(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 103497199 B
(45) 授权公告日 2015.04.29

(21) 申请号 201310128399.7
(22) 申请日 2009.08.17
(30) 优先权数据
 61/092,470 2008.08.28 US
 61/227,212 2009.07.21 US
(62) 分案原申请数据
 200980135661.2 2009.08.17
(73) 专利权人 辉瑞大药厂
 地址 美国纽约州
(72) 发明人 V・马希蒂 B・M・科尔曼
(74) 专利代理机构 中国国际贸易促进委员会专利商标事务所 11038
 代理人 于巧玲

(51) Int.Cl.
 C07D 483/08(2006.01)
 A61K 31/357(2006.01)

(54) 发明名称
 二氧杂-双环[3.2.1]辛烷-2,3,4-三醇衍生物

(57) 摘要
 本发明涉及二氧杂-双环[3.2.1]辛烷-2,3,4-三醇衍生物及其用于治疗由钠-葡萄糖转运蛋白抑制剂(特别是SGLT2抑制剂)介导的疾病，症状及/或病症的治疗的用途。

Takashi Yamanoi et al., Trifluoromethanesulfonic Acid Efficiently Catalyzed the Intramolecular Glycosidation of 1-C-Alkyl-D-hexopyranoses to Form the Anhydroketopyranoses Having 6,8-Dioxabicyclo[3.2.1]octane Structures. Synlett, 2005, (19), 2973-2977.

(51) Int. Cl.

A61P 3/04 (2006.01)

A61P 3/10 (2006.01)
1. 一种式(A)或式(B)化合物

其中
R¹ 为甲基、乙基、F或C1或氯基；且
R² 为甲氧基、乙氧基、C1、3-氯环丙烷基氨基、或3-四氢呋喃基氨基。

2. 如权利要求1的化合物，其中该化合物为式(A)化合物。

3. 如权利要求1或2的化合物，其中
R¹ 为甲基、乙基、F或C1或氯基；且
R² 为甲氧基或乙氧基。

4. 一种化合物，其选自下列组成的组：
(1S,2S,3S,4R,5S)-1-羟甲基-5-[3-(4-甲氧基-苯基)-4-甲基-苯基]-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-乙氧基苯基)-4-甲基-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-甲氧基-苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[4-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；
(1S,2S,3S,4R,5S)-5-[3-(4-氯基基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇；

3
5. 一种化合物，其选自下列组成的组：

(1S, 2S, 3S, 4S, 5S)-1- 羟甲基-5-[3-4 (甲氧基-苯基)-4- 甲基-苯基]-6, 8- 二氧杂-双环[3.2.1] 辛烷-2,3,4- 三醇；
(1S, 2S, 3S, 4S, 5S)-5-[3-4 (乙氧基-苯基)-4- 甲基-苯基]-1- 羟甲基-6, 8- 二氧杂-双环[3.2.1] 辛烷-2,3,4- 三醇；
(1S, 2S, 3S, 4S, 5S)-5-[4- 氯-3-(4- 甲氧基-苯基)-苯基]-1- 羟甲基-6, 8- 二氧杂-双环[3.2.1] 辛烷-2,3,4- 三醇；
(1S, 2S, 3S, 4S, 5S)-5-[4- 氯-3-(4- 甲氧基-苯基)-苯基]-1- 羟甲基-6, 8- 二氧杂-双环[3.2.1] 辛烷-2,3,4- 三醇；
(1S, 2S, 3S, 4S, 5S)-5-[3-(4- 乙氧基-苯基)-4- 氰苯基]-1- 羟甲基-6, 8- 二氧杂-双环[3.2.1] 辛烷-2,3,4- 三醇；
(1S, 2S, 3S, 4S, 5S)-5-[3-(4- 氰苯基)-4- 氰苯基]-1- 羟甲基-6, 8- 二氧杂双环[3.2.1] 辛烷-2,3,4- 三醇。

6. 一种药物组合物，其包含 (i) 如权利要求 1 至 5 中任一项的化合物；与 (ii) 药学上可接受的载体。

7. 一种药物组合物，其包含 (i) 如权利要求 1 至 5 中任一项的化合物；与 (ii) 药学上可接受的赋形剂。

8. 一种药物组合物，其包含 (i) 如权利要求 1 至 5 中任一项的化合物；与 (ii) 药学上可接受的稀释剂。

9. 如权利要求 1 至 5 中任一项的化合物在制备用于治疗动物的肥胖及肥胖相关病症的药物中的应用。

10. 如权利要求 1 至 5 中任一项的化合物在制备用于治疗动物的 2 型糖尿病及糖尿病相关病症或延迟 2 型糖尿病及糖尿病相关病症的进展或发作的药物中的应用。

11. 如权利要求 6 至 8 任一项的药物组合物在制备用于治疗动物的肥胖及肥胖相关病症的药物中的应用。

12. 如权利要求 6 至 8 任一项的药物组合物在制备用于治疗动物的 2 型糖尿病及糖尿病相关病症或延迟 2 型糖尿病及糖尿病相关病症的进展或发作的药物中的应用。
说明书

二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇衍生物

【0001】本申请是中国专利申请号200980135661.2(PCT/IB2009/053626)，申请日2009年8月17日。发明名称“二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇衍生物”分案申请。

【技术领域】
【0002】本发明关于二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇衍生物，晶体结构，药物组合物，及其作为钠-葡萄糖共转运蛋白 (SGLT) 抑制剂的用途。

【背景技术】
【0004】就在最近，钠-葡萄糖共转运 (SGLT) 抑制剂，尤其是 SGLT2 抑制剂，已被证实会阻断葡萄糖从血管球中的肾滤液的再吸收作用，由此致尿液中的葡萄糖排泄。当过量葡萄糖被排泄时，有血糖含量的降低、葡萄糖的降低的肝储存、降低的胰岛素分泌，及接着为降低的碳水化合物转化成脂肪，且最后为降低的累积脂肪。预期 SGLT2 的选择性抑制会通过提升葡萄糖排泄而使血浆葡萄糖正常化。因此，SGLT2 抑制剂提供一种关于改善糖尿病症状的吸引人方式，而不会增加体重或低血糖危险。参阅 Isaji, M., Current Opinion Investigational Drugs, 8(4), 285-292 (2007)。关于 SGLT 作为治疗目标的一般回顾，也参阅 Asano, T. 等人, Drugs of the Future, 29(5), 461-466 (2004)。
【0006】某些糖苷为基因毒性，且会冲击细胞的基因物质，以致其可为潜在地致突变性或致癌性。基因毒性物质可使用标准检测法检出，譬如活体外哺乳动物细胞小核试验(MNv), 经济合作暨发展组织(OECD)草案试验指引(Draft TG)487 (2007); 活体外哺乳动物染色体迷书试验, OECD TG473 (1997); 细菌回复突变试验, OECD TG471 (1997); 哺乳动物红血球小核试验, OECD TG474 (1997); 或其类似试验。因此，仍然需要更有效且安全的治疗处理及/或预防肥胖及其有关联的共发病，特别是 2 型糖尿病及相关病症。
【发明内容】
己发现问题 (A) 与问题 (B) 化合物结构中，特别是 SGLT2 抑制剂，特别是 SGLT2 抑制剂，因此，可将通过此种抑制所诱导的疾病治疗，例如，与肥胖、2 型糖尿病及肥胖相关，与糖尿病相关的并发症有关联的疾病。这些化合物可以如下文所示的式 (A) 与 (B) 表示；

![化合物结构](image)

【具体实施方式】
本发明的化合物包括其对苯并环结构的取代基为：(1S,2S,3S,4R,5S)-5-(3-[(4-甲氧基-苯基)-4-(甲基-苯基)-4-羟甲基]-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4R,5S)-5-(3-[(4-乙氧基-苯基)-4-(甲基-苯基)-4-羟甲基]-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4R,5S)-5-(3-[(4-乙氧基-苯基)-4-(甲基-苯基)-4-羟甲基]-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4R,5S)-5-(3-[(4-乙氧基-苯基)-4-(甲基-苯基)-4-羟甲基]-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇。
[0013] 特定式 (B) 化合物包括：(1S,2S,3S,4S,5S)-1-羟甲基-5-[3-(4-甲氧基苄基)-4-甲基-苯基]-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4S,5S)-5-[3-(4-乙氧基苯基)-4-甲基-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4S,5S)-5-[4-氯-3-(4-甲氧基苄基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4S,5S)-5-[4-氯-3-(4-甲氧基苄基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；(1S,2S,3S,4S,5S)-5-[3-(4-乙氧基苯基)-4-氟苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇；及 (1S,2S,3S,4S,5S)-5-[3-(4-氯苯基)-4-氟苯基]-1-羟甲基-6,8-二氧杂双环 [3.2.1] 辛烷-2,3,4-三醇。

[0014] 本发明的进一步方面为一种晶体，其包含具有式 (4A) 的化合物：

![Chemical Structure](image)

(4A)

[0016] 本发明的另一方面为一种药物组合物，其包含 (1) 本发明化合物，与 (2) 药学上可接受的赋形剂、稀释剂或载体。此组合物优选包含治疗上有效量的本发明化合物。此组合物也可含有至少一种其他药剂（本文中所述）。优选药剂包括抗肥胖剂及/或抗糖尿病剂（下文所述）。

[0017] 在本发明的又另一方面中，提供一种在动物中通过 SGLT2 抑制剂所调节的疾病、病症或症状的方法，其包括对需要此种治疗的动物（优选为人类）给予治疗上有效量的本发明化合物（或其药物组合物）的步骤。通过 SGLT2 抑制剂所调节的疾病、症状及/或病症，包括例如第 II 型糖尿病、糖尿病性肾病、胰岛素抗药性综合征、高血糖症、高胰岛素血症、高血脂症、葡萄糖耐量降低、肥胖（包括体重控制或体重维持）、高血压及降低血糖的含量。

[0018] 本发明的化合物可进一步与其他药剂（特别是下文所述的抗肥胖与抗糖尿病剂）一起给药。组合疗法可以下述方式给予，(a) 单一药物组合物，其包含本发明化合物，至少一种本文中所述的其他药剂，及药学上可接受的赋形剂、稀释剂或载体；或 (b) 两种单独的药物组合物，其包含 (i) 第一种组合物，其包含本发明化合物，及药学上可接受的赋形剂、稀释剂或载体，与 (ii) 第二种组合物，其包含至少一种本文中所述的其他药剂，及药学上可接受的赋形剂、稀释剂或载体。药物组合物可同时或相继给，且以任何顺序给予。
说明 书

[0019] 应明了的是, 前文一般说明及下文详细说明两者仅为例证与解释, 而非如所请求本发明的限制。

[0020] 【附图的简单说明】
[0021] 图1 表示关于实例8A化合物的精制晶体结构, 其使用SHELXTL绘图包作图。
[0022] 图2 表示关于实例9A化合物的精制晶体结构, 其使用SHELXTL绘图包作图。
[0023] 图3 表示关于实例22的所发现粉末X-射线衍射图样: 实例4A化合物与L-脯氨酸的实例18共晶体。
[0024] 图4 表示关于实例22的所发现粉末X-射线衍射图样: 实例4A化合物与L- 焦谷氨酸的实例20共晶体。
[0025] 图5 表示关于实例23的所发现示差扫描量热法热分析图: 实例4A化合物与L-脯
氨酸的实例18共晶体。
[0026] 图6 表示关于实例23的所发现示差扫描量热法热分析图: 实例4A化合物与L-焦
谷氨酸的实例20共晶体。
[0027] 图7 表示关于实例24的精制晶体结构: 实例4A化合物与L-脯氨酸的共晶体, 其
使用SHELXTL绘图包作图。
[0028] 图8 表示关于实例25的精制晶体结构: 实例4A化合物与L-焦谷氨酸的共晶体, 其
使用SHELXTL绘图包作图。
[0029] 图9 表示关于实例26的所发现13C固态核磁共振光谱: 实例4A化合物与L-焦谷
氨酸的共晶体。通过星号所标示的峰为旋转角侧峰带。
[0030] 详细说明
[0031] 本发明通过参考本发明列举具体实施例的下文详细说明及包含在其中的实例可以
更容易地被理解。
[0032] 在公开和描述本发明化合物、组合物及方法之前，应明理解，本发明并不限于制造
的特定合成方法，其当然可以改变。也应理解，本文中所用的术语仅为描述特定具体实施例
的目的，并非意欲成为限制。复数与单数应被视为可交换，除了表示数目的指示以外；
[0033] 在本文中使用的术语 “烷基” 是指通式CnH2n+1的烃基。烷烃基可为直链或分枝状。
例如，术语 “(Cn-C6) 烷基” ，是指含有1至6个碳原子的单价、直链或分枝状脂肪族基团（例如
甲基、乙基、正-丙基、异-丙基、正-丁基、异-丁基、仲-丁基、叔-丁基、正-戊基、正-甲
基丁基、2-甲基丁基、3-甲基丁基、新戊基、3,3-二甲基丙烷、己基、2-甲基戊基等）。同样地，烷氧基、酰基（例如烷酰基）、烷氨基、二烷氨基、烷基磺酰基及烷硫基的烷基部分（即烷基基团）具有如上述的相同定义。当显示为“任选经取代”时，烷烃基或烷基部份可为未
经取代，或被一或多个取代基（通常为一至三个取代基，除在卤素取代基的情况中除外，譬如
全氯或全氟烷基）取代，取代基独立选自下文在关于“经取代”定义中所列示的取代基
群组。“卤基取代的烷基” 是指被一或多个卤原子取代的烷基（例如氟甲基、二氟甲基、三
氟甲基、全氟乙基、I, I-二氟乙基等）。
[0034] “环烷基”术语是指非芳族环，其为完全氢化，且可以单环、双环状环或螺环存在。
除非另有指定，否则碳环通常为3-至8-员环。例如，环烷基包括譬如环丙基、环丁基、环戊
基、环己基、环己烯基、正（双环[2.2.1]庚基）、环环[2.2.2]辛基等的基团。
[0035] 术语 “杂环” 是指非芳族环，其为完全氢化，且可以单环、双环状环或螺环存在。
除非另有指定，否则杂环通常为 3- 至 6- 原环，包含 1 至 3 个杂原子（优选为 1 或 2 个杂原子），独立选自硫、氧及 / 或氮。杂环环包含氨如环氧基、氮丙啶基、四氢呋喃基、吡咯烷基、N- 甲基吡咯烷基、哌啶基、哌嗪基、吡咯烷基、4H- 吡喃基、吗啉代、硫代吗啉代、四氢噻吩基、四氢噻吩基 1,1- 二氧化物等的基团。

[0036] “治疗有效”措辞意指本发明化合物的量，其会 (i) 治疗特定疾病、症状或病症，(ii) 减弱、改善或消除特定疾病、症状或病症的一或多种病症，或 (iii) 预防或延迟本文中所述特定疾病、症状或病症的一或多种病症的发作。

[0037] “动物” 一词是指人类（男性或女性）、伴侣动物（例如狗、猫及马）、食物来源动物、动物园动物、海产动物、鸟类及其他类似动物种类。可食用动物是指食物来源动物，譬如乳牛、猪、绵羊及家禽。

[0038] “药学上可接受” 措辞表示该物质或组合物必须可在化学上及 / 或毒物学上与其他成分（包括配方）及 / 或其治疗的哺乳动物相容。

[0039] “术语”“进行治疗 (treating)”、“治疗 (treat)” 或 “治疗 (treatment)” 包括防止、阻止，及预防，与姑息治疗两者。

[0040] 除非另有指出，否则在本文中使用的术语“经调节”或“进行调节”或“调节”，是指以本发明化合物的抑制钠 - 葡萄糖转运蛋白（特别是 SGLT2），由此部份或完全防止葡萄糖通过转运蛋白。

[0041] 术语“本发明的化合物”（除非另有特别确认），是指式 (A)、式 (B) 化合物，及所有纯的和混合的立体异构体（包括非对映异构体与对映异构体）、互变异构体及以同位素方式标示的化合物。本发明化合物的水合物与溶剂合物被认为是本发明的组合物，其中化合物各自与水或溶剂缔合。化合物也可以一或多种结晶状态存在，即作为共晶体、多晶型物，或其可以无定形固体存在。所有此种形式被权利要求所涵盖。

[0042] 在一项具体实施方式中，R1 为 H、甲基、乙基、丙基、异丙基、甲氧基、乙氧基、F、Cl、氮基、-CF3 或环丙基。在另一项具体实施方式中，R1 为 H、甲基、乙基、异丙基、甲氧基、乙氧基、F、Cl、氮基、-CF3 或环丙基。在进一步具体实施方式中，R1 为 H、甲基、乙基、甲氧基、乙氧基、F、Cl、氮基、-CF3 或环丙基。在又进一步的具体实施方式中，R1 为甲基、乙基、F、Cl、氮基、-CF3 或环丙基。

[0043] 在一项具体实施方式中，R2 为甲基、乙基、丙基、异丙基、甲氧基、乙氧基、F、Cl、氮基、-CF3、-CF2CH3、乙炔基、3- 环氧丙烷基氧基、3- 四氢呋喃基氧基或环丙基。在另一项具体实施方式中，R2 为甲基、乙基、异丙基、甲氧基、乙氧基、F、Cl、氮基、-CF3、-CF2CH3、乙炔基、3- 环氧丙烷基氧基、3- 四氢呋喃基氧基或环丙基。在进一步的具体实施方式中，R2 为甲基、乙基、甲氧基、乙氧基、F、Cl、氮基、-CF3、-CF2CH3、乙炔基、3- 环氧丙烷基氧基、3- 四氢呋喃基氧基或环丙基。在又进一步的具体实施方式中，R2 为甲基氧基或乙氧基。

[0044] 在一项具体实施方式中，晶体包含化合物 4A 与 L- 腺氨酸或 L- 焦谷氨酸。

[0045] 在进一步具体实施方式中，晶体具有下列的一或多个：

- a P2(1)2(1)2(1) 的空间群及实质上等于下列的晶胞参数：

\[a = 7.4907(10) \text{Å} \] \[\alpha = 90^\circ \]

\[b = 12.8626(15) \text{Å} \] \[\beta = 90^\circ \]

9
\[c = 28.029(4) \text{Å}, \quad \gamma = 90^\circ ; \]

(b) 粉末 x- 射线衍射图样, 其包含 2-0 值（CuKα 辐射, 1.54056Å 的波长）为 6.4±0.2, 16.7±0.2, 17.4±0.2 及 21.1±0.2；

(c) 固态 13C NMR 光谱, 当在 500MHz 光谱仪上测定时相对于结晶性金刚烷 29.5ppm, 其具有峰位置为 16.5±0.2, 131.1±0.2, 2,158.7±0.2 及 181.5±0.2ppm 下；或

(d) 示差扫描热法热分析图, 其具有吸热峰为约 142.5±2°C。

在进一步具体实施例中, 晶体为包含 1:1 化学计量比例的式 (4A) 化合物与 L- 焦谷氨酸的共晶体。

为达说明目的, 下文所描绘的反应图式提供关于合成本发明化合物以及关键中间体的可能途径。关于个别反应步骤的更详细描述, 参阅下文实例段落。本领域技术人员将明了的是, 其他合成途径可用以合成本发明化合物。虽然特定起始物质与试剂被描述在图式中, 且于下文讨论, 但其他起始物质与试剂可容易地经取代, 以提供多种衍生物及 / 或反应条件。此外, 通过下文所述方法所制备的许多化合物可在明白此公开内容之后, 使用本领域技术人员所习知的一般化学进一步修改。

在制备本发明的化合物时, 可能必须保护中间体的远距官能基。对于此种保护的需求依赖于该远距官能基的性质与制备方法的条件而改变。“羟基保护基”是指羟基的取代基, 其会阻断或保护羟基官能基。适当羟基保护基 (O-Pg) 包括例如烯丙基、乙酰基 (Ac)、硅烷基 (例如三甲基硅烷基 (TMS) 或叔 - 丁基三甲基硅烷基 (TBS))、苄基 (Bn)、对 - 甲氧基苄基 (PMB)、三苯甲基 (Tr)、对 - 溴基苯甲酰基、对 - 硝基苯甲酰基及其类似基团 (供保护 1,3-二醇类的苯甲基基)。对于此种保护的需求易于通过本领域技术人员决定。关于保护基及其用途的一般描述, 可参阅 T.W. Greene, Protective Groups in Organic Synthesis, John Wiley&Sons, New York, 1991。

图式 1 概述人们可用以提供本发明化合物的一般操作。
[0059] 图式 1

【0061】在图式 1 的步骤 2 中，保护基 (Pg) 可通过以适当试剂处理中间体 (I-b)，及关于所要特定保护基的操作而被加入。例如，对 - 甲氧基苄基 (PMB) 可通过中间体 (I-b) 以对 - 甲氧基苄基氯或对 - 甲氧基苄基氯，于氢化钠、氢化钾、叔 - 丁醇钾存在下，在溶剂例如四氢呋喃、1,2- 二甲氧基乙烷或 N,N- 二甲基甲酰胺 (DMF) 中的处理而被引进。也可使用涉及三氯乙酰亚胺酸对 - 甲氧基苄基，于催化量的酸（例如三氟甲烷磺酸、甲烷磺酸或氯脑磺酸）存在下，在溶剂譬如二氯甲烷、庚烷或已烷中的条件。苄基 (Bn) 可通过中间体 (I-b) 以苄基氯或苄基氯，于氢化钠、氢化钾、叔 - 丁醇钾存在下，在溶剂例如四氢呋喃、1,2- 二甲氧基乙烷或 N,N- 二甲基甲酰胺中的处理而被引进。也可使用涉及三氯乙酰亚胺酸苄基，于催化量的酸（例如三氟甲烷磺酸、甲烷磺酸或氯脑磺酸）存在下，在溶剂譬如二氯甲烷、庚烷或已烷中的条件。

【0062】在图式 1 的步骤 3 中，烯丙基保护基被移除（例如通过以氯化钯在甲醇中的处理；也可使用共溶剂，例如二氯甲烷；本领域技术人员也可使用已知的其他条件，参阅 T.W. Greene, 有机合成的保护基，John Wiley&Sons, New York, 1991），以形成内酯 (I-d)。

【0063】在图式 1 的步骤 4 中，未经保护羟基的氧化成酮基（例如 Swern 氧化作用）于是形成内酯 (I-e)。

【0064】在图式 1 的步骤 5 中，内酯 (I-e) 与 N,0- 二甲基羟基胺盐酸盐反应，以形成其相应的 Weinreb 酰胺，其可平衡地以闭合 / 开环形式 (I-f/I-g) 存在。“Weinreb 酰胺” (I-g) 可使用本领域技术人员所习知的操作制备。参阅 Nahm, S. 与 S.M. Weinreb, Tetrahedron Letters, 22 (39), 3815-1818 (1981)。例如，中间体 (I-f/I-g) 可制自市购可得的 N,0- 二甲基羟基胺盐酸盐与活化剂（例如三甲基铝）。

【0065】在图式 1 的步骤 6 中，芳基苄基 (Ar) 使用所期望的有机金属试剂（例如有机锂化合物 (ArLi) 或有机镁化合物 (ArMgX)），在四氢呋喃 (THF) 中，在范围从约 -78°C 至约 20°C 的温度下被引进，接着水解（于质子性条件下静置时）成其相应的内酯 (I-i)，其可与其相应的酮 (I-h) 呈平衡。 (A) 与 (B) 中所发生的经桥接的缩酮主题可通过使用关于所采用保护基的适当试剂，以移除保护基 (Pg) 而制备。例如，PMB 保护基可通过以三氯醋酸，于苯甲酰与二氯甲烷 (DCM) 存在下，在约 0°C 至约 23°C (室温) 下处理而被移除。然后，其余保护基 (Pg) 可使用关于特定保护基的适当化学移除。例如，苄基保护基可通过以甲酸，于钯 (Pd 黑) 存在下，在质子性溶剂（例如乙醇/THF）中，在室温下处理而被移除，以产生最后产物 (A) 与 (B)。当 R¹ 为 CN 时，使用路易斯酸，例如三氯化硼，在范围从约 -78°C 至约室温的温度下，在溶剂中，例如二氯甲烷或 1,2- 二氯乙烷，也可用以移除苄基保护性及 / 或对 - 甲氧基苄基保护性基团。

【0066】在中间体 (I-i) 中或在产物 (A) 或 (B) 中，当 R¹ 为 CN，且 R² 为 (C₁₋₇-C₆) 烷氧基时，在以路易斯酸譬如三氯化硼或三溴化硼处理时，部份至完全脱 - 基化成其相应的酮可发生，以导致其相应的化合物 (A) 或 (B)，其中 R¹ 为 CN，且 R² 为 OH。若其发生，则 (C₁₋₇-C₆) 烷氧基可通过选择性烷基化作用，使用 (C₁₋₇-C₆) 烷基碘化物，在温和碱性条件下，例如碳酸钾，在丙酮中，在范围从约室温至约摄氏 56 度的温度下再被引进。
当 R¹ 及 R² 为 (C₁₋ C₃) 烷基-SO₂⁻时，本领域技术人员应明了的是，有机金属添加步骤 6（图式 1）在其相应的含 (C₁₋ C₃) 烷基-S⁻ 的有机金属试剂上进行。然后，硫基烷基在后期阶段下被氧化成其相应的砜，使用本领域技术人员已知的习用方法。

本发明化合物可使用任何适当方法被制备共晶体。关于制备此种共晶体的代表性图式描述在图式 2 中。

图式 2

在图式 2 中，其中 Me 为甲基，且 E 为乙基，在步骤 1 中，使 1-(5- 溴-2-氯苄基)-4-乙氧基苯溶于 3:1 的甲苯：四氢呋喃中，接着使所形成的溶液冷却至 <=70°C。于此溶液中添加己基锂，同时使反应物保持在 <= -65°C 下，接着搅拌 1 小时。使 (3R, 4S, 5R, 6R)-3, 4, 5-三 (三甲基硅烷基氧基) -6-((三甲基硅烷基氧基)甲基)-四氢吡喃-2-酮 (II-a) 溶于甲苯中，并使所形成的溶液冷却至 -15°C。然后，将此溶液添加至 -70°C 芳基锂溶液中，接着搅拌 1 小时。然后，添加甲烷磺酸在甲醇中的溶液，接着在室温及搅拌 16 至 24 小时。当 α-端基异构体含量 <= 3% 时，反应被认为完全。然后，反应
通过添加 5M 氢氧化钠水溶液而被碱化。滤出所形成的盐，接着为粗产物溶液的浓缩。2- 甲基四氢呋喃共溶剂添加，将有机相以水萃取两次。然后，使有机相在甲苯中浓缩至 4 份体积。接着，将此浓缩液添加至 5:1 的庚烷：甲苯溶液中，造成沉淀物形成。收集固体，及在真空下干燥，而得固体。

在图式 2 的步骤 2 中，在二氯甲烷中的 (II-b) 内添加吡啶，接着冷却至 0℃，然后添加氢化三甲基硅烷，而得全硅烷化基产物。使反应物流至室温，并通过添加水使反应淬灭，并将有机相以水洗涤。使 (II-c) 的此粗制二氯甲烷溶液以硫酸钠干燥，接着将此粗制物采用至下一步骤中。

在图式 2 的步骤 3 中，使 (II-c) 在二氯甲烷中的粗制溶液浓缩成低体积，接着将溶剂交换成甲醇。使 (II-c) 的甲醇溶液冷却至 0℃，然后，1 摩尔 % 碳酸钾在甲醇中的溶液添加，接着搅拌 5 小时。然后，通过添加甲醇中的 1 摩尔 % 醋酸使反应淬灭，接着温热至室温，溶剂交换成醋酸乙酯，然后过滤较少量的无机固体。将 (II-d) 的粗制醋酸乙酯溶液直接采用至下一步骤中。

在图式 2 的步骤 4 中，使 (II-d) 的粗制溶液浓缩成低体积，然后与氯甲烷与二甲亚砜稀释。添加三乙胺，接着冷却至 10℃，然后，氯化硫磷苯并环戊二烯物于 10 分钟间隔下以 3 份，以固体添加。在以水淬灭及温热至室温之前，将反应物于 10℃下再搅拌 3 小时。分离液相，接着以氯化铵水溶液洗涤二氯甲烷层。将 (II-e) 的粗制二氯甲烷溶液直接采用至下一步骤中。

在图式 2 的步骤 5 中，使 (II-e) 的粗制溶液浓缩成低体积，然后将溶剂交换成乙醇。添加三十当量的甲醛水溶液，接着温热至 55℃。添加 2 当量磷酸钾的水溶液，接着在 55℃下搅拌 24 小时。然后，使反应温度升高至 70℃，历经另外 12 小时。使反应物冷却至室温，以叔丁基甲基醚与盐水稀释。分离液相，接着为有机相的溶剂交换成醋酸乙酯。以盐水洗涤醋酸乙酯相，及浓缩成低体积。然后，使粗制浓缩液通过硅胶急骤式层析纯化，以 5% 甲醇，95% 甲苯洗脱。合并含有产物的级分，并浓缩成低体积。添加甲醇，接着搅拌，直到沉淀作用发生为止。使用悬浮液冷却，并收集固体，及以庚烷冲洗，接着为干燥。产物 (II-f) 以固体分离。

在图式 2 的步骤 6 中，使化合物 (II-f) 溶于 5 份体积的二氯甲烷中，接着添加 1 摩尔 % SiliaBond® 对甲苯磺酸，并在室温下搅拌 18 小时。滤出酸催化剂，将 (II-g) 的二氯甲烷溶液直接采用至下一步骤共结晶操作中。

在图式 2 的步骤 7 中，使 (II-g) 的二氯甲烷溶液浓缩，然后将溶剂交换成 2-丙醇。添加水，接着温热至 55℃。添加 L- 焦谷氨酸的水溶液，接着使所形成的溶液冷却至室温。然后，将溶液加入晶种及粒化 18 小时。于冷却后，收集固体，并以庚烷冲洗，接着为干燥。产物 (II-h) 以固体分离。

关于本发明化合物 (A) 的一种替代合成途径被描绘在图式 3 中，且于下文描述。
【0080】图式3

【0081】（III-a）的合成，其中R₃为烷基或氟取代的烷基（除了邻近氧原子的碳以外），可以如图式1步骤1中所述的类似方式制备。在图式3的步骤1中，乙醚基选择性地被适当保护基保护。例如，三苯甲基（Pg₃=Tr）可通过中间体（III-a）以氯化三苯甲烷，于碱存在下，例如吡啶，于溶剂中，例如甲苯，四氢呋喃或二氯甲烷。在范围从约摄氏0度至约室温的温度下处理而被引进。此种保护基与实验条件的其他实例为本领域技术人员已知，且可参阅T.W. Greene，有机合成的保护基，John Wiley&Sons，New York, 1991。

【0082】在图式3的步骤2中，仲羟基可被适当保护基保护。例如，苄基（Pg₁为Bn）可通过中间体（III-b）以苄基溴或苄基氯，于氢化钠，氢化钾，叔丁醇钾存在下，于溶剂中，例如四氢呋喃，1,2-二甲氧基乙烷或N,N-二甲基甲酰胺，在范围从约摄氏0度至约摄氏80度的温度下处理而被引进。乙酰基或苯甲酰基（Pg₂=Ac或Bz）可通过中间体（III-b）以乙酰氯，乙酰溴或醋酸酐或氯化苄甲酰或苯甲酰，于碱存在下，例如三乙胺，N,N-二异丙基乙胺或4-（二甲氨基）吡啶，在溶剂中，例如四氢呋喃，1,2-二甲氧基乙烷或二氯甲烷，在范围从约摄氏0度至约摄氏80度的温度下处理而被引进。

【0083】在图式3的步骤3中，伯羟基被去除保护，以导致中间体（III-c）。当Pg₄为Tr时，将中间体（III-c）于酸存在下，例如对-甲苯磺酸，在醇性溶剂中，例如甲醇，在范围从约摄氏-20度至约室温的温度下处理，以提供中间体（III-d）。可使用共溶剂，例如氯仿。

【0084】在图式3的步骤4中，羟亚甲基经过类似已在图式1（步骤1）与图式2（步骤4与5）中所述的方法被引进。甲酸的其他来源，例如多聚甲醛，于溶剂中，例如乙醇，在范围从约室温至约摄氏70度的温度下，于碱金属烷氧化物存在下，也可被使用于此步骤中。当Pg₅为Bn时，此步骤提供中间体（III-e），而当Pg₅为Ac或Bz时，此步骤提供中间体（III-f）。

15
在图式3的步骤5中，将中间体（III-e）以酸，例如三氯醋酸或酸性树脂，在溶剂中，例如二氯甲烷，在范围从约摄氏-10度至约室温的温度下处理，以产生中间体（III-g）。

在图式3的步骤6中，其余保护基（Pg.）可接着使用关于特定保护基的适当化学被移除。例如，苯基保护基可通过以甲基，于钯（Pd 黑）存在下，在质子性溶剂（例如乙醇/THF）中，在约室温下处理而被移除，以产生最后产物（A）。

在图式3的步骤7中，将中间体（III-f）以酸，例如三氯醋酸或酸性树脂，在溶剂中，例如二氯甲烷，在范围从约摄氏-10度至约室温的温度下处理，以产生最后产物（A）。

关于合成产物（A）的另一种替代图式被描绘在图式4中，且于下文描述。

图式4

在图式4的步骤1中，将中间体（III-a）以适当芳基磺酰氯 RS=SO₂Cl 或芳基磺酰酰 R₂S(O)=SO₂R₂ (其中 Rs 为任选经取代的芳基，譬如在芳基磺酰氯，4-甲基苯磺酰氯、4-硝基苯磺酰氯、3-苯磺酰氯、4-氟苯磺酰氯及2,4,6-三氟苯磺酰氯中，以及在芳基磺酰酰，对-甲苯磺酰酰中所发现)，于碱存在下，例如吡啶、三乙胺、N,N-二异丙基乙胺，在溶剂中，例如四氢呋喃、2-甲基四氢呋喃，在范围从约摄氏-20度至约室温的温度下处理。一些路易斯酸，例如溴化锌（II），可作为添加剂使用。

在图式4的步骤2中，使中间体（IV-a）接受Kornblum型氧化作用（参阅Kornblum, N. 等人，美国化学学会期刊，81, 4113 (1959)），以产生其相应的醛，其可与其相应的水合物及/或半缩醛形式呈平衡存在。例如，将中间体（IV-a）于碱存在下，例如吡啶、2,6-二甲基吡啶、2,4,6-三甲基吡啶、N,N-二异丙基乙胺、4-（二甲氨基）吡啶，在溶剂中，例如二甲亚砜，在范围从约室温至约摄氏150度的温度下处理。然后，所产生的醛中间体接受关于步骤1（图式1）与步骤5（图式2）所述的醛醇/Cannizzaro条件，以产生中间体（IV-b）。

在图式4的步骤3中，将中间体（IV-b）以酸，例如三氯醋酸或酸性树脂，在溶剂中，例如二氯甲烷，在范围从约摄氏-10度至约室温的温度下处理，以产生最后产物（A）。

当 R⁺ 为（C₂-C₆）烷基时，该方法可使用图式5进行，其中 R⁺ 为 H 或（C₁-C₆）烷基。
[0096] 图式 5
[0097] 在图式 5 的步骤 1 中，其提供中间体 (V-i)，有机金属添加剂步骤以类似图式 1 步骤 6 中所述的方式，使用衍生自 (V-a) 的有机金属试剂进行，其中 Pgs 为关于羟基的适当保护基。例如，Pgs 可为叔 - 丁基二甲基硅烷基 (TBS)（参阅 US2007/0054867，关于例如 (4-[(5-溴-2-氯苯基)-甲基]-苯氧基)-叔 - 丁基 - 二甲基 - 硅烷的制备）。
[0098] 在图式 5 的步骤 2 中，当 Pg²=PMB 时，将中间体 (V-i) 以酸，例如三氟醋酸、甲烷磺酸或酸性树脂，在苯甲醚存在下，在溶剂中，例如二氯甲烷，在范围从约摄氏 -10 度至约室温的温度下处理，以产生中间体 (V-j)。
在图式5的步骤3中，可移除保护基（Pg-）与（Pg'），以提供（V-k）。典型地，（Pg-）为TBS，而Pg'为Bn。在这种情况中，保护基以下述方式被移除，（V-j）以1氟化四丁基铵，在溶剂中，例如四氢呋喃或2-甲基四氢呋喃，在范围从摄氏0度至约摄氏40度的温度下的相溶解，与2）以甲酸，于钯（Pd黑）存在下，在质子性溶剂（例如乙醇/THF）中，在约室温下处理。在此顺序中，2种反应的顺序可为交换。

在图式5的步骤4中，将中间体（V-k）以N,N-双-（三氯甲烷活性基）-苯胺，于碱存在下，例如三乙胺或4-二甲基氨基吡啶，在溶剂中，例如二氯甲烷或1,2-二氯乙烷；在范围从摄氏0度至约摄氏40度的温度下处理，以产生中间体（V-1）。

在图式5的步骤5中，使中间体（V-1）接受Sonogashira型反应（参阅Sonogashira, K. 在sp与sp碳中心间的偶合反应。于综合有机合成（Trost, B. M., Fleming, I. 编辑），3,521-549, (Pergamon, Oxford, 1991)中）。例如，将（V-1）以适当末端炔烃HCCR，于碘化铜（I），催化剂，例如双-（三苯膦）-二氯化钯或四（三苯膦）钯（0）存在下，于碱存在下，例如三乙胺或N,N-二异丙基乙胺，在溶剂中，例如N,N-二甲基甲酰胺，在范围从约室温至约摄氏120度的温度下处理，以产生所期望的产物（A）与（B）。当R²为H时，利用三甲基硅烷基乙炔更合适。于此情况下，将得自上述反应的粗制物质以碱，例如碳酸钾，在醇性溶剂中，例如MeOH；在约室温下处理，以在本领域技术人员已知的典型处理之后，产生所期望的产物（A）与（B），其中R²为-CH₂。本领域技术人员明了的是，上述在图式1至5中所述的化学表示获取中间体（V-k）的不同方式。依次，特别是当R¹为Cl时，可将（V-k）以所选择的烷基化剂，在典型条件下处理，以选择性地使酚基烷基化，以产生（A）（与（B），在图式1与5中），其中R¹为（C₁⁻⁻˓
与开环式间的平衡为本领域技术人员已知的涉及醛糖的交联现象过程的联想。

【0106】 本发明也包含以同位素方式标志的本发明化合物，其与本文所述的相同，除了以下事实之外，一或多个原子被一个具有原子质量或质量数不同于通常在天然上所发现的原子质量或质量数的原子所置换。可被并入本发明化合物中的同位素，其实例包括氢、碳、氮、氧、磷、硫、氟、碘及氯的同位素，譬如个别为 _2^3H、_3^3H、_1^1H、_1^1C、_1^1C、_1^1C、_1^1C、_1^1C、_1^1C、_1^1C、_1^1C、_1^1C、_1^3O、_1^1O、_1^1O、_1^1O、_1^1O、_1^3P、_1^3P、_1^3P、_1^3P、_1^8F、_1^123I、_1^125I 及 _1^35Cl。

【0107】 某些以同位素方式标识的本发明化合物（例如，以 ^1H 或 ^14C 标识的）可用于化合物及 / 或基质组织分布检测中。特别优选氟化（即 ^1H）与碳 ^14（即 ^14C）同位素，因其易于制备与可检测性。再者，以较重质同位素，譬如氘（即 ^2H）取代，可提供由于较大代谢安定性所造成的某些治疗利益（例如，增加活体内半衰期或降低剂量需要量），且因此在一些情况中可能优选。正电子发射同位素，譬如 ^15O、^18F、 ^18F、 ^18F，可用于正电子发射部位 X 射线;

【0108】 本发明的化合物可用于治疗通过抑制钠 - 葡萄糖转运蛋白（特别是 SGLT2）所调节的疾病、症状及 / 或病症，因此，本发明的另一项具体实施方式为一种药物组合物，其包含治疗上有效量的本发明化合物，及药学上可接受的赋形剂、稀释剂或载体。本发明化合物（包含使用在其中的组合物与方法）也可用于制造供本文中所述治疗应用的药剂。

【0109】 典型配方通过将本发明化合物与载体、稀释剂或赋形剂混合而制备。适当载体、稀释剂及赋形剂为本领域技术人员所习知，且包括一或多种物质，譬如碳水化合物、蜡类、水溶性及 / 或可溶胀聚合体、亲水性或疏水性物质、明胶、油类、溶剂、水等。所使用的特定载体、稀释剂或赋形剂依本发明化合物正被使用的方式与目的而定。溶剂一般以被本领域技术人员认为安全（GRAS）以被投予哺乳动物的溶剂为基础作选择。一般而言，安全溶剂为无毒性水性溶剂，譬如水，及其他可溶解或可溶胀于水中的无毒性溶剂。适当水性溶剂包括水、乙醇、丙二醇，聚乙二醇（例如 PEG400、PEG500）等，及其混合物。配方也可包含一或多种缓冲剂、稳定剂、表面活性剂、润滑剂、乳化剂、悬浮剂、防腐剂、抗氧化剂、不透明化剂、助流剂、加工助剂、着色剂、调味剂、芳香剂、矫味剂及其他已知添加剂，以提供药物（即本发明化合物或其药物组合物）的优越呈现形式，或帮助药物产物（即药剂）的制造。

【0110】 这些配方可使用习用溶解与混合操作制备。例如，使整体药物（即本发明化合物或该化合物的安定化形式（例如与环糊精衍生物或其他已知复合剂的化合物））在一或多种上述赋形剂存在下，溶于适当溶剂中。本发明化合物典型地被调配成药物剂型，以提供容易地可控制的药物剂量，且赋予病患优雅且易于处理的产物。

【0111】 药物组合物也包含式 (1) 化合物的溶剂组合物与水合物。术语“溶剂组合物”是指以式 (1) 表示的化合物（包括其药学上可接受的盐）与一或多个溶剂分子的分子复合物。此种溶剂分子为常用于药学领域中的，已知其对于接受者为无毒，例如水、乙醇、乙二醇等。术语“水合物”是指其中溶剂分子为水的复合物。溶剂组合物及 / 或水合物优选以结晶形式存在。其他溶剂可作为中间溶剂物，用于制备较期望的溶剂物合物，譬如丙酮（D） - 丙醇，(R)- 丙二醇，(S)- 丙二醇，1,4- 丁炔 - 二醇等。结晶形式也可以与其他无毒小分子（譬如 L- 苯丙氨酸、L- 异亮氨酸、L- 焦谷氨酸等）的复合物，以共结晶性
物质的共晶体或溶剂合物或水合物存在。溶剂合物,水合物及其结晶性化合物可使用 PCT 公报案号 W008/002824 中所述的操作,并入本文供参考,或本领域技术人员所习知的其他操作制备。

[0112] 供施用的药物组合物（或配方）可以多种方式包装,依用于介绍药物的方法而定。一般而言,供分装的对象包括容器,其中已存放呈适当形式的药物配方。适当容器为本领域技术人员所习知,且包括一些材料,譬如瓶子（塑料与玻璃）、小袋、安瓿瓶、塑料袋、金属圆简等。容器也可包括防干扰装简,以防止不慎进入包装的内容物中。此外,容器已于其上放置一份标签,说明容器的内容物。此标签也可包含适当告诫事项。

[0113] 本发明进一步提供一种在动物中治疗通过抑制钠-葡萄糖转运蛋白所调节的疾病、症状及/或病症的方法,其包括对需要此种治疗的动物给予治疗有有效量的本发明化合物,或一种药物组合物,其包含有效量的本发明化合物,及药学上可接受的赋形剂,稀释剂或载体。该方法特别可用于治疗得利于抑制 SGLT2 的疾病、症状及/或病症。

[0116] 本发明的另一方面关于治疗糖尿病或糖尿病相关病症或延迟糖尿病或糖尿病相关病症的进展或发作,包括第 1 型（胰岛素依赖性糖尿病,也被称为 “IDDM”）与第 2 型（非胰岛素依赖性糖尿病,也被称为 “NIDDM”）糖尿病、葡萄糖耐量降低、延迟的伤口愈合、超高胰岛素血症、脂肪酸类的升高的血液含量、高血脂症、高甘油三酯血症、综合症 X,增加的高密度脂蛋白含量、胰岛素抗拒性、高血糖及糖尿病并发症（譬如动脉粥样硬化、冠状心脏病、中风、末梢血管疾病、肾病、高血压、神经病及视网膜病）。

[0118] 优选情况是,当与未含有药物的媒介对对照时,本发明化合物的给药提供在至少一种心血管疾病危险因素上的统计学上显著 (p<0.05) 降低,譬如降低血浆瘦素 (leptin), C- 反应性蛋白质 (CRP) 及/或胆固醇。本发明化合物的给药也可提供在葡萄糖血清含量上的统计学上显著 (p<0.05) 降低。

[0119] 对于具有体重为约 100 千克的正常成年人而言,每千克体重在约 0.001 毫克至约 10 毫克范围内的剂量典型地为足够,优选为约 0.01 毫克/千克至约 5.0 毫克/千克。更
优选为约 0.01 毫克 / 千克至约 1 毫克 / 千克。但是，于一般用量范围中的一些变化性可能需要，依赖于被治疗病患的年龄与体重、所意欲给药途径、被授予的特定化合物等而定。对特定病患的用量范围与最适宜剂量的测定良好地在具有本发明公开内容利益的一般本领域技术人员的能力内。还指出的是，本发明化合物可被使用于持续释放、受控释放及延迟释放配方中，该形式也为本领域技术人员所习知。

[0120] 本发明化合物也可搭配关于治疗本文中所述疾病、症状及 / 或病症的其他药剂使用。因此，也提供包括授予本发明化合物且并用其他药剂的治疗方法。可与本发明化合物合并使用的适当药剂，包括抗肥胖剂（包括食欲抑制剂）、抗糖尿病剂、抗高血糖剂、脂质降低剂、消炎剂及抗高血压剂。

[0121] 适当抗肥胖剂包括类大麻素 -1 (CB-1) 抗拮剂（譬如利莫那班 (rimonabant)）、11β - 羟基类固醇脱氢酶 -1 (11β -HSD 类型 1) 抑制剂、硬脂酰基 -CoA 去饱和酶 -1 (SCD-1) 抑制剂、MCR-4 激动剂、缩胆囊素 -A (CCK-A) 激动剂、单胺再摄取抑制剂（譬如西布曲明 (sibutramine)）、拟交感剂、β 3 肾上腺素能激动剂、多巴胺激动剂（譬如溴麦角环肽）、促黑素细胞激素类似物、5HT2c 激动剂、黑色素聚集激素拮抗剂、瘦素 (OB 蛋白质)、瘦素类似物、瘦素激动剂、加兰肽拮抗剂、脂肪酶抑制剂（譬如四氢胆石酸, 即奥利司他 (orlistat))、减食欲剂（譬如索坦肽 (bombesin) 激动剂）、神经肽 -Y 抗拮剂（例如 NPY Y5 拮抗剂）、PYY3-36（包括其类似物）、拟甲状腺素、脱氢表雄甾酮或其类似物、糖皮质激素抑制剂或拮抗剂、阿立新 (orexin) 抗拮剂、类高血糖素肽 -1 激动剂、械神经营养因子（譬如 Axokine™）、可得自 Regeneron 医药公司（Tarrytown, NY 与 Procter&Gamble 公司（Cincinnati, OH）、人类刺鼠相关蛋白 (AGRP) 抑制剂、葛瑞林 (ghrelin) 抗拮剂、组织胺 H3 抗拮剂或抗淤动剂、神经介素 U 激动剂、MTP/ApoB 抑制剂（例如肠 - 选择性 MTP 抑制剂、譬如得洛拉派 (dilrotapide)）、类阿片拮抗剂、阿立新 (orexin) 抗拮剂等。

[0122] 供使用于本发明组合方式中的优选抗肥胖剂，包括 CB-1 拮抗剂（例如利莫那班 (rimonabant)）、泰伦那班 (taranabant)、奥利司他 (ostenabant)、SIL319 (CAS 编号 464213-10-3) 与 AVE1625 (CAS 编号 358970-97-5)）、肠 - 选择性 MTP 抑制剂（例如得洛他派 (dilrotapide)、米拉他派 (mitratapide) 及英普他派 (implimapide)、R56918 (CAS 编号 403987) 与 CAS 编号 913541-47-6)、CCKa 激动剂（例如描述在 PCT 公报号 WO2002/116034 或美国公报号 2005-0267100A 中的 亚 苯 胺 -2-[4-[1H- 吩 喹 嗪 -3- 基 甲 苯] -5- 芳 基 -1- 苯 基 -4,5- 二 氯 -2,3,6,10b- 四 氮 - 苯 井 [c] 苯 -6- 基] -N- 异丙基 - 乙酰胺）、5HT2c 激动剂（例如洛卡色林 (lorcaserin)）、MCR4 激动剂（例如描述在 US6,818,658 中的化合物）、脂肪酶抑制剂（例如替西利特 (Cetilistat)）、PYY3-36（在本文中使用的 "PYY3-36" 包括类似物，譬如 PEG 化的 PYY3-36，例如美国公报 2006/0178501 中所述的）、类阿片拮抗剂（例如纳曲酮 (naltrexone)）、油酰基 - 胆酮 (CAS 编号 180003-17-2)、奥匹匹肽 (ohnipetide) (TM30338)、普拉林肽 (pramlintide) (Symlin®)、封维酮 (tesofensine) (NS2330)、勒帕茄酰、利拉鲁肽 (liraglutide)、溴麦角环肽、奥利司他 (orlistat)、依泽那肽 (exenatide) (Byetta®)、AOD-9604 (CAS 编号 221231-10-3) 及西布曲明 (sibutramine)。本发明化合物与组合疗法优选搭配运动与巧选饮食投予。

[0123] 适当抗糖尿病剂包括乙酰基 -CoA 羧化酶 -2 (ACC-2) 抑制剂、磷酸二酯酶
（PDE）-10 抑制剂、二酰基甘油酰基转移酶（DGAT）1 或 2 抑制剂、磷酸酶（例如碳酸氢钠）、氯丙酰酶、氯磺酰酶（diabine）、优降糖（glibenclamide）、格列吡嗪（glipizide）、格列本脲（glyburide）、格列美脲（glimepiride）、格列齐特（gliclazide）、格列戊脲（glipentin）、格列喹酮（gliquidone）、格列喹酮（glitazoline）、妥拉磺脲及甲苯磺丁脲、氯霉素（meglinitidine）、α-淀粉酶抑制剂（例如淀粉酶抑制肽 [tendamistat]、特瑞制糖类（trestatin）及 AL-3688）、α-葡萄糖苷水解酶抑制剂（例如阿卡波糖 [acarbose]）、α-葡萄糖苷酶抑制剂（例如脂酶素、卡格列波糖 [camiglibose]、乙格列酶（emiglitlate）、米格列醇（miglitol）、伏格列波糖 [voglibose]、普那米星 [pradimicin]-Q 及沙波制糖类（salbostatin））PPARγ 激动剂（例如巴拉列酮 [balaglitazone]、环格列酮（cigitazone）、达格列酮（darglitazone）、恩格列酮 [englitazone]、爱沙列酮 [isaglitazone]、吡格列酮 [pioglitazone]、罗格列酮 [rosiglitazone] 及曲格列酮 [troglitazone]）PPARα/γ 激动剂（例如 CLX-0940、GW-1536、GW-1929、GW-2433、KRP-297、L-796449、LR-90、MK-0767 及 SB-219994）、双糖苷（例如二甲双酰胺 [metformin]）、似肽高血糖素肽 1 (GLP-1) 激动剂（例如乙先素 [exendin]-3 与乙先素 [exendin]-4）、蛋白质酶水解磷酸酯 1B (PP1-1B) 抑制剂（例如曲度奎明 [trodusqueme]、海提素 [hypertiosal]）萃取物及由 Zhang, S. 等人，现代药物发现，12 (9/10)，373–381 (2007) 所公开的化合物）、SIRT-1 抑制剂（例如雷统维他素 [reservatrol]）、二肽基肽酶 IV (DPP-IV) 抑制剂（例如西格列汀 [sitagliptin]、维格列汀 [vildagliptin]、阿洛格列汀 [alogliptin] 及索格列汀 [saxagliptin]）、胰岛素促分泌素、脂肪酰化抑制剂、A2a 抗剂、c-Jun 信号 - 末端激酶 (JNK) 抑制剂、胰岛素、胰岛素拟似物、肝糖磷酸酶抑制剂、VPAC2 受体激动剂及葡萄糖激酶活化剂。优选抗糖尿病剂为二甲双酰胺 [metformin] 与 DPP-IV 抑制剂（例如西格列汀 [sitagliptin]、维格列汀 [vildagliptin]、阿洛格列汀 [alogliptin] 及索格列汀 [saxagliptin]）。

【0124】 适当消炎剂包括生殖道 / 尿道感染预防与治疗药物。举例的药剂包括酸果蔓 (即 Vaccinium macrocarpon) 与酸果蔓衍生物，譬如酸果蔓汁液、酸果蔓萃液或酸果蔓的黄酮醇类。酸果蔓萃液可包括一或多种黄酮醇类 (即花青苷类与原花色素) 或经纯化的酸果蔓黄酮醇化合物，包括黄酮醇 -3-β- 木糖吲哚糖苷、槲皮醇 -3-β- 葡萄糖苷、槲皮素 -3-α- 阿拉伯吡喃糖苷、3’- 甲氧基槲皮素 -3-α- 木糖吲哚糖苷、槲皮素 -3-O- (6”- 对 - 香豆酸基) - β- 半乳糖苷、槲皮素 -3-O- (6”- 苯甲酰基) - β- 半乳糖苷及 / 或槲皮素 -3-O- (6”- 对 - 香豆酸基) - β- 半乳糖苷及 / 或槲皮素 -3-O- (6”- 对 - 香豆酸基) - β- 半乳糖苷。

【0125】 本发明的具体实施例由下述实例说明。但是，应明了的是，本发明的具体实施例并不限于这些实例的特定细节，因其他变化为一般本领域技术人员所已知或在明白本发明公开内容之后所明了。

【0126】 本发明的实施方式

【0127】 本发明的实施方式

【0128】 除非另有指定，否则起始物质一般可得自商业来源，譬如 Aldrich 化学品公司 (Milwaukee, WI)、Lancaster 合成公司 (Windham, NH)、Acros 有机物质 (Fairlawn, NJ)、Maybridge 化学公司 (Cornwall, England)、Tyger 科学公司 (Princeton, NJ)、AstraZeneca 医药 (London, England) 及 Accela ChemBio (San Diego, CA)。22
NMR 光谱在室温下，对于质子在 400MHz 下，被记录于 Varian Unity™100（可得自 Varian 公司，Palo Alto, CA）上。化学位移以每百万份的份数（δ）表示，相对于作为内参物质的残留溶剂。峰形状按如下表示：s、单峰；d、二重峰；dd, 二重峰的二重峰；t, 三重峰；q, 四重峰；m，多重峰；bs 或 br. s，宽单峰；2s，两个单峰；br. d., 宽广二重峰。电喷雾离子化作用质谱 (ES) 在 Waters™ ZMD 仪器（载气：氦；溶剂 A：水 / 0.01% 甲酸，溶剂 B：乙腈 / 0.005% 甲酸；可得自 Waters 公司，Milford, MA）上获得。高分辨质谱 (HRMS) 在 Agilent™6210 型飞行时间上获得。在描述含有单一氯或单一溴离子的强度的情况下，发现预期强度比例（对于含^{37}Cl / ^{35}Cl 的离子为大约 3:1，而对于含^{79}Br / ^{81}Br 的离子为 1:1），且只给予较低质量离子的强度。在一些情况下，只示出代表性 ^1H NMR 峰。

柱层析以 Baker™ 硅胶（40 微米；J.T. Baker, Phillipsburg, NJ）或硅胶 50 (EM Sciences™, Gibbstown, NJ)，在玻璃柱中或在高速 40Biotage™ 柱（ISC 公司，Shelton, CT）进行了。MPLC（中压液相层析法）使用 Biotage™SP 纯化柱或得自 Teledyne™Isco™ 的 Combiflash® Companion® 进行；使用 Biotage™ SNAP 药筒 KSil 或 Redisep RF 硅胶（得自 Teledyne™ Isco™），在低氮压力下。HPLC（高效液相层析法）使用 Shimadzu™10A LC-UV 或 Agilent™1100 制备型 HPLC 进行。

除其内容另有指出外，否则所有反应在氮气的惰性大气下，使用无水溶剂操作。而且，除非其内容另有指出，否则所有反应在室温（～23°C）下操作。

当进行 TLC（薄层层析法）时，Rf 被定义为由化合物所运行的距离除以由洗脱剂所运行的距离的比例。Rf（滞留时间）。

起始物质

一般而言，任何下列起始物质可使用美国公报案号 2008/0132563 的图示 7 或 8 或者美国公报案号 2007/0259821 的图示 2,3 或 8 中所述的操作制备。更明确言之，下述实例中所使用的下列起始物质可使用其相应的参考数据中所述的操作制备，或购自其相应的卖家。

4-溴-2-(4-甲氧基-苄基)-1-甲基-苯可通过 PCT 公报案号 WO01/027128 的实例 8 中所述的操作制备。

4-溴-2-(4-乙氧基苄基)-1-甲基-苯可通过 US2008/0132563 的制备实例 17 中所述的操作制备。

4-溴-1-氯-2-(4-乙氧基苄基)-苯可购自 Shanghai Haoyuan Chemexpress 公司（中华人民共和国，上海）。

4-溴-2-(4-甲氧基-苄基)-苄胺可通过 US2007/0259821 的实例 XXII 中所述的操作制备。

下列起始物质按下文所述制备。

4-溴-1-氯-2-(4-甲氧基-苄基)-苯的制备：

于 0°C 下，将草酰氯（11.0 毫升，126 毫摩尔）缓慢添加至 5-溴-2-氯-苯甲酸（25.0 克，114 毫摩尔）在二氯甲烷（150 毫升）与 N,N-二甲基甲酰胺（1.5 毫升）中的经
充分搅拌悬浮液内，使所形成的混合物逐渐温热至室温。18 小时后，固体已变成溶液。使
所形成的淡棕色溶液在减压下浓缩，并以乙醚溶出两次，而得5-溴-2-氟-苯甲酰氯（27.0
克，定量产率），为淡棕色油。

【0144】于5-溴-2-氟苯甲酰氯（27.0 克，114 毫摩尔）与苯甲酰（12.9 克，13.0 毫
升，119 毫摩尔）在二氯甲烷（150 毫升）中的溶液内，在0 ℃下，分次加入氯化铝（16.2
克，119 毫摩尔），以使溶液温度仍然保持低于 10 ℃。在0 ℃下搅拌 4 小时后，将溶液倾
倒于碎冰上，且将所形成的混合物搅拌。30 分钟后，移除有机相，并以二氯甲烷萃取水相两
次。将合并的有机相以1M 盐酸水溶液洗涤一次，以1M 氢氧化钠水溶液一次，及以盐水一
次。使有机相以硫酸钠干燥，过滤，及在减压下浓缩。使所形成的残留物以乙醇再结晶，而
得（5-溴-2-氟苯基）-（4-甲氧基-苯基）-甲醚（22.5 克，64%），为白色固体。

【0145】于（5-溴-2-氟苯基）-（4-甲氧基-苯基）-甲醚（22.5 克，72.80 毫摩尔）与三
乙基硅烷（27.9 毫升，20.3 克，175.0 毫摩尔）在二氯甲烷（20 毫升）与二氯甲烷（60 毫
升）中，以过量的水合放热，及在温水下浓缩。在使温度不超过 20 ℃的速率下，将混合物溶
液加热至室温，并搅拌至过夜。总计 18 小时后，加入氯化铝（5.0 克）在水（15.0 毫升）
中的溶液，且将所形成的混合物搅拌 2 小时。分离有机相，并以乙醚萃取水相两次。将合并的有机相以
1M 氢氧化钠水溶液洗涤一次，且以盐水一次。使有机相以硫酸钠干燥，过滤，在减压下浓
缩。在乙醇添加至所形成的残留物中时，白色固体形成。收集固体，并在真空下干燥，而
得（4-溴-2-氟-苯）-（4-甲氧基-苯基）-苯（20.1 克，93%产率），为白色固体。

【0146】1H NMR (400MHz, 氯仿-d) δ ppm 3.79 (s, 3H), 3.89 (s, 2H), 6.85 (d, J=8.6Hz, 2H), 6.
91 (t, J=8.8Hz, 2H), 7.12 (d, J=8.8Hz, 2H), 7.21 - 7.31 (m, 2H)。

【0147】起始物质5-溴-2-（4-乙氧基苯基）-苯的制备。

【0148】于0 ℃下，将（4-乙氧基苯基）醋酸乙酯（2.68 克，12.87 毫摩尔），4-溴-2-氟-苯
胺（2.74 克，13.70 毫摩尔）在N-甲基四氢吡咯酮（4 毫升）中的溶液慢慢加入四氢吡咯酮
氯化铝（3.14 克，27.98 毫摩尔）在N-甲基四氢吡咯酮（13 毫升）中的悬浮液内。于搅拌时，溶
液变成深红色。将深红色混合物在0 ℃下搅拌30 分钟，然后在室温 1 小时。添加甲醇（10
毫升）与1M 氢氧化钠水溶液（13.7 毫升），并混合物在室温下搅拌过夜。以盐酸（1M水
溶液）调整pH 值至4，且以醋酸乙酯（50 毫升 x4）萃取混合物。将合并的有机层以盐水洗
涤，以硫酸钠干燥，及蒸发至干。添加N-二甲基甲酰胺（5 毫升）与碳酸钾（7 克），将混合物加热至100 ℃，历经 1 小时，并冷却至室温。添加水，且以醋酸乙酯（60 毫升 x3）萃
取混合物。将合并的有机层以盐水洗涤，以硫酸钠干燥，及蒸发至干。使制备物在硅胶上
由急骤式层析纯化（以 0 至 14% 醋酸乙酯在庚烷中的梯度洗脱），而得 2.26 克粗产物（含
有所欲产物与另一种产物）。使粗产物以甲醇沉淀，获得4-溴-2-（4-乙氧基苯基）-苯胺
（1.2 克，含有 5% 另一种化合物，具有在 4.15ppm 四重峰与 1.5ppm 重峰下的NMR 峰）。

【0149】1H NMR (400MHz, 氯仿-d) δ 7.48 - 7.38 (m, 3H), 7.13 (d, J=8.4Hz, 2H), 6.85 (d, J=8.
4Hz, 2H), 4.08 (s, 2H), 4.03 (q, J=7.2Hz, 2H), 1.41 (t, J=7.2Hz, 3H)。

【0150】起始物质5-溴-2-（4-乙氧基苯基）-苯的制备。

【0151】于4-溴-1-氟-2-（4-甲氧基-苯基）-苯（4.2 克，14.2 毫摩尔）在二氯甲烷（20
毫升）中的溶液内，在0 ℃下，慢慢逐滴添加三溴化砷在二氯甲烷中的1M 溶液（15.7 毫升，
16.0毫摩尔)，历经10分钟。一旦溴化氢的添加已完成，立即使反应混合物逐渐温热至室温。4小时后，将反应混合物冷却至0℃，并通过缓慢添加1N盐酸水溶液（20毫升）使反应淬灭。将反应混合物搅拌30分钟后，再以二氯甲烷萃取两次。使合并的有机层以硫酸镁干燥，过滤，及在减压下浓缩，而得淡粉红色固体（3.83克，96%）。将粗产物4-(5-溴-2-氟-4-基苯)苯酚使用于下一步骤，无需进一步纯化。

[H NMR(400MHz, 氯仿-d) δ ppm 3.88(s, 2H), 4.76(宽广 s, 1H), 6.77(d, J=8.2Hz, 2H), 6.91(t, J=9.1Hz, 1H), 7.07(d, J=8.6Hz, 2H), 7.23(dd, J=6.8, 2.3Hz, 1H), 7.26-7.31(m, 1H)]

于4-(5-溴-2-氟-4-基苯)苯酚（6.0克，21.0毫摩尔）在无水N,N-二甲基甲酰胺（20毫升）中，已知在0℃下冷却的溶液中，添加氢氧化钠（在矿油中的60%分散液，1.02克，25.6毫摩尔）。在0℃下搅拌45分钟后，逐滴加入碘化乙烷（2.08毫升，25.6毫摩尔），并使所形成的混合物温热至室温。18小时后，以水使反应混合物淬灭，及以醋酸乙酯萃取两次。将合并的有机层以水洗涤两次，且以盐水一次，以硫酸镁干燥，过滤，及在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化，以0至10%醋酸乙酯在庚烷中的梯度洗脱，而得4.6克（58%产率）所期望的产物，为黄色油。

[H NMR(400MHz, 氯仿-d) δ ppm 1.40(t, J=7.0Hz, 3H), 3.89(s, 2H), 4.01(q, J=6.9Hz, 2H), 6.83(d, J=8.4Hz, 2H), 6.91(t, J=9.0Hz, 1H), 7.10(d, J=8.8Hz, 2H), 7.20-7.30(m, 2H)]

甲苯-4-磺酸四氢呋喃-3-基酮的制备

于3-羟基四氢呋喃（2.5克，28.0毫摩尔）在无水吡啶（60毫升）中的溶液内，在室温下，添加4-甲苯磺酰氯（6.49克，34.0毫摩尔）。将反应混合物在室温下搅拌18小时后，使反应混合物在减压下浓缩。使所形成的残留物在硅胶上由急骤式层析纯化，以0至3%醋酸乙酯在庚烷中的梯度洗脱，而得3.5克（51%产率）所期望的产物，为无色油。

[H NMR(400MHz, 氯仿-d) δ ppm 2.05-2.12(m, 2H), 2.45(s, 3H), 3.77-3.92(m, 4H), 5.09-5.14(m, 1H), 7.35(d, J=8.0Hz, 2H), 7.79(d, 2H)]

甲苯-4-磺酸环氧丙烷-3-基酮的制备

于环氧丙烷-3-醇（1.0克，13.0毫摩尔）在无水吡啶（25毫升）中的溶液内，在室温下，添加4-甲苯磺酰氯（3.09克，16.2毫摩尔）。将反应混合物在室温下搅拌18小时后，使反应混合物在减压下浓缩。使所形成的残留物在硅胶上由急骤式层析纯化，以0至3%醋酸乙酯在庚烷中的梯度洗脱，而得1.9克（62%产率）所期望的产物，为白色固体。

[H NMR(400MHz, 氯仿-d) δ ppm 2.46(s, 3H), 4.63-4.75(m, 4H), 5.26-5.34(m, 1H), 7.36(d, J=8.0Hz, 2H), 7.78(d, J=8.40Hz, 2H)]

起始物质3-[4-(5-溴-2-氟-4-基苯)苯氧基]-四氢呋喃的制备

于4-(5-溴-2-氟-4-基苯)苯酚（1.5克，5.3毫摩尔）与碳酸铯（2.61克，8.0毫摩尔）在N,N-二甲基甲酰胺（15.0毫升）中的溶液内，在室温下，添加甲苯-4-磺酸四氢呋喃-3-基酮（1.94克，8.0毫摩尔）在N,N-二甲基甲酰胺（10.0毫升）中的溶液。然后，将反应混合物在50℃下搅拌过夜。总计18小时后，使反应混合物冷却至室温，以盐水稀释，并以醋酸乙酯萃取3次。将合并的有机层以水洗涤两次，且以盐水一次，以硫酸钠干燥，过滤，及在减压下浓缩。使所形成的粗制残留物在硅胶上由急骤式层析纯化，以0至
30% 醋酸乙酯在庚烷中的梯度洗脱，而得 1.66 克（89% 产率）所期望的产物，为无色油。

[0163] 1H NMR (400 MHz, 氯仿-d) δ ppm 2.09-2.24 (m, 2H), 3.86-4.01 (m, 6H), 4.86-4.91 (m, 1H), 6.80 (d, J=8.6 Hz, 2H), 6.91 (t, J=9Hz, 1H), 7.10 (d, J=8.6 Hz, 2H), 7.23 (dd, J=6, 8.2 Hz, 2H), 7.26-7.31 (m, 1H).

[0164] 起始物质 3- [4-(5-溴-2-氟-苄基)-苯氧基] -环氧丙烷的制备

[0165] 于 4-(5-溴-2-氟-苄基)-苯酚 (1.1 克, 3.9 毫摩尔) 与碳酸钠 (1.91 克, 5.87 毫摩尔) 在 N,N- 二甲基甲酰胺 (15.0 毫升) 中的溶液内，在室温下，添加苯甲酸-4-磺酸环丙烷-3-基酯 (1.34 克, 8.0 毫摩尔) 在 N,N- 二甲基甲酰胺 (10.0 毫升) 中的溶液。然后，将反应混合物在 65°C 下搅拌过夜。总计 18 小时后，使反应混合物冷却至室温，以盐水稀释，并以醋酸乙酯萃取 3 次。将合并的有机层以水洗涤两次，且以盐水一次，以硫酸钠干燥，过滤，及在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化，以 0 至 30% 醋酸乙酯在庚烷中的梯度洗脱，而得 0.948 克 (72% 产率) 所期望的产物，为白色固体。

[0166] 1H NMR (400 MHz, 氯仿-d) δ ppm 3.88 (s, 2H), 4.76 (dd, J=7, 22, 5.3 Hz, 2H), 4.95 (t, J=6.6 Hz, 2H), 5.14-5.21 (m, 1H), 6.63 (d, J=8.4 Hz, 2H), 6.92 (dd, J=11, 7.10 (d, J=8.6 Hz, 2H), 7.23 (dd, J=6, 2.15 Hz, 1H), 7.26-7.31 (m, 1H).

[0167] 3-(4-(5-溴-2-氯苄基)苯氧基) -环氧丙烷的制备

[0168] 使 4-溴-2-(4-甲氧基苄基)-苯 (10 克, 32 毫摩尔) 溶于二氯甲烷 (32 毫升) 中，并在氮气下冷却至 0°C。逐滴添加二氯甲烷中的 1.0M 三溴化硼溶液 (35.3 毫升, 34.3 毫摩尔)，历经 10 分钟。在添加之后，移除冰浴，且将溶液在室温下搅拌 1 小时。使反应混合物冷却至 0°C，并通过添加 1N 盐酸水溶液 (45 毫升) 使反应淬灭。将混合物搅拌 30 分钟，转移至分液漏斗，收集有机层，且将水层以二氯甲烷 (45 毫升) 萃取。使合并的有机萃液以硫酸镁干燥，过滤，及在真空中浓缩，而得 4-(5-溴-2-氯苄基) 苯酚 (9.5 克, 99% 产率)，为白色固体。

[0169] 在粗制 4-(5-溴-2-氯苄基) 苯酚 (3.0 克, 10 毫摩尔) 与碳酸钠 (4.9 克, 15 毫摩尔) 在 N,N- 二甲基甲酰胺 (77.5 毫升) 中的溶液内，在室温下，添加苯甲酸-4-磺酸环丙烷-3-基酯 (3.5 克, 15 毫摩尔) 在 N,N- 二甲基甲酰胺 (8 毫升) 中的溶液。将混合物加热至 65°C，历经 22 小时，然后，添加同一等份的碳酸钠 (3.3 克, 10 毫摩尔)。将反应混合物于 120°C 下再搅拌 12 小时，冷却至室温，接着，添加水与醋酸乙酯，并以 1N 盐酸水溶液使混合物小心地酸化。分离有机层，以水洗涤 (3 次)，及在真空中浓缩。通过 Biocage MPLC 纯化（硅胶, 以 0 至 25% 醋酸乙酯在庚烷中的梯度洗脱），获得 4-(5-溴-2-氯苄基) 苯氧基) -环氧丙烷 (2.5 克, 70% 产率)，为白色固体。

[0170] 1H NMR (400 MHz, 氯仿-d2) δ ppm 7.34-7.28 (m, 2H), 7.26 (d, J=8.4 Hz, 1H), 7.04-7.09 (m, 2H), 6.69-6.35 (m, 2H), 5.22-5.16 (m, 1H), 4.96-4.91 (m, 2H), 4.72-4.68 (m, 2H), 4.01 (s, 2H).

[0171] 4-溴-2-(4-氯苄基)-1-氟-苯的制备

[0172] 使 5-溴-2-(4-氯苯甲基) (10.2 克, 50 毫摩尔) 在无水四氢呋喃 (200 毫升) 中溶液冷却至 -78°C。通过注射器添加 4-氯苯基-溴化镁溶液 (1M, 在乙醚中, 60 毫升, 60 毫摩尔), 历经 8 分钟。在低温下持续搅拌 5 分钟，并使反应物温热至室温，且在此温度下搅拌 1 小时。使溶液在冰水浴中冷却，并通过添加饱和氯化铵水溶液 (40 毫升) 使反应淬灭。
将有机相倾析，且使含水残留物在减压下浓缩，以移除任何残留的有机溶剂。以醋酸乙酯（200毫升 x2）萃取水相，及将萃液与已倾析的四氯呋喃溶液合并。此溶液以盐水（25毫升）洗涤，并干燥（硫酸钠），过滤，及在减压下浓缩，获得粗制（5-溴-2-氟苯基）-（4-氯苯基）-甲醇（15.2克，96%产率），为黄色固体。

[0173] 于上文（5-溴-2-氟苯基）-（4-氟苯基）-甲醇（15.0克，48毫摩尔）与三乙基硅烷（18.5毫升，116毫摩尔）在二氯甲烷（40毫升）与乙腈（20毫升）中的溶液内，在0℃及氮气下，慢慢添加三氟化硼二乙基醚化物（22.7毫升，181毫摩尔）。将所形成的溶液搅拌18小时，同时慢慢温热至室温。使反应物在冰水浴中冷却，通过缓慢添加7M氢氧化钾水溶液（30毫升）使反应淬灭，并以甲基醚-丁基醚（200毫升 x2）萃取。将合并的有机溶液以水（25毫升 x2）、盐水（25毫升 x2）洗涤，干燥（硫酸钠），过滤，及在减压下浓缩。在硅胶上由急骤式柱层析纯化，以醋酸乙酯在庚烷中的梯度洗脱，获得2-(4-氟苯基)-4-溴-1-氯基苯（5.0克，35%产率），为无色油。1H NMR (400MHz，氯仿-d) δ ppm 7.33-7.22 (m，4H)，7.13 (d，J=8.4Hz，2H)，6.93 (dd，J=9.2，9.2 Hz，1H)，3.92 (s，2H)。

[0174] 中间体的制备

[0175] 中间体（2R，3R，4S，5R）-6-烯丙氧基-3，4，5-三-苄氧基-四氢-吡喃-2-基甲酯（I-1a）的制备：

[0176]

[0177] 将D-葡萄糖（1.2千克，6.6摩尔）、三氟甲烷磺酸（12毫升）及烯丙醇（5升）的悬浮液在80℃下加热3天。使混合物冷却至室温，在真空中移除挥发性物质，并使残留物溶于N,N-二甲基甲酰胺（8升）中。将其分成两份等量反应物，并于每一份中添加三苯甲基氯（463克，1.67摩尔）与三乙胺（231毫升，1.67摩尔）。当添加三乙胺时，发现稍微放热。将反应混合物于30℃下搅拌2天，然后，将各反应物分成两半，获得八份相等反应物。于各这些反应物中，添加苄基氯（300毫升，2.60摩尔），接着分次添加氢氧化钠（102.5克，2.60摩尔），保持反应温度在40至50℃之间。在添加完成后，将反应混合物在室温下搅拌20小时。然后，将各反应物倾倒在冰 / 水（2升）上，并以醋酸乙酯（2.5升）萃取。将各有机相以饱和和盐水 / 水（1:1，2x2升）洗涤，合并，以硫酸镁干燥（产物R,0.85，在3:1己烷 / 醋酸乙酯中）。在过滤与蒸发后，使残留物溶于二氯甲烷（16升）与甲醇（4升）的混合物中。将混合物分成5等份，并于每一份中添加硫酸（32毫升）。将反应物搅拌3小时，以盐水 / 2M氢氧化钠水溶液（1:1，2x2升）洗涤，合并，以硫酸镁干燥。于真空中过滤与浓缩后，使残留物在硅胶上进一步纯化，以甲苯中的30%醋酸乙酯洗脱，获得中间化合物（I-1a），为端基异构体的混合物（1.77千克，54%产率，得自D-葡萄糖）。R,0.15，在3:1己烷 / 醋酸乙酯
中。
[0178] 中间体 ((3S, 4S, 5R) -6- 烯丙氧基 -3, 4, 5- 三 - 苯氧基 -2- 羟甲基 - 四氢 - 吲喃 2- 基) - 甲醇 (I-1b) 的制备：

![化学结构式]

(I-1b)

[0180] 在 -78°C下，将二甲亚砜 (87 毫升，1.22 摩尔) 与氯甲烷 (160 毫升) 中的溶液逐滴添加至草酰氯 (64.7 毫升，0.76 摩尔) 在二氯甲烷 (2.5 升) 中的溶液内。在添加完成后，在 -78°C下，速滴添加中间体 (I-1a) (287 克，0.59 摩尔) 在二氯甲烷 (500 毫升) 中的溶液。在添加完成后，将反应混合物搅拌 30 分钟，并逐滴添加三乙胺 (417 毫升，2.9 摩尔)。在添加完成后，使反应混合物自行温热至室温。然后，将反应物以 1M 盐酸水溶液 (2 升) 与水 (2 升) 洗涤，接着以硫酸镁干燥。于六份等量反应物上重复此反应操作，且于干燥后，将其合并，及蒸发，而得醛，为黄色油 (1.71 千克)。使此油溶于异丙醇 (2.57 升) 中，并分成七份相等反应物。于这些每一份中，添加 37% 甲醛水溶液 (0.79 升，10 摩尔)，接着，逐滴添加氢氧化钠 (32 克，0.8 摩尔) 在水 (130 毫升) 中的溶液。于添加完成后，将反应混合物在室温下搅拌 2 天。以盐水 (2 升) 稀释反应混合物，并以醋酸乙酯 (2 升) 萃取。将有机相进一步以饱和碳酸氢钠水溶液 (2 升)，盐水 (2 升) 洗涤，然后以硫酸镁干燥。将得自七份反应物的有机相合并，蒸发，及使残留物在硅胶上纯化（以 4 比 1 至高达 1 比 1 己烷在醋酸乙酯中洗脱），而得中间化合物 (I-1b)，为端基异构体的混合物 (980 克，53% 产率，历经两个步骤)。R,0.57 与 0.60，在 1:1 己烷/醋酸乙酯中。

[0181] (3S, 4S, 5R) -6- 烯丙氧基 -3, 4, 5- 三 - 苯氧基 -2- 双 - (4- 甲氧基 - 苯氧基甲基) - 四氢 - 吲喃 (I-1c)：

![化学结构式]

(I-1c)

[0182] 使起始二醇 [(3S, 4S, 5R) -6- 烯丙氧基 -3, 4, 5- 三 - 苯氧基 -2- 羟甲基 - 四氢 - 吲喃 - 吲喃基]
(I-1d)

于起始物质 (3S, 4S, 5R)-3, 4, 5-三-苄基氧基-6-双-(4-甲氧基-苄基氧基甲基)-四氢-吡喃-2-醇 (I-1d):

(I-1e)

于起始物质 (3S, 4S, 5S)-3, 4, 5-三-苄基氧基-6, 6-双-(4-甲氧基-苄基氧基甲基)-四氢-吡喃-2-醇 (I-1e):

(3R, 4S, 5S)-3, 4, 5-三-苄基氧基-6, 6-双-(4-甲氧基-苄基氧基甲基)-四氢-吡喃-2-醇 (I-1d);
说明书

[0189] 于二草酰氯（1.9 毫升，23 毫摩尔）在二氯甲烷（65 毫升）中的溶液内，在 -78℃
下，与氢氧化钠（3.3 毫升，47 毫摩尔）在二氯甲烷（5 毫升）中的溶液，并将所形成的
溶液在室温下搅拌 30 分钟。然后逐滴滴加起始物质 ((3R, 4S, 5S)-3, 4, 5-三 - 苯氧基
-6, 6- 双 - (4- 甲氧基 - 苯氧基甲基) - 四氢 - 吡喃 -2- 醇 (1-1d, 5.6 克, 7.7 毫摩尔) 在
二氯甲烷 (15.0 毫升) 中的溶液，且将所形成的混合物搅拌 30 分钟，使温度上升至 -60℃。
逐滴添加三乙胺 (9.7 毫升, 69.5 毫摩尔)，并使混合物温热至 0℃，历经 1 小时。通过添加
饱和氯化铵水溶液使反应淬灭，使有机相以硫酸镁干燥，过滤，及在减压下浓缩。使粗制
物质在硅胶上由急骤式层析纯化，以 0 至 60% 醋酸乙酯在庚烷中的梯度洗脱，以产商品
(I-1e) (1 克, 72% 产率)。

[0190] 1H NMR (400MHz, 氯仿 -d) δ ppm 3.24 (d, J=10Hz, 1H), 3.40-3.47 (m, 2H), 3.74 (s, 3
H), 3.77 (s, 3H), 3.86 (d, J=10Hz, 1H), 4.07 (d, J=8.6Hz, 1H), 4.15 (d, J=9.6Hz, 1H), 4.35-4.
55 (m, 6H), 4.65-4.72 (m, 2H), 4.82 (d, J=14Hz, 1H), 4.87 (d, J=11Hz, 1H), 5.10 (d, J=11.1Hz,
2H), 6.74-6.79 (m, 2H), 6.81-6.85 (m, 2H), 7.11 (dd, J=7.0, 2.5Hz, 2H), 7.17-7.41 (m, 17
H)。

[0191] (2R, 3S, 4S)-2, 3, 4- 三 - 苯氧基 -5- 羟基 -6-(4- 甲氧基 - 苯氧基甲基) - 己酸甲氧基 - 甲基 - 酰胺 (I-1g) 及 / 或 ((3R, 4S, 5S)-3, 4, 5- 三 - 苯氧基 -6, 6- 双 - (4- 甲氧基 - 苯氧基甲基) - 四氢 - 吡喃 -2- 醇
(I-1f);

[0192] ![结构式 I-1g](image)

![结构式 I-1f](image)

[0193] 于内酰 ((3R, 4S, 5S)-3, 4, 5- 三 - 苯氧基 -6, 6- 双 - (4- 甲氧基 - 苯氧基甲基) - 四
氢 - 吡喃 -2- 烯 (I-1e) (10.4 克, 14.5 毫摩尔) 与 N, O- 二甲基 - 羟胺盐酸盐 (1.77 克, 29.0
毫摩尔) 在二氯甲烷 (100 毫升) 中的溶液内，在 0℃下逐滴添加三甲基铝在已烷中的 2.0M
溶液 (14.5 毫升, 29.0 毫升), 并将所形成的溶液在室温下搅拌 16 小时。使反应混合物
冷却至 0℃, 且通过缓慢添加 1N 盐酸水溶液使反应淬灭。将所形成的混合物搅拌 1 小时。
分离有机相，并以 1N 盐酸水溶液洗涤，以硫酸钠干燥，过滤，及在减压下浓缩。使粗制物
质通过中压层析纯化（5 至 40% 醋酸乙酯在庚烷中的梯度），产生 65 克 (58%) 产物。

[0194] 1H NMR (400MHz, 氯仿 -d) δ ppm 2.62 (宽广 s, 1H), 2.94 (宽广 s, 3H), 3.23 (宽广 s,
3H), 3.42 (d, J=9.4Hz, 1H), 3.50-3.60 (m, 3H), 3.75 (s, 3H), 3.77 (s, 3H), 4.03 (d, J=6.9Hz,
说明书

1H, 4.20 (d, J=6.9, 3.3 Hz, 1H), 4.31-4.44 (m, 5H), 4.46-4.51 (m, 2H), 4.53 (d, J=12 Hz, 1H), 4.66 (d, J=12 Hz, 1H), 4.80 (w, d, J=11.5 Hz, 1H), 4.87 (d, J=11.4 Hz, 1H), 6.77-6.83 (m, 4H), 7.15-7.35 (m, 19H). ([M+H] 780.8, 正模式；[M+HCO2] 824.7, 负模式)。对 C36H54NO10 (M+H) 的 HRMS 计算值 780.3742, 实测值 780.3708。

[0195] (2R, 3S, 4S)-2, 3, 4, 6- 四 - 苯氧基 -5- 苯氧甲基基 -5- 羟基 - 己酸甲氧基 - 甲基 - 醚胺 (I-6g) 及 / 或 ((3R, 4S, 5S)-3, 4, 5- 三 - 苯氧基 -6, 6- 双 - 苯氧甲基基 - 甲(-甲氧基 - 甲基 - 氨基) - 四氢 - 吡喃 - 2- 醇 (I-6f)；

[0196] ![化学结构式](image)

[0197] 此化合物的合成如关于合成 (2R, 3S, 4S)-2, 3, 4- 三 - 苯氧基 -5- 羟基 -6- (4- 甲氧基 - 苯基) -5- (4- 甲氧基 - 苯氧甲基基) - 己酸甲氧基 - 甲基 - 醚胺 (I-1g) 及 / 或 ((3R, 4S, 5S)-3, 4, 5- 三 - 苯氧基 -6, 6- 双 - (4- 甲氧基 - 苯氧甲基基) - 2-(甲氧基 - 甲基 - 氨基) - 四氢 - 吡喃 - 2- 醇 (I-1f) 所述的类似操作, 自 [(3S, 4S, 5R)-6- 烯丙氧基 -3, 4, 5- 三 - 苯氧基 -2- 羟甲基 - 四氢 - 吡喃 - 2- 基) - 甲醇 (I-1b) 开始制备, 除了描述从 (I-1b) 转化成 (I-1c) 的实验部分中所使用的烷基化剂为苯基溴代替 - 甲氧基苯基溴。

[0198] 1H NMR (400 MHz, 氯仿-d) δ ppm2.66 (宽广 s, 1H), 2.94 (宽广 s, 3H), 3.23 (宽广 s, 3H), 3.48 (d, J=9.4 Hz, 1H), 3.55-3.66 (m, 3H), 4.05 (d, J=6.9 Hz, 1H), 4.21 (dd, J=6.9, 3.3 Hz, 1H), 4.36 (d, 1H, J=11.7 Hz), 4.41-4.58 (m, 7H), 4.68 (d, J=11.9 Hz, 1H), 4.81 (宽广 d, J=11.5 Hz, 1H), 4.89 (d, J=11.5 Hz, 1H), 7.15-7.35 (m, 25H)。MS [M+H]+ 720.7, 正模式；[M+HCO2]- 764.7, 负模式。

[0199] (4S, 5S)-3, 4, 5- 三 - 苯氧基 -2-[3-(4- 甲氧基 - 苯基) -4- 甲基 - 苯基]-6, 6- 双 - (4- 甲氧基 - 苯氧甲基基) - 四氢 - 吡喃 - 2- 醇 (I-1i)；

[0200]
[0201] 在-78℃下，将正丁基锂 (0.97毫升, 2.5M/己烷, 3.15当量) 逐滴添加（每 5 秒 1滴）至 4-溴-2-(4-甲氧基-苄基)-1-甲基-苯 (690 毫克, 3 当量) 在无水四氯呋喃 (2.7毫升) 中的经氧脱气溶液（置于预干燥的 Biotage™微波小玻璃瓶 10-20 毫升中, 以盖密封, 且置于正氮气流下）内, 并将所形成的溶液于此温度下再搅拌一小时。接着, 使用注射泵, 逐滴添加 (2R, 3S, 4S)-2, 3, 4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲基-苄氧基甲基)-己酸甲基酯 -甲基 -酰胺 (I-1g) (608 毫克) 在无水四氯呋喃 (1.35毫升) 中的溶液, 历经 1.5 小时, 且将所形成的混合物在-78℃下搅拌 1 小时, 然后, 使其温暖至 -20℃, 历经 14 小时（置于以铝箔覆盖的深 Dewar 中, 以保持冷温度; Dewar 的尺寸; 外径 10 厘米, 内径 8 厘米, 高度 9 厘米）。添加乙醚, 并通过逐滴添加 1M 盐酸水溶液使反应消炎。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相, 以盐水洗涤，以硫酸镁干燥, 过滤, 及浓缩。在硅胶上层析, 使用 20 至 50% 醋酸乙酯在庚烷中的梯度, 获得产物, 为异构体的混合物 (440 毫克, 61% 产率)。

[0202] 对 C_{16}H_{18}O_{15}Na (M+Na+) 的 HRMS 计算值 953.4235, 实测值 953.4236。

[0203] ((2S, 3S)-2, 3, 4-三-苄氧基-5-[3-(4-甲氧基-苄基)-4-甲基-苯基]-6, 8-二氧杂 - 双环 [3.2.1] 辛 -1- 基) - 甲醇 (I-1k);

[0204]
[0205] 在中间体1-Ii (150毫克) 在二氯甲烷（3毫升）中的溶液内，添加苯甲醚（90微升，5当量），接着为3毫升的20%三氟醋酸在二氯甲烷中的溶液，并将所形成的混合物
在室温下搅拌约1小时。使混合物浓缩，且使粗制物在硅胶上层析（使用10至30%醋
酸乙酯在庚烷中的梯度），而得所期望的产物，为异构体的混合物（66毫克，61%产率）。
MS（LCMS）673.9（M+H⁺；正模式）。

[0206] (4S,5S)-3,4,5-三-苄氧基-2-[3-(4-乙氧基苄基)-4-甲基-苯基]-6,6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇(1-Ii);

[0207]

[0208] 在-78°C下，将正丁基锂（0.312毫升,2.5M/己烷,3.05当量）逐滴添加（每5秒
1滴）至4-溴-2-(4-乙氧基苄基)-1-甲基-苯（238毫克,3.05当量）在无水四氢呋喃
（0.9毫升）中的经氧胶体溶液（置予预干燥的Biotage™微波小玻璃10-20毫升中，以其盖
密封，且置于正氮气流下）内，并将所形成的溶液于此温度下再搅拌一小时。接着，使用注射
泵，逐滴添加（2R,3S,4S）-2,3,4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲
氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺 (1-Ig)（200毫克）在无水四氢呋喃（0.6
毫升）中的溶液，历经1.5小时，且将所形成的混合物在-78°C下搅拌1小时，然后，使其温
热至室温，历经 16 小时（置于以铝箔覆盖的深 Dewar 中，以保持冷温度；Dewar 的尺寸：外径 10 厘米，内径 8 厘米，高度 9 厘米）。添加乙醚，并通过逐滴添加 1M 盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤，及浓缩。使粗制物质层析，使用 Biotage™ 自动化层析单元（两个经叠加的 10 克硅胶柱；以 0 至 60% 醋酸乙酯在庚烷中的梯度洗脱），获得产物，为异构体的混合物（136 毫克，56% 产率）。MS (LCMS) 968 (M+Na⁺; 正模式)。

[0209] (2S, 3S)-2, 3, 4-三-苯氧基-5-[3-(-4-乙氧基苯基)-4-甲基-苯基]-6, 8-二氧杂-双环[3.2.1]辛-1-基-甲醇 (I-2k):

[0210] ![Chemical Structure](image)

(I-2k)

[0211] 在中间体 I-2i（136 毫克，0.145 毫摩尔）在二氯甲烷（4 毫升）中的溶液内，添加苯甲醇（310 微升，～5 当量），接着为 4 毫升的 20% 三氟醋酸在二氯甲烷中的溶液，并将所形成的混合物在室温下搅拌 1.5 小时。使混合物浓缩，使粗制物层析，使用 ISCO™ Combiflash® Companion® 自动化层析单元（4 克硅胶柱），及以 0 至 70% 醋酸乙酯在庚烷中的梯度洗脱，而得所期望的产物，为异构体的混合物（85 毫克，85% 产率）。MS (LCMS) 687.7 (M+H⁺; 正模式)。

[0212] (4S, 5S)-3, 4, 5-三-苄氧基-2-[4-氯-3-(4-甲氧基-苄基)-苯基]-6, 6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇 (I-3i):

[0213]
(I-3i)

[0214] 在 -78℃ 下，将正丁基锂 (0.97 毫升，2.5M/己烷，3.15 当量) 逐滴添加（每 5 秒 1 滴）至 4- 溴-1-氯-2-(4-甲氧基-苄基)-苯 (725 毫克，2.95 当量) 在无水四氢呋喃 (2.7 毫升) 中的经氯脱气溶液（置于预干燥的 Biotage™ 微波小瓶 10-20 毫升中，以其盖密封，且置于正氯气流下）内，并将所形成的溶液于此温度下再搅拌一小时。接着，使用注射泵，逐滴添加 (2R, 3S, 4S)-2, 3, 4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺 (I-1g) (616 毫克) 在无水四氢呋喃 (1.35 毫升) 中的溶液，历经 1.5 小时，且将所形成的混合物在 -78℃ 下搅拌 1 小时，然后，使其温热至 -20℃，历经 14 小时（置于以铝箔覆盖的深 Dewar 中，以保持低温度；Dewar 的尺寸；外径 10 厘米，内径 8 厘米，高度 9 厘米）。添加乙醚，并通过逐滴添加 1M 盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤，及浓缩。在硅胶上层析，使用 10 至 40% 醋酸乙酯在庚烷中的梯度，获得产物，为异构体的混合物 (530 毫克，71% 产率)。

[0215] [(2S, 3S)-2, 3, 4-三-苄氧基-5-[4-氯-3-(4-甲氧基-苄基)-苄基]-6, 8-二氧杂-双环 [3.2.1] 辛-1-基]-甲醇 (1-3k)；

[0216]
[0217] 在中间体 I-3i (530 毫克) 在二氯甲烷 (11 毫升) 中的溶液内，添加苯甲醚 (300 微升，5 当量)，接着为 11 毫升的 20% 三氟醋酸在二氯甲烷中的溶液，并将所形成的混合物在室温下搅拌 1 小时。使混合物浓缩，且使粗制物在硅胶上层析，使用 10 至 40% 醋酸乙酸在庚烷中的梯度，得到产物，为异构体的混合物 (229 毫克，59% 产率)。

[0218] MS (LCMS) 693.6 (M+H); 正模式。

[0219] (4S, 5S)-3, 4, 5-三-苄氧基 -2-[4-氯 -3-(4-乙氧基苄基)-苄基]-6, 6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇 (I-4i):

[0220]

[0221] 在 -78℃下，将正-丁基锂 (1.0 毫升，2.5M/己烷，3.25 当量) 逐滴添加 (每 5 秒 1 滴) 至 4-溴 -1-氯 -2-(4-乙氧基苄基)-苯 (815 毫克，3.25 当量) 在无水四氯呋喃 (2.9 毫升) 中的经氧脱气溶液 (置于预干燥的 Biotage™ 微波小玻瓶 10-20 毫升中，以其盖密封，且置于正氮气流下) 内，并将所形成的溶液于此温度下再搅拌一小时。接着，使用注射泵，逐滴添加 (2R, 3S, 4S)-2, 3, 4-三-苄氧基-5-羟基 -6-(4-甲氧基-苄氧基)-5-(4-甲
氧基 - 苯基甲基） - 己酸甲酯 - 甲基 - 醋胺 (I-1g) (600 毫克) 在无水四氢呋喃 (1.45 毫升) 中的溶液, 历经 1.3 小时, 及将所形成的混合物在 -78°C 下搅拌 1 小时, 然后, 使其温热至 -25°C, 历经 14 小时 (置于以铝箔覆盖的深 Dewar 中, 以保持冷温度 ; Dewar 的尺寸 ; 外径 10 厘米，内径 8 厘米，高度 9 厘米)。添加乙醚，并通过逐滴添加 1M 盐酸水溶液使反应熄灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤，及浓缩。在硅胶上层析，使用 10 至 40% 醋酸乙酯在庚烷中的梯度，获得产物，为异构体的混合物 (280 毫克, 38% 产率)。

[0222] 对 C_{20}H_{16}O_7ClNa (M+Na^+) 的 HRMS 计算值 987.3845, 实测值 987.3840。

[0223] ((2S, 3S)-2, 3, 4- 三 - 苯基甲基 -5-[4- 氯 -3-(4- 苯基苯基) - 苯基] -6, 8- 二氧杂双环 [3.2.1] 辛 -1- 基) - 甲醇 (I-4k):

\[\text{(I-4k)} \]

[0225] 在中间体 I-4i (1.46 克) 在二氯甲烷 (31 毫升) 中的溶液内, 添加苯甲醚 (900 微升, ~ 5 当量), 接着为 31 毫升的 20% 三氯醋酸在二氯甲烷中的溶液, 并将所形成的混合物在室温下搅拌 1 小时。浓缩混合物, 且使粗制物在硅胶上层析, 使用 10 至 30% 醋酸乙酯在庚烷中的梯度, 得到产物, 为异构体的混合物 (670 毫克, 63% 产率).

[0226] 对 C_{20}H_{16}O_7Cl (M+H^+) 的 HRMS 计算值 707.2770, 实测值 707.2765。

[0227] (4S, 5S)-3, 4, 5- 三 - 苯基甲基 -2-[4- 氯 -3-(4- 苯基苯基) - 苯基] -6, 6- 双 -(4- 甲氧基 - 苯氧基甲基) - 四氢 - 吡喃 -2- 醇 (I-5i):

[0228]
在-78℃及氮气下，将正辛基锂 (462 微升, 2.5 M/己烷, 3.0 当量) 逐滴添加 (每 5 秒 1 滴) 至 4-溴-1-氟-2-(4-甲氧基-苄基)-苯 (341 毫克, 3 当量) 在无水四氢呋喃 (1.4 毫升) 中的经氧脱气溶液 (置于预干燥的 Biotage® 微波小波瓶 10-20 毫升中, 以其盖密封, 且置于正氮气流下) 内。将所形成的溶液在此温度下搅拌 1 小时。接着, 极慢地逐滴添加 (每 5 秒 1 滴) (2R, 3S, 4S)-2, 3, 4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺 (1-1g) (300 毫克, 0.385 毫摩尔) 在无水四氢呋喃 (0.70 毫升) 中的溶液, 并将所形成的混合物在-78℃下再搅拌一小时, 然后温热至 10℃, 历经 12 小时 (置于以铝箔覆盖的深 Dewar 中, 以保持常温度; Dewar 的尺寸; 外径 10 厘米, 内径 8 厘米, 高度 9 厘米)。将反应物以乙醚稀释, 且通过逐滴添加 1N 盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相, 以盐水洗涤, 以硫酸镁干燥, 过滤, 及在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化 (以 10 至 40% 醋酸乙酯在庚烷中的梯度洗脱), 得到产物, 为异构体的混合物 (199 毫克, 55% 产率)。

(2S, 3S)-2, 3, 4-三-苄氧基-5-[4-氟-3-(4-甲氧基-苄基)-苯基]-6, 8-二氧杂-双环 [3.2.1] 辛-1-基-甲醇 (1-5k);
[0232] 在室温及氮气下，于 (4S, 5S)-3, 4, 5, 三 - 苄氧基 - 2-[4- 氟 - 3-(4- 甲氧基 - 苄基) - 苄基]6, 6- 双 -(4- 甲氧基 - 苄氧基甲基) - 四氢 - 吡喃 - 2- 醇 (1-5i) 191 毫克, 0.204 毫摩尔) 在二氯甲烷 (3.75 毫升) 中的溶液内, 加入苯甲醚 (0.178 毫升, 1.63 毫摩尔), 接着为三氯醋酸在二氯甲烷中的 20% 溶液 (3.75 毫升)。在室温下搅拌 1 小时后，使反应混合物在减压下浓缩。得粗制残留物在硅胶上由急骤式层析纯化 (以 10 至 30% 醋酸乙酯在庚烷中的梯度洗脱)，得到产物，为异构体的混合物 (115 毫克, 83% 产率)。MS (LCMS) 677.7 (M+H+ ; 正模式)。

[0233] (4S, 5S)-3, 4, 5, 三 - 苄氧基 - 2-[3-(4- 乙氧基苄基) - 4- 氯苯基]6, 6- 双 -(4- 甲氧基 - 苄氧基甲基) - 四氢 - 吡喃 - 2- 醇 (1-10i)

[0234]

[0235] 在 -78°C 及氮气下，将正 - 丁基锂 (508 微升, 2.5M/己烷, 3.0当量) 逐滴添加 (每 5 秒 1 滴) 至 4- 溴 -2-(4- 乙氧基苄基) -1- 氟 - 苄 (392.0 毫克, 1.27 毫摩尔) 在无水四氢呋喃 (1.5 毫升) 中的经氧脱气溶液内。将所形成的溶液在此温度下搅拌 1 小时。接着, 极慢地逐滴添加 (每 5 秒 1 滴) (2R, 3S, 4S)-2, 3, 4- 三 - 苄氧基 - 5- 羟基 - 6-(4- 甲氧基 - 苄氧基) -5-(4- 甲氧基 - 苄氧基甲基) - 己酸甲基 - 甲基 - 酸胺I-tlg (330.0 毫克, 0.423 毫
摩尔) 棒水四氢呋喃 (0.75 毫升) 中的溶液，并将所形成的混合物在 -78°C 下再搅拌一小时，然后温热至 10°C，经历 12 小时 (置于以铝箔覆盖的深 Dewar 中，以保持冷温度)。将反应物以乙醚稀释，且通过逐滴添加 1N 盐酸水溶液使反应液灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤，及在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化 (以 10 至 40% 醋酸乙酯在庚烷中的梯度洗脱)，得到产物，为异构体的混合物 (180 毫克，44% 产率)。

(2S,3S)-2,3,4-三- 苯基氧基 -5-[3-(4- 乙氧基苯基) -4- 氰苯基] -6,8- 二氧杂- 双环 [3.2.1] 辛 -1- 基] - 甲醇 (I-10k)

(1-10k)

在室温及氮气下，在中间体 I-10i (180.0 毫克，0.19 毫摩尔) 在二氯甲烷 (2.0 毫升) 中的溶液中，添加苯甲酸 (0.175 毫升，1.60 毫摩尔)，接着为三氟醋酸在二氯甲烷 (2.0 毫升) 中的 20% 溶液。在搅拌 1 小时后，使反应混合物在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化 (以 10 至 30% 醋酸乙酯在庚烷中的梯度洗脱)，得到产物，为异构体的混合物 (85.0 毫克，64% 产率)。

(4S,5S)-3,4,5-三-苯基氧基 -2-[4-氰-3-[4-(四氢-呋喃-3-基氧基)- 苯基]- 苯基] -6,6- 双-(4- 甲氧基- 苯氧基甲基)- 四氢- 吡喃 -2- 醇 (I-11i)

(0240)
[0241] 在-78℃下,将正丁基锂（1.0 毫升, 2.5M/己烷, 3.0 当量）逐滴添加（每 5 秒 1 滴）至 3-[4-(5-溴-2-氟-苄基)-苯氧基]-四氢呋喃（3.0 毫升）中的经氧脱气溶液内,并将所形成的溶液在此温度下搅拌 1 小时。接着,极慢地逐滴添加（0.9 毫升/小时）(2R,3S,4S)-2,3,4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺 I-1g (650 毫克, 0.833 毫摩尔) 在无水四氢呋喃（1.5 毫升）中的溶液,且将所形成的混合物在-78℃下再搅拌一小时,然后温热至 10℃,经12小时（置于以铝箔覆盖的深 Dewar 中,以保持冷温度）。将反应物以乙醚稀释,并通过逐滴添加 1N 盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相,以盐水洗涤,以硫酸镁干燥,过滤,及在减压下浓缩。使粗制残留物在硅胶上由快速式层析纯化（以 10 至 40% 醋酸乙酯在庚烷中以梯度洗脱）,得到产物,为异构体的混合物 (287 毫克, 34% 产率)。

[0242] (2S,3S)-2,3,4-三-苄氧基-5-[4-氟-3-[4-(四氢-呋喃-3-基氧基)-苄基]-苯基]-6,8-二氧杂-双环[3.2.1]辛-1-基)-甲醇 (I-11k)

[0243]
在室温及氮气下，于 (4S, 5S)-3, 4, 5-三-苄氧基-2-[4-(四氢-呋喃-3-基氧基)-苄基]-6, 6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇 I-11i (275 毫克, 0.28 毫摩尔) 在二氯甲烷 (2.0 毫升) 中的溶液内, 添加苯甲酸 (0.250 毫升, 2.29 毫摩尔), 接着为三氟醋酸在二氯甲烷中的 20% 溶液 (8.0 毫升)。在搅拌 1 小时后, 使反应混合物在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化（以 10 至 30% 醋酸乙酯在庚烷中的梯度洗脱）, 得到产物, 为异构体的混合物 (168 毫克, 83% 产率)。

(4S, 5S)-3, 4, 5-三-苄氧基-2-[3-(4-氯-苄基)-4-氟苯基]-6, 6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇 (I-12i):

在-78℃下, 将正-丁基锂 (1.0 毫升, 2.5M/己烷, 3.1 当量) 逐滴添加 (每 5 秒 1 滴) 至 4-溴-2-(4-氯-苄基)-1-氟-苯 (702 毫克, 2.9 当量) 在无水四氢呋喃 (3.0 毫
中的经气脱气溶液（置于预干燥的 Biotage
微波小玻璃 10-20 毫升中，以其盖密封，
且置于正氮气流下）内，并将所形成的溶液在此温度下搅拌 25 分钟。接着，使用注射泵，逐
滴添加 (0.9 毫升 / 小时) (2R, 3S, 4S)-2, 3, 4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧
基)-5-(4-甲氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺 (1-1g) (621 毫克) 在无水四
氯呋喃 (1.5 毫升) 中的溶液，且将所形成的混合物于低温下再搅拌 17 小时 (置于以铝箔
覆盖的深 Dewar 中，以保持冷温度；Dewar 的尺寸：外径 10 厘米，内径 8 厘米，高度 9 厘米)。
通过逐滴添加 1M 盐酸水溶液 (1.5 毫升) 使反应淬灭。将所形成的两相混合物在室温下搅
拌 30 分钟。以饱和氯化铵溶液 (15 毫升) 稀释混合物，并以醋酸乙酯 (15 毫升 x3) 萃
取。将合并的有机溶液以盐水 (30 毫升) 洗涤，以硫酸镁干燥，过滤，及浓缩。在硅胶上层
析，使用 10 至 40% 醋酸乙酯在庚烷中的梯度，获得产物，为异构体的混合物 (477 毫克，64%
产率)。

[0248] (2S, 3S)-2, 3, 4-三-苄氧基-5-[3-(4-氯-苄基)-4-氯苯基]-6, 8-二氧杂-双环
[3.2.1] 环 -1- 基] - 甲醇 (1-12k)

[0249]

![化学结构式](image)

(l-12k)

[0250] 在中间体 I-12i (243 毫克) 在二氯甲烷 (9 毫升) 中的溶液内，添加苯甲醚 (0.15
毫升, 5.3 当量)，接着为三氟醋酸 (1.0 毫升, 50 当量)，并将所形成的混合物在室温下搅拌
2 小时。浓缩混合物，且使粗制物在硅胶上层析，使用 10 至 30% 醋酸乙酯在庚烷中的梯度，
得到产物，为异构体的混合物 (102 毫克, 58% 产率)。

[0251] (4S, 5S)-3, 4, 5-三-苄氧基-2-[4-氟-3-[4-(环氧丙烷-3-基氧基)-苄基]-苯基
]-6, 6-双 - (4- 甲氧基-苄氧基甲基)- 四氢 - 吡喃 -2- 醇 (1-13i)

[0252]
在-78°C下，将正丁基锂（1.12毫升，2.5M/己烷，3.0当量）逐滴添加（每5秒1滴）至3-[(4-5-溴-2-氟-苄基)-苯氧基]-环氧丙烷（942.0毫克，2.79毫摩尔）在无水四氢呋喃（3.0毫升）中的经氧脱气溶液内，并将所形成的溶液在此温度下搅拌1小时。接着，极慢地逐滴添加（0.9毫升/小时）（2R,3S,4S）-2,3,4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲氧基-苄氧基甲基)-乙酸甲氧基-甲基-酰胺1-1g（725.0毫克，0.930毫摩尔）在无水四氢呋喃（1.5毫升）中的溶液，且将所形成的混合物在-78°C下再搅拌1小时，然后温热至10°C，历经12小时（置于以铝箔覆盖的深Dewar中，以保持冷温度）。将反应物以乙醚稀释，并通过逐滴添加1N盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌15分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤，及在减压下浓缩。使粗制残留物在硅胶上经急骤式层析纯化（以10至40%醋酸乙酯在庚烷中的梯度洗脱），得到产物，为异构体的混合物（535毫克，59%产率）。

((2S,3S)-2,3,4-三-苄氧基-5-[4-氟-3-[4-(环氧丙烷-3-基氧基)-苯基]-6,8-二氧杂-双环[3.2.1]辛-1-基]-甲醇（1-13k）

[0253]
在室温及氮气下，于 (4S, 5S)-3, 4, 5-三-苄氧基-2-(4-氯-3-(4-环氧丙烷-3-基氧基)-苄基)-苯并三氮化-2-醇 1-13i (535 毫克, 0.548 毫摩尔）在二氯甲烷 (2.0 毫升) 中的溶液内，添加苯甲醚 (0.480 毫升, 4.38 毫摩尔)。

接着为三氟醋酸在二氯甲烷中的 20% 溶液 (8.0 毫升)。在搅拌 1 小时后，使反应混合物在减压下浓缩。使粗制残留物在硅胶上由急骤式层析纯化 (以 10 至 30% 醋酸乙酯在庚烷中的梯度洗脱)，得到产物，为异构体的混合物 (300 毫克, 76% 产率)。

(4S, 5S)-3, 4, 5-三-苄氧基-2-(4-氯-3-(4-环氧丙烷-3-基氧基)-苄基)-苯并三氮化-2-醇 1-14i：

[0259]
在 -78°C 下，将正丁基锂（0.97 毫升，2.55M/己烷，3.15 当量）逐滴添加（每 5 秒 1 滴）至 3-[4-(5-溴-2-氯苯基)苯氧基]环氧丙烷（824 毫克，2.95 当量）在无水四氢呋喃（2.7 毫升）中的经氯脱气溶液（置于干燥的 Biotage™微波小玫瑰 10-20 毫升中，以其盖密封，且置于正氯气流下）内，并将所形成的溶液于此温度下再搅拌一小时。接着，使用注射泵，逐滴添加（2R, 3S, 4S）-2, 3, 4-三-苄氧基-5-羟基-6-(4-甲氧基-苄氧基)-5-(4-甲氧基-苄氧基甲基)-己酸甲氧基-甲基-酰胺（I-1g）（616 毫克）在无水四氢呋喃（1.35 毫升）中的溶液，历经 1.5 小时，且将所形成的混合物在 -78°C 下搅拌 1 小时，然后，使其温热至 -20°C，历经 14 小时（置于以铝箔覆盖的深 Dewar 中，以保持冷温度；Dewar 的尺寸：外径 10 厘米，内径 8 厘米，高度 9 厘米）。添加乙酸，并通过逐滴添加 1M 盐酸水溶液使反应淬灭。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以硫酸钠干燥，过滤，及浓缩。在硅胶上层析，使用 0-50% 醋酸乙酯在庚烷中的梯度，获得产物，为异构体的混合物（563 毫克，72% 产率）。

（2S, 3S, 2, 3, 4-三-苄氧基-5-[4-氯-3-[4-环氧丙烷-3-基氧基]-苯基]-苄基]-6, 8-二氧杂-双环[3.2.1]辛 -1-基)-甲醇（I-14k）
(I-14k)

[0256] 在中间体 (4S, 5S)-5-[4-氯-3-[4-(环氧化丙烷-3-基氧
基)-苄基]-苄基]-6, 6-双-(4-甲氧基-苄氧基甲基)-四氢-吡喃-2-醇 I-14i (282 毫克)
在二氯甲烷 (2.84 毫升) 中的溶液内, 添加苯甲醚 (200 微升, ~ 7 当量), 接着为 3.07
毫升的 20% 氟化酸酸在二氯甲烷中的溶液, 并将所形成的混合物在室温下搅拌 1.5 小时。浓缩混合物, 且使粗制物在硅胶上层析, 使用 10 至 50% 醋酸乙酯在庚烷中的梯度, 得到产物,
为异构体的混合物 (186 毫克, 89% 产率)。

[0264] 实例 1

[0265] (1S, 2S, 3S, 4R, 5S)-1-羟甲基-5-[3-(4-甲氧基-苄基)-4-甲基-苄基]-6, 8-二
氧杂-双环 [3. 2. 1] 辛烷 -2, 3, 4-三醇 (1A) 与 (1S, 2S, 3S, 4S, 5S)-1-羟甲基-5-[3-(4-甲
氧基-苄基)-4-甲基-苄基]-6, 8-二氧杂-双环 [3. 2. 1] 辛烷 -2, 3, 4-三醇 (1B):

[0266]
说明书

于 (2S,3S)-2,3,4-三-苯氧基-5-[3-(4-甲氧基-苯基)-4-甲基-苯基]-6,8-二氧杂-双环 [3.2.1] 辛 -1-基) -甲醇 (1-1k; 236 毫克) 在乙醇 / 四氢呋喃 (7 毫升, 4/1 份体积) 中的溶液内, 连续添加甲酸 (270 微升, 19 当量) 与钯黑 (150 毫克, 4 当量), 并将所形成的混合物在室温下搅拌 3 小时。过滤钯, 且使蒸发溶剂后所获得的粗制混合物在硅胶上由层析纯化, 以 85 至 100% 醋酸乙酯在庚烷中的梯度洗脱。使所获得产物的混合物在 HPLC 制备型纯化。

HPLC 制备型方法: 反相 C18phenomenex 柱 Luna5 微米 150x21.20 毫米, 20 毫升/分钟, 梯度为乙腈 /0.1% 甲酸 : 水 /0.1% 甲酸 :20 至 60% 乙腈 /0.1% 甲酸, 历经 20 分钟。UV 检测: 254 毫微米。HPLC 显示非对映异构体的比例为 3:1 (IA:IB)。

IA : (55 毫克, 39% 产率) ; Rf = 10.9 分钟; 使含有产物的组分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。MS (LCMS) 403.3 (M+H+; 正模式) 447.3 (M+HCO3-; 负模式)。

1H NMR (400MHz, 甲醇-d4) δ 7.33 (d, 1H, J=1.6Hz), 7.30 (dd, 1H, J=7.6 与 1.6Hz), 7.10 (d, 1H, J=7.6Hz), 7.02-6.98 (m, 2H), 6.79-6.75 (m, 2H), 6.13 (d, 1H, J=7.4Hz), 3.90 (s, 2H), 3.82 (d, 1H, J=12.5Hz), 3.77 (dd, 1H, J=8.2 与 1.2Hz), 3.72 (s, 3H), 3.66 (d, 1H, J=12.5Hz), 3.65 (t, 1H, J=8.0Hz), 3.59 (d, 1H, J=7.8Hz), 3.58 (dd, 1H, J=7.5 与 1.5Hz), 2.16 (s, 3H)。对 C22H25O7 (M+H+) 的 HRMS 计算值 403.1751, 实测值 403.1737。

1B : (20 毫克, 14% 产率) ; Rf = 11.5 分钟; 使含有产物的组分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。MS (LCMS) 403 (M+H+; 正模式) 447 (M+HCO3-; 负模式)。

1H NMR (400MHz, 甲醇-d4) δ 7.38 (d, 1H, J=1.8Hz), 7.33 (dd, 1H, J=7.9 与 1.8Hz), 7.10 (d, 1H, J=7.9Hz), 7.02-6.97 (m, 2H), 6.79-6.74 (m, 2H), 6.42 (d, 1H, J=7.4Hz), 3.93 (t, 1H, J=2.2Hz), 3.91 (宽大 s, 2H), 3.88 (d, 1H, J=12.5Hz), 3.84 (d, 2H, J=2.4Hz), 3.75 (d, 1H, J=12.5Hz), 3.71 (s, 3H), 3.49 (d, 1H, J=7.4Hz), 2.16 (s, 3H)。

2 实例 2

(1S,2S,3S,4R,5S)-5-[3-(4-乙氧基苄基)-4-甲基-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇 (2A) 与 (1S,2S,3S,4S,5S)-5-[3-(4-乙氧基苄基)-4-甲基-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2,3,4-三醇 (2B)

[0275]
说 明 书

于 \((2S, 3S)-2, 3, 4-三-苯氧基-5-[3-(4-乙氧基苄基)-4-甲基-苯基]-6, 8-二氧杂-双环 [3. 2. 1] 辛 -1- 基 \) - 甲醇 (1:2k:85 毫克, 0.12 毫摩尔) 在乙醇 / 四氢呋喃 (7 毫升, 4/1 体积) 中的溶液内, 继续添加甲酸 (95 微升, 19 当量) 与钯黑 (53 毫克, 4 当量), 并将所形成的混合物在室温下搅拌 3 小时。过滤钯, 且使蒸发溶剂后所获得的粗制混合物由 HPLC 制备型纯化。

HPLC 制备型方法：反相 C18phenomenex 柱 Luna5 微米 150x21.20 毫米, 20 毫升 / 分钟, 流度为乙醇 /0.1% 甲酸 : 水 /0.1% 甲酸; 20 至 60% 乙腈 /0.1% 甲酸, 历经 20 分钟, UV 检测 : 254 毫微米。HPLC 显示非对映异构体的比例为 4 : 1 (2A : 2B)。

2A : (20 毫克 ; 38% 产率) \(R_f = 12.7 \) 分钟; 使含有产物的级分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

MS (LCMS) 417.3 (M+H⁺ ; 正模式) ; 461.4 (M+HCO₃⁻ ; 负模式) 。\(^1\)H NMR (400MHz, 甲醇 -d₆) \(\delta \) ppm: 3.4 (t, J=6.9Hz, 3H), 2.18 (s, 3H), 3.60 (d, J=8Hz, 2H), 3.66 (t, J=8Hz, 1H), 3.68 (d, J=12.5Hz, 1H), 3.78 (d, J=12.4Hz, 1H), 3.84 (d, J=12.4Hz, 1H), 3.92 (s, 2H), 3.97 (q, J=7Hz, 2H), 4.15 (d, J=7.5Hz, 1H), 6.77 (m, 2H), 7.00 (m, 2H), 7.12 (d, J=7.7Hz, 1H), 7.31 (dd, J=7.9 与 1.4Hz, 1H), 7.34 (s, 1H)。

2B : (5 毫克 ; 9% 产率) \(R_f = 13.2 \) 分钟; 使含有产物的级分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

MS (LCMS) 417.3 (M+H⁺ ; 正模式) ; 461.4 (M+HCO₃⁻ ; 负模式) 。\(^1\)H NMR (400MHz, 甲醇 -d₆) \(\delta \) ppm: 3.4 (t, J=6.9Hz, 3H), 2.18 (s, 3H), 3.52 (d, J=11Hz, 1H), 3.77 (d, J=12.5Hz, 1H), 4.00-3.84 (m, 8H), 4.04 (d, J=7.4Hz, 1H), 6.79-6.75 (m, 2H), 7.03-6.98 (m, 2H), 7.12 (d, J=7.9Hz, 1H), 7.35 (dd, J=7.7 与 1.9Hz, 1H), 7.39 (d, J=1.9Hz, 1H)。

实例 3

(1S, 2S, 3S, 4R, 5S)-5-4-氯-3-(4-甲氧基-苯基)-苯基 \(-1-\) 羟甲基 -6, 8-二氧杂-双环 [3. 2. 1] 辛烷 -2, 3, 4-三醇 (3A) 与 (1S, 2S, 3S, 4S, 5S)-5-4-氯-3-(4-甲氧基-苯基)-苯基 \(-1-\) 羟甲基 -6, 8-二氧杂-双环 [3. 2. 1] 辛烷 -2, 3, 4-三醇 (3B) :
于 (2S, 3S)-2, 3, 4-三-苯基-5-[4-氯-3-(4-甲氧基-苯基)-苯基]-6, 8-二氧杂-双环[3.2.1]辛-1-基)-甲醇 (1-3k; 229毫克) 在乙醇/四氢呋喃 (7 毫升, 4/1 份体积) 中的溶液内, 连续添加甲酸 (270 微升, 20 当量) 与钯黑 (140 毫克, 4 当量), 并将所形成的混合物于室温下搅拌。1 小时后, 添加另外的甲酸 (270 微升, 20 当量) 与钯黑 (140 毫克, 4 当量), 且将混合物在室温下再搅拌一小时。过滤钯, 及使蒸发溶剂后所获得的粗制混合物由 HPLC 制备型纯化。

HPLC 制备型方法: 以相 C18phenomenex 柱 Luna5 微米 150x21.20 毫米, 20 毫升 / 分钟; 梯度为乙腈 /0.1% 甲酸 ; 水 /0.1% 甲酸; 20 至 60% 乙腈 /0.1% 甲酸, 经过 20 分钟。UV 检测: 254 毫微米。HPLC 显示非对映异构体的比例为 1.4:1(3A:3B)。

A: (50 毫克; 36% 产率) Rf=12.1 分钟, 使含有产物的级分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并在减压下浓缩。

MS(LCMS) 423.3 (M+H+ ; 正模式) ; 467.3 (M+HCO3- ; 负模式)。1H NMR(400MHz, 甲醇 -d4) δ 7.43(s, 1H), 7.38-7.30(m, 2H), 7.08(d, 2H), 6.79(d, 2H), 4.12(d, 1H, J=7.5Hz), 4.01(s, 2H), 3.81(d, 1H, J=12.5Hz), 3.75(d, 1H, J=8.4Hz), 3.73(s, 3H), 3.66(d, 1H, J=11.7Hz), 3.63(t, 1H, J=8.2Hz), 3.57(d, 1H, J=7.4Hz), 3.52(d, 1H, J=7.8Hz)。对 C12H10O4Cl (M+H+) 的 HRMS 计算值 423.1205, 实测值 423.1192。

B: (77 毫克; 27% 产率) Rf=12.8 分钟, 使含有产物的级分在减压下浓缩。使粗制物质自正己烷乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并在减压下浓缩。

MS(LCMS) 423.3 (M+H+ ; 正模式) ; 467.3 (M+HCO3- ; 负模式)。1H NMR(400MHz, 甲醇 -d4) δ 7.50(d, 1H, J=1.9Hz) 7.42(dd, 1H, J=8.3 与 1.9Hz), 7.35(d, 1H, J=8.3Hz), 7.12-7.07(m, 2H), 6.83-6.78(m, 2H), 4.06-4.01(m, 3H), 3.91-3.83(m, 4H), 3.78-3.72(m, 4H), 3.51(d, 1H, J=7.5Hz)。

实例 4

(1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-乙氧基苯基)-苯基]-1-羟甲基-6, 8-二氧杂-双环[3.2.1] 辛烷-2, 3, 4-三醇 (A) 与 (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-乙氧基苯基)-苯基]-1-羟甲基-6, 8-二氧杂-双环[3.2.1] 辛烷-2, 3, 4-三醇 (B) ;
于 (2S, 3S)-2, 3, 4-三-芐基 -5-[4-氯-3-(4-乙氧基芐基)-苯基]-6, 8-二氧杂 -双环 [3, 2, 1] 苯 -1- 环 -甲醇 (1-4k; 335 毫克) 在乙醇 / 四氢呋喃 (10 毫升, 4/1 份体积) 中的溶液内, 继续添加甲酸 (420 微升, 22 当量) 与钯黑 (208 毫克, 4 当量), 井将所形成的混合物在室温下搅拌。1 小时后, 添加另外的甲酸 (420 微升, 22 当量) 与钯黑 (208 毫克, 4 当量), 且将混合物在室温下再搅拌一小时。过滤钯, 及使蒸发溶剂后所获得的粗制混合物由 HPLC 制备型纯化。

HPLC 制备型: 反相 C18Gemini 柱 5 微米 30x100 毫米, 40 毫升 / 分钟, 梯度为乙腈 / 0.1% 甲酸: 水 / 0.1% 甲酸; 25 至 50% 乙腈 / 0.1% 甲酸, 历经 18 分钟; UV 检测: 220 毫微米。

HPLC 显示非对映异构体的比例为 1.1:1 (4A:4B)。

4A: (60 毫克, 29% 产率); Rf=12.4 分钟; 使含有产物的级分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

MS (LCMS) 437.3 (M+H: 正模式): 481.3 (M+HCO3: 负模式)。1H NMR (400MHz, 甲醇 -d4) δ 7.43 (d, 1H, J=1.9Hz), 7.36 (dd, 1H, J=8.3 与 2Hz), 7.32 (d, 1H, J=8.3Hz), 7.00-7.04 (m, 2H), 6.79-6.75 (m, 2H), 6.12 (d, 1H, J=7.5Hz), 4.00 (s, 2H), 3.96 (q, 2H, J=7.0Hz), 3.81 (d, 1H, J=12.5Hz), 3.75 (dd, 1H, J=8.3 与 1.3Hz), 3.65 (d, 1H, J=12.5Hz), 3.63 (t, 1H, J=8.2Hz), 3.57 (dd, 1H, J=7.5 与 1.3Hz), 3.52 (d, 1H, J=8.0Hz), 1.33 (t, 3H, J=6.9Hz)。对 C22H24O1Cl (M+H) 的 HRMS 计算值 437.1361, 实测值 437.1360。

4B: (30 毫克, 15% 产率); Rf=13.2 分钟; 使含有产物的级分在减压下浓缩。使粗制物质自醋酸乙酯与庚烷沉淀。将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

MS (LCMS) 437.3 (M+H: 正模式): 481.3 (M+HCO3: 负模式)。1H NMR (400MHz, 甲醇 -d4) δ 7.48 (d, 1H, J=1.9Hz), 7.40 (dd, 1H, J=8.1 与 1.9Hz), 7.32 (d, 1H, J=8.3Hz), 7.08-7.03 (m, 2H), 6.80-6.74 (m, 2H), 4.04-3.99 (m, 3H), 3.95 (q, 2H, J=7Hz), 3.89-3.81 (m, 4H), 3.73 (d, 1H, J=12.5Hz), 3.49 (d, 1H, J=7.3Hz), 1.32 (t, 3H, J=7Hz)。对 C22H24O1Cl (M+H) 的 HRMS 计算值 437.1361, 实测值 437.1358。

实例 5
说明书

(5A)

(5B)

[0303] 于 (2S, 3S) -2, 3, 4-三-苄氧基-5-[4-氟-3-(4-甲氧基-苄基)-苄基]-1-羟甲基-6, 8-二氧杂-双环 [3. 2. 1] 辛烷-2, 3, 4-三醇 (5A) 与 (1S, 2S, 3S, 4R, 5S) -5-[4-氟-3-(4-甲氧基-苄基)-苄基]-1-羟甲基-6, 8-二氧杂-双环 [3. 2. 1] 辛烷-2, 3, 4-三醇 (5B) : [0304] HPLC 制备方法: 反相 C18phenomenex 柱 Luna5 微米 150x21. 20 毫米, 20 毫升 / 分钟, 梯度为乙腈 / 0. 1% 甲酸 : 水 / 0. 1% 甲酸 ; 20 至 80% 乙腈 / 0. 1% 甲酸, 历时 20 分钟。 UV 检测 : 254 毫米。 HPLC 显示非对映异构体的比例为 1:1 (5A:5B)。

[0305] 5A : (6 毫克 ; 9% 产率) Rf=8. 5 分钟 ; 变液产物的级分在减压下浓缩。 使粗制物质自醋酸乙酯与庚烷沉淀。 将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

[0306] 1H NMR (400MHz, 甲醇 -d4) δ ppm 3. 55 (d, J=7. 8Hz, 1H), 3. 58 (dd, J=7. 5, 1. 2Hz, 1H), 3. 64 (t, J=8. 2Hz, 1H), 3. 67 (d, J=12. 5Hz, 1H), 3. 74 (s, 3H), 3. 77 (dd, J=8. 3, 1. 2Hz, 1H), 3. 83 (d, J=12. 5Hz, 1H), 3. 91 (s, 2H), 4. 14 (d, J=7. 4Hz, 1H), 6. 76-6. 84 (m, 2H), 7. 02 (dd, J=9. 9, 8. 3Hz, 1H), 7. 09-7. 13 (m, 2H), 7. 37-7. 44 (m, 2H) ; MS : 407. 4 (M+H+) ; 正模式 ; 451. 3 (M+HCO3- ; 负模式)

[0307] 5B : (12 毫克 ; 17% 产率) Rf=9 分钟 ; 变液产物的级分在减压下浓缩。 使粗制物质自醋酸乙酯与庚烷沉淀。 将所形成的白色固体以庚烷洗涤 2 次, 并于减压下干燥。

[0308] 1H NMR (400MHz, 甲醇 -d4) δ ppm 3. 51 (d, J=7. 4Hz, 1H), 3. 74 (s, 3H), 3. 75 (d, 1H, J= 13Hz), 3. 83-3. 93 (m, 6H), 4. 03 (d, J=7. 4Hz, 1H), 6. 78-6. 82 (m, 2H), 7. 02 (dd, J=9. 9, 8. 5Hz, 1H), 7. 09-7. 13 (m, 2H), 7. 42-7. 49 (m, 2H) ; MS : 407. 4 (M+H+) ; 正模式 ; 451. 3 (M+HCO3- ; 负模式)

[0309] 实例 6

[0310] 2-(4-甲氧基苄基)-4-((1S, 2S, 3S, 4R, 5S)-2, 3, 4-三羟基-1-(羟甲基)-6, 8-二氧杂-双环 [3. 2. 1] 辛 -5-基) - 苄腈 (6A) ;

[0311]
【0312】于 0℃下，将正-丁基锂（1.04 毫升，2.6 毫摩尔，2.5M，在己烷中）添加至异丙基溴化钾的溶液（1.27 毫升，1.27 毫摩尔，1.0M，在四氢呋喃中）中。在搅拌 30 分钟后，使所形成的混合物冷却至 -78℃并用 4- 溴-2-(4-乙氧基苯基)- 苄腈（380 毫克，1.20 毫摩尔）在无水四氢呋喃（1 毫升）中的溶液。将绿色混合物在 -78℃下搅拌 1 小时，且极慢地加入（在 20 分钟内，每 5 秒 1 滴）(2R, 3S, 4S)-2, 3, 4, 6- 四-苄氧基-5- 苄氧基甲基-5- 羟基- 乙酰甲氧基- 甲基- 酯油 (1.6g) (700 毫克，0.972 毫摩尔) 在无水四氢呋喃 (2 毫升) 中的溶液。将溶液在 -78℃下搅拌 1 小时，并慢慢温热至室温，历经 3 小时。通过逐滴添加 1M 盐酸水溶液使反应液析，然后以醋酸乙酯稀释。将所形成的两相混合物在室温下搅拌 15 分钟。分离有机相，以盐水洗涤，以硫酸镁干燥，过滤及浓缩，获得粗产物。使粗产物在硅胶上由急骤式层析纯化，以 0 至 20% 醋酸乙酯在庚烷中的梯度洗脱，获得所要的中间体 2-(4- 乙氧基苄基)-4-((4S, 5S)-3, 4, 5- 三 - 苄氧基 -6, 6- 双 - 苄氧基甲基 -2- 羟基 - 四氢 - 吡喃 -2- 基) - 苄腈 (300 毫克；34% 产率)。MS918.8 (M+Na⁺, 正模式)。

【0313】在 -78℃下，将三氯化硼 (4.18 毫升, 4.18 毫摩尔，在己烷中的 1M 溶液) 添加至上述中间体 (250 毫克，0.279 毫摩尔) 在 CH₂Cl₂ (2 毫升) 中的溶液内。将混合物在 -78℃下搅拌 10 分钟，然后温热至室温过夜。以水 (10 毫升) 使混合物反应液析，并以醋酸乙酯 (50 毫升) 萃取。使有机层以硫酸钠干燥，及蒸发至干涸。在硅胶上由急骤式层析纯化（以甲醇在二氯甲烷中：1 对 9 体积比洗脱），获得所要的中间体 2-(4- 羟基- 苄基) -4-((1S, 2S, 3S, 4R, 5S)-2, 3, 4- 三 羟 基 -1- 羟甲 基 -6, 8- 二 氧 杂 - 双环 [3.2.1] 辛 -5- 基) - 苄腈 (35 毫克，30% 产率)。

【0314】在室温下，将碳酸钾（28 毫克，0.2 毫摩尔）添加至上述中间体 (34 毫克，0.077 毫摩尔) 在丙酮 (0.4 毫升) 中的溶液内，接着为碘甲烷 (7 微升，0.11 毫摩尔)。将混合物于 45℃下搅拌过夜，以醋酸乙酯 (60 毫升) 稀释混合物，并以水洗涤，使有机层以硫酸钠干燥，及蒸发至干涸。在硅胶上通过制备型双层柱层析纯化（以甲醇在二氯甲烷中：1 对 9 体积比洗脱），允许分离所期望的产物 6A (18 毫克；57% 产率)。

【0315】^1H NMR (400MHz, 甲醇 -d₄) 5 7.69 (d, J=8Hz, 1H), 7.61 (s, 1H), 7.56 (d, J=8Hz, 1H), 7.19-7.14 (m, 2H), 6.87-6.82 (m, 2H), 4.18 (d, J=7.6Hz, 1H), 1.44 (s, 2H), 3.86 (d, J=12.7Hz, 1H), 3.75 (d, J=8.3Hz, 1H), 3.76 (s, 3H), 3.69 (d, J=12.5Hz, 1H), 3.67 (t, J=8.1Hz, 1H), 3.61 (d, J=7.6Hz, 1H), 3.54 (d, J=8Hz, 1H); MS458.4 (M+HCO⁻, 负模式)。

【0316】实例 7

【0317】2-(4-乙氧基苄基)-4-((1S, 2S, 3S, 4R, 5S)-2, 3, 4- 三羟基-1-(羟甲基)-6, 8- 二氧杂 - 双环 [3.2.1] 辛 -5- 基) - 苄腈 (7A):
[0319] 在室温下，将碳酸钾（8毫克, 0.058毫摩尔）添加至中间体2-(4-羟基-苄基)-4-(1S, 2S, 3S, 4R, 5S)-2, 3, 4-三羟基-1-羟甲基-6, 8-二氧杂-双环[3.2.1]辛-5-基)-苄睛（参阅实例6；8.9毫克, 0.022毫摩尔）在丙酮(0.4毫升)中的溶液内，接着为碘化乙烯 (4微升, 0.044毫摩尔)。将混合物于45°C下搅拌过夜。以醋酸乙酯 (60毫升) 稀释混合物，并以水洗涤。使有机层以硫酸钠干燥，及蒸发至干涸。在硅胶上通过
制备型薄层层析纯化（以甲醇在二氯甲烷中:1 对9体积比洗脱），允许分离所期望的产物
7A (2.4毫克; 26%产率)。

[0320] 1H NMR (甲醇-d4) δ 7.69 (d, J=8.0 Hz, 1H), 7.61 (d, J=1.5 Hz, 1H), 7.56 (dd, J=8.0, 1.5 Hz, 1H), 7.17-7.13 (m, 2H), 6.86-6.81 (m, 2H), 4.18 (d, J=7.5 Hz, 1H), 4.14 (s, 2H), 4.01 (q, J=7.0 Hz, 2H) ; 3.86 (d, J=12.5 Hz, 1H) ; 3.80 (dd, J=8.0 与 1.2 Hz, 1H) ; 3.70 (d, J=11.7 Hz, 1H) ; 3.67 (t, J=8.0 Hz, 1H) ; 3.61 (dd, J=7.5 与 1.2 Hz, 1H) ; 3.54 (d, J=7.8 Hz, 1H) ; 1.37 (t, J=7.0 Hz, 3H); MS: 472.1 (M+HCOO- ; 负模式)。

[0321] 实例8说明实例3B化合物的结晶性衍生物的制备，以确认实例3B的结构与立体化学。

[0322] 实例8

[0323] 根据 (1S, 2S, 3S, 4S, 5S)-5-[4-氧-3-(4-氧基-苄基)-苯基]-1-羟甲基-6, 8-二氧杂-双环[3.2.1]辛烷-2, 3, 4-三醇 (3B) 的 4-溴苯甲酰化作用，获得 (8A) :
[0325] 于 (1S, 2S, 3S, 4S, 5S)-5-[4-氯-3-(4-甲氧基-苄基)-苯基]-1-羟甲基-6, 8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇 (3B) (11 毫克, 0.026 毫摩尔) 在无水四氢呋喃 (600 微升) 中的溶液内，在室温下，添加 N,N-二异丙基乙酰胺 (32 微升, 7 当量) 与 4-二甲氨基吡啶 (3 毫克, 0.9 当量)，接着为对 - 溴苯甲酰氯 (35 毫克, 6 当量)，并将所形成的混合物在室温下搅拌 62 小时。添加醋酸乙酯与水，且将有机相以 0.5M 盐酸水溶液与盐水连续洗涤。使有机相以硫酸镁干燥，过滤，浓缩，及使粗制物在硅胶上由急骤式层析纯化，以 15 至 30% 醋酸乙酯在庚烷中的梯度洗脱，而得 27 毫克产物 (90% 产率)。

[0326] ¹H NMR (400MHz, 氯仿-d) δ 7.82 (m, 2H), 7.74–7.64 (m, 4H), 7.58–7.46 (m, 8H), 7.42–7.34 (m, 4H), 7.29 (d, 1H, J=8.3Hz), 6.89 (m, 2H), 6.63 (m, 2H), 6.04 (dd, 1H, J=9.6 与 1Hz), 5.98 (dd, 1H, J=9.6 与 4.4Hz), 5.89 (d, 1H, J=4.4Hz), 4.70 (d, 1H, J=12.4Hz), 4.65 (d, 1H, J=12.4Hz), 4.60 (d, 1H, J=8Hz), 3.98–3.88 (m, 3H), 3.73 (s, 3H)。

[0327] 单晶通过蒸气扩散技术获得，使用庚烷与醋酸乙酯作为溶剂。熔点 =191°C。单晶 X- 射线分析，测量代表性晶体，且将数据集合（最高 sin θ/λ =0.5）收集于 Bruker APEX II/R 衍射计上。收集 Friedel 对，以帮助绝对形态的测定。原子散射因子取自关于结晶学的国际表。参阅关于结晶学的国际表，第 C 卷，第 219,500 页，Kluwer 大学出版社，1992。所有结晶学计算借助于 SHELXTL 系统。参阅 SHELXTL，第 5.1 版，Bruker AXS，(1997)。所有衍射计数据在室温下收集。相关晶体、数据收集及精制总结于下表 1 中。

[0328] 表 1

[0329] 关于实例 8A 的结晶数据与结构精制

[0330]
<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>实验式</td>
<td>C₄₉H₃₅O₁₁Br₄Cl</td>
</tr>
<tr>
<td>式量</td>
<td>1154.86</td>
</tr>
<tr>
<td>温度</td>
<td>296 (2) K</td>
</tr>
<tr>
<td>波长</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>晶系</td>
<td>单斜晶系</td>
</tr>
<tr>
<td>空间群</td>
<td>C₂</td>
</tr>
<tr>
<td>单位晶胞尺寸</td>
<td>a = 23.7485 (6) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 6.3175 (2) Å, β = 104.4910 (10)°</td>
</tr>
<tr>
<td></td>
<td>c = 32.3167 (8) Å, γ = 90°</td>
</tr>
<tr>
<td>体积</td>
<td>4694.3 (2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>密度（经计算）</td>
<td>1.634 毫克/立方米</td>
</tr>
<tr>
<td>吸收系数</td>
<td>5.216 毫米⁻¹</td>
</tr>
<tr>
<td>F (000)</td>
<td>2296</td>
</tr>
<tr>
<td>晶体大小</td>
<td>0.12 x 0.03 x 0.02 立方毫米</td>
</tr>
<tr>
<td>供数据收集的 θ 范围</td>
<td>3.75 至 50.43°</td>
</tr>
</tbody>
</table>

[0331] 所收集的反射 8339
独立反射 3932 [R(int) = 0.0491]
对 θ 的完整性 = 50.43° 89.7%
吸收校正 实验吸收校正
精制方法 在 F² 上的全矩阵最小平方
数据/限制/参数 3932/1/587
在 F² 上的优异吻合 0.967
最后 R 指数 [I > 2σ(I)] R¹ = 0.0371, wR² = 0.0854
绝对结构参数 -0.03 (2)
消光系数 0.00011 (3)
最大衍射峰与孔洞 0.297 与 -0.294 e. Å⁻³

[0332] 试验结构通过直接法获得。此试验结构例行性地精制。氢位置在任何可能的情况下计算。甲基氢通过差异 Fourier 技术定位，接着理想化。将氢参数加入结构因子计算，而
未精制。在最小平方精制的最后循环中计算的位移全部低于其相应标准偏差的 0.1。最后 R- 指数为 3.71。最后差异 Fourier 未显示遗漏或误置的电子密度。所精制的结构是使用 SHEXLXL 绘图包作图（图 1）。绝对形态通过 Flack 的方法测定。参阅 Flack, H. D., Acta Crystallogr., A39, 876, (1983)。

【0333】 实例 9 说明实例 4A 化合物的结晶性衍生物的制备，以确认实例 4A 的结构与立体化学。

【0334】 实例 9

【0335】 根据 (1S, 2S, 3S, 4R, 5S)-5-[4- 氯 -3-(4- 乙基苯基基) - 苯基] -1- 羟甲基 -6, 8- 二氧杂 - 双环 [3.2.1] 辛烷 -2, 3, 4- 三醇 (4A) 的硝基苯甲酰基化作用，而得 (9A):

![结构图](image)

【0336】 (9A)

【0337】 于 (1S, 2S, 3S, 4R, 5S)-5-[4- 氯 -3-(4- 乙基苯基基) - 苯基] -1- 羟甲基 -6, 8- 二氧杂 - 双环 [3.2.1] 辛烷 -2, 3, 4- 三醇 (4A :10.6 毫克, 0.024 毫摩尔) 在无水四氢呋喃 (300 微升) 中，已在 0℃下冷却的溶液内，添加 N,N- 二异丙基乙胺 (30 微升, 0.27 当量) 与 4- 二甲氨基吡啶 (3 毫克, 0.02 当量)，接着为对 - 氯化硝基苯甲酸 (27 毫克, 0.13 当量)，并将所形成的混合物在 60℃下搅拌 6 小时。使混合物冷却至室温，添加醋酸乙酯与水，且将有机相以 0.5M 盐酸水溶液与盐水连续洗涤。使有机相以硫酸镁干燥，过滤，浓缩，及使粗制物在硅胶上由急骤式层析纯化以 10 至 50% 醋酸乙酯在庚烷中的梯度洗脱，而得 18 毫克产物 (73% 产率)。

【0338】 ^1H NMR (400MHz, 氯仿 -d) δ 8.33 (m, 2H), 8.28-8.12 (m, 8H), 8.07 (m, 2H), 8.00 (m, 2H), 7.91 (m, 2H), 7.45-7.40 (m, 2H), 7.34 (d, 1H, J=8.4Hz), 6.87 (m, 2H), 6.64 (m, 2H), 6.13 (d, 1H, J=8.6Hz), 6.06 (t, 1H, J=8.3Hz), 5.86 (d, 1H, J=8.1Hz), 4.81 (d, 1H, J=8.3Hz), 4.75 (d,
1H, J=12.7 Hz), 4.60 (d, 1H, J=12.8 Hz), 4.06 (d, 1H, J=8.6 Hz), 3.98–3.90 (m, 4H), 1.39 (t, 3H, J=7.1 Hz)

[0339] 单晶通过缓慢再结晶，自作为溶剂的乙醚/异丙醇而获得。熔点=211℃。测量代表性晶体，且将 0.88Å 数据集合（最高 sinθ/λ = 0.57）收集于 Bruker APEX II/R 衍射仪上。收集 Friedel 对，以帮助绝对形态的测定。原子散射因子取自关于结晶学的国际表。参阅关于结晶学的国际表，第 C 卷，第 219,500 页, Kluwer 大学出版社, 1992。所有结晶学计算借助于 SHELXTL 系统。参阅 SHELXTL, 5.1 版, Bruker AXS, (1997)。所有衍射计数据在室温下收集。相关晶体，数据收集及精制总结于下表 2 中。

[0340] 表 2

[0341] 关于实例 9A 的结晶数据与结构精制

[0342] 实验式 C₅₀H₇₇N₄O₁₅Cl

质量 1033.29
温度 296(2) K
波长 1.54178Å
晶系 单斜晶系
空间群 P2₁(1)
单位晶胞尺寸 a = 17.5050(4)Å, α=90°.
b = 6.2303(2)Å, β=97.6580(10)°.
c = 21.9545(5)Å, γ=90°.
体积 2373.03 (11) Å³
Z 2
密度 (经计算) 1.446 毫克/立方米
吸收系数 1.452 毫米⁻¹
F(000) 1068
晶体大小 0.18 x 0.02 x 0.01 立方毫米
供数据收集的 Θ 范围 2.55 至 61.76°
所收集的反射 8972
独立反射 5062 [R(int) = 0.0236]
对 Θ 的完整性 = 61.76° 85.8%
吸收校正 实验吸收校正
最高与最低透光率 0.9856 与 0.7801
精制方法 在 \mathbb{F}^2 上的全矩阵最小平方
数据/限制/参数 5062/1/668
在 \mathbb{F}^2 上的优异吻合 1.009
最后 R 指数 $[I>2\sigma(I)]$ $R_1^2 = 0.0436, wR_2^2 = 0.1090$
绝对结构参数 0.02(3)
消光系数 0.0015(2)
最大衍射峰与孔洞 0.217 与 -0.173 e.\AA^{-3}

[0344] 试验结构通过直接法获得。此试验结构例行性地精制。氢位置在任何可能的情况下计算。甲基氢通过差异 Fourier 技术定位，接着理想化。将氢参数加入结构因子计算，而未精制。在最小平方精制的最后循环中计算的位移全部低于其相应标准偏差的 0.1。最后 $R-$ 指数为 4.36%。最后差异 Fourier 未显示隙漏或误置的电子密度。

[0346] 实例 10

[0347] (1S, 2S, 3S, 4R, 5S)-5-[3-(4-乙氧基苯基)-4-氯苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇 (10A) 与 (1S, 2S, 3S, 4S, 5S)-5-[3-(4-乙氧基苯基)-4-氯苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇 (10B)

[0348]

(10A) (10B)

[0349] 于 (2S, 3S)-2, 3, 4-三氧氧基-5-[3-(4-乙氧基苯基)-4-氯苯基]-6,8-二氧杂-双环 [3.2.1] 辛-1-基) - 甲醇 1-10k (80.0 毫克, 0.120 毫摩尔) 在乙醇 / 四氢呋喃的
4:1 溶液（10 毫升）中的溶液内，连续添加甲酸（93 微克，2.32 毫摩尔）与钯黑（62 毫克，0.580 毫摩尔）。将所形成的混合物在室温下搅拌。3 小时后，另外的甲酸（93 微克，2.32 毫摩尔）与钯黑（62 毫克，0.580 毫摩尔）。5 小时后，反应混合物，并使滤液在减压下浓缩。使所形成的粗制残留物在硅胶上由急骤式层析纯化（以 0 至 15% 甲醇在二氯甲烷的梯度洗脱）。而得 35.0 毫克白色固体（异构体的混合物）。使异构体的混合物由制备型 HPLC 纯化。

[0350] HPLC 制备型方法：反相 C18Gemini 柱，5 微米 30×100 毫米，40 毫升/分钟流率，梯度为乙腈/0.1%甲酸：水/0.1%甲酸；25 至 50%乙腈/0.1%甲酸，历经 18 分钟；UV 检测：220 毫微米。

[0351] HPLC 分析方法：反相 C18Gemini 柱，5 微米 4.6×150 毫米，1 毫升/分钟流率，梯度为乙腈/0.1%三氟醋酸：水/0.1%三氟醋酸；5 至 100%乙腈/0.1%三氟醋酸，历经 12 分钟；UV 检测：220 毫微米。

[0352] 10A: (2.2 毫克，4.5% 产率)Rf=7 分钟（分析方法）；使含有产物的级分在减压下浓缩。

[0353] MS(LCMS) 421.4 (M+H+；正模式) 465.3 (M+HCO3−，负模式)。'HNMR (400MHz，甲醇-d6) s ppm.l.33 (t, J=7.0Hz, 3H), 3.53 (d, J=8.0Hz, 1H), 3.57 (dd, J=7.5, 1.5Hz, 1H), 3.60-3.67 (m, 2H), 3.75 (dd, J=8.3, 1.3Hz, 1H), 3.81 (d, J=12.5Hz, 1H), 3.89 (s, 2H), 3.96 (q, J=6.9Hz, 2H), 4.12 (d, J=7.4Hz, 1H), 6.77 (m, 2H), 7.00 (dd, J=9.4, 8.2Hz, 1H), 7.08 (m, 2H), 7.36-7.41 (m, 2H)。

[0354] 10B: (1.8 毫克，3.7% 产率)Rf=7.13 分钟（分析方法）；使含有产物的级分在减压下浓缩。

[0355] MS(LCMS) 421.4 (M+H+；正模式) 465.3 (M+HCO3−，负模式)。'HNMR (400MHz，甲醇-d6) s ppm.l.34 (t, J=7.0Hz, 3H), 3.51 (d, J=7.4Hz, 1H), 3.75 (d, 1H, J=12.5Hz), 3.82-4.01 (m, 8H), 4.03 (d, J=7.4Hz, 1H), 6.79 (m, 2H), 7.02 (dd, J=9.8, 8.4Hz, 1H), 7.10 (m, 2H), 7.41-7.49 (m, 2H)。

[0356] 注：于制备型 HPLC 后，使含有这些产物的级分浓缩，并在硅胶上由急骤式层析再纯化（以 0 至 10% 甲醇在二氯甲烷的梯度洗脱）。

[0357] 实例 11

[0358] (1S, 2S, 3S, 4R, 5S)-5-{4-氟 -3-[4-（四氢 -呋喃 -3 基 氧 基）-苄 基] -苯 基} -1- 羟基甲基 -6,8- 二氧杂 -双环[3.2.1] 辛烷 -2,3,4- 三醇（11A）

[0359]
[0360] 于 (2S, 3S)-2, 3, 4-三-苄氧基 -5-(4-氟 -3-[4-(四氢-呋喃 -3-基氧基)-苄基]-苯基)-6, 8-二氧杂-双环 [3.2.1] 辛 -1- 基 -甲醇 1-11k (160.0 毫克, 0.218 毫摩尔) 在乙醇/四氢呋喃的 4:1 溶液 (10 毫升) 中的溶液内, 连续添加甲酸 (185 微升, 4.64 毫摩尔) 与钯黑 (148 毫克, 1.39 毫摩尔) 将所形成的混合物在室温下搅拌 3 小时, 然后添加另外的甲酸 (185 微升, 4.64 毫摩尔) 与钯黑 (148 毫克, 1.39 毫摩尔) 5 小时后, 过滤反应混合物并使滤液在减压下浓缩。使所形成的粗制残留物在硅胶上由梯度式层析纯化 (以 0 至 15% 甲醇在二氯甲烷的梯度洗脱), 得到 100 毫克白色固体 (异构体的混合物)。使异构体的混合物由制备型 HPLC 纯化。

[0361] HPLC 制备型方法: 反相 Ci8Gemini 柱, 5 微米 30x100 毫米, 40 毫升/分钟流率, 梯度为乙腈/0.1% 甲酸; 水/0.1% 甲酸; 25 至 50% 乙腈/0.1% 甲酸, 历经 18 分钟; UV 检测: 220 毫微米。

[0362] HPLC 分析方法: 反相 Ci8Gemini 柱, 5 微米 4.6x150 毫米, 1 毫升/分钟流率, 梯度为乙腈/0.1% 三氟醋酸; 水/0.1% 三氟醋酸; 5 至 100% 乙腈/0.1% 三氟醋酸, 历经 12 分钟; UV 检测: 220 毫微米。

[0363] 11A: (19 毫克, 19% 产率) Rf=6.43 分钟 (分析方法): 使用含有产物的级分在减压下浓缩。

[0364] 1H NMR (400MHz, 甲醇 -d₄) δ ppm 2.03-2.11 (m, 1H), 2.15-2.25 (m, 1H), 3.55 (d, 1H, J=8Hz), 3.59 (dd, 1H, J=7.4 与 1Hz), 3.61-3.69 (m, 2H), 3.77 (dd, J=8 与 1Hz, 1H), 3.81-3.96 (m, 7H), 4.14 (d, J=7.4Hz, 1H), 4.94-4.98 (m, 1H), 6.79 (m, 2H), 7.02 (dd, J=9.9, 8.5Hz, 1H), 7.12 (m, 2H), 7.37-7.45 (m, 2H)。

[0365] 实例 12

[0366] (1S, 2S, 3S, 4R, 5S)-5-[3-(4-氯苄基)-4-氟苯基]-1-羟甲基-6, 8-二氧杂双环 [3.2.1] 辛烷 -2, 3, 4-三醇 (12A) 与 (1S, 2S, 3S, 4S, 5S)-5-[3-(4-氯苄基)-4-氟苯基]-1-羟甲基-6, 8-二氧杂双环 [3.2.1] 辛烷 -2, 3, 4-三醇 (12B)

[0367]
[0368] 在中间体 I-12k (102 毫克) 与钯黑 (98 毫克, 6.1 当量) 在乙醇/四氢呋喃 (2 毫升, 4/1 份体积) 中的混合物内，添加甲酸 (0.9 毫升)，并将所形成的混合物在室温下搅拌。1 小时后，添加另外的钯黑 (67 毫克, 4.2 当量)，且将混合物在室温下再搅拌一小时。通过经过 Celite® 过滤移除钯，及使滤液浓缩，获得产物混合物。将此物质与第二批次的粗制物质（按照上述操作，制自中间体 I-12k (80 毫克)）合并，通过制备型 HPLC 纯化。

[0369] HPLC 制备型条件: 反相 C18Gemini 柱 5 微米 30 x 100 毫米, 流率 40 毫升/分钟，梯度为乙腈/0.1% 甲酸: 水/0.1% 甲酸; 25 至 50% 乙腈/0.1% 甲酸, 历经 18 分钟; UV 检测: 220 毫微米。

[0370] HPLC 分析方法: 反相 C18Gemini 柱, 5 微米 4.6 x 150 毫米, 1 毫升/分钟流率, 梯度为乙腈/0.1% 三氟醋酸: 水/0.1% 三氟醋酸; 5 至 100% 乙腈/0.1% 三氟醋酸, 历经 12 分钟; UV 检测: 220 毫微米。

[0371] 12A: (18 毫克, 16% 产率) Rf=7.11 分钟 (分析方法): MS (LCMS) 411.3 (M+H; 正模式); 409.2 (M-H; 负模式)。1H NMR (400MHz, 甲醇-d4): 5 ppm 7.45-7.42 (m, 2H), 7.25 (d, J=8.4Hz, 2H), 7.19 (d, J=8.4Hz, 2H), 7.05 (dd, J=9.6, 9.2Hz, 1H), 4.15 (d, J=7.6Hz, 1H), 3.98 (s, 2H), 3.84 (d, J=12.4Hz, 1H), 3.78 (dd, J=8.4, 1.2Hz, 1H), 3.68 (d, J=12.8Hz, 1H), 3.66 (t, J=8.2Hz, 1H), 3.60 (dd, J=7.4, 1.4Hz, 1H), 3.56 (d, J=7.6Hz, 1H)。

[0372] 12B: (12 毫克, 11% 产率) Rf=7.25 分钟 (分析方法): MS (LCMS) 411.3 (M+H; 正模式); 409.1 (M-H; 负模式)。1H NMR (400MHz, 甲醇-d4): 5 ppm 7.52-7.45 (m, 2H), 7.25 (d, J=8.4Hz, 2H), 7.19 (d, J=8.4Hz, 2H), 7.05 (dd, J=9.8, 8.6Hz, 1H), 4.05 (d, J=7.2Hz, 1H), 3.98 (s, 2H), 3.91-3.84 (m, 4H), 3.76 (d, J=12.4Hz, 1H), 3.52 (d, J=7.6Hz, 1H)。

[0373] 实例 13

[0374] (1S, 2S, 3S, 4R, 5S)-5-[(4-氯-3-[4-((环氧丙烷-3-基氧基)-苯基]-苯基)-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷 -2, 3, 4- 三醇 (13A)
(13A)

[0376] 于 ((2S, 3S)-2, 3, 4-三 - 芳氧基 -5-[4-氟 -3-[4-(环氧丙烷 -3- 基氧基)- 苯基]- 苯基]-6, 8- 二氧杂 - 双环 [3. 2. 1] 辛 -1- 基)- 甲醇 1-13k (300 毫克，0. 417 毫摩尔) 在乙醇 / 四氢呋喃的 4:1 溶液 (10 毫升) 中的溶液内，连续添加甲酸 (333 微升，8. 34 毫摩尔) 与钯黑 (266 毫克，2. 50 毫摩尔)。将所形成的混合物在室温下搅拌。3 小时后，添加另外的甲酸 (333 微升，8. 34 毫摩尔) 与钯黑 (266 毫克，2. 50 毫摩尔)。5 小时后，过滤反应混合物，并使滤液在减压下浓缩。使所形成的粗制残留物在硅胶上通过骤式层析纯化（以 0 至 15% 甲醇在二氯甲烷的梯度洗脱），而得 153. 0 毫克白色固体（异构体的混合物）。使异构体的混合物通过制备型 HPLC 纯化。

[0377] HPLC 制备型方法：反相 C18Gemini 柱，5 微米 30x100 毫米，40 毫升 / 分钟流率，梯度为乙腈 /0. 1% 甲酸 : 水 /0. 1% 甲酸 :25 至 50% 乙腈 /0. 1% 甲酸，历经 18 分钟；UV 检测：220 毫微米。

[0378] 13A : (23 毫克，12% 产率) Rf = 7. 9 分钟；使含有产物的级分在减压下浓缩。

[0379] ¹H NMR (400MHz，甲醇 - d₄) δ ppm3. 52 (d，J = 7. 8Hz，1H)，3. 57 (d，J = 7. 2Hz，1H)，3. 60 - 3. 68 (m，2H)，3. 75 (d，J = 8. 2Hz，1H)，3. 81 (d，J = 12. 5Hz，1H)，3. 89 (s，2H)，3. 92 (d，J = 7. 4Hz，1H)，4. 63 (dd，J = 7. 3，4. 8Hz，2H)，4. 95 (t，J = 6. 5Hz，2H)，5. 16-5. 22 (m，1H)，6. 63 (m，2H)，7. 0 0 (dd，J = 9. 7，8. 5Hz，1H)，7. 10 (m，2H)，7. 36-7. 42 (m，2H)。

[0380] 实例 14

[0381] (1S, 2S, 3S, 4R, 5S)-5-[4-氟 -3-[4-(环氧丙烷 -3- 基氧基)- 苯基]- 苯基]-1- 羟甲基 -6, 8- 二氧杂 - 双环 [3. 2. 1] 辛烷 -2, 3, 4- 三醇 (14A)

[0382]
在中间体 (2S, 3S)-2, 3, 4-三 - 丙基 - 5- {4- 氯 - 3- [4-(环氧丙烷 - 3- 基氧基) - 丙基] - 苯基} - 苯基 的溶液中，连续添加甲酸 (190 微升，20 当量) 与钯黑 (106 毫克，4 当量)，并将在所形成的混合物在室温下搅拌。2 小时后，添加另外 1 毫升四氢呋喃 (14 毫升，4/1 体积) 中的溶液内，连续添加甲酸 (190 微升，20 当量) 与钯黑 (106 毫克，4 当量)，并将在所形成的混合物在室温下再搅拌一小时。此时，添加另外的甲酸 (190 微升，20 当量) 与钯黑 (106 毫克，4 当量)，并将混合物在室温下再搅拌一小时。过滤钯，及使蒸发溶剂后所获得的粗制混合物 (含有异构体的混合物) 通过 HPLC 制备型纯化。

HPLC 制备型方法：反相 C18Xbridge 柱 5 微米 100x30 毫米，流速 40 毫升 / 分钟，梯度为乙腈 / 0.1% 甲酸 : 水 / 0.1% 甲酸 : 30 至 55% 乙腈 / 0.1% 甲酸，历经 11 分钟；UV 检测：220 微米。

14A：(20 毫克，17% 产率)；Rf=4.43 分钟；使含有产物的级分在减压下浓缩，而造成白色固体。

MS (LCMS) 465.3 (M+H+ 正模式)；509.2 (M+HCO3- 负模式)。1H NMR (400MHz, 甲醇 -d6) δ ppm. 5.35 (d, J=8.0 Hz, 1H), 3.46 (s, J=1.4 Hz, 1H), 3.74 (d, J=12.4 Hz, 1H), 3.77 (dd, J=8.4, 1.4 Hz, 1H), 3.83 (d, J=12.4 Hz, 1H), 4.03 (s, 2H), 4.27 (t, J=6.6 Hz, 2H), 5.02 (m, 1H), 6.50 (m, 1H), 7.11 (m, 1H), 7.28 (m, 2H), 7.34 (d, J=8.4 Hz, 1H), 7.38 (dd, J=8.4, 2.1 Hz, 1H), 7.45 (d, J=2.0 Hz, 1H)。

实例 15

14A：(1S, 2S, 3S, 4R, 5S)-5- {4- 氯 - 3- [4-(乙氧基苯基) - 苯基] - 1- 羟甲基 - 6, 8- 二氧杂 - 双环 [3.2.1] 辛烷 - 2, 3, 4- 三醇 (实例 4A 化合物) 与 L-脯氨酸的共结晶作用，获得 (15):

将已溶于水中的 L-脯氨酸 (大约 480 毫克 / 毫升) 添加至实例 4A 化合物中 (每摩尔 (实例 4A 化合物) 大约 80 摩尔 L-脯氨酸)。以乙醇使体积加倍，并将溶液加盖，且搅拌大约 12 小时。于工作台上通过蒸发使体积减半。使用乙醇使体积加倍，且使用蒸发，使溶液体积再一次减半。使用离心过滤回收固体。
[0390] 实例 16
[0391] (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇（实例 4A 化合物）与 L-脯氨酸的共结晶作用，获得 (16)：
[0392] 将已溶于水中的 L-脯氨酸（大约 480 毫克/毫升）添加至实例 4A 化合物中（每摩尔实例 4A 化合物大约 59 摩尔 L-脯氨酸）。以甲醇使体积加倍，且溶液为透明。使用丙酮使体积增加达 25%。将溶液加温，并搅拌大约 12 小时。于工作台上通过蒸发使体积减少达大约 60%。使用甲醇使体积加倍，及使残留溶剂蒸发，留下固体白色沉淀物。
[0393] 实例 17
[0394] (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇（实例 4A 化合物）与 L-脯氨酸的共结晶作用，获得 (17)：
[0395] 将小瓶中，将 L-脯氨酸饱和的乙醇溶液添加至实例 4A 化合物中（每摩尔实例 4A 化合物大约 2.2 摩尔 L-脯氨酸）。将透明溶液加温，并搅拌大约 72 小时。在室温下通过蒸发使体积减半。观察到沉淀物，且将小瓶中加温，及搅拌大约 12 小时。使用离心过滤收集白色固体。
[0396] 实例 18
[0397] (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇（实例 4A 化合物）与 L-脯氨酸的共结晶作用，获得 (18)：
[0398] 将已溶于水中的 L-脯氨酸 (330 毫克/毫升) 滴入大约 2 毫升已溶于乙醇中的实例 4A 化合物 (98 毫克/毫升) 内，直到溶液变成浑浊为止。15-20 分钟后，发现沉淀作用，且悬浮液变得浓稠。添加大约 8 毫升水，并将溶液加温，及搅拌过夜。使用真空过滤收集白色固体，及在 50°C 真空烘箱中干燥大约 2 小时。
[0399] 实例 19
[0400] (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇（实例 4A 化合物）与 L-焦谷氨酸的共结晶作用，获得 (19)：
[0401] 将 153 微升异丙醇中的化合物 (4A) (97.97 毫克/毫升) 以吸量管吸取至 500 微升水中 L-焦谷氨酸 (213.0 毫克/毫升) 内。将溶液加温，并搅拌过夜。添加大约 5-10 毫克更多固体 L-焦谷氨酸。添加 100 微升乙醇。将溶液加温，并搅拌过夜。添加乙醇，直到总体积调整至大约 2 毫升为止。溶液未经加温，并在通风橱中留置过夜。添加大约 10-30 毫克更多实例 4A 化合物，将溶液加温，且搅拌大约 2 天。观察到白色沉淀物。将悬浮液以吸量管吸取至装有 0.45 微米尼龙膜滤器插入物的 Co-star 微离心管中。使溶液离心，直到将固体自溶液分离为止。回收共晶体 (19)。
[0402] 实例 20
[0403] (1S, 2S, 3S, 4R, 5S)-5-[4-氯-3-(4-氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环 [3.2.1] 辛烷-2, 3, 4-三醇（实例 4A 化合物）与 L-焦谷氨酸的共结晶作用，获得 (20)：
使4-5毫升1:1乙醇/水溶液以L-焦谷氨酸（412.1毫克/毫升）饱和。将730毫克固体加入至3.2毫升L-焦谷氨酸溶液中，在大约1分钟后，观察到沉淀作用。溶液呈浓稠以致不能够搅拌，因此加入2毫升1:1乙醇/水溶液。将溶液搅拌过夜，于0.45微米尼龙膜滤器上，使用真空过滤收集固体。使固体在50℃真空烘箱中干燥大约2小时。回收大约960毫克共晶体复合物（20）。在4A化合物对L-焦谷氨酸的化学计量比使用定量NMR测定为1:1.63。通过对脂质溶于乙醇中，移除过量L-焦谷氨酸，产生1:1共晶体（20）。

【0045】 实例21
【0046】（1S,2S,3S,4R,5S）-5-（4-氯-3-（4-乙氧基苄基）-苯基）-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇（实例4A化合物）与L-焦谷氨酸的共结晶作用，获得（21）：
【0047】使494毫克实例4A化合物溶于异丙醇与乙醇（各为4:1）中的1.5毫升溶液，使917.2毫克L-焦谷氨酸溶于3毫升水中。将两种溶液加热至40℃。每分钟，将200微升L-焦谷氨酸溶液添加至实例4A化合物溶液中，直到所有溶液均被转移为止（除非溶液已被转移，否则将两种溶液加）。具有L-焦谷氨酸溶液的小瓶瓶以200微升乙醇洗涤，并将溶液转移至实例4A化合物溶液。将溶液搅拌5分钟，然后关闭热（溶液每3分钟在大约摄氏1度下冷却）。于30℃下，将溶液置于环境温度搅拌器中，且在20℃下搅拌20分钟。溶液为透明。添加大约2毫升干燥品种。悬浮液变得浓稠，历经接着的2小时。将溶液搅拌过夜，于Pyrex2毫升10-15M烧结玻璃漏斗滤器上使用真空过滤，回收固体。使固体在50℃真空烘箱中干燥24小时。

【0048】 实例22
【0049】（1S,2S,3S,4R,5S）-5-（4-氯-3-（4-乙氧基苄基）-苯基）-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇（实例4A化合物）与L-脯氨酸的共晶体，及（1S,2S,3S,4R,5S）-5-（4-氯-3-（4-乙氧基苄基）-苯基）-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇（实例4A化合物）与L-焦谷氨酸的共晶体；
【0050】粉末X-射线衍射分析：实例4A化合物与L-脯氨酸的共晶体及实例4A化合物与L-焦谷氨酸的共晶体的粉末X-射线衍射图样在Bruker D5000衍射计上，使用铜辐射（波长：1.54056Å）进行。管件电压与安培度分别被设定至40kV与40mA。发散与散射狭缝被设定在1毫米下，而接收狭缝被设定在0.6毫米下。经衍射的放射通过Kevex PSI检测器检出。使用在每分钟2.4°（每0.04°各层1秒）下，从3.0至40°的0-2θ连续扫描。分析钙铝标准物，以确认仪器校准。收集数据，且使用Bruker轴心软件7.0版分析。试样通过将它们放置在石英保持器中制备。应注意的是，Bruker仪器购自西门子；因此，Bruker D5000仪器基本上与西门子D5000相同。Eva应用13.0.0.3软件用以呈现与评估PXRD光谱。PXRD数据档案（.raw）不会在峰搜寻之前处理。一般而言，2的阈值与0.3的宽度值以进行初步峰峰定。若必要，则自动化指定的输出以目视方式确认，以确保手动方式施用的有效性和调整。

【0051】为在Bragg-Brentano仪器上进行X-射线衍射测定，例如用在本文中所报告的测定值的Bruker系统，故典型地将试样置入具有腔穴的保持器中。试样粉末通过载玻片或相当物压平，以确保任意表面与适当试样高度。然后，将试样保持器置入仪器中。入射X-射
线束被导引于试样上，最初在相对于保持器平面的小角度下，然后经过连续地在入射束与保持器平面之间增加角度的弧移动。与此种 X- 射线粉末分析有关联的测定差异由于多种因素所造成，包括：(a) 在试样制备上的误差（例如试样高度），(b) 仪器误差（例如平坦试样误差），(c) 校准误差，(d) 操作者误差（包括当测定峰位置时所存在的误差），及 (e) 物质的性质（例如优选取向与透明度误差）。校准误差与试样高度误差经常会造成所有峰于相同方向上的位移。当使用平板保持器时，于试样高度上的小差异将会导致 XRPD 峰位置上的大位移。系统性研究显示，使用呈典型 Bragg-Brentano 型态的 Shimadzu XRD-6000.1 毫米的试样高度差异会导致峰位移高达 1° 2θ (Chen 等人；医药与生物医学分析期刊, 2001: 26, 63). 这些位移可自 X- 射线衍射图确认，且可通过补偿位移（应用系统性校正因子至所有峰位置值）或再校准仪器而被排除。如上文所提及，可通过应用系统性校正因子而矫正来自各种仪器的测定值，以致使峰位置一致。一般而言，此校正因子将导致得自 Bruker 的所测定峰位置吻合所预期的峰位置，且可在 0 至 0.2° 2θ 的范围内。

【0412】粉末 X- 射线衍射值通常精确至 ±0.22°θ 度内，此由仪器与试验条件的少许偏差所致。

【0413】得自实例 18 的实例 4A 化合物与 L-脯氨酸的共晶体，其特征为下列粉末 x- 射线衍射图样，提供于图 3 中，以度 2θ 和具有相对强度 ≧ 2.7% 的相对强度表示，其在具有 CuKα 辐射的 Bruker D5000 衍射计上测定：

<table>
<thead>
<tr>
<th>角度 (度 2θ)</th>
<th>相对强度* (≧ 2.7%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>5.1</td>
</tr>
<tr>
<td>5.5</td>
<td>12.8</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>7.6</td>
<td>40.2</td>
</tr>
<tr>
<td>8.5</td>
<td>11.9</td>
</tr>
<tr>
<td>10.3</td>
<td>9.1</td>
</tr>
<tr>
<td>11.0</td>
<td>4.5</td>
</tr>
<tr>
<td>12.1</td>
<td>22.3</td>
</tr>
<tr>
<td>12.6</td>
<td>13.5</td>
</tr>
<tr>
<td>14.4</td>
<td>13.1</td>
</tr>
<tr>
<td>14.8</td>
<td>16.1</td>
</tr>
<tr>
<td>15.3</td>
<td>2.7</td>
</tr>
<tr>
<td>15.9</td>
<td>10.4</td>
</tr>
<tr>
<td>16.5</td>
<td>3.0</td>
</tr>
<tr>
<td>16.8</td>
<td>8.2</td>
</tr>
<tr>
<td>17.0</td>
<td>16.6</td>
</tr>
<tr>
<td>17.4</td>
<td>33.9</td>
</tr>
<tr>
<td>18.1</td>
<td>2.9</td>
</tr>
<tr>
<td>18.4</td>
<td>10.3</td>
</tr>
<tr>
<td>18.9</td>
<td>16.8</td>
</tr>
<tr>
<td>19.5</td>
<td>12.2</td>
</tr>
<tr>
<td>20.3</td>
<td>100.0</td>
</tr>
<tr>
<td>21.0</td>
<td>6.5</td>
</tr>
<tr>
<td>22.0</td>
<td>5.5</td>
</tr>
<tr>
<td>22.2</td>
<td>7.1</td>
</tr>
<tr>
<td>22.6</td>
<td>11.5</td>
</tr>
<tr>
<td>22.9</td>
<td>29.3</td>
</tr>
<tr>
<td>23.5</td>
<td>4.5</td>
</tr>
<tr>
<td>24.3</td>
<td>13.8</td>
</tr>
<tr>
<td>24.8</td>
<td>14.2</td>
</tr>
<tr>
<td>25.4</td>
<td>14.7</td>
</tr>
<tr>
<td>25.7</td>
<td>23.2</td>
</tr>
<tr>
<td>26.0</td>
<td>6.9</td>
</tr>
<tr>
<td>26.8</td>
<td>5.9</td>
</tr>
<tr>
<td>27.0</td>
<td>5.8</td>
</tr>
<tr>
<td>27.5</td>
<td>21.2</td>
</tr>
<tr>
<td>28.8</td>
<td>15.5</td>
</tr>
<tr>
<td>29.4</td>
<td>6.5</td>
</tr>
<tr>
<td>29.8</td>
<td>8.2</td>
</tr>
<tr>
<td>30.2</td>
<td>5.3</td>
</tr>
</tbody>
</table>
[0416] | 30.7 | 14.1 |
| 31.7 | 5.2 |
| 32.1 | 7.4 |
| 32.5 | 7.7 |
| 33.0 | 9.9 |
| 33.3 | 7.5 |
| 33.8 | 5.5 |
| 34.4 | 5.8 |
| 35.5 | 3.4 |
| 35.8 | 4.0 |
| 36.9 | 3.1 |
| 37.4 | 2.9 |
| 38.2 | 4.7 |
| 38.3 | 6.0 |
| 39.3 | 8.0 |

[0417] *相对强度可依晶体大小与形态学而改变。

[0418] 特征性 2θ 峰或实例 4A 化合物与 L-脯氨酸的共晶体的组合：

<table>
<thead>
<tr>
<th>角度 (度 2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
</tr>
<tr>
<td>12.1</td>
</tr>
<tr>
<td>20.3</td>
</tr>
<tr>
<td>28.8</td>
</tr>
</tbody>
</table>

[0419] 得自实例 20 的实例 4A 化合物与 L-焦谷氨酸的共晶体，其特征为下列粉末 x-射线衍射图样，提供图 4 中，以度 2θ 与具有相对强度 ≦ 2.7% 的相对强度为观点表示，其在具有 CuKα 辐射的 Bruker D5000 衍射计上测定：

<table>
<thead>
<tr>
<th>角度 (度 2θ)</th>
<th>相对强度* (≦ 4.3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>31.0</td>
</tr>
<tr>
<td>7.6</td>
<td>5.9</td>
</tr>
<tr>
<td>11.8</td>
<td>4.3</td>
</tr>
<tr>
<td>12.3</td>
<td>8.8</td>
</tr>
<tr>
<td>12.7</td>
<td>11.0</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>13.5</td>
<td>10.4</td>
</tr>
<tr>
<td>14.2</td>
<td>31.3</td>
</tr>
<tr>
<td>14.4</td>
<td>24.0</td>
</tr>
<tr>
<td>15.2</td>
<td>13.9</td>
</tr>
<tr>
<td>16.7</td>
<td>66.8</td>
</tr>
<tr>
<td>17.4</td>
<td>57.1</td>
</tr>
<tr>
<td>18.3</td>
<td>10.5</td>
</tr>
<tr>
<td>18.7</td>
<td>53.3</td>
</tr>
<tr>
<td>19.1</td>
<td>24.2</td>
</tr>
<tr>
<td>19.3</td>
<td>32.0</td>
</tr>
<tr>
<td>19.8</td>
<td>9.2</td>
</tr>
<tr>
<td>20.3</td>
<td>75.6</td>
</tr>
<tr>
<td>21.1</td>
<td>100.0</td>
</tr>
<tr>
<td>22.5</td>
<td>9.2</td>
</tr>
<tr>
<td>23.6</td>
<td>11.7</td>
</tr>
<tr>
<td>24.3</td>
<td>18.7</td>
</tr>
<tr>
<td>24.7</td>
<td>22.2</td>
</tr>
<tr>
<td>25.0</td>
<td>14.2</td>
</tr>
<tr>
<td>26.2</td>
<td>53.4</td>
</tr>
<tr>
<td>27.2</td>
<td>4.6</td>
</tr>
<tr>
<td>27.9</td>
<td>10.0</td>
</tr>
<tr>
<td>28.3</td>
<td>26.3</td>
</tr>
<tr>
<td>29.0</td>
<td>14.5</td>
</tr>
<tr>
<td>29.5</td>
<td>31.3</td>
</tr>
<tr>
<td>30.7</td>
<td>16.2</td>
</tr>
<tr>
<td>31.5</td>
<td>5.4</td>
</tr>
<tr>
<td>32.0</td>
<td>23.2</td>
</tr>
<tr>
<td>33.0</td>
<td>9.9</td>
</tr>
<tr>
<td>34.2</td>
<td>19.9</td>
</tr>
<tr>
<td>35.2</td>
<td>5.4</td>
</tr>
<tr>
<td>35.9</td>
<td>13.6</td>
</tr>
<tr>
<td>37.3</td>
<td>8.3</td>
</tr>
<tr>
<td>37.9</td>
<td>9.5</td>
</tr>
<tr>
<td>38.4</td>
<td>6.1</td>
</tr>
<tr>
<td>39.2</td>
<td>10.3</td>
</tr>
</tbody>
</table>

[0423] *相对强度可依晶体大小与形态学而改变。

[0424] 特征性 2θ 峰或实例 4A 化合物与 L- 焦谷氨酸的共晶体的组合：

70
说明 书

<table>
<thead>
<tr>
<th>角度</th>
<th>(度 2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td></td>
</tr>
</tbody>
</table>

实例 23

<table>
<thead>
<tr>
<th>成分</th>
<th>(1S, 2S, 3S, 4R, 5S)-5-[4-氧-3-(4-乙氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇 (实例 4A 化合物) 与 L-脯氨酸的共晶三</th>
<th>及 (1S, 2S, 3S, 4R, 5S)-5-[4-氧-3-(4-乙氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇 (实例 4A 化合物) 与 L-脯氨酸的共晶三</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>与 L- 脯氨酸的共晶体</td>
<td>与 L- 脯氨酸的共晶体</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

差热扫描图示及热分析图分析：

热解曲线在 TA 仪器 Q1000 差热扫描卡数 (DSC) 上获得。将 1-2 毫克试样放置在铝箔试样浅盘中，然后，以空圆柱盖覆盖。当温度在每分钟 10°C 下从 25°C 增加至 200-300°C 时，测定相对于空浅盘的该能量。溶解吸热峰的开始温度被报告为溶解温度。溶解吸热峰的开始温度，依赖于加热速率、试样的纯度、晶体与试样的大小等因素而定。典型地，DSC 结果精确到约 ±2°C 内，误差至 ±1.5°C 内。

实例 4A 化合物与 L-脯氨酸的实例 18 共晶体的 DSC 结果示于图 5 中。

实例 4A 化合物与 L-脯氨酸的实例 20 共晶体的 DSC 结果示于图 6 中。

实例 24

(1S, 2S, 3S, 4R, 5S)-5-[4-氧-3-(4-乙氧基苯基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇 (实例 4A 化合物) 与 L-脯氨酸的共晶体

单晶 X-射线分析：测量使用得自实例 17 的滤液加工用缓慢蒸发所浓缩的代表性晶体并用

| 0.85Å | 数据集合（最高 sin θ/λ =0.60）收集于 Bruker APEX 辐射计上。收集 Friedel 对，以帮助绝对形的测定。原子散射因子取自关于结晶学的国际表，第 C 卷，第 219, 500 页，Kluwer 大学出版社，1992。所有结晶学计算借助于 SHELXTL 系统，5.1 版，Bruker AXS，1997。所有辐射计数据在室温下收集。相关晶体数据收集及精制终结于表 24-1 中。 |

经结合至 N1、O6 及 O7 的氢原子通过差异 Fourier 技术定位，且允许以外限制的距离精制。经结合至 O5 的有关联氢原子自 Fourier 技术定位，但被删除，及放置在理想化位置 (HFIX83) 中。经结合至 O4 的有关联氢原子不能以 Fourier 技术发现，且被放置在理想化位置 (HFIX83) 中。于水分子上的氢原子不能被定位，且不考虑溶液。氢参数被加入结构因
子计算中，但并未被精制。在最小平方精制的最后循环中所计算的位移全部低于其相应标准偏差的 0.1。最后 R- 指数为 5.15%。最后差异 Fourier 未显示遗漏或误置的电子密度。

所精制的结构使用 SHELXTL 绘图包作图（图 7）。绝对形态通过 Flack 的方法测定。坐标、各向异性温度因素、距离及角度可以补充材料（表 24-2 至 24-5）取得。

表 24-1 关于实例 24 的晶体数据与结构精制

<table>
<thead>
<tr>
<th>实验式</th>
<th>C_{22}H_{23}C_{107}, C_{3}H_{3}NO_{2}, H_{2}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>式量</td>
<td>570.02</td>
</tr>
<tr>
<td>温度</td>
<td>298 (2) K</td>
</tr>
<tr>
<td>波长</td>
<td>1.54178Å</td>
</tr>
<tr>
<td>晶系</td>
<td>单斜晶系</td>
</tr>
<tr>
<td>空间群</td>
<td>C2</td>
</tr>
<tr>
<td>单位晶胞尺寸</td>
<td>a = 32.8399 (16) Å, α = 90°.</td>
</tr>
</tbody>
</table>

[0440]
体 积
2754.2 (2) Å³

Z
4

密度 (经计算)
1.375 毫克/立方米

吸收系数
1.729 毫米⁻¹

F (000)
1208

晶体大小
0.08 x 0.16 x 0.92 立方毫米

供数据收集的 θ 范围
2.74 至 65.58°

指数范围
-38 ≤ h ≤ 37, -8 ≤ k ≤ 6, -13 ≤ l ≤ 13

所收集的反射
6261

独立反射
2922 [R(int) = 0.0526]

对 θ 的完整性 = 65.58°
74.9%

吸收校正
均无

精制方法
在 F² 上的全矩阵最小平方

数据/限制/参数
2922 / 5 / 380

在 F² 上的优异吻合
0.953

最后 R 指数 [I>2sigma(I)]
R₁ = 0.0515, wR₂ = 0.1304

R 指数 (所有数据)
R₁ = 0.0581, wR₂ = 0.1334

绝对结构参数
0.02 (3)

消光系数
0.0027 (2)

最大衍射峰与孔洞
0.252 与 -0.210 e. Å⁻³

[0441] 表 24-2. 关于实例 24 的原子坐标 (x10⁴) 与相当各向同性位移参数 (Å² x 10³)。

U (当量) 被定义为正交化 U₁₁ 张量迹的三分之一。
[0442]
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (01)</td>
<td>7251 (1)</td>
<td>14669 (2)</td>
<td>1220 (1)</td>
<td>73 (1)</td>
</tr>
<tr>
<td>N (1)</td>
<td>5586 (1)</td>
<td>4836 (6)</td>
<td>1285 (3)</td>
<td>52 (1)</td>
</tr>
<tr>
<td>O (1)</td>
<td>6821 (1)</td>
<td>9986 (6)</td>
<td>5726 (3)</td>
<td>66 (1)</td>
</tr>
<tr>
<td>C (1)</td>
<td>6691 (2)</td>
<td>13136 (9)</td>
<td>6328 (5)</td>
<td>78 (2)</td>
</tr>
<tr>
<td>\textbf{行}</td>
<td>\textbf{列}</td>
<td>\textbf{值}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (2)</td>
<td>6311 (1)</td>
<td>7637 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (2)</td>
<td>6929 (2)</td>
<td>11374 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (3)</td>
<td>5936 (1)</td>
<td>10106 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (3)</td>
<td>6973 (1)</td>
<td>10182 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (4)</td>
<td>5415 (2)</td>
<td>10596 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (4)</td>
<td>7278 (2)</td>
<td>11410 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (5)</td>
<td>7411 (2)</td>
<td>11447 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (5)</td>
<td>5145 (1)</td>
<td>6652 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (6)</td>
<td>7237 (1)</td>
<td>10299 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (6)</td>
<td>5092 (1)</td>
<td>7027 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (7)</td>
<td>5878 (1)</td>
<td>7968 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (7)</td>
<td>6932 (2)</td>
<td>9079 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (8)</td>
<td>5009 (1)</td>
<td>2361 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (8)</td>
<td>6804 (2)</td>
<td>8992 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (9)</td>
<td>5409 (1)</td>
<td>-82 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (9)</td>
<td>7365 (1)</td>
<td>10429 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (10)</td>
<td>7014 (1)</td>
<td>11175 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (11)</td>
<td>6926 (1)</td>
<td>13040 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (12)</td>
<td>6592 (2)</td>
<td>13693 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (13)</td>
<td>6331 (1)</td>
<td>12460 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (14)</td>
<td>6401 (1)</td>
<td>10583 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (15)</td>
<td>6744 (1)</td>
<td>9959 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (16)</td>
<td>6104 (1)</td>
<td>9260 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (17)</td>
<td>6125 (1)</td>
<td>7179 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (18)</td>
<td>5775 (1)</td>
<td>8575 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (19)</td>
<td>5720 (2)</td>
<td>9220 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (20)</td>
<td>5363 (1)</td>
<td>8012 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (21)</td>
<td>5455 (1)</td>
<td>7344 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (22)</td>
<td>5739 (1)</td>
<td>8727 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (23)</td>
<td>5335 (2)</td>
<td>1609 (8)</td>
<td>1299 (4)</td>
<td>62 (1)</td>
</tr>
<tr>
<td>C (24)</td>
<td>5698 (2)</td>
<td>2825 (8)</td>
<td>1186 (5)</td>
<td>63 (1)</td>
</tr>
<tr>
<td>C (25)</td>
<td>6072 (2)</td>
<td>2583 (12)</td>
<td>2141 (9)</td>
<td>105 (3)</td>
</tr>
<tr>
<td>C (26)</td>
<td>5826 (2)</td>
<td>5594 (10)</td>
<td>2391 (5)</td>
<td>74 (2)</td>
</tr>
<tr>
<td>C (35A)</td>
<td>6000 (5)</td>
<td>4000 (30)</td>
<td>3036 (13)</td>
<td>126 (7)</td>
</tr>
<tr>
<td>C (35B)</td>
<td>6229 (4)</td>
<td>4430 (20)</td>
<td>2538 (15)</td>
<td>71 (5)</td>
</tr>
<tr>
<td>O (99A)</td>
<td>5382 (2)</td>
<td>3257 (7)</td>
<td>6727 (5)</td>
<td>101 (2)</td>
</tr>
</tbody>
</table>

表 24-3. 关于实例 24 的键长度 [Å] 与角度 [°]

<p>| C1 (01) − C (11) | 1.761 (4) |
| N (1) − C (26) | 1.492 (7) |
| N (1) − C (24) | 1.513 (7) |
| N (1) − H (98A) | 0.977 (18) |
| N (1) − H (98B) | 1.00 (2) |
| O (1) − C (3) | 1.377 (5) |
| O (1) − C (2) | 1.434 (7) |
| C (1) − C (2) | 1.499 (8) |
| C (1) − H (03C) | 0.9600 |
| C (1) − H (03D) | 0.9600 |
| C (1) − H (03E) | 0.9600 |
| O (2) − C (17) | 1.430 (5) |
| O (2) − C (16) | 1.434 (5) |
| C (2) − H (03F) | 0.9700 |
| C (2) − H (03G) | 0.9700 |
| O (3) − C (16) | 1.409 (5) |
| O (3) − C (18) | 1.437 (5) |
| C (3) − C (4) | 1.379 (7) |
| C (3) − C (8) | 1.386 (7) |
| O (4) − C (19) | 1.405 (7) |
| O (4) − H (4A) | 0.8200 |</p>
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(4) - C(5)</td>
<td>1.401 (7)</td>
</tr>
<tr>
<td>C(4) - H(025)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(5) - C(6)</td>
<td>1.371 (7)</td>
</tr>
<tr>
<td>C(5) - H(2)</td>
<td>0.9300</td>
</tr>
<tr>
<td>O(5) - C(20)</td>
<td>1.400 (6)</td>
</tr>
<tr>
<td>O(5) - H(5)</td>
<td>0.8200</td>
</tr>
<tr>
<td>C(6) - C(7)</td>
<td>1.383 (7)</td>
</tr>
<tr>
<td>C(6) - C(9)</td>
<td>1.528 (6)</td>
</tr>
<tr>
<td>O(6) - C(21)</td>
<td>1.413 (5)</td>
</tr>
<tr>
<td>O(6) - H(99A)</td>
<td>0.95 (2)</td>
</tr>
<tr>
<td>O(7) - C(22)</td>
<td>1.420 (5)</td>
</tr>
<tr>
<td>O(7) - H(99B)</td>
<td>0.93 (2)</td>
</tr>
<tr>
<td>C(7) - C(8)</td>
<td>1.380 (7)</td>
</tr>
<tr>
<td>C(7) - H(026)</td>
<td>0.9300</td>
</tr>
<tr>
<td>O(8) - C(23)</td>
<td>1.235 (7)</td>
</tr>
<tr>
<td>C(8) - H(033)</td>
<td>0.9300</td>
</tr>
<tr>
<td>O(9) - C(23)</td>
<td>1.251 (7)</td>
</tr>
<tr>
<td>C(9) - C(10)</td>
<td>1.513 (7)</td>
</tr>
<tr>
<td>C(9) - H(02A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(9) - H(02B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(10) - C(11)</td>
<td>1.386 (7)</td>
</tr>
<tr>
<td>C(10) - C(15)</td>
<td>1.392 (7)</td>
</tr>
<tr>
<td>C(11) - C(12)</td>
<td>1.369 (7)</td>
</tr>
<tr>
<td>C(12) - C(13)</td>
<td>1.373 (7)</td>
</tr>
<tr>
<td>C(12) - H(027)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(13) - C(14)</td>
<td>1.381 (7)</td>
</tr>
<tr>
<td>C(13) - H(021)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(14) - C(15)</td>
<td>1.394 (6)</td>
</tr>
<tr>
<td>C(14) - C(16)</td>
<td>1.501 (6)</td>
</tr>
<tr>
<td>Bond</td>
<td>Bond Length (Å)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>C(15)-H(030)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(16)-C(22)</td>
<td>1.536 (6)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.526 (6)</td>
</tr>
<tr>
<td>C(17)-H(02C)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(17)-H(02D)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.520 (6)</td>
</tr>
<tr>
<td>C(18)-C(20)</td>
<td>1.540 (6)</td>
</tr>
<tr>
<td>C(19)-H(03H)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(19)-H(03I)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.537 (6)</td>
</tr>
<tr>
<td>C(20)-H(4)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.533 (6)</td>
</tr>
<tr>
<td>C(21)-H(015)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(22)-H(013)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.510 (7)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.506 (10)</td>
</tr>
<tr>
<td>C(24)-H(029)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25)-C(35B)</td>
<td>1.479 (17)</td>
</tr>
<tr>
<td>C(25)-C(35A)</td>
<td>1.52 (2)</td>
</tr>
<tr>
<td>C(25)-H(34A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(25)-H(34B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(26)-C(35A)</td>
<td>1.440 (19)</td>
</tr>
<tr>
<td>C(26)-C(35B)</td>
<td>1.548 (14)</td>
</tr>
<tr>
<td>C(26)-H(03A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(26)-H(03B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(35A)-H(35A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(35A)-H(35B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(35B)-H(35C)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(35B)-H(35D)</td>
<td>0.9700</td>
</tr>
</tbody>
</table>
C (26) – N (1) – C (24) 109.1 (4)
C (26) – N (1) – H (98A) 107 (2)
C (24) – N (1) – H (98A) 109 (3)
C (26) – N (1) – H (98B) 97 (3)
C (24) – N (1) – H (98B) 119 (3)
H (98A) – N (1) – H (98B) 114 (4)
C (3) – O (1) – C (2) 117.7 (4)
C (2) – C (1) – H (03C) 109.5
C (2) – C (1) – H (03D) 109.5
H (03C) – C (1) – H (03D) 109.5
C (2) – C (1) – H (03E) 109.5
H (03C) – C (1) – H (03E) 109.5
H (03D) – C (1) – H (03E) 109.5
C (17) – O (2) – C (16) 106.6 (3)
O (1) – C (2) – C (1) 113.4 (5)
O (1) – C (2) – H (03F) 108.9
C (1) – C (2) – H (03F) 108.9
O (1) – C (2) – H (03G) 108.9
C (1) – C (2) – H (03G) 108.9
H (03F) – C (2) – H (03G) 107.7
C (16) – O (3) – C (18) 103.3 (3)
O (1) – C (3) – C (4) 125.4 (4)
O (1) – C (3) – C (8) 115.1 (4)
C (4) – C (3) – C (8) 119.4 (4)
C (19) – O (4) – H (4A) 109.5
C (3) – C (4) – C (5) 119.7 (5)
C (3) – C (4) – H (025) 120.2
C (5) – C (4) – H (025) 120.2
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>121.0 (5)</td>
</tr>
<tr>
<td>C(6)-C(5)-H(2)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(4)-C(5)-H(2)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(20)-O(5)-H(5)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>118.6 (4)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(9)</td>
<td>120.7 (4)</td>
</tr>
<tr>
<td>C(7)-C(6)-C(9)</td>
<td>120.7 (4)</td>
</tr>
<tr>
<td>C(21)-O(6)-H(99A)</td>
<td>105 (3)</td>
</tr>
<tr>
<td>C(22)-O(7)-H(99B)</td>
<td>108 (3)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>121.2 (4)</td>
</tr>
<tr>
<td>C(8)-C(7)-H(026)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(6)-C(7)-H(026)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(7)-C(8)-C(3)</td>
<td>120.0 (4)</td>
</tr>
<tr>
<td>C(7)-C(8)-H(033)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(3)-C(8)-H(033)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(10)-C(9)-C(6)</td>
<td>111.2 (3)</td>
</tr>
<tr>
<td>C(10)-C(9)-H(02A)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(6)-C(9)-H(02A)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(10)-C(9)-H(02B)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(6)-C(9)-H(02B)</td>
<td>109.4</td>
</tr>
<tr>
<td>H(02A)-C(9)-H(02B)</td>
<td>108.0</td>
</tr>
<tr>
<td>C(11)-C(10)-C(15)</td>
<td>116.7 (4)</td>
</tr>
<tr>
<td>C(11)-C(10)-C(9)</td>
<td>123.4 (4)</td>
</tr>
<tr>
<td>C(15)-C(10)-C(9)</td>
<td>119.8 (4)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(10)</td>
<td>122.9 (4)</td>
</tr>
<tr>
<td>C(12)-C(11)-C1(01)</td>
<td>117.6 (4)</td>
</tr>
<tr>
<td>C(10)-C(11)-C1(01)</td>
<td>119.5 (4)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>119.1 (5)</td>
</tr>
<tr>
<td>C(11)-C(12)-H(027)</td>
<td>120.5</td>
</tr>
</tbody>
</table>
C (13) – C (12) – H (027) 120.5
C (12) – C (13) – C (14) 121.0 (4)
C (12) – C (13) – H (021) 119.5
C (14) – C (13) – H (021) 119.5
C (13) – C (14) – C (15) 118.6 (4)
C (13) – C (14) – C (16) 119.9 (4)
C (15) – C (14) – C (16) 121.4 (4)
C (10) – C (15) – C (14) 121.8 (5)
C (10) – C (15) – H (030) 119.1
C (14) – C (15) – H (030) 119.1
O (3) – C (16) – O (2) 105.4 (3)
O (3) – C (16) – C (14) 108.5 (4)
O (2) – C (16) – C (14) 111.6 (3)
O (3) – C (16) – C (22) 107.4 (3)
O (2) – C (16) – C (22) 110.3 (4)
C (14) – C (16) – C (22) 113.2 (3)
O (2) – C (17) – C (18) 104.8 (3)
O (2) – C (17) – H (02C) 110.8
C (18) – C (17) – H (02C) 110.8
O (2) – C (17) – H (02D) 110.8
C (18) – C (17) – H (02D) 110.8
H (02C) – C (17) – H (02D) 108.9
O (3) – C (18) – C (19) 107.4 (4)
O (3) – C (18) – C (17) 100.7 (3)
C (19) – C (18) – C (17) 113.4 (4)
O (3) – C (18) – C (20) 106.7 (3)
C (19) – C (18) – C (20) 113.1 (4)
C (17) – C (18) – C (20) 114.3 (4)
O (4) – C (19) – C (18) 112.7 (4)
0 (4) – C (19) – H (03H) 109.0
C (18) – C (19) – H (03H) 109.0
0 (4) – C (19) – H (03I) 109.0
C (18) – C (19) – H (03I) 109.0
H (03H) – C (19) – H (03I) 107.8
0 (5) – C (20) – C (21) 110.0 (4)
0 (5) – C (20) – C (18) 113.5 (4)
C (21) – C (20) – C (18) 108.9 (3)
0 (5) – C (20) – H (4) 108.1
C (21) – C (20) – H (4) 108.1
C (18) – C (20) – H (4) 108.1
0 (6) – C (21) – C (22) 110.6 (3)
0 (6) – C (21) – C (20) 113.1 (4)
C (22) – C (21) – C (20) 109.9 (4)
0 (6) – C (21) – H (015) 107.7
C (22) – C (21) – H (015) 107.7
C (20) – C (21) – H (015) 107.7
0 (7) – C (22) – C (21) 109.7 (4)
0 (7) – C (22) – C (16) 111.8 (3)
C (21) – C (22) – C (16) 110.3 (3)
0 (7) – C (22) – H (013) 108.3
C (21) – C (22) – H (013) 108.3
C (16) – C (22) – H (013) 108.3
0 (8) – C (23) – O (9) 127.9 (5)
0 (8) – C (23) – C (24) 118.1 (5)
0 (9) – C (23) – C (24) 114.1 (5)
C (25) – C (24) – C (23) 114.1 (5)
C (25) – C (24) – N (1) 103.3 (5)
C (23) – C (24) – N (1) 110.3 (4)
C (25) – C (24) – H (029) 109.6
C (23) – C (24) – H (029) 109.6
N (1) – C (24) – H (029) 109.6
C (35B) – C (25) – C (24) 108.3 (8)
C (35B) – C (25) – C (35A) 42.4 (8)
C (24) – C (25) – C (35A) 103.1 (8)
C (35B) – C (25) – H (34A) 70.3
C (24) – C (25) – H (34A) 111.2
C (35A) – C (25) – H (34A) 111.2
C (35B) – C (25) – H (34B) 137.2
C (24) – C (25) – H (34B) 111.2
C (35A) – C (25) – H (34B) 111.1
H (34A) – C (25) – H (34B) 109.1
C (35A) – C (26) – N (1) 104.8 (9)
C (35A) – C (26) – C (35B) 42.5 (9)
N (1) – C (26) – C (35B) 101.1 (7)
C (35A) – C (26) – H (03A) 110.8
N (1) – C (26) – H (03A) 110.8
C (35B) – C (26) – H (03A) 73.1
C (35A) – C (26) – H (03B) 110.8
N (1) – C (26) – H (03B) 110.8
C (35B) – C (26) – H (03B) 144.0
H (03A) – C (26) – H (03B) 108.9
C (26) – C (35A) – C (25) 105.8 (10)
C (26) – C (35A) – H (35A) 110.6
C (25) – C (35A) – H (35A) 110.6
C (26) – C (35A) – H (35B) 110.6
C (25) – C (35A) – H (35B) 110.6
H (35A) – C (35A) – H (35B) 108.7

[0454]
表 24-4. 关于实例 24 的各向异性位移参数 \(\text{Å}^2 \times 10^3 \)。各向异性位移因子指数采取以下形式：

\[
-2 \pi^2 [H_{ij}a^i \cdot b^j + \ldots + 2hK_{ij}a^i \cdot b^j \cdot U_{12}]
\]

<table>
<thead>
<tr>
<th></th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{23})</th>
<th>(U_{13})</th>
<th>(U_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>77 (1)</td>
<td>69 (1)</td>
<td>69 (1)</td>
<td>-11 (1)</td>
<td>1 (1)</td>
<td>-27 (1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>56 (2)</td>
<td>40 (2)</td>
<td>60 (2)</td>
<td>0 (2)</td>
<td>12 (2)</td>
<td>0 (2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>70 (2)</td>
<td>70 (3)</td>
<td>62 (2)</td>
<td>2 (2)</td>
<td>23 (2)</td>
<td>-3 (2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>80 (3)</td>
<td>76 (4)</td>
<td>77 (3)</td>
<td>-2 (3)</td>
<td>13 (3)</td>
<td>8 (3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>47 (1)</td>
<td>52 (2)</td>
<td>49 (1)</td>
<td>-1 (1)</td>
<td>3 (1)</td>
<td>12 (1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>63 (3)</td>
<td>84 (4)</td>
<td>52 (2)</td>
<td>1 (2)</td>
<td>13 (2)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>46 (1)</td>
<td>43 (2)</td>
<td>45 (1)</td>
<td>2 (1)</td>
<td>3 (1)</td>
<td>-1 (1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>48 (2)</td>
<td>59 (3)</td>
<td>57 (2)</td>
<td>5 (2)</td>
<td>12 (2)</td>
<td>8 (2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>111 (3)</td>
<td>83 (3)</td>
<td>62 (2)</td>
<td>8 (2)</td>
<td>-10 (2)</td>
<td>23 (3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>59 (3)</td>
<td>72 (4)</td>
<td>53 (2)</td>
<td>-10 (2)</td>
<td>10 (2)</td>
<td>-12 (2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>54 (2)</td>
<td>66 (3)</td>
<td>55 (2)</td>
<td>-6 (2)</td>
<td>4 (2)</td>
<td>-11 (2)</td>
</tr>
<tr>
<td>O(5)</td>
<td>69 (2)</td>
<td>59 (2)</td>
<td>59 (2)</td>
<td>2 (2)</td>
<td>-12 (2)</td>
<td>-8 (2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>41 (2)</td>
<td>55 (3)</td>
<td>59 (2)</td>
<td>-2 (2)</td>
<td>4 (2)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>O(6)</td>
<td>58 (2)</td>
<td>47 (2)</td>
<td>87 (2)</td>
<td>-6 (2)</td>
<td>25 (2)</td>
<td>-9 (1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>62 (2)</td>
<td>49 (2)</td>
<td>51 (2)</td>
<td>2 (1)</td>
<td>12 (1)</td>
<td>-1 (1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>54 (2)</td>
<td>59 (3)</td>
<td>58 (2)</td>
<td>-11 (2)</td>
<td>-4 (2)</td>
<td>-2 (2)</td>
</tr>
<tr>
<td>O(8)</td>
<td>63 (2)</td>
<td>63 (3)</td>
<td>116 (3)</td>
<td>-22 (2)</td>
<td>36 (2)</td>
<td>-12 (2)</td>
</tr>
</tbody>
</table>
表 24-5. 关于实例 24 的原子坐标 (×104) 与各向同性位移参数 (Å²×10³)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (98A)</td>
<td>5291(6)</td>
<td>4930(60)</td>
<td>1320(30)</td>
<td>33(9)</td>
</tr>
<tr>
<td>H (98B)</td>
<td>5680(13)</td>
<td>5750(50)</td>
<td>760(30)</td>
<td>51(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>H (03C)</td>
<td>6764</td>
<td>13698</td>
<td>5659</td>
<td>117</td>
</tr>
<tr>
<td>H (03D)</td>
<td>6757</td>
<td>13962</td>
<td>6973</td>
<td>117</td>
</tr>
<tr>
<td>H (03E)</td>
<td>6398</td>
<td>12877</td>
<td>6176</td>
<td>117</td>
</tr>
<tr>
<td>H (03F)</td>
<td>7223</td>
<td>11637</td>
<td>6698</td>
<td>80</td>
</tr>
<tr>
<td>H (03G)</td>
<td>6878</td>
<td>10893</td>
<td>7327</td>
<td>80</td>
</tr>
<tr>
<td>H (4A)</td>
<td>5481</td>
<td>11497</td>
<td>-4553</td>
<td>134</td>
</tr>
<tr>
<td>H (025)</td>
<td>7394</td>
<td>12210</td>
<td>5155</td>
<td>74</td>
</tr>
<tr>
<td>H (2)</td>
<td>7619</td>
<td>12262</td>
<td>3404</td>
<td>71</td>
</tr>
<tr>
<td>H (5)</td>
<td>5097</td>
<td>7017</td>
<td>-4489</td>
<td>98</td>
</tr>
<tr>
<td>H (99A)</td>
<td>4974 (16)</td>
<td>8220 (40)</td>
<td>-1350 (50)</td>
<td>64 (15)</td>
</tr>
<tr>
<td>H (99B)</td>
<td>5744 (13)</td>
<td>8610 (60)</td>
<td>540 (30)</td>
<td>54 (13)</td>
</tr>
<tr>
<td>H (026)</td>
<td>6810</td>
<td>8302</td>
<td>2195</td>
<td>71</td>
</tr>
<tr>
<td>H (033)</td>
<td>6604</td>
<td>8136</td>
<td>3947</td>
<td>71</td>
</tr>
<tr>
<td>H (02A)</td>
<td>7604</td>
<td>11232</td>
<td>1504</td>
<td>71</td>
</tr>
<tr>
<td>H (02B)</td>
<td>7443</td>
<td>9215</td>
<td>1214</td>
<td>71</td>
</tr>
<tr>
<td>H (027)</td>
<td>6544</td>
<td>14955</td>
<td>-474</td>
<td>70</td>
</tr>
<tr>
<td>H (021)</td>
<td>6103</td>
<td>12894</td>
<td>-1584</td>
<td>62</td>
</tr>
<tr>
<td>H (030)</td>
<td>6793</td>
<td>8697</td>
<td>-74</td>
<td>59</td>
</tr>
<tr>
<td>H (02C)</td>
<td>6017</td>
<td>5929</td>
<td>-3159</td>
<td>61</td>
</tr>
<tr>
<td>H (02D)</td>
<td>6325</td>
<td>7285</td>
<td>-3614</td>
<td>61</td>
</tr>
<tr>
<td>H (03H)</td>
<td>5982</td>
<td>9696</td>
<td>-4830</td>
<td>71</td>
</tr>
<tr>
<td>H (03I)</td>
<td>5643</td>
<td>8173</td>
<td>-5204</td>
<td>71</td>
</tr>
<tr>
<td>H (4)</td>
<td>5187</td>
<td>9111</td>
<td>-3149</td>
<td>61</td>
</tr>
<tr>
<td>H (015)</td>
<td>5605</td>
<td>6171</td>
<td>-1818</td>
<td>59</td>
</tr>
<tr>
<td>H (013)</td>
<td>5578</td>
<td>9843</td>
<td>-1009</td>
<td>55</td>
</tr>
<tr>
<td>H (029)</td>
<td>5776</td>
<td>2606</td>
<td>438</td>
<td>76</td>
</tr>
<tr>
<td>H (34A)</td>
<td>6327</td>
<td>2839</td>
<td>1870</td>
<td>126</td>
</tr>
<tr>
<td>H (34B)</td>
<td>6084</td>
<td>1342</td>
<td>2453</td>
<td>126</td>
</tr>
<tr>
<td>H (03A)</td>
<td>6044</td>
<td>6414</td>
<td>2248</td>
<td>89</td>
</tr>
<tr>
<td>H (03B)</td>
<td>5645</td>
<td>6267</td>
<td>2805</td>
<td>89</td>
</tr>
<tr>
<td>H (35A)</td>
<td>5809</td>
<td>3518</td>
<td>3496</td>
<td>152</td>
</tr>
<tr>
<td>H (35B)</td>
<td>6259</td>
<td>4310</td>
<td>3548</td>
<td>152</td>
</tr>
<tr>
<td>H (35C)</td>
<td>6415</td>
<td>4913</td>
<td>2066</td>
<td>85</td>
</tr>
<tr>
<td>H (35D)</td>
<td>6372</td>
<td>4404</td>
<td>3339</td>
<td>85</td>
</tr>
</tbody>
</table>

[0462] 实例 25

[0464] 得自 (1S, 2S, 3S, 4R, 5S) -5- [4- 氯 -3- (4- 乙 氧 基 苯 基) - 苯 基] -1- 羟 甲 基 -6, 8- 二氧杂 - 双环 [3. 2. 1] 辛烷 -2, 3, 4- 三醇 (实例 4A 化合物) 与 L- 焦谷氨酸的实例 20 的共晶体：

[0465] 单晶 X- 射线分析，测量得自实例 20 的试样的代表性晶体，且将 0.90Å 数据集合（最高 sinθ/λ = 0.56）收集于 Bruker APEX 衍射计上。收集 Friedel 对，以帮助绝对构型的测定。立体化学测定自 flack 参数以及自共成形 L- 焦谷氨酸的已知手性。原子散射因子取自关于结晶学的国际表，第 C 卷，第 219, 500 页，Kluwer 大学出版社，1992。所有结晶学计算借助于 SHELXTL5.1 版，Bruker AXS，1997 系统。所有衍射计数据在室温下收集。相关晶体数据收集及精制总结于表 25-1 中。

[0466] 试验结构通过直接法获得。此试验结构例行性地精制，除了被精制为 0.1 化学计量外的低残留峰之外。水的化学计量以下述方式发现，首先删除分子上的羟基，精制与测定所形成的 q 峰，然后，将此峰与来自水分子的残留峰作比较。使用此方法，估计 1 对 0.1（分子对水）的比例。此外，从溶液移除水分子，且使用 Material Studio，Platon 及水银搜寻晶体中的空隙空间，显示关于水分子的似合理体积为 33 立方埃（水典型地具有约 40 立方埃的空间）。在氮与氧上的氢原子通过差异 Fourier 技术定位，且允许自由地精制，未具有限制。经结合至杂原子的少数量子 (H7a, H7b, H7c 及 H8c) 显示稍短键长度（所发现的 ~ 0.8 埃对所预期的 ~ 0.96），而这些距离不受限制。从差异图并非发现在 099 上的氢原子（水），且不考虑结构溶液。氢参数被加入结构因子计算中，但并未精制。在最小平方精制的最后循环中计算的位移全部低于其相应标准偏差的 0.2。最后 R- 指数为 3.58%。最后差异 Fourier 未显示遗漏或误置的电子密度。在所有残的残留物中，一个在关于经结合至 0.9 的质子的合理位置上（羧酸）。此残留可为关于 H8a 质子（经结合至 0.9 的质子）的另一个占领位置，但本身并未精制。

[0467] 所精制的结构使用 SHELXTL 绘图包作图（图 8）。

[0469] 表 25-1。关于实例 25 的晶体数据与结构精制

[0470]
实验式 \(C_{22}H_{22}C_{11}O_{7} * C_{4}H_{2}N_{1}O_{2} * 0.1 (H_2O) \)

式量 \(567.79 \)

温度 \(570 (2) \) K

波长 \(1.54178 \) Å

晶系 斜方晶系

空间群 \(P2_1 2_1 2_1 \)

单位晶胞尺寸
\[
\begin{align*}
& a = 7.4907 (10) \text{ Å} \quad \alpha = 90^\circ. \\
& b = 12.8626 (15) \text{ Å} \quad \beta = 90^\circ. \\
& c = 28.029 (4) \text{ Å} \quad \gamma = 90^\circ.
\end{align*}
\]

体积 \(2700.6 (6) \text{ Å}^3 \)

\(Z \) \(4 \)

密度 (经计算) \(1.396 \) 毫克/立方米

吸收系数 \(1.767 \) 毫米\(^{-1} \)

\(F(000) \) \(1196 \)

晶体大小 \(0.03 \times 0.2 \times 0.2 \) 立方毫米

供数据收集的 \(\theta \) 范围 \(3.15 \) 至 \(59.28^\circ \)

指数范围 \(-6 \leq h \leq 7, -13 \leq k \leq 14, -31 \leq l \leq 29 \)

所收集的反射 \(9116 \)

独立反射 \(3759 [R(\text{int})=0.0275] \)

对 \(\theta \) 的完整性 \(59.28^\circ \) 96.5%

吸收校正 实验

精制方法 在 \(F^2 \) 上的全矩阵最小平方

数据/限制/参数 \(3759 / 0 / 387 \)

在 \(F^2 \) 上的优异吻合 \(1.032 \)

最后 R 指数 \([I>2\sigma (I)] \) \(R^1 = 0.0358, wR2 = 0.0885 \)

R 指数 (所有数据) \(R^1 = 0.0418, wR2 = 0.0920 \)

绝对结构参数 \(0.010 (18) \)

消光系数 \(0.00067 (17) \)
[0472] 最大衍射峰与孔洞 0.171 与 -0.136 e.A^{-3}

[0473] 表 25-2。关于实例 25 的原子坐标 (x10^4) 与相当各向同性位移参数 (A^2 x 10^3)。U (当量) 被定义为正交化 Uij 张量轨迹的三分之一。

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U (eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (1)</td>
<td>1385 (7)</td>
<td>9812 (3)</td>
<td>643 (2)</td>
<td>89 (1)</td>
</tr>
<tr>
<td>C (2)</td>
<td>1302 (6)</td>
<td>8776 (3)</td>
<td>399 (2)</td>
<td>81 (1)</td>
</tr>
<tr>
<td>O (3)</td>
<td>2546 (3)</td>
<td>8104 (1)</td>
<td>625 (1)</td>
<td>55 (1)</td>
</tr>
<tr>
<td>C (4)</td>
<td>2553 (4)</td>
<td>7080 (2)</td>
<td>489 (1)</td>
<td>43 (1)</td>
</tr>
<tr>
<td>C (5)</td>
<td>1555 (5)</td>
<td>6676 (2)</td>
<td>117 (1)</td>
<td>54 (1)</td>
</tr>
<tr>
<td>C (6)</td>
<td>1669 (4)</td>
<td>5630 (2)</td>
<td>13 (1)</td>
<td>50 (1)</td>
</tr>
<tr>
<td>C (7)</td>
<td>2745 (4)</td>
<td>4966 (2)</td>
<td>268 (1)</td>
<td>42 (1)</td>
</tr>
<tr>
<td>C (8)</td>
<td>3723 (4)</td>
<td>5385 (2)</td>
<td>639 (1)</td>
<td>50 (1)</td>
</tr>
<tr>
<td>C (9)</td>
<td>3643 (4)</td>
<td>6423 (2)</td>
<td>749 (1)</td>
<td>49 (1)</td>
</tr>
<tr>
<td>C (10)</td>
<td>2839 (5)</td>
<td>3807 (2)</td>
<td>157 (1)</td>
<td>49 (1)</td>
</tr>
<tr>
<td>C (11)</td>
<td>2248 (4)</td>
<td>3159 (2)</td>
<td>577 (1)</td>
<td>40 (1)</td>
</tr>
<tr>
<td>C (12)</td>
<td>467 (4)</td>
<td>3074 (2)</td>
<td>708 (1)</td>
<td>44 (1)</td>
</tr>
<tr>
<td>C1 (13)</td>
<td>-1197 (1)</td>
<td>3652 (1)</td>
<td>362 (1)</td>
<td>59 (1)</td>
</tr>
<tr>
<td>C (14)</td>
<td>-56 (4)</td>
<td>2535 (2)</td>
<td>1112 (1)</td>
<td>46 (1)</td>
</tr>
<tr>
<td>C (15)</td>
<td>1219 (4)</td>
<td>2055 (2)</td>
<td>1391 (1)</td>
<td>44 (1)</td>
</tr>
<tr>
<td>C (16)</td>
<td>3014 (4)</td>
<td>2095 (2)</td>
<td>1265 (1)</td>
<td>36 (1)</td>
</tr>
</tbody>
</table>
表 25-3. 关于实例 25 的键长度[Å]与角度[°]。

<table>
<thead>
<tr>
<th>键</th>
<th>C (1) - C (2)</th>
<th>C (2) - O (3)</th>
<th>O (3) - C (4)</th>
<th>C (4) - C (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>长度</td>
<td>1.486 (5)</td>
<td>1.419 (4)</td>
<td>1.371 (3)</td>
<td>1.382 (4)</td>
</tr>
</tbody>
</table>
C (4) - C (5) 1.385 (4)
C (5) - C (6) 1.379 (4)
C (6) - C (7) 1.375 (4)
C (7) - C (8) 1.381 (4)
C (7) - C (10) 1.525 (4)
C (8) - C (9) 1.371 (4)
C (10) - C (11) 1.509 (4)
C (11) - C (12) 1.388 (4)
C (11) - C (17) 1.398 (4)
C (12) - C (14) 1.382 (4)
C (12) - C (13) 1.746 (3)
C (14) - C (15) 1.381 (4)
C (15) - C (16) 1.391 (4)
C (16) - C (17) 1.381 (4)
C (16) - C (18) 1.504 (4)
C (18) - O (19) 1.426 (3)
C (18) - O (29) 1.430 (3)
C (18) - C (27) 1.532 (4)
O (19) - C (20) 1.440 (3)
C (20) - C (21) 1.507 (4)
C (20) - C (23) 1.529 (4)
C (20) - C (30) 1.529 (4)
C (21) - O (22) 1.408 (4)
C (23) - O (24) 1.424 (3)
C (23) - C (25) 1.527 (4)
C (25) - O (26) 1.418 (3)
C (25) - C (27) 1.523 (4)
C (27) - O (28) 1.430 (3)
O (29) - C (30) 1.452 (3)
O (31) – C (32) 1.239 (4)
C (32) – N (36) 1.327 (4)
C (32) – C (33) 1.494 (4)
C (33) – C (34) 1.491 (5)
C (34) – C (35) 1.539 (5)
C (35) – N (36) 1.443 (4)
C (35) – C (37) 1.517 (5)
C (37) – O (38) 1.206 (4)
C (37) – O (39) 1.301 (4)

O (3) – C (2) – C (1) 108.8 (3)
C (4) – O (3) – C (2) 117.8 (2)
O (3) – C (4) – C (9) 116.4 (3)
O (3) – C (4) – C (5) 124.5 (2)
C (9) – C (4) – C (5) 119.1 (3)
C (6) – C (5) – C (4) 119.5 (3)
C (7) – C (6) – C (5) 122.1 (3)
C (6) – C (7) – C (8) 117.4 (3)
C (6) – C (7) – C (10) 121.9 (3)
C (8) – C (7) – C (10) 120.7 (3)
C (9) – C (8) – C (7) 121.8 (3)
C (8) – C (9) – C (4) 120.1 (3)
C (11) – C (10) – C (7) 111.6 (2)
C (12) – C (11) – C (17) 117.2 (2)
C (12) – C (11) – C (10) 122.1 (3)
C (17) – C (11) – C (10) 120.6 (3)
C (14) – C (12) – C (11) 121.9 (3)
C (14) – C (12) – C1 (13) 117.8 (2)
C (11) – C (12) – C1 (13) 120.4 (2)
C (15) – C (14) – C (12) 119.5 (3)
C (14) – C (15) – C (16) 120.5 (3)
C (17) – C (16) – C (15) 118.8 (3)
C (17) – C (16) – C (18) 122.7 (2)
C (15) – C (16) – C (18) 118.4 (2)
C (16) – C (17) – C (11) 122.2 (3)
O (19) – C (18) – O (29) 105.1 (2)
O (19) – C (18) – C (16) 108.5 (2)
O (29) – C (18) – C (16) 111.6 (2)
O (19) – C (18) – C (27) 107.5 (2)
O (29) – C (18) – C (27) 109.5 (2)
C (16) – C (18) – C (27) 114.1 (2)
C (18) – O (19) – C (20) 103.16 (19)
O (19) – C (20) – C (21) 108.4 (2)
O (19) – C (20) – C (23) 106.7 (2)
C (21) – C (20) – C (23) 113.5 (2)
O (19) – C (20) – C (30) 101.9 (2)
C (21) – C (20) – C (30) 112.1 (2)
C (23) – C (20) – C (30) 113.3 (2)
O (22) – C (21) – C (20) 113.3 (3)
O (24) – C (23) – C (25) 109.6 (2)
O (24) – C (23) – C (20) 111.2 (2)
C (25) – C (23) – C (20) 109.3 (2)
O (26) – C (25) – C (27) 112.1 (2)
O (26) – C (25) – C (23) 108.1 (2)
C (27) – C (25) – C (23) 111.1 (2)
O (28) – C (27) – C (25) 111.2 (2)
O (28) – C (27) – C (18) 111.4 (2)
C (25) – C (27) – C (18) 110.9 (2)
<table>
<thead>
<tr>
<th></th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (1)</td>
<td>115 (4)</td>
<td>49 (2)</td>
<td>104 (3)</td>
<td>-20 (2)</td>
<td>-54 (3)</td>
<td>31 (2)</td>
</tr>
<tr>
<td>C (2)</td>
<td>95 (3)</td>
<td>52 (2)</td>
<td>95 (3)</td>
<td>-12 (2)</td>
<td>-47 (2)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>O (3)</td>
<td>62 (1)</td>
<td>36 (1)</td>
<td>68 (1)</td>
<td>-3 (1)</td>
<td>-17 (1)</td>
<td>6 (1)</td>
</tr>
<tr>
<td>C (4)</td>
<td>45 (2)</td>
<td>35 (2)</td>
<td>49 (2)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>0 (1)</td>
</tr>
<tr>
<td>C (5)</td>
<td>61 (2)</td>
<td>43 (2)</td>
<td>59 (2)</td>
<td>4 (2)</td>
<td>-16 (2)</td>
<td>9 (2)</td>
</tr>
<tr>
<td>C (6)</td>
<td>61 (2)</td>
<td>43 (2)</td>
<td>47 (2)</td>
<td>2 (1)</td>
<td>-13 (1)</td>
<td>0 (2)</td>
</tr>
<tr>
<td>C (7)</td>
<td>50 (2)</td>
<td>36 (2)</td>
<td>41 (1)</td>
<td>6 (1)</td>
<td>7 (1)</td>
<td>-2 (1)</td>
</tr>
<tr>
<td>C (8)</td>
<td>58 (2)</td>
<td>44 (2)</td>
<td>49 (2)</td>
<td>9 (1)</td>
<td>-9 (2)</td>
<td>7 (2)</td>
</tr>
<tr>
<td>C (9)</td>
<td>54 (2)</td>
<td>43 (2)</td>
<td>50 (2)</td>
<td>2 (1)</td>
<td>-12 (1)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>C (10)</td>
<td>63 (2)</td>
<td>40 (2)</td>
<td>43 (2)</td>
<td>6 (1)</td>
<td>5 (1)</td>
<td>6 (1)</td>
</tr>
<tr>
<td>C (11)</td>
<td>52 (2)</td>
<td>27 (1)</td>
<td>41 (1)</td>
<td>0 (1)</td>
<td>4 (1)</td>
<td>-2 (1)</td>
</tr>
</tbody>
</table>

表 25-4. 关于实例 25 的各向异性位移参数 (\(A^2 \times 10^3\))，各向异性位移因素指数采取以下形式：

\[-2 \pi^2 \sum_{h} [U_{h6} \times U_{11}^* + \ldots + 2hK_{6} \times b \times U_{12}^*] \]
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.29</td>
<td>0.52</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>1.59</td>
<td>1.51</td>
<td>1.66</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>1.40</td>
<td>0.35</td>
<td>0.64</td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>1.44</td>
<td>0.39</td>
<td>0.50</td>
<td>0.11</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>1.41</td>
<td>0.25</td>
<td>0.42</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>1.36</td>
<td>0.31</td>
<td>0.45</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>1.38</td>
<td>0.28</td>
<td>0.43</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>0.40</td>
<td>0.28</td>
<td>0.45</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.50</td>
<td>0.30</td>
<td>0.47</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>0.57</td>
<td>0.33</td>
<td>0.60</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.77</td>
<td>0.37</td>
<td>0.73</td>
<td>0.06</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>0.42</td>
<td>0.32</td>
<td>0.47</td>
<td>0.02</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>0.58</td>
<td>0.37</td>
<td>0.62</td>
<td>0.08</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>0.52</td>
<td>0.36</td>
<td>0.42</td>
<td>0.00</td>
<td>0.07</td>
<td>0.08</td>
</tr>
</tbody>
</table>

表 25-5. 关于实例 25 的氢坐标 (X10^3) 与各向同性位移参数 (A^2 x 10^3)
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U (eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (1A)</td>
<td>1080</td>
<td>9742</td>
<td>965</td>
<td>134</td>
</tr>
<tr>
<td>H (1B)</td>
<td>557</td>
<td>10275</td>
<td>482</td>
<td>134</td>
</tr>
<tr>
<td>H (1C)</td>
<td>2571</td>
<td>10087</td>
<td>606</td>
<td>134</td>
</tr>
<tr>
<td>H (2A)</td>
<td>107</td>
<td>8492</td>
<td>427</td>
<td>97</td>
</tr>
<tr>
<td>H (2B)</td>
<td>1587</td>
<td>8843</td>
<td>63</td>
<td>97</td>
</tr>
<tr>
<td>H (5)</td>
<td>813</td>
<td>7106</td>
<td>-61</td>
<td>65</td>
</tr>
<tr>
<td>H (6)</td>
<td>998</td>
<td>5365</td>
<td>-239</td>
<td>60</td>
</tr>
<tr>
<td>H (8)</td>
<td>4455</td>
<td>4952</td>
<td>819</td>
<td>60</td>
</tr>
<tr>
<td>H (9)</td>
<td>4323</td>
<td>6685</td>
<td>999</td>
<td>59</td>
</tr>
<tr>
<td>H (10A)</td>
<td>2083</td>
<td>3655</td>
<td>-115</td>
<td>58</td>
</tr>
<tr>
<td>H (10B)</td>
<td>4055</td>
<td>3623</td>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>H (14)</td>
<td>-1256</td>
<td>2497</td>
<td>1194</td>
<td>56</td>
</tr>
<tr>
<td>H (15)</td>
<td>875</td>
<td>1701</td>
<td>1665</td>
<td>53</td>
</tr>
<tr>
<td>H (17)</td>
<td>4703</td>
<td>2691</td>
<td>782</td>
<td>45</td>
</tr>
<tr>
<td>H (21A)</td>
<td>5235</td>
<td>-1219</td>
<td>1181</td>
<td>60</td>
</tr>
<tr>
<td>H (21B)</td>
<td>6528</td>
<td>-1543</td>
<td>1595</td>
<td>60</td>
</tr>
<tr>
<td>H (97D)</td>
<td>3240 (80)</td>
<td>-1700 (40)</td>
<td>1620 (20)</td>
<td>120 (20)</td>
</tr>
<tr>
<td>H (23)</td>
<td>4498</td>
<td>-261</td>
<td>2375</td>
<td>48</td>
</tr>
<tr>
<td>H (97C)</td>
<td>6720 (50)</td>
<td>-1040 (30)</td>
<td>2557 (13)</td>
<td>78 (14)</td>
</tr>
<tr>
<td>H (25)</td>
<td>6950</td>
<td>1407</td>
<td>2275</td>
<td>52</td>
</tr>
<tr>
<td>H (97B)</td>
<td>5570 (50)</td>
<td>1910 (30)</td>
<td>2942 (14)</td>
<td>79 (13)</td>
</tr>
<tr>
<td>H (27)</td>
<td>3214</td>
<td>1680</td>
<td>2224</td>
<td>46</td>
</tr>
<tr>
<td>H (97A)</td>
<td>5800 (50)</td>
<td>2990 (30)</td>
<td>2137 (12)</td>
<td>60 (12)</td>
</tr>
<tr>
<td>H (30A)</td>
<td>7992</td>
<td>577</td>
<td>1611</td>
<td>57</td>
</tr>
<tr>
<td>H (30B)</td>
<td>7175</td>
<td>214</td>
<td>1119</td>
<td>57</td>
</tr>
</tbody>
</table>

[0488]
H (33A) 7294 4347 1291 71
H (33B) 6226 5021 1664 71
H (34A) 7528 6411 1397 120
H (34B) 8616 5735 1030 120
H (35) 11047 5874 1457 72
H (99) 10740 (50) 4950 (20) 2171 (11) 49 (10)
H (98A) 9670 (60) 6410 (30) 2507 (15) 95 (14)

[0489] 实例 26

[0490] (1S, 2S, 3S, 4R, 5S)-5-[(4-氯-3-(4-乙氧基苄基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇（实例4A化合物）与L-焦谷氨酸的共晶体；

[0491] 固态NMR:

[0492] 将使用图式2中所述方法制备的 (1S, 2S, 3S, 4R, 5S)-5-[(4-氯-3-(4-乙氧基苄基)-苯基]-1-羟甲基-6,8-二氧杂-双环[3.2.1]辛烷-2,3,4-三醇（实例4A化合物）与L-焦谷氨酸的大约80毫克共晶体紧密地填充至4毫米ZrO₂转子中。光谱在室温与压力下，在置于宽广-口径Bruker-Biospin DSX500MHz（H频率）NMR光谱仪中的Bruker-Biospin4毫米BL CP MAS 探测物上收集。经填充的转子在幻角下定向，且于15.0kHz下旋转。¹³C固态光谱使用质子去偶合正交偏振幻角旋转实验（CPMAS）收集。正交偏振接触时间被设定至2.0ms。施加大约85kHz的质子去偶合场。收集1448次扫描，具有再循环延迟为14秒。碳光谱使用结晶性金刚烷的外标准物作参考，将其高磁场共振设定至29.5ppm。化学位移数据，在其他因素中，依测试条件（即旋转速度与试样保持器）、参考物质及数据处理参数而定。典型地，ss-NMR结果精确至约±0.2ppm内。

[0493] 所发现的碳化学位移

[0494] 特征性峰被打上星号

[0495] 所有峰为（±0.2ppm）
<table>
<thead>
<tr>
<th>13C 化学位移 [ppm]a</th>
<th>强度 b</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5*</td>
<td>9.3</td>
</tr>
<tr>
<td>23.1</td>
<td>4.8</td>
</tr>
<tr>
<td>30.5</td>
<td>4.5</td>
</tr>
<tr>
<td>42.5</td>
<td>4.9</td>
</tr>
<tr>
<td>56.7</td>
<td>4.5</td>
</tr>
<tr>
<td>61.0</td>
<td>6.2</td>
</tr>
<tr>
<td>63.0</td>
<td>7.6</td>
</tr>
<tr>
<td>69.4</td>
<td>8.0</td>
</tr>
<tr>
<td>70.0</td>
<td>7.2</td>
</tr>
<tr>
<td>74.7</td>
<td>8.4</td>
</tr>
<tr>
<td>80.2</td>
<td>6.0</td>
</tr>
<tr>
<td>85.3</td>
<td>11.4</td>
</tr>
<tr>
<td>110.1</td>
<td>10.0</td>
</tr>
<tr>
<td>110.4</td>
<td>7.9</td>
</tr>
<tr>
<td>117.7</td>
<td>7.1</td>
</tr>
<tr>
<td>127.9</td>
<td>5.7</td>
</tr>
<tr>
<td>128.7</td>
<td>6.2</td>
</tr>
<tr>
<td>130.0</td>
<td>6.9</td>
</tr>
<tr>
<td>131.1*</td>
<td>12.0</td>
</tr>
<tr>
<td>132.2</td>
<td>6.5</td>
</tr>
<tr>
<td>134.4</td>
<td>0.8</td>
</tr>
<tr>
<td>137.8</td>
<td>5.9</td>
</tr>
<tr>
<td>140.3</td>
<td>5.3</td>
</tr>
<tr>
<td>158.7*</td>
<td>7.9</td>
</tr>
<tr>
<td>174.7</td>
<td>4.5</td>
</tr>
<tr>
<td>181.5*</td>
<td>5.0</td>
</tr>
</tbody>
</table>

[a] 材料在 29.5ppm 下的固相金刚烷的外部试样。
[b] 定义为峰高度。强度可依赖于 CPMAS 实验参数的实际设立及试样的热历程而改变。CPMAS 强度未必是定量的。
说明书

[0499] 实例26的SNMR\(^{13}\)C CPMAS光谱示于图9中。在图9中通过星号所标示的峰为旋转侧谱带。

[0500] 药理学测试

[0501] 本发明关于治疗通过抑制SGLT2所调节疾病的实施可通过在至少一种下文所述方案中的活性证实。

[0502] 生物学检测

[0503] 活体外检测

[0504] SGLT2功能性检测经设计，以检测通过SGLT2转运蛋白的甲基-α-D-吡喃葡萄糖苷（AMG-葡萄糖）的不可代谢形式吸收的抑制。SGLT2转运蛋白回收来自肾脏的近端小管的葡萄糖，其抑制会造成糖废弃物在尿液中。正对照组化合物，根皮苷，为关于SGLT2的葡萄糖吸收的已知抑制剂，且用于比较待测化合物的SGLT2抑制的高百分比作用。

[0505] 将稳定地表达人类SGLT2(pcDNA5/FRT)的CHO-Fipln（Invitrogen，Carlsbad，CA）细胞铺板在Iso-TC96孔板（Perkin Elmer，Waltham，MA）中，孔密度为100,000个细胞/孔，在100微升生长培养基（1:1F-12/DMEM培养基（Gibco，Carlsbad，CA）10%FBS（Sigma，St.Louis，MO）、IX青霉素/链霉素（Gibco，Carlsbad，CA）600微克/毫升潮霉素（Invitrogen，Carlsbad，CA））中，用以待测化合物处理之前，使融合细胞在37℃下，于1:1F-12/DMEM培养基中血清消耗2小时，于1小时之后以新鲜的F-12/DMEM培养基置换。将细胞在37℃下于1:1F-12/DMEM培养基中血清消耗2小时，于1小时之后以新鲜的F-12/DMEM培养基置换。将二甲亚砜（Sigma，St.Louis，MO）中的待测化合物于吸收缓冲液（140mM NaCl（Promega，Madison，WI）2mM KCl（Teknova，Hollister，CA），1mM CaCl\(_2\)（Teknova，Hollister，CA），1mM MgCl\(_2\)（Teknova，Hollister，CA）及10mM HEPES（Gibco，Carlsbad，CA）中稀释100倍到用吸收缓冲液预冲洗的细胞板。在每孔添加50微升AMG（40nCi AMG[U-\(^{13}\)C]（Perkin Elmer，Waltham，MA）在未标记的AMG（Aldrich，St.Louis，MO）中而产生最后浓度为11.33\(\mu\)M AMG之前，将细胞与待测化合物预培养15分钟。然后，将细胞在37℃下培养3小时，以供AMG吸收。培养之后，将细胞以冰冷洗涤缓冲液（含有260\(\mu\)M根皮苷（Sigma）的吸收缓冲液）洗涤两次，重复，在30微升200mM NaOH与1%SDS缓冲液中，于轨道振荡上溶解。将Microscint-40（Perkin Elmer，Waltham，MA）添加至经溶解的细胞中（获得最后体积为200微升），且通过轨道振荡混合30分钟。将板储存于黑暗中过夜，且于1540Microbeta Trilux（Wallac，Waltham，MA）中定量，使用关于\(^{13}\)C检测的正规化方案。待测化合物抑制AMG吸收的百分比作用使用下列计算法计算：

\[
\% \text{作用} = \frac{(ZPE-T)}{(ZPE-HPE)} \times 100\%
\]

[0507] 其中"ZPE"为在含有0.5%DMSO的对照孔中每分钟经校正的计数（CCPM），T为在含有待测化合物的孔中，于标准曲线的不同浓度下的CCPM，且HPE为关于在含有10\(\mu\)M根皮苷的对照孔中的CCPM的高百分比作用。IC\(_{50}\)值使用剂量响应方程式计算，且针对所测试的化合物总结于表3中。

[0508] 使用于活体外测试说明中的缩写包括：

[0509] SGLT2

[0510] AMG

[0511] DMEM

[0512] IC\(_{50}\) 50%抑制作用浓度
[0513] FBS 牛胎儿血清
[0514] DMSO 二甲亚砜
[0515] SDS 十二烷基硫酸钠
[0516] CHO-FlpIn 含有 FRT 位置的中国仓鼠卵巢细胞
[0517] 表 3

<table>
<thead>
<tr>
<th>待测化合物</th>
<th>操作编号</th>
<th>hSGLT1 IC₅₀ nM</th>
<th>hSGLT2 IC₅₀ nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1</td>
<td>1080</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>454</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>327</td>
<td>0.779</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>562</td>
<td>0.715</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>262</td>
<td>0.654</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>359</td>
<td>1.61</td>
</tr>
<tr>
<td>待测化合物</td>
<td>操作编号</td>
<td>hSGLT1 IC_{50} nM</td>
<td>hSGLT2 IC_{50} nM</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2A</td>
<td>1</td>
<td>1240</td>
<td>0.827</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>1000</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>1000</td>
<td>0.942</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>>1000</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>679</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>未测定</td>
<td>1.05</td>
</tr>
<tr>
<td>3A</td>
<td>1</td>
<td>543</td>
<td>0.479</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>397</td>
<td>0.972</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>550</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>757</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>523</td>
<td>0.602</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>672</td>
<td>0.588</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>380</td>
<td>1.35</td>
</tr>
<tr>
<td>3B</td>
<td>1</td>
<td>>10000</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10000</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>10000</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>未测定</td>
<td>62.2</td>
</tr>
<tr>
<td>4A</td>
<td>1</td>
<td>1590</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1010</td>
<td>0.816</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1750</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>>1000</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>>1000</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2090</td>
<td>0.812</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1810</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2860</td>
<td>0.737</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2480</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2840</td>
<td>0.768</td>
</tr>
<tr>
<td>4B</td>
<td>1</td>
<td>>1000</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10000</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>未测定</td>
<td>81.7</td>
</tr>
<tr>
<td>5A</td>
<td>1</td>
<td>>10000</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>1000</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5790</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>未测定</td>
<td>1.77</td>
</tr>
<tr>
<td>5B</td>
<td>1</td>
<td>>10000</td>
<td>186</td>
</tr>
<tr>
<td>6A</td>
<td>1</td>
<td>>10000</td>
<td>18.7</td>
</tr>
<tr>
<td>待测化合物</td>
<td>操作编号</td>
<td>hSGLT1 IC₅₀ nM</td>
<td>hSGLT2 IC₅₀ nM</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>>1000</td>
<td>9.99</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>>1000</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>>1000</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8930</td>
<td>5.71</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>未测定</td>
<td>7.67</td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>1</td>
<td>>1000</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10000</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>1000</td>
<td>5.88</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>未测定</td>
<td>6.11</td>
</tr>
<tr>
<td>10A</td>
<td>1</td>
<td>>10,000</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>3330</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>3160</td>
<td>2.54</td>
</tr>
<tr>
<td>10B</td>
<td>1</td>
<td>>10,000</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10,000</td>
<td>103</td>
</tr>
<tr>
<td>11A</td>
<td>1</td>
<td>>10,000</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10,000</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>10,000</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>>10,000</td>
<td>7.13</td>
</tr>
<tr>
<td>12A</td>
<td>1</td>
<td>>10,000</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5780</td>
<td>7.41</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>10,000</td>
<td>8.85</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>>10,000</td>
<td>0.802</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>>10,000</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>>10,000</td>
<td>14.1</td>
</tr>
<tr>
<td>12B</td>
<td>1</td>
<td>>3160</td>
<td>32.3</td>
</tr>
<tr>
<td>13A</td>
<td>1</td>
<td>>10,000</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10,000</td>
<td>17.8</td>
</tr>
<tr>
<td>14A</td>
<td>1</td>
<td>>10,000</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>>10,000</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>10,000</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>>10,000</td>
<td>2.87</td>
</tr>
</tbody>
</table>

[0521] 活体内检测

[0522] 实例 1A 与 4A 在大鼠中测试，以评估通过尿葡萄糖排泄的葡萄糖输送的抑制。将雄性史－道二氏 (Sprague Dawley）大鼠（～300 克）单独收容在代谢笼中，以供尿液收集。大鼠具有无限制地获取标准实验室食物与水。大鼠（n=2 至 5/组）通过口腔灌食法接受溶液或化合物。服用溶液为 0.03 毫克 / 毫升、0.3 毫克 / 毫升、0.9 毫克 / 毫升、3 毫升。
克/毫升、9毫克/毫升及18毫克/毫升，针对分别为0.1毫克/千克、1毫克/千克、3毫克/千克、10毫克/千克、30毫克/千克及60毫克/千克剂量。关于所有剂量，服用体积为1毫升/300克体重。一组接受10毫克/千克剂量的实例1A，而其他接受0.1, 1, 3, 10, 30或60毫克/千克剂量的实例4A。剂型为20%v/vPEG400与24%v/v羟丙基β环糊精；HPBCD。在口服给药后，将尿液收集24小时。通过UV吸收分光光度法，在340微米下，使用Roche Hitachi917分光光度计(Diamond Diagnostics,Holliston,MA)测定尿液中的葡萄糖浓度。在尿液中所排泄葡萄糖的总量以尿液浓度与尿液体积的乘积，使用下文方程式计算：

$$\text{所排泄的尿葡萄糖 (毫克)}/200 \times \text{尿葡萄糖浓度 (毫克/分升)} \times \text{尿液体积 (分升)} \times 200/\text{大鼠体重 (克)} \times \text{所排泄尿葡萄糖 (UGE) 的量通过上述方法得到关于实例1A与实例4A的大鼠，且示于表4中。血液 (0.1毫升) 从来自PK卫星群组动物，在1, 2, 4, 7, 24小时服药后的下收集，以获得血浆，且由LC-MS/MS 分析。在所测试不同剂量下的平均PK参数示于表4中。}$$

表4

<table>
<thead>
<tr>
<th>化合物</th>
<th>剂量/千克 (毫克/千克)</th>
<th>平均 UGE (毫克/200克体重) ± SEM (n=5)</th>
<th>平均 PK 参数 (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实例1A</td>
<td>10</td>
<td>2049 ± 382.2</td>
<td>Cmax (毫克/小时)</td>
</tr>
</tbody>
</table>
| 实例4A | 3 | 1937 ± 101.1 | |\n| 实例4A | 10 | 2145 ± 132.3 | |\n| 实例4A | 30 | 2554 ± 141.1 | |\n| 实例4A | 60 | 2437 ± 116.7 | |\n
SEM: 平均的标准误差。

[0526] 在大鼠中的药物动力学测试

[0527] 实例1A, 2A, 4A, 12A 及14A在大鼠中测试，以评估药物动力学参数，包括最大浓度 (Cmax)、血浆浓度时间曲线下面积 (AUC)、清除率 (CL)、稳态分布体积 (Vss)、半衰期 (t1/2) 及生物利用度 (F)。使用雄性史 - 二氏(Sprague Dawley) 大鼠 (～300克)。大鼠通过静脉内 (IV) 或口服灌食法 (PO) 给药接受化合物，且经测试包括剂型的以调配服用溶液的剂量列示于表5中。

[0528] 在IV或PO给药之后，在不同时间点下自静脉取样0.2毫升血液 (表5)。使二十微升等份的血浆试样与标准物经历以含有内标准物的乙醇的蛋白质沉淀作用。使试样形成沉淀及离心，以获得上层清液，其通过LC-MS/MS 分析。使用 Analyst (版本 1.4.1) 以测量峰面积，且计算被分析物对内标准物的峰面积比例。LC-MS/MS 条件如下：质谱仪 + 来源类型
为 Sciex API4000-涡轮式喷雾;HPLC 泵为 Shimadzu;自动取样器为 CTC PAL 自动取样器;注射体积为 3.0 至 10 微升;梯度用流动相 A:10mM 醋酸铵与 1% 异丙醇在水中;B:乙腈;流率每分钟 0.300 毫升(柱 2.0x30 毫米 5 微米 LUNA C18 柱 (phenomenex)。检测模式为负。

【0529】校准曲线自标准物对内标准物的峰面积比例,通过应用经加权的线性 (1/x 或 1/x^2) 回归而建构。标准曲线的动态范围为 5.00 毫微克 / 毫升至 5000 毫微克 / 毫升。

【0530】药物动力学参数测定自个别动物数据,使用 Watson(版本 7.2) 中的非隔室分析。定量限制下方 (BLQ) 的浓度被记录为 0 毫微克 / 毫升,供使用于计算中。使用下列计算值:

【0531】AUC(0-τ)= 使用线性梯形方法测定

【0532】AUC(0-∞)=AUC(0-τ) 加上以下述方式所测得的外推面积,将在 τ 下的血浆浓度除以末端 log- 线性相的斜率

【0533】CL= 剂量 /AUC(0-∞)

【0534】Vdss=CL x MRT

【0535】Cmax= 直接从血浆浓度时间曲线记录

【0536】Tmax= 直接从血浆浓度时间曲线记录

【0537】t1/2=ln(0.5) / 末端 log- 线性相的斜率

【0538】F%= 每剂量 AUC(0-∞)PO/ 每剂量 AUC(0-∞)IV

【0539】C(0)= 在静脉内给药之后通过线性回归从表观分布相外推

【0540】MRT=AUMC(AUC(0-∞)) / AUC(0-∞)

【0541】表 5

【0542】
<table>
<thead>
<tr>
<th>实例</th>
<th>剂量 (毫克/千克)</th>
<th>途径/(n)</th>
<th>配方</th>
<th>时间点 (小时)</th>
<th>Cmax (微克/毫升)</th>
<th>AUCinf (微克•小时/毫升)</th>
<th>CL (毫升/小时/千克)</th>
<th>Vss (升/千克)</th>
<th>t1/2 (小时)</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td></td>
<td>IV/ ((n=2))</td>
<td>DMSO/PEG400/30%SBEC (10/30/60 v/v/v)</td>
<td>0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 20</td>
<td>-</td>
<td>8.48</td>
<td>4.04</td>
<td>1.1</td>
<td>4.1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>PO/ ((n=3))</td>
<td>Tween 80/0.5% MC (0.1/99.9 v/v)</td>
<td>0.5, 1, 2, 4, 7, 20</td>
<td>0.772</td>
<td>5.65</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>PO/ ((n=5))</td>
<td>20% PEG/24% HBCD</td>
<td>1, 4, 7, 24</td>
<td>1.19</td>
<td>16.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td>IV/ ((n=2))</td>
<td>DMSO/PEG400/30%SBEC (5/10/85 v/v/v)</td>
<td>0.083, 0.25, 0.5, 1, 2, 4, 5, 6, 7, 20</td>
<td>-</td>
<td>2.20</td>
<td>15.9</td>
<td>3.68</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td>IV/ ((n=2))</td>
<td>DMA/PG/50 mM Tris 碱 (5/10/85 v/v/v)</td>
<td>0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 20</td>
<td>-</td>
<td>0.947</td>
<td>37.1</td>
<td>1.71</td>
<td>0.962</td>
<td></td>
</tr>
</tbody>
</table>

[0543]
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>PO/ (n=2)</th>
<th>PEG200/0.5%MC (5/95 v/v)</th>
<th>0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 20</th>
<th>1.65</th>
<th>2.68</th>
<th>-</th>
<th>-</th>
<th>2.82</th>
<th>56.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>14A</td>
<td>2</td>
<td>IV/ (n=2)</td>
<td>DMSO/PEG400/30%SBEC (5/10/85 v/v)</td>
<td>0.25, 0.5, 1, 2, 4, 7, 20, 22</td>
<td>-</td>
<td>1.06</td>
<td>31.7</td>
<td>1.69</td>
<td>1.36</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>PO/ (n=2)</td>
<td>PEG200/0.5%MC (5/95 v/v)</td>
<td>0.5, 1, 2, 4, 7, 20, 22</td>
<td>0.551</td>
<td>2.29</td>
<td>-</td>
<td>-</td>
<td>1.71</td>
<td>43.5</td>
</tr>
<tr>
<td>2A</td>
<td>2</td>
<td>IV/ (n=2)</td>
<td>DMA/PG/50 mM Tris 碱 (5/10/85 v/v)</td>
<td>0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 20</td>
<td>-</td>
<td>1.34</td>
<td>27.7</td>
<td>1.03</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>2</td>
<td>IV/ (n=2)</td>
<td>DMA/PG/50 mM Tris 碱 (5/10/85 v/v)</td>
<td>0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 20</td>
<td>-</td>
<td>1.41</td>
<td>23.8</td>
<td>1.82</td>
<td>1.58</td>
<td>-</td>
</tr>
</tbody>
</table>

- 未可取得或未可应用的数据；DMSO = 二甲亚砜；HBCD = 烷丙基 β 环糊精；PEG = 聚乙二醇；
PG = 丙二醇；SBEC = 硼酸基丁酯 β 环糊精；MC = 甲基纤维素；DMA = 二甲苯胺

[0544] 在整个本申请案中，有各种刊物被引用。这些公报的公开内容，其全体均据此并入本申请案中供参考，以提供所有目的。

[0545] 本领域技术人员将显而易见的是，在未偏离本发明的范围或精神下，可在本发明中施行各种修正与变化。本领域技术人员从本文中所公开本发明的专利说明书与实施的考
虑将明白本发明的其他具体实施方式。所意欲的是，包含实例的本专利说明书仅被认为是
举例而已，其中本发明的真实范围与精神由下述权利要求所表示。
图 1
图 2
图 3
图 4
图 5
图 6
图 7
图8

图9