のFileIDはＦ４である。File4のクラスはTextクラスであり、これは行Ｘ４のClass
欄に記憶される値によって示されるとおりである。File4はTextクラスのインスタンスで
あるため、Filesテーブル１７０２、Document１７０４およびTextテーブル１７０８はFil
e4に対する情報を含む。すなわち、File4に対して記憶される属性値は、Documentクラス
およびFilesクラスから継承された属性を含む、Textクラスに関連付けられる属性に対す
る値である。
【０２２７】
File5と名付けられたファイルはFilesテーブル１７０２におけるRowID X5に記憶される。



(45) JP 5113967 B2 2013.1.9

10

20

30

40

50

File5のFileIDはＦ５である。File5のクラスはFolderクラスであり、これは行Ｘ５のClas
s欄に記憶される値によって示されるとおりである。File5はFolderクラスのインスタンス
であるため、Filesテーブル１７０２およびFolderテーブル１７０８はFile5に対する情報
を含む。すなわち、File5に対して記憶される属性値は、Filesクラスから継承される属性
を含む、Folderクラスに関連付けられる属性に対する値である。
【０２２８】
この発明の一実施例によれば、クラステーブル内のファイルは上に図５および図８に関連
して説明したように階層インデックスをトラバースすることによってアクセスされる。階
層インデックスのトラバースにより（パス名導出において行われるように）、ターゲット
ファイルに対応するFilesテーブル１７０２内の行のRowIDが生成される。その行から、Fi
lesクラス属性に対する属性値が検索される。しかしながら、他のクラスに属するファイ
ルに関しては、追加の属性は他のクラステーブルから検索されなければならないかもしれ
ない。たとえば、File3に対し、作成日および変更日はFilesテーブル１７０２の行Ｘ３か
ら検索され得る。しかしながら、File3のサイズを検索するには、Documentテーブル１７
０４の行Ｙ２にアクセスしなければならない。File3に対する優先度情報を検索するには
、E-mailテーブル１７０６の行Ｑ１にアクセスしなければならない。
【０２２９】
あるファイルに属するさまざまな属性値の検索を容易にするため、これらの属性を含む行
は互いにリンクされる。例示される実施例では、リンクは「Derived RowID」とラベル付
けされた欄に記憶される。ある特定のクラスに対するテーブルにおけるある特定のファイ
ルに対する行のDerived RowID欄において記憶される値は、そのある特定のクラスのサブ
クラスに対するテーブルに存在するそのある特定のファイルに対する行を指し示す。たと
えば、File3に対するFilesテーブル行Ｘ３のDerived RowID欄は値Ｙ２を含む。Ｙ２はDoc
umentテーブル１７０４におけるFile3に対する行のRowIDである。同様に、Document行Ｙ
２のDerived RowID欄は値Ｑ１を含む。Ｑ１はE-mailテーブル１７０６におけるFile3に対
する行のRowIDである。
【０２３０】
例示される実施例では、ある特定のファイルに対する行間のリンクは片方向であり、親ク
ラスに対するテーブルにおける行からサブクラスのテーブルにおける行へ行く。これらの
片方向リンクにより、ベーステーブル（すなわちファイルテーブル）における行から始ま
るサーチが容易となるが、これはほとんどの条件下で当てはまる。しかしながら、サーチ
の開始点が別のテーブルの行である場合、親クラステーブルにおける関連のある行はリン
クによってその場所を確認することができない。これらの関連のある行を探すため、関心
のあるファイルのFileIDに基づいてこれらのテーブルのサーチが行なわれてもよい。
【０２３１】
たとえば、ユーザがDocumentテーブル１７０４の行Ｙ２を検索し、File3に対する他の属
性値のすべてを検索することを望んだと仮定する。E-mailに特有の属性値を含む行は、行
Ｙ２のDerived RowID欄におけるポインタをたどることによって見つけられるかも知れず
、これはE-mailテーブル１７０６における行Ｑ１を指し示す。しかしながら、残りの属性
を探すためには、Filesテーブル１７０２をFileID F3に基づいてサーチする。このような
サーチにより行Ｘ３が見出されることとなり、これはFile3の残りの属性値を含む。
【０２３２】
代替の実施例によれば、関連のある行間のリンクは、すべての関連のある行がFileIDルッ
クアップなしでその場所を確認することが可能となる態様で実現されてもよい。たとえば
、各クラステーブルはまた、親クラステーブルにおける関連のある行のRowIDを含むParen
t RowID欄を有していてもよい。したがって、Documentテーブル１７０４の行Ｙ２に対す
るParent RowID欄はFilesテーブル１７０２における行Ｘ３を指し示すこととなる。代わ
りに、片方向リンクの連鎖における最後の行が、Filesテーブルにおける関連のある行へ
戻るポインタを含んでいてもよい。さらに別の選択肢としては、各クラステーブルに対し
て、Filesテーブルにおける関連のある行へ戻るポインタを含む欄を設けることを含む。



(46) JP 5113967 B2 2013.1.9

10

20

30

40

50

したがって、Textテーブル１７０８の行Ｒ１およびDocumentテーブル１７０４の行Ｙ３は
ともに、Filesテーブル１７０２の行Ｘ４へ戻るポインタを含むことになる。
【０２３３】
サブクラス登録
上に述べたように、新しいクラスを登録することによってファイルシステムのクラス階層
構造を拡張するための機構が提供される。一般的に、クラス登録プロセスにおいて提供さ
れる情報は、新しいクラスの親クラスを識別するデータと新しいクラスによって追加され
る属性を記述するデータとを含む。任意に、データはまた、新しいクラスのインスタンス
に対して行なうことができる新しい方法を識別するのに用いられるデータを含んでいても
よい。
【０２３４】
登録情報は数多くの手法のうちのいずれを用いてファイルシステムに提供されてもよい。
たとえば、ユーザに、登録されたクラスのすべてを表わすアイコンを含むグラフィックユ
ーザインターフェイスを提示してもよく、ユーザはユーザインターフェイスによって表わ
されるコントロールを操作して、（１）クラスのうちの１つを新しいクラスの親として選
択し、（２）新しいクラスに名を付け、（３）新しいクラスに対して追加の属性を定義付
け、（４）新しいクラスに対して行われ得る新しい方法を定義付けてもよい。代わりに、
ユーザはファイルシステムに対して、新しいクラスに対する登録情報を含むファイルを与
えてもよい。ファイルシステムはそのファイルをパーシングして情報を識別し抽出し、そ
の情報に基づいて新しいクラスに対するクラスファイルを作る。
【０２３５】
この発明の一実施例によれば、クラス登録情報がExtensible Markup Language（ＸＭＬ）
ファイルの形でファイルシステムにもたらされる。ＸＭＬ形式はwww.oasis-open.org/cov
er/xml.htm1＃contentsおよびそこにリストされるサイトにおいて詳細に説明される。一
般的に、ＸＭＬ言語は、フィールドを指名しフィールドの始まりおよび終わりをマークす
るタグとこれらのフィールドに対する値とを含む。たとえば「Folder」ファイルクラスに
対する登録情報を含むＸＭＬ文書は以下の情報を含んでいるかもしれない。
【０２３６】

このファイルクラス登録文書を受取ったことに応答して、ファイルシステムは、新しいク
ラスFolderに対するテーブルを作成する。このようにして作成された新しいテーブルは、
登録情報において定義付けられる属性の各々に対する欄を含む。この例においては、max
＿children属性のみが定義付けられている。max＿children属性に対して特定されるデー
タタイプは「整数」である。したがって、Folderテーブルは、整数値を保持するmax＿chi



(47) JP 5113967 B2 2013.1.9

10

20

30

40

50

ldren欄とともに作成される。属性の名称およびタイプに加えて、各属性に対してさまざ
まな他の情報がもたらされてもよい。たとえば、登録情報は、属性値に対する範囲または
最大長さを示していてもよく、その欄にインデックスをつけるべきであるかまたはその欄
が一意性または参照制約を受けるべきであるかを示していてもよい。
【０２３７】
登録情報はまた、新しいクラスファイルによってサポートされるどんな方法についての情
報も含む。一実施例によれば、新しい方法はこれらの方法に関連付けられるルーチンを含
むファイルを識別することによって特定される。一実施例によれば、各ファイルクラスに
関連付けられるルーチンはJAVA（Ｒ）クラスにおいて実現される。第１のファイルクラス
が第２のファイルクラスのサブクラスである場合、第１のファイルクラスに関連付けられ
る方法を実現するJAVA（Ｒ）クラスは第２のファイルクラスの方法を実現するJAVA（Ｒ）
クラスのサブクラスである。
【０２３８】
上に挙げたＸＭＬの例では、登録情報のdbi＿classnameフィールドがFolderファイルクラ
スに対するJAVA（Ｒ）クラスファイルを特定する。具体的には、登録情報はdbi＿classna
meフィールドに対してファイル名「my＿folder＿methods」をもたらし、my＿folder＿met
hods JAVA（Ｒ）クラスがFolderクラスの継承されていない方法に対するルーチンを実現
することを示す。FolderクラスはFilesクラスのサブクラスであるため、my＿folder＿met
hodsクラスはFilesクラスに対する方法を実現するJAVA（Ｒ）クラスのサブクラスとなる
。したがって、my＿folder＿methodsクラスはFiles方法を継承することとなる。
【０２３９】
親ファイルクラスによってサポートされていない新しい方法を定義付けることに加え、子
ファイルクラスに対するルーチンは親クラスにおいて定義付けられる方法の実現をオーバ
ーライドできる。たとえば、図１６に示されるFilesクラスは「記憶」方法を提供する。F
olderクラスはその記憶方法を継承する。しかしながら、Filesクラスに対してもたらされ
る記憶方法の実現は、フォルダを記憶するのに必要とされる実現ではないかもしれない。
したがって、Folderクラスは記憶方法のそれ自身の実現をもたらしてもよく、これにより
Filesクラスによってもたらされる実現をオーバーライドする。
【０２４０】
ファイルのクラスの判定
ファイルシステムがファイルに対してオペレーションを行なうように求められた際、ファ
イルシステムはそのファイルが属するファイルのある特定のクラスに対する要求されたオ
ペレーションを実現するルーチンを呼出す。上述のように、その同じオペレーションは、
たとえばサブクラスがその親クラスによってもたらされた実現をオーバーライドした際に
は異なるファイルクラスに対して異なった態様で実現され得る。すなわち、正しいオペレ
ーションが行なわれることを確実にするため、ファイルシステムはまず、オペレーション
が行なわれるべきファイルのクラスを識別しなければならない。
【０２４１】
ファイルシステムにおいて既に記憶されているファイルに対しては、ファイルのクラスを
識別するタスクは些細なことかもしれない。たとえば、図１７に示される実施例では、Fi
lesテーブル１７０２は、どの所与の行に対しても、その行と関連付けられるファイルの
クラスを示すデータを記憶するClass欄を含む。したがって、File3に対して「移動」オペ
レーションを行なうことのリクエストを受取った場合、行Ｘ３のClass欄を検査してFile3
がE-mailのタイプのものであることを判定する。これにより、「移動」のE-mailの実現が
実行されるべきである。「移動」のE-mail実現は、E-mailファイルクラスがその継承した
「移動」方法の実現をオーバーライドする場合にはE-mailファイルクラスに対してもたら
される実現となる。そうでなければ、「移動」のE-mail実現はE-mailクラスによって継承
された実現である。
【０２４２】
ファイルのクラスを識別するタスクは、ファイルが既にファイルシステムに記憶されてい



(48) JP 5113967 B2 2013.1.9

10

20

30

40

50

ない場合にはより困難であり得る。たとえば、ファイルシステムがファイルシステムに既
に存在していないファイルを記憶することを求められた際、ファイルシステムはファイル
テーブルを検査することによってクラス判定を行なうことができない。このような条件下
では、ファイルのタイプを識別するのにさまざまな手法を用いてもよい。一実施例によれ
ば、ファイルのタイプはファイルオペレーションリクエストにおいて明白にもたらされ得
る。たとえば、オペレーティングシステムのコマンド行を介して発行されたコマンドに応
答してリクエストがなされた場合、コマンド行引き数(command-line arguments)のうちの
１つを用いてファイルのファイルタイプを示してもよい。たとえば、コマンドは「move a
:＼mydocs＼file2c:＼yourdocs/class=document」と入力されてもよい。
【０２４３】
ファイルのクラスを判定するための別の手法には、ファイルの名称に含まれる情報に基づ
いてクラスを判定することが含まれる。たとえば、ある拡張子（たとえばdoc.wpd.pwpな
ど）を有するすべてのファイルはある特定のファイルクラス（たとえばDocument）のメン
バとしてすべて扱われてもよい。したがって、ファイルシステムがこれらのファイルに対
してオペレーションを行なうことを求められると、そのある特定のファイルクラスに関連
付けられる方法実現が用いられる。
【０２４４】
ファイルのクラスを判定するためのさらに別の手法には、ファイルシステム階層構造内の
ファイルの場所に基づいてクラスを判定することが含まれる。たとえば、ある特定のディ
レクトリまたはディレクトリのセット内で作成されるすべてのファイルは、ファイルがど
のように名付けられているかにかかわらずある特定のファイルクラスに属するものと推定
され得る。これらおよび他の手法をさまざまな態様で組合せてもよい。たとえば、ある特
定の拡張子を有するファイルは、そのファイルが第２のクラスと関連付けられるディレク
トリに記憶されているのでなければ、第１のクラスのメンバとして扱われ得る。ファイル
が第２のクラスに関連付けられるディレクトリに記憶されている場合、ファイルが別のフ
ァイルクラスのメンバであることをファイルオペレーションリクエストが明示的に識別し
ているのでなければ、ファイルは第２のクラスのメンバとして扱われる。
【０２４５】
ハードウェアの外観
図１８はこの発明の実施例が実現され得るコンピュータシステム１８００を示すブロック
図である。コンピュータシステム１８００は、バス１８０２または情報を通信するための
他の通信機構と、バス１８０２に結合され情報を処理するためのプロセッサ１８０４とを
含む。コンピュータシステム１８００はまた、ランダムアクセスメモリ（ＲＡＭ）または
他の動的記憶装置などのメインメモリ１８０６を含み、これはバス１８０２に結合され情
報と、プロセッサ１８０４によって実行されるべき命令とを記憶する。メインメモリ１８
０６はまた、プロセッサ１８０４によって実行されるべき命令の実行の間に一時変数また
は他の中間情報を記憶するのに用いられてもよい。コンピュータシステム１８００はさら
に、バス１８０２に結合されプロセッサ１８０４のための静的情報および命令を記憶する
ための読取専用メモリ（ＲＯＭ）１８０８または他の静的記憶装置を含む。磁気ディスク
または光ディスクなどのストレージデバイス１８１０が設けられ、バス１８０２に結合さ
れて情報および命令を記憶する。
【０２４６】
コンピュータシステム１８００は、コンピュータユーザに情報を表示するための、陰極線
管（ＣＲＴ）などのディスプレイ１８１２にバス１８０２を介して結合されてもよい。英
数字キーおよび他のキーを含む入力デバイス１８１４は、バス１８０２に結合されプロセ
ッサ１８０４へ情報およびコマンド選択を通信する。別のタイプのユーザ入力デバイスは
、マウス、トラックボールまたはカーソル方向キーなどのカーソル制御１８１６であり、
これはプロセッサ１８０４へ方向情報およびコマンド選択を通信し、ディスプレイ１８１
２上でのカーソル移動を制御する。この入力デバイスは典型的に、第１の軸（たとえばｘ
）および第２の軸（たとえばｙ）の２軸での２つの自由度を有し、これはデバイスが平面



(49) JP 5113967 B2 2013.1.9

10

20

30

40

50

における位置を特定することを可能にする。
【０２４７】
この発明は、ここに説明される手法を実現するためのコンピュータシステム１８００の使
用に関する。この発明の一実施例によれば、これらの手法は、プロセッサ１８０４がメイ
ンメモリ１８０６に含まれる１つ以上の命令の１つ以上のシーケンスを実行することに応
答してコンピュータシステム１８００によって実現される。このような命令は、ストレー
ジデバイス１８１０などの別のコンピュータ可読媒体からメインメモリ１８０６に読込ま
れてもよい。メインメモリ１８０６に含まれる命令のシーケンスの実行により、プロセッ
サ１８０４がここに説明するプロセスステップを行なうこととなる。代替の実施例では、
この発明を実現するのに布線回路をソフトウェア命令の代わりに、またはソフトウェア命
令と組合せて用いてもよい。このように、この発明の実施例はハードウェア回路およびソ
フトウェアのいずれの特定の組合せにも限定されるものではない。
【０２４８】
ここで用いられる用語「コンピュータ可読媒体」は、実行のためにプロセッサ１８０４に
命令を提供することにかかわるすべての媒体を指していう。このような媒体は数多くの形
態をとることができ、これには不揮発性媒体、揮発性媒体および伝送媒体が含まれるがこ
れらに限定されるものではない。不揮発性媒体はたとえば、ストレージデバイス１８１０
などの光ディスクまたは磁気ディスクを含む。揮発性媒体には、メインメモリ１８０６な
どの動的メモリが含まれる。伝送媒体には、バス１８０２をなす配線を含む、同軸ケーブ
ル、銅線および光ファイバが含まれる。伝送媒体にはまた、電波および赤外線データ通信
において生成されるもののような、音波または光波の形態をとっていてもよい。
【０２４９】
一般的な形態のコンピュータ可読媒体には、たとえば、フロッピー（Ｒ）ディスク、フレ
キシブルディスク、ハードディスク、磁気テープまたは他の磁気媒体すべて、ＣＤ－ＲＯ
Ｍ、他の光学媒体すべて、穿孔カード、紙テープ、孔のパターンを有する他の物理媒体す
べて、ＲＡＭ、ＰＲＯＭおよびＥＰＲＯＭ、FLASH-EPROM他のメモリチップすべてまたは
カートリッジ、以下に説明するような搬送波またはコンピュータが読むことができる他の
媒体すべてが含まれる。
【０２５０】
さまざまな形態のコンピュータ可読媒体が、実行のためにプロセッサ１８０４に１つ以上
の命令の１つ以上のシーケンスを与えることに関係し得る。たとえば、命令は初めに、遠
隔地のコンピュータの磁気ディスクに担持されているかもしれない。遠隔地のコンピュー
タはその動的メモリに命令をロードして、命令をモデムを用いて電話回線を介して送信す
ることができる。コンピュータシステム１８００が有するモデムが電話回線上のデータを
受信し、赤外線送信機を用いてそのデータを赤外線信号に変換することができる。赤外線
検出器は赤外線信号に載ったデータを受信し、適切な回路はそのデータをバス１８０２上
に出力することができる。バス１８０２はデータをメインメモリ１８０６に運び、そこか
らプロセッサ１８０４が命令を取出し実行する。メインメモリ１８０６によって受信され
た命令は、任意にプロセッサ１８０４による実行の前または後のいずれかにおいてストレ
ージデバイス１８１０に記憶されてもよい。
【０２５１】
コンピュータシステム１８００はまた、バス１８０２に結合される通信インターフェイス
１８１８を含む。通信インターフェイス１８１８は、ローカルネットワーク１８２２に接
続されるネットワークリンク１８２０に結合される双方向データ通信を提供する。たとえ
ば、通信インターフェイス１８１８は、対応するタイプの電話回線に対するデータ通信接
続をもたらすモデムまたはサービス総合デジタルネットワーク（ＩＳＤＮ）カードであっ
てもよい。別の例としては、通信インターフェイス１８１８は、互換性のあるＬＡＮへの
データ通信接続をもたらすためのローカルエリアネットワーク（ＬＡＮ）カードであって
もよい。無線リンクもまた実現され得る。このような実現例のいずれにおいても、通信イ
ンターフェイス１８１８は、さまざまなタイプの情報を表わすデジタルデータストリーム



(50) JP 5113967 B2 2013.1.9

10

20

30

40

50

を担持する電気信号、電磁信号または光信号を送受信する。
【０２５２】
ネットワークリンク１８２０は典型的に、１つ以上のネットワークを介して他のデータデ
バイスに対するデータ通信を提供する。たとえば、ネットワークリンク１８２０は、ロー
カルネットワーク１８２２を介して、ホストコンピュータ１８２４に対してまたはインタ
ーネットサービスプロバイダ（ＩＳＰ）１８２６によって操作されるデータ機器に対して
接続をもたらし得る。そのＩＳＰ１８２６は、現在一般的に「インターネット」１８２８
と称されるワールドワイドパケットデータ通信ネットワークを介するデータ通信サービス
を提供する。ローカルネットワーク１８２２およびインターネット１８２８はともに、デ
ジタルデータストリームを担持する電気信号、電磁信号または光信号を用いる。さまざま
なネットワークを介する信号と、デジタルデータをコンピュータシステム１８００と授受
するネットワークリンク１８２０上のおよび通信インターフェイス１８１８を介する信号
とは、情報を運ぶ搬送波の例示的な形態である。
【０２５３】
コンピュータシステム１８００は、ネットワーク、ネットワークリンク１８２０および通
信インターフェイス１８１８を介して、プログラムコードを含む、メッセージを送信しデ
ータを受信することができる。インターネットの例では、サーバ１８３０がインターネッ
ト１８２８、ＩＳＰ１８２６、ローカルネットワーク１８２２および通信インターフェイ
ス１８１８を介してアプリケーションプログラムに対する要求されたコードを送信するか
もしれない。この発明によれば、ダウンロードされたそのようなアプリケーションの１つ
がここに説明される手法を実現する。
【０２５４】
受信されたコードは、受信されるとともにプロセッサ１８０４によって実行されてもよく
、および／または後に実行するためにストレージデバイス１８１０または他の不揮発性ス
トレージに記憶されてもよい。このような態様で、コンピュータシステム１８００は搬送
波の形態であるアプリケーションコードを得てもよい。
【０２５５】
前述の明細書において、この発明をその特定の実施例に関連して説明した。しかしながら
、この発明のより広い精神および範囲から逸脱することなくこれにさまざまな変更および
修正を加えてもよいことが明らかになるであろう。明細書および図面はしたがって、例示
的な意味でみなすべきであり、限定的な意味でみなすものではない。
【図面の簡単な説明】
【図１】　従来のアプリケーションにおいて、オペレーティングシステムによって提供さ
れるファイルシステムを通じてデータが記憶される様子を示すブロック図である。
【図２】　従来のデータベースアプリケーションにおいて、データベースシステムによっ
て提供されるデータベースＡＰＩを通じてデータが記憶される様子を示すブロック図であ
る。
【図３】　データベースＡＰＩおよびＯＳファイルシステムＡＰＩを含む種々のインター
フェイスを通じて同じデータの組にアクセス可能な、システムを示すブロック図である。
【図４】　トランスレーションエンジン３０８をより詳細に示すブロック図である。
【図５】　階層インデックスを示すブロック図である。
【図６】　階層インデックスによってエミュレートすることのできるファイル階層構造を
示すブロック図である。
【図７】　本発明に一実施例に従った、関係データベース内にファイルを記憶するのに使
用することのできるファイルテーブルを示すブロック図である。
【図８】　階層インデックスを使用してパス名を導出するステップを示すフローチャート
である。
【図９】　データベースファイルサーバをより詳細に示すブロック図である。
【図１０】　ストアドクエリディレクトリのためのエントリを含む階層インデックスのブ
ロック図である。



(51) JP 5113967 B2 2013.1.9

10

【図１１】　ストアドクエリディレクトリのための行を含むファイルテーブルのブロック
図である。
【図１２】　ストアドクエリディレクトリを含むファイル階層構造を示すブロック図であ
る。
【図１３】　ファイル階層構造を示すブロック図である。
【図１４】　図１３に示すファイル階層構造が、ここに説明するバージョニング技術の一
実施例に従って、ドキュメントの更新に応答して更新される様子を示す、ブロック図であ
る。
【図１５】　図１３に示すファイル階層構造が、ここに説明するバージョニング技術の一
実施例に従って、ドキュメントがあるフォルダから別のフォルダへと移動するのに応答し
て更新される様子を示す、ブロック図である。
【図１６】　本発明の一実施例に従ったファイルクラスのクラス階層構造を示すブロック
図である。
【図１７】　本発明の一実施例に従った、図１６のファイルクラス階層構造を実現するデ
ータベース実現型ファイルシステムにおいて使用される、関係テーブルを示すブロック図
である。
【図１８】　本発明の実施例がそれにおいて実現され得る、コンピュータシステムを示す
ブロック図である。

【図１】 【図２】



(52) JP 5113967 B2 2013.1.9

【図３】 【図４】

【図５】 【図６】



(53) JP 5113967 B2 2013.1.9

【図７】 【図８】

【図９】 【図１０】



(54) JP 5113967 B2 2013.1.9

【図１１】 【図１２】

【図１３】 【図１４】



(55) JP 5113967 B2 2013.1.9

【図１５】 【図１６】

【図１７】 【図１８】



(56) JP 5113967 B2 2013.1.9

10

20

30

40

フロントページの続き

(31)優先権主張番号  09/571,060
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)
(31)優先権主張番号  09/571,492
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)
(31)優先権主張番号  09/571,496
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)
(31)優先権主張番号  09/571,508
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)
(31)優先権主張番号  09/571,568
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)
(31)優先権主張番号  09/571,696
(32)優先日　　　　  平成12年5月15日(2000.5.15)
(33)優先権主張国　  米国(US)

(74)代理人  100098316
            弁理士　野田　久登
(74)代理人  100109162
            弁理士　酒井　將行
(72)発明者  セドラー，エリック
            アメリカ合衆国、９４３０６　カリフォルニア州、パロ・アルト、ティムロット・レーン、８４１
(72)発明者  ロバーツ，マイケル
            アメリカ合衆国、９４３０６　カリフォルニア州、パロ・アルト、アシュトン・アベニュ、５７０

    合議体
    審判長  和田　志郎
    審判官  稲葉　和生
    審判官  山田　正文

(56)参考文献  特開平１０－２４７１５５（ＪＰ，Ａ）
              水吉　俊幸，Ｃ／Ｓシステムの性能を引き出すためのネットワーク設計（Ｉ），日経オープンシ
              ステム，日本，日経ＢＰ社，１９９５年４月１５日，第２５号，ｐ．　２８７～２９８
              すずき　ひろのぶ，Ｌｉｎｕｘで理解するＯＳ講座　Ｎｏ．２，ＳｏｆｔｗａｒｅＤｅｓｉｇｎ
              ，日本，株式会社技術評論社，１９９９年２月１８日，第１００号，ｐ．７６～８０
              木村　憲雄，ネットワーク・ファイル・システムの研究，ＯＰＥＮ　ＤＥＳＩＧＮ　Ｎｏ．５　
              第２版，日本，ＣＱ出版株式会社，１９９６年６月２０日，ｐ．１００～１３７

(58)調査した分野(Int.Cl.，ＤＢ名)
              G06F12/00


	biblio-graphic-data
	claims
	description
	drawings
	overflow

