wo 2012/051600 A2 I 10K 000 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo AT
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /g]I) 0M)F 00N 0000 AT A0 O 0 O
International Bureau S,/ 0
3\) 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
19 April 2012 (19.04.2012) PCT WO 2012/051600 A2
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 12/06 (2006.01) GO6F 13/14 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 12/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. L HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR. KZ. LA. LC. LK. LR. LS. LT. LU. LY. MA. MD
PCT/US2011/056477 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
14 October 2011 (14.10.2011) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(25) Filing Language: English ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/393,763 15 October 2010 (15.10.2010) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
(72) Inventors; and RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
(71) Applicants : SON, Kyquang [US/US]; 2766 Bayview DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
Drive, Fremont, CA 94538 (US). LEE, Ronald [US/US]; LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
323 Oaks Bridge Place, Pleasanton, CA 94566 (US). SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM,
LAU, Henry, C. [US/US]; 45197 Lynx Dr., Fremont, CA GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

94539 (US). ANANTHANARAYANAN, Rajesh
[US/US]; 794 Shearton Drive, San Jose, CA 95117 (US).

(74) Agents: VITHAYATHIL, Anne, M. et al.; Perkins Coie
LLP, P.O. Box 1247, Seattle, WA 98111-1247 (US).

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: FILE SYSTEM-AWARE SOLID-STATE STORAGE MANAGEMENT SYSTEM

100 I FILE SYSTEM(S) |\/‘ 105
K l(FLBA‘ L, FLAGS) - 108

110

| VIRTUAL POOL MANAGEMENT MCDULE

l(FLBA, L, FLAGS, DRIVE MAP)~—"" 112

115
| REDUNDANCY AND DATA PROTECTION MODULE 'rf
f1 16R
l(FLBAA, La, Ds, FLAGS)~_~116A l(FLBAE, Le, Dg, FLAGS)\/TI\’IGB‘ b l(FLBAR. L, Dg, FLAGS)
150
| SSD MANAGEMENT MODULE II 152R

l(PLBAA, La, Da, FLAGS)~""152A l(PLBAE, Ls, Ds. FLAGS)_/_\15'2E3' l(PLBAR, Lg, D, FLAGS)

160

I DRIVER MODULE

(PLBA, Ly 162A (PLBA;, Lg)~ 1628 « -« (PLBAR, Lr)~—"""162R
145
+*104R
1048
1044
(k]
40
FIG. 1

(57) Abstract: A file system-aware SSD management system including an SSD management module that incorporates both file
system information and information related to the underlying physical solid-state storage media into its operations is described.
Also described are related methods for performing data management operations in a file system-aware manner. By incorporating
both file system and physical storage information, the system may achieve various advantages over conventional systems, such as
enhanced I/O performance, simplified SSD firmware, and extended SSD lifespan. Moreover, by moving solid-state management
functions above the firmware level, the system may enable the simultaneous management of a pool of multiple SSDs.

WO 2012/051600 PCT/US2011/056477

FILE SYSTEM-AWARE SOLID-STATE STORAGE
MANAGEMENT SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims priority to and the benefit of U.S. Provisional
Application No. 61/393,763, filed October 15, 2010, and titled "FLASH AWARE FILE
SYSTEM (FAFS) UTILIZING FLASH OPTIMIZED RAID TECHNIQUES," which is
hereby incorporated herein in its entirety.

BACKGROUND

[0002] Solid-state drives (herein "SSDs") store data persistently in solid-state
memory such as NAND flash memory. SSDs offer advantages over traditional hard
disk drives, such as improved resistance to mechanical shock, lower power
consumption, and faster access times. SSDs have a different set of operating
constraints than hard disk drives. As a first example, SSDs can be programmed with
high granularity (e.g., at the byte or word level), but must be erased with far less
granularity (e.g., at the block level). As a second example, SSDs typically require that
a write operation span physically sequential flash pages. As a third example, SSDs
have a much longer erase time than read times or write times. As a fourth example,

each block in an SSD can only endure a finite number of erase cycles.
BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Figure 1 is a block diagram illustrating a file system-aware SSD

management system.

[0004] Figure 2 is a block diagram illustrating the hierarchical organization of an
SSD array.

[0005] Figures 3A through 3D are tables illustrating the management data
structures maintained by an SSD management module.

[0006] Figure 4 is a flowchart illustrating a process for a write operation.

[0007] Figure 5 is a flowchart illustrating a process for a delete operation.

-1-

WO 2012/051600 PCT/US2011/056477

[0008] Figure 6 is a flowchart illustrating a process for garbage collection.

[0009] Figure 7 is a flowchart illustrating a process for wear leveling.

[0010] Figure 8 is a flowchart illustrating a process for restoring SSD management
data.

[0011] Figure 9 is a block diagram showing some of the components typically

incorporated in at least some of the computer systems and other devices on which the

SSD management module executes.
DETAILED DESCRIPTION

[0012] The inventors have discovered that most file systems, which were originally
designed for magnetic storage media such as hard disk drives, fail to accommodate the
unique operating constraints of SSDs. For example, many file systems perform
read/write operations to an SSD in the same fashion as read/write operations to a hard
disk drive. File systems typically rely on lower-level hardware and firmware embedded
in the SSD to implement input/output ("I/O") operations in a manner suitable for the
underlying physical configuration of the SSD.

[0013] Moreover, the inventors have discovered that the failure of conventional
SSDs to incorporate file system information into their operational logic often results in
inefficiencies. For example, a conventional SSD typically has an embedded controller
and firmware that are responsible for performing address remapping, garbage
collection, wear leveling, and other data management operations. However the
embedded controller and firmware typically do not utilize file system information during
these data management operations. For example, embedded controllers typically do
not customize data management operations to the type of data implicated by the
operation (e.g., metadata versus user data). As another example, typically during
wear-leveling and garbage collection, embedded controllers do not physically group
together data that is logically contiguous within the overlying file system.

[0014] In response to these discoveries and other shortcomings of conventional
systems, the inventors have developed a file system-aware SSD management system
("the system") including an SSD management module ("the SSD module") that
incorporates both file system information and information related to the underlying

WO 2012/051600 PCT/US2011/056477

physical solid-state storage media into its operations. By incorporating both file system
and physical storage information, the system may achieve various advantages over
conventional systems, such as enhanced I/O performance, simplified SSD firmware,
and extended SSD lifespan. Moreover, by moving solid-state management functions
above the firmware level, the system may enable the simultaneous management of a
pool of multiple SSDs.

[0015] File System-Aware SSD Management System

[0016] Figure 1 shows a file system-aware SSD management system ("the
system") 100. The system includes one or more file systems 105, a virtual pool
management module 110, a redundancy and data protection module 115, an SSD
management module ("the SSD module") 150, a driver module 160, and an SSD

array 145.

[0017] The SSD array includes one or more SSDs 104. Each SSD includes
persistent solid-state memory 135 and a controller 140 that is configured to execute
firmware (not shown) to store, retrieve and erase data. In some embodiments, the
controller and firmware are configured differently from many conventional systems in
that they do not perform onboard garbage collection or wear-leveling, but rely upon the
SSD module to manage such operation, as described in greater detail herein. In
various embodiments the SSDs in the SSD array are configured as a Redundant Array
of Independent Disks ("RAID") group, data mirror, or other type of drive array
configuration that provides data redundancy and protection. Although only a single
SSD array is shown, in some embodiments the same SSD module manages multiple
SSD arrays. Unless the context requires otherwise, subsequent references to "the
controller" should be understood to encompass both the controller and the firmware
executed by the controller. As used herein, "solid-state memory" encompasses, as
non-exhaustive examples, flash memory, magnetoresistive random access memory
("MRAM"), phase-change memory (i.e., PCM, PRAM, PCRAM, Ovonic Unified
Memory, Chalcogenide RAM, or C-RAM), ferroelectric random access memory
("FeRAM" or "FRAM"), conductive-bridging RAM or programmable metallization cell
memory, Silicon-Oxide-Nitride-Oxide-Silicon ("SONOS") memory, resistive random
access memory ("RRAM"), Racetrack Memory, Nano-RAM ("NRAM"), Millipede

memory, dynamic random access memory ("DRAM"), static random access memory

-3-

WO 2012/051600 PCT/US2011/056477

("SRAM"), thyristor random access memory ("T-RAM"), zero capacitor random access

memory ("Z-RAM"), and twin transistor random access memory ("TTRAM").

[0018] Each file system allocates persistent memory, tracks persistent memory
usage, and otherwise manages the persistent memory of data storage devices,
including the SSD array. As part of its function, the file system logically organizes user
data (e.g., data files) and metadata by associating file system logical block addresses
("FLBASs") with each of the blocks (or other units) of user data and metadata under its
management. As used herein, the term metadata encompasses any data, other than
user data, that facilitates the file system's organization of, access to, or other
management of user data. Non-exhaustive examples of metadata include directory
information, file types, creation/access/modification times, and access control
information. The file system also tracks free persistent memory space that is available,
e.g., for new files and metadata. Non-exhaustive examples of file systems include
Unix-based file systems (e.g., UFS, FFS), Linux-based file systems (e.g., XFS, JFS,
ReiserFS, btrfs), Solaris-based file systems (e.g., VxFS, QFS, ZFS), Windows-based
file systems (e.g., FAT, NTFS) and Mac OS-based file systems (e.g., HFS Plus).

[0019] The virtual pool management module abstracts or obscures the physical
structure underlying the SSD array and presents the SSD array as a single pooled
storage resource to the file system. As non-exhaustive examples, the virtual pool
management module may be a volume manager or a Pooled Storage Layer of a ZFS
file system. As a result of the abstraction, the higher-level file system responsible for
logically organizing files and metadata may be unaware of the constituent physical
SSDs that form the SSD array. Instead, the file system may view the SSD array as a
monolithic virtual device or virtual data pool having an aggregate capacity. For a
variety of reasons, including that the underlying physical structure of the SSD array is
hidden from the file system, the FLBA used by the file system to address a particular
block of user data or metadata typically does not correspond to the physical logical
block address ("PLBA") where the user data or metadata is physically stored within an
SSD.

[0020] The redundancy and data protection module intercepts /O requests
originating from the file system and modifies those 1/O requests in order to implement

data redundancy or other data protection schemes such as RAID or data mirroring

4-

WO 2012/051600 PCT/US2011/056477

schemes. The redundancy and data protection module may also compile various data
blocks received from different SSDs in response to a file system 1/O request. For
example, in some embodiments that include a ZFS file system, the redundancy and
data protection module may implement RAIDZ schemes. Other embodiments may
implement mirrored disks or any other RAID scheme, including standard and non-
standard RAID levels.

[0021] The SSD module intercepts 1/0 requests originating from the file system,
which may have been modified by the intervening virtual pool management and
redundancy and data protection modules. As described in greater detail herein, the
SSD module incorporates both file system information and information related to the
underlying physical solid-state storage media in order to perform actions that fulfill
those 1/O requests. Additionally as described further herein, the SSD module performs
various housekeeping operations to help improve the performance of the SSD array,

such as wear-leveling, garbage collection, and table recovery operations.

[0022] The driver module includes one or more device drivers capable of
facilitating communications between the file system (and intervening modules) and the
SSDs. For example, the driver module may translate 1/0 requests received from the
SSD module into a device-specific format suitable for a particular SSD. The device
driver may then send the translated /O request to the SSD over a communications

interface (not shown), such as a bus or network connection.

[0023] To illustrate the type of interactions that occur between the system
components, Figure 1 also shows a highly simplified communication flow for a file
system write request. As shown at 108, the write request originates with the file system
sending the write request to the virtual pool management module. The write request
indicates the FLBA associated with the write operation, a logical length for the write
operation ("L", e.g., the number of sectors to be written), source data to be written (not
shown), and various I/O flags. As one non-exhaustive example, the 1/0 flags may

indicate whether the source data is user data, metadata, or raw data.

[0024] As shown at 112, the virtual pool management module augments or
modifies the request so that it includes information about the constituent physical SSD
drives that underlie the SSD array storage pool (e.g., "drive map information") and
provides the augmented request to the redundancy and data protection module.

-5-

WO 2012/051600 PCT/US2011/056477

Alternatively, the redundancy and data protection module may obtain the write request
and drive map information by other means. As shown at 116A-R, the redundancy and
data protection module uses the received request and drive map information to
generate one or more subsidiary write requests, each directed to a different SSD in the
SSD array. The various subsidiary requests are generated in accordance with an
applicable redundancy or data protection scheme. For example, if the SSD array is
implemented as an eight-member RAID-6 array, the redundancy and data protection
module may split the write request into six smaller write requests that each include a
portion of the source data, and two write requests that each include parity data. Each
subsidiary data request may include an FLBA, length, drive identifier ("D") and 1/O
flags.

[0025] As shown at 152A-R, the SSD module translates the FLBA of each
subsidiary request into a corresponding PLBA as described in greater detail herein.
For each subsidiary request the SSD module then provides to the driver module the
PLBA, length, drive identifier, and a portion of the source data (or parity data). As
shown at 162A-R, the driver module translates each subsidiary request into a device-
specific format and conveys each translated request to the identified constituent SSD in
the SSD array. In response to receiving a subsidiary request, an SSD stores the
source or parity data in accordance with the received request at the physical locations

that correspond to the indicated PLBAs.
[0026] ltems 108, 112, 116, 152, and 162 are intended to provide only an

illustrative example of a subset of the communications that might occur in the system
during a write operation. In some embodiments, additional and/or different
communications occur during a write operation. Moreover, the system is capable of
fulfilling other types of I/O requests such as read operations, as described in further

detail herein.

[0027] SSD Array Organization

[0028] Figure 2 illustrates the hierarchical organization of an SSD array. As
shown, the solid-state memory 135 of each SSD in the SSD array comprises one or
more superblocks 210, each of which in turn comprises one or more superpages 215,
each of which in turn comprises one or more pages 220. In some embodiments, an
SSD has a capacity of approximately 512GB, a superblock stores approximately 16MB

-6-

WO 2012/051600 PCT/US2011/056477

of data, a superpage stores approximately 64KB of data, and a page stores

approximately 8KB of data.

[0029] Each superblock is a grouping of one or more flash blocks that the
controller associates with a unique superblock address; the constituent flash blocks in
a superblock are typically physically contiguous. Typically, the controller permits
erasures (or "flashes") to occur only at the superblock-level, and does not permit
erasures at the level of a superblock’'s constituent individual physical flash blocks.
Each superpage is a physically contiguous grouping of one or more flash pages that
the controller associates with a unique combination of a superblock address and a
superpage address. Each page is a physically contiguous collection of memory cells in
the solid-state memory that the controller associates with a unique combination of a
superblock address, a superpage address, and a page address. Typically, the
controller permits programming to occur only at the page-level. The controller typically
does not permit random-access programming at the level of a page's constituent

memory cells.

[0030] Generally speaking, within a particular superblock, the controller will
implement only sequential write operations. In other words, the controller will spread
the first write operation to a superblock along the first set of contiguous pages in a first
superpage and begin the next, second write operation to the same superblock at the
next contiguous page in the first superpage. Once the first superpage in the
superblock is full, during the next write operation to the same superblock, the controller

will write data to the first page in the next physically contiguous superpage.

[0031] As shown in Figure 2, each page includes storage space 230 and a data
integrity field ("DIF") header region 225. The storage space 230 is a collection of
memory cells (e.g., 8 KB) within the page used to store user data, metadata, or raw
data (e.g., data structures utilized by the SSD module as described in greater detail
herein). The DIF header region is a smaller collection of memory cells (e.g., 16 bytes)
that are conventionally used to store data integrity information. For example, the DIF
header region may be used to store checksums or similar information that permits the
controller to determine whether the data in the storage space is corrupt. In some
embodiments, the SSD controller accepts at least two kinds of write requests: (1) a

"with DIF" write request to write both source data (e.g., user, metadata, or raw) into the

-7-

WO 2012/051600 PCT/US2011/056477

storage space and to write other data (e.g., restoration data) to a portion of the DIF
header, and (2) a "without DIF" write request to only write source data into the storage
space. Similarly, in some embodiments, the SSD controller accepts at least two kinds
of read requests: (1) a "with DIF" read request to read both source data (e.g., user,
metadata, or raw) from the storage space and to read other data (e.g., restoration data)
from a portion of the DIF header, and (2) a "without DIF" read request to only read

source data from the storage space.

[0032] SSD Management Data Structures

[0033] Figures 3A through 3D illustrate management data structures maintained
by an SSD module to facilitate its various functions. In some embodiments, the SSD
module maintains a separate instance of each data structure for each SSD within the
SSD array. In other embodiments, the SSD module may maintain only a single
instance of each data structure that is used for all the SSDs in the SSD array.

[0034] The SSD module may store some or all of the data structures shown in
Figures 3A-3D related to a particular SSD in persistent storage such as the same SSD,
a different SSD in the SSD array, and/or non-volatile RAM. In some embodiments, the
SSD module backs up an instance of a data structure related to a first SSD in a
different, second SSD, to ensure that the data structure is recoverable in the event that
a portion of the memory in the first SSD becomes corrupted. Additionally, the SSD
module may manipulate the values in a data structure by reading a portion of the data

structure into system memory (not shown), e.g., using a page in, page out approach.

[0035] Figure 3A illustrates a page status table 300, which the SSD module may
utilize to quickly identify the status of any page in an SSD. As shown, the table
includes a separate row for each page in the SSD. The table associates each page
(column 310a) with a logical write position (column 310b) and a page status (column
310c). The logical write position for a page indicates the relative position of the page
within a larger logical write operation requested by the file system or another
component. The logical write position column may indicate whether a particular page is
the first or starting page of a logical write as shown in row 305a, the last or end page of
a logical write as shown in row 305c, or a middle page that falls between a start page
and end page, as shown at row 305b. To illustrate, if the file system makes a single

logical write request to store a quantity of user data that spans five pages, the first

-8-

WO 2012/051600 PCT/US2011/056477

physical page written during the fulfillment of the request is marked "Start," the next
three contiguous physical pages are marked "Middle," and the fifth contiguous physical
page is marked "End." By maintaining logical write position information for each page,
the SSD module can more readily identify a group of physical pages that store data for

a contiguous set of FLBAs.

[0036] The page status column indicates whether the data stored in a particular
physical page is free, valid, or invalid. A physical page is "free" if the page has not
been programmed with data since its superblock was last erased. The data in a
physical page is "valid" if it represents up-to-date data that is in use by the file system
or another system component, such as the SSD module. A physical page is "invalid" if
the data it contains is stale, either because the file system or another component is no
longer using the data stored in the physical page (e.g., because a file was deleted from
the file system) or because an updated version of the stored data was stored in a
different physical page (e.g., during a re-write operation). Further illustrative examples

of how data becomes invalid are described in greater detail herein.

[0037] While Figure 3A and each of the table diagrams discussed below show a
table whose contents and organization are designed to make them more
comprehensible by a human reader, those skilled in the art will appreciate that actual
data structures used by the module to store this information may differ from the table
shown, in that they, for example, may be organized in a different manner; may contain
more or less information than shown; may be compressed and/or encrypted; etc. In
some embodiments, the page status table shown in Figure 3A is organized as a
bitmap.

[0038] Figure 3B illustrates an FLBA to PLBA mapping table (or "mapping
table") 330. As shown, the mapping table includes a separate row for each FLBA used
by the file system, the virtual pool management module, the redundancy and data
protection module, and/or the SSD module. The mapping table associates each FLBA
(column 320a) with a data type (column 320b), superblock address (column 320c), a
superpage address (column 320d), a page address (column 320e), and a sector
address (column 320f). Herein, the term "PLBA" refers to the combination of the
various values in columns 320b-320f. The data type column indicates whether the file

system or another component associates a particular FLBA with metadata, user data,

-9-

WO 2012/051600 PCT/US2011/056477

or raw data, i.e., data used by the SSD module to store SSD management data, such
as those data structures illustrated by Figures 3A through 3D. As described previously
with respect to Figure 2, the unique combination of a superblock address, a superpage
address, and a page address (in columns 320c-e) permits the controller to address a
single physical page within the SSD that stores the user data, metadata, or raw data
associated with the FLBA. The sector address column indicates which physical portion
or offset within a particular page stores the data associated with an FLBA. If the file
system has not yet allocated a particular FLBA to store user data or metadata, but is
instead maintaining the FLBA within its free storage pool, the mapping table may
indicate that currently the particular FLBA is yet not mapped to a PLBA and/or the
mapping table may not include an entry for that particular FLBA. In some
embodiments, the mapping table shown in Figure 3B is organized as a hash table that
is divided into several regions, where an FLBA is used as the lookup. The hash table
may also include header information to identify a device name, unique identifiers, sizes

of the different regions in the hash table, and memory addresses for different regions.

[0039] Figure 3C illustrates a superblock table 350. As shown, the superblock
table includes a separate row for each superblock in an SSD. The superblock table
associates each superblock (column 335a) with a wear count (column 335b), a valid
page count (column 335c), an invalid page count (column 335d), a state (column
335e), a next superpage indicator (column 335f), a next page indicator (column 335g),
a page detail array (column 335h), a last modification time (column 335j), and a data
type (column 335k). The wear count column indicates how many times a particular
superblock has been erased. For example row 340a indicates that superblock 0 has
been erased 115 times. The valid page count column and invalid page count column
indicate how many pages within the superblock are valid and invalid, respectively. For
example row 340b indicates that superblock 1 has 856 valid pages and 741 invalid

pages.

[0040] The state column indicates the current state of each superblock. For
example, as shown at row 340a, the state column indicates that superblock 0 is
"CLEAN," meaning the superblock has been erased and is available to take new writes.
As another example, as shown at row 340b, the state column indicates that superblock
1 is "IN_USE" because there are pages within the superblock that are available for new

-10-

WO 2012/051600 PCT/US2011/056477

writes. Other non-exhaustive examples of possible superblock states include
"SEALED," indicating that there are no free pages within the superblock because all
pages have been written, "GC," indicating that garbage collection is currently in
progress within the superblock, and "WL" indicating that wear leveling is currently in

progress within the superblock. Of course other superblock states are possible.

[0041] Together, the next superpage column and next page column identify the
physical location of the next page that should be written to within the superblock to
ensure that the SSD controller is writing new data to sequential pages. For example as
shown at row 340b, within superblock 1, the controller has already written data to all
pages in superpages 0-67 and pages 0-4 in superpage 68, and the next write to

superblock 1 should occur at page 5 within superpage 68.

[0042] The last modification time indicates approximately the most recent time that
any page within the superblock was invalidated or programmed. The data type column
indicates the type of data that is stored within the superblock, such as user data,
metadata, and raw data.

[0043] Figure 3D illustrates a page detail array 375 that the superblock table may
associate with a particular superblock in the page detail array column 335 of the
superblock table. As shown, the page detail array includes a separate row for some or
all pages within a superblock. The page detail array associates each page (column
385a) with a superblock identifier (column 385b) and superpage identifier (column
385c¢) that together indicate where the page is physically located in the SSD. The page
detail array also associates each page with an FLBA address (column 385d). To
reduce memory requirements, in some examples, a page detail array is only
maintained for pages in the subset of superblocks that the SSD module is actively
accessing or otherwise using, e.g., for file system operations, uberblock updates,

garbage collection, or wear-leveling.

[0044] Write Operation

[0045] Figure 4 is a flowchart illustrating a process 400 for a write operation. The
write operation process begins at block 405, where the SSD module receives a request
to perform an operation to write source data to an SSD. The request may be received
from the file system or another system module. The received request includes an
indication of an FLBA associated with the source data, as well as an indication of the

-11-

WO 2012/051600 PCT/US2011/056477

size of the write request (e.g., the number of sectors to be written), as well as an
indication of the data type of the source data (e.g., metadata, user data, or raw data).
In some examples, a write operation is initiated from the SSD module itself, not in
response to an explicit request to perform a write operation. For example, the SSD
module may initiate a write operation as part of an SSD maintenance operation (e.g.,
garbage collection or wear leveling) or in order to store a portion of a management data
structure (i.e., raw data) in the SSD. In such examples, the SSD module may

determine the FLBA, the size of the write request, and the data type of the source data.

[0046] At block 410, the SSD module retrieves information from management data
structures, such as those illustrated by Figures 3A-D. For example, the module may
access the superblock table associated with the SSD to identify which superblocks in
the SSD are currently in use or clean and therefore available as candidate superblocks
to store the source data. In the examples where the write operation will write new data
to an existing file, metadata block, or management data structure (a "rewrite
operation"), the received FLBA may already be associated with a particular PLBA.
Therefore, the SSD module may also look up the received FLBA in the mapping table
to determine whether the FLBA is already associated with a previously-stored PLBA.

[0047] At block 415, the SSD module selects a superblock and PLBA to store the
source data in order to fulfill the requested operation. When selecting the superblock,
the SSD module may evaluate any combination of several factors including, as non-
exhaustive examples: the volume of source data to be written, the number of free, valid
and/or invalid pages in each candidate superblock, the state of each candidate
superblock, the data type of the source data, the data type of data already stored in
each candidate superblock, the wear count and/or last modification time of each
candidate superblock, the superblock associated with a previously-stored PLBA, the
physical configuration or layout of the solid-state memory in the SSD. Other examples
of factors include other recent, in-progress, or pending I/O requests received before,
during, or after the current write request was received. In the case of a rewrite, the
SSD module may also evaluate the previously-stored PLBA. The SSD module may
determine some or all of these various factors by accessing and analyzing the various
management data structures described previously and/or by querying the file system or

the controller.

-12-

WO 2012/051600 PCT/US2011/056477

[0048] As a first example, at block 415, the SSD module may eliminate from
consideration any candidate superblocks having an insufficient number of free pages
available to hold all of the source data. As a second example, the SSD module may
give preference to candidate superblocks that are currently storing data of the same
data type as the source data. To illustrate, if the source data is metadata, the SSD
module may remove from consideration any candidate superblocks that are already
storing user data or raw data, so that similar data is grouped by superblock within the
SSD. As a third example, the SSD module may give preference to candidate
superblocks having lower wear counts as compared to other candidate superblocks.
As a fourth example, the SSD module may determine which candidate superblocks
would offer superior I/O performance (e.g., a faster write time) as compared to other
superblocks. To illustrate, the SSD module may remove from consideration any
candidate superblocks that are being used to fulfill another in-progress or pending 1/0
request. To illustrate further, the SSD module may also evaluate whether the physical
layout (e.g., geometry) of the solid-state memory resuits in a particular candidate
superblock offering a faster write time than other superblocks.

[0049] After the SSD module selects a superblock, the SSD module accesses the
next superpage and next page address information associated with the selected
superblock in the superblock table. By combining the accessed information, the
address of the selected superblock, and the data type of the source data, the SSD

module determines the complete selected PLBA for the write operation.

[0050] At block 430, the SSD module updates management data structures to
reflect the selection made at block 415. The SSD module updates the mapping table
in order to associate the FLBA with the newly selected PLBA. The SSD module also
updates the page status table to indicate that the page associated with the selected
PLBA is valid and is the start of a logical write operation (or if the logical write operation
spans only a single page, the SSD module may alternatively indicate that the page is
the end of a logical write operation). As another example, the SSD module may update
the state, valid page count, invalid page count, next super page, next page, last
modification time, and/or page detail array associated with the selected superblock in
the superblock table to reflect that the page associated with the PLBA will be written
with valid data.

13-

WO 2012/051600 PCT/US2011/056477

[0051] During a rewrite operation, the SSD module will also update various data
structures to indicate that the page associated with the previously-stored PLBA is now
invalid. For example, the SSD module updates the page status table so that the page
associated with the previously-stored PLBA is marked as invalid. As another example,
the SSD module updates the last modification time, valid page count, and invalid page
count associated with the superblock corresponding to the previously-stored PLBA to

reflect that the page associated with the previously-stored PLBA is now invalid.

[0052] Since a single logical write operation may span several sectors or pages
(and therefore several FLBAs and PLBAs), the SSD module similarly updates other
entries in the mapping table, superblock table, and the page status table to reflect the
changes to all of the pages that are implicated by the write operation. For example,
when the write operation spans several pages, in the page status table, the SSD
module may associate each implicated page with a logical write position indicator that
reflects the page's relative position within the logical write operation (e.g., as a middle

page or end page).

[0053] At block 435 the SSD module determines restoration data to be stored in
the DIF header region of the pages associated with the selected PLBA and sequential
pages that will also be written. In some embodiments, for each page written, the
restoration data includes at least the PLBA for the page, the FLBA for the page, a
logical write position indicator for the page, and/or an I/O timestamp corresponding

approximately to the time of the write request.

[0054] At block 440, the SSD module sends a write request (e.g., a "with DIF"
write request, as described herein) to the SSD to write the source data (to the storage
space) and DIF restoration data (to the DIF header regions) at the selected PLBA and
the other sequential pages implicated by the write operation. The write request
typically does not include any indication of the FLBA, other than the embedded
indication of the FLBA in the DIF restoration data. Typically the controller does not use
the embedded FLBA to perform addressing functions, but rather, merely stores the
FLBA within a DIF header region.

[0055] At block 445, the SSD module updates file system metadata (such as
creation or modification times), as needed, to reflect the successful write operation.

The write operation process then ends.

-14-

WO 2012/051600 PCT/US2011/056477

[0056] Although not shown in Figure 4, at a later time, an SSD module may
receive a request to read data that was written during the write operation or may itself
determine that it needs to access the data that was written during the write operation.
For example, the SSD module may receive a request from the file system to read data
from sectors associated with the same FLBA. As another example, during garbage
collection or other maintenance operations, the SSD module may determine that it
needs to read the data that was written during the write operation. In order perform a
read operation, the SSD module may use a received or determined FLBA as the
lookup into the mapping table in order to identify the corresponding PLBA for the read
request. The SSD module may then send a read request, including the identified
PLBA, to the SSD. In response, the SSD module may receive a copy of the data
associated with that PLBA that it can then provide to the file system or otherwise utilize.

[0057] Those skilled in the art will appreciate that the steps shown in Figure 4 and
in each of the flow diagrams discussed below may be altered in a variety of ways. For
example, the order of the steps may be rearranged; some steps may be performed in
parallel; shown steps may be omitted, or other steps may be included; a shown step
may divided into substeps, or multiple shown steps may be combined into a single

step, etc.

[0058] Delete Operation

[0059] Figure 5 is a flowchart illustrating a process 500 for a delete operation. The
deletion process begins at block 510 when the SSD module initiates the deletion
operation in response to one or more triggers. As non-exhaustive examples, these
triggers include the SSD module receiving an explicit command (such as a TRIM
command) from the file system indicating that the file system is no longer storing data
in association with a particular FLBA (e.g., when a file is deleted from the file system),
by detecting a file system block release whereby the file system returns a particular
FLBA to the file system's free storage pool, or if the SSD module chooses to delete raw
data from the SSD.

[0060] At block 515, the SSD module calculates a PLBA from the FLBA, using the
mapping table described herein. At block 520, the SSD module empties the PLBA
entry associated with the FLBA or otherwise indicates in the mapping table that the
FLBA is no longer associated with a PLBA. At block 525, the SSD module updates

-15-

WO 2012/051600 PCT/US2011/056477

management data structures to reflect that the page associated with the PLBA is now
invalid. For example, the SSD module updates the page status table to mark the page
associated with the PLBA as invalid. As another example, the SSD module updates
the last modification time, valid page count, and invalid page count associated with the
superblock corresponding to the PLBA to reflect that the page associated with the
PLBA is now invalid.

[0061] At block 530, the SSD module updates file system metadata as needed to
reflect the deletion operation, and then the deletion process ends.

[0062] Garbage Collection and Wear Leveling

[0063] The SSD module performs various SSD maintenance operations including
garbage collection and wear leveling, which can relieve the SSD controller and
firmware of these responsibilities. Generally speaking, garbage collection is a process
whereby the SSD module frees up invalid pages that store stale data that is no longer
needed by the file system, in order to make those pages available for new write
operations. Generally speaking, wear leveling is a process that helps ensure that the
various superblocks in the SSD have similar wear counts. In some examples, the SSD
module combines both a garbage collection process in conjunction with a wear leveling
process (both described herein) into a single thread that may be triggered periodically,
e.g., every 30 seconds, or upon the occurrence of another condition. Additionally, in
some embodiments, to facilitate faster garbage collection and/or wear leveling
processes, the SSD module maintains an over-provisioning pool of free superblocks
(e.g., 128 superblocks) to use during maintenance operations. To further enhance
maintenance performance, the SSD module may maintain, in its memory and/or the
solid-state memory, several lists of superblocks that have (a) the highest wear counts
(e.g., a list of 64 superblocks), (b) the lowest wear counts (e.g., a list of 64
superblocks), and/or (c) the highest number of invalid pages (e.g., a list of 64
superblocks), as well as management data related to the superblocks in these lists (as
described with respect to Figures 3A-D).

[0064] Figure 6 is a flowchart illustrating a process 600 for garbage collection.
The garbage collection process begins at block 601 where the SSD module determines
whether the number of free superblocks in the SSD falls below a predetermined
threshold, which may be mandated, for example, by a user-controlled policy. For

-16-

WO 2012/051600 PCT/US2011/056477

example, the SSD module may determine whether at least 20% (or another
predetermined percentage) of all superblocks in the SSD have the state "FREE." If the
number of free superblocks is higher than the predetermined threshold, the garbage
collection process ends, otherwise the process proceeds to block 603. In some
embodiments, the SSD module evaluates various other factors to determine whether to
proceed to block 603, in addition to or in place of the number of free superblocks. As
nonexhaustive examples, the SSD module may consider the frequency of 1/0 requests
being made by the file system, the day and/or time of day, and explicit commands from
the file system or a user to perform garbage collection. In some embodiments, the
SSD module will proceed with the garbage collection process in conjunction with a
wear-leveling process 700 described herein if either the condition at block 601 or the
condition at block 705 described herein is satisfied.

[0065] At block 603, the SSD module identifies a source superblock and target
superblocks. The SSD module may consider various combinations of factors to select
the source and target superblocks, including the following such factors, as
nonexhaustive examples: free page count, valid page count, invalid page count, last
modification time, wear count, the data type of data stored in a superblock (e.g.,
metadata versus user versus raw), or any other information about superblocks (or their
constituent pages, including page status or DIF header information), such as the other
information shown in the superblock table, other management data structures, or
information obtained from the controller or file system. In some embodiments the SSD
module selects (1) the superblock having the highest number of invalid pages for the
source superblock, and (2) a superblock from the over-provisioning pool that stores the
same type of data as the source superblock for the target superblock. In some
embodiments, the SSD module selects two or more target superblocks, e.g., if a first
selected target superblock has an insufficient number of free pages to accommodate

all of the valid pages in the source superblock.

[0066] From block 603, the process proceeds in two parallel branches, the first
branch beginning at block 605, the other beginning at block 640. In the first branch,
starting at block 605, the SSD module copies valid source pages from the source
superblock to one or more target superblocks. The branch begins with a for loop
beginning at block 605, where the SSD controller repeats blocks 610 through 625 for

-17-

WO 2012/051600 PCT/US2011/056477

each valid source page within the source superblock. To determine which source
pages within the source superblock are valid, the SSD module may access one or
more of the management data structures, such as the page status table. At block 610,
the SSD module identifies the data type of the source page. The SSD module may
also determine other characteristics of the source page, such as its logical write
position indicator.

[0067] At block 615, the SSD module selects a new target superblock location for
the source page data. The SSD module may consider any combination of factors to
select the new target superblock location, including those described previously with
respect to block 603, and characteristics of the particular page, such as the data type
of the source page and the logical write position indicator of the source page (and
adjacent pages). In some embodiments the SSD module selects a target superblock
that stores the same type of data as the source page and/or that has a sufficient
number of remaining free pages to accommodate all pages within the same logical
write as the source page. In such embodiments, the SSD module may help ensure
that similar types of data are grouped together and/or that data associated with a
sequential set of FLBAs are stored in a physically contiguous manner. Once a target
superblock is selected, the SSD module determines the new PLBA associated with the
new target location, e.g., by utilizing the source page's data type and information in the
management data structures that identifies the next sequential page available in the
selected superblock.

[0068] At block 620, the SSD module instructs the SSD controller to copy data
from the source page and move it to the selected target superblock, e.g., using
firmware calls to move the data within the drive. When moving the data from the
source page to the selected target superblock, the SSD module may instruct the
controller to update the recovery data stored in the DIF region at the new target
location to reflect a new timestamp and the new PLBA associated with a new target
location. In the event that the move is unsuccessful, the SSD module may mark the
selected location as invalid or take other corrective action, and repeat some or all of
blocks 615 and 620 to move the data in the source superblock to a different location,
such as to a different page in the same target superblock, or to an entirely different
target superblock.

-18-

WO 2012/051600 PCT/US2011/056477

[0069] At block 625, the SSD module updates management data structures to
reflect the move made at block 620. In addition to updating the management data
structures described previously, the SSD module may also maintain and update a
temporary remapping table to track the movement of data from one superblock to
another during garbage collection. Therefore at block 625, the SSD module may add
an entry to a remapping table associating the PLBA for the source page with the new
PLBA determined at block 615. The SSD module may update the mapping table in
order to associate the FLBA previously associated with the source page with the newly
selected PLBA; alternatively it may do so later at block 655 using remapping
information from a remapping table. The SSD module also updates the page status
table to indicate that the newly written page is valid, to copy the logical write position
information associated with the source page so it is associated with the new page, and
to mark the source page as invalid. As another example, the SSD module may update
the information in the superblock table associated with the target superblock and the
source superblock to indicate the target location was written with valid data and the
source page is now invalid. The updated information includes state, valid page count,
invalid page count, next super page, next page, last modification time, and/or the page
detail array.

[0070] At block 630, the SSD module determines the next valid source page. If
there is another valid source page in the source superblock, the process repeats
starting at block 610. Otherwise the branch proceeds to block 650, where the SSD

module instructs the SSD controller to erase the source superblock.

[0071] In parallel with blocks 605 — 650, the garbage collection process proceeds
with the second branch comprising blocks 640 - 648. At block 640, the SSD module
updates the state of the source and target superblocks in the superblock table, e.g., to
ensure that new writes are not made to the source superblock and/or target
superblocks. For example the SSD module may mark the source and/or target
superblocks as being subject to a garbage collection operation. Alternatively if the
garbage collection is being performed as part of wear leveling as described in greater
detail herein, the SSD module may mark the source and/or target superblocks as being

subject to a wear leveling operation. The SSD module may also obtain a copy of a

-19-

WO 2012/051600 PCT/US2011/056477

portion of the page status table, or other data management information, that reflects

the status of the various pages within the source superblock before step 605 proceeds.

[0072] The second branch then proceeds to block 642, where the SSD module
monitors its incoming requests and the file system to determine if pages in the source
superblock have been invalidated. For example the SSD module may monitor the file
system to determine whether the file system has de-allocated one or more FLBAs that
correspond to one or more pages in the source superblock. At decision block 644, if
invalidation is not detected the branch proceeds to block 648. Otherwise the branch
proceeds to block 646, where the SSD module updates a delta data structure
configured to track detected page invalidations before proceeding to block 648. For
example, the SSD module may keep a delta data structure having a single bit for each
page in the source superblock. When the SSD module detects the invalidation of
particular page in the source superblock, the module flips the bit associated with that

page. Of course the SSD module may use any other type of delta data structure.

[0073] At block 648, the SSD module determines whether the module is still
moving data from the source superblock to target superblocks, as part of blocks 605
through 630. If so, the branch returns to block 642, otherwise the branch proceeds to
block 655.

[0074] At block 655, the SSD module updates management data structures to
reflect the erasure of the source superblock, the state of the source and target
superblocks, and detected invalidations reflected in the delta data structure.

[0075] In some embodiments, to reflect the erasure, the SSD module modifies the
entry in the superblock table corresponding to the source superblock as follows: (a)
setting state to CLEAN, (b) zeroing out the valid page count, invalid page count, next
superpage, and next page entries, (c) incrementing the wear count to reflect the
erasure, (d) deleting any page detail array, (e) and updating the last modified time. In
the page status table the SSD module may also mark all pages in the source
superblock as having a free status. The SSD module may also remove any PLBAs

from the mapping table that are still associated with the source superblock.

[0076] At block 655, the SSD module may also update the state of the target
superblock to IN_USE. Also at block 655, the SSD module uses the delta data
structure and the remapping table to identify those pages in the target superblock that

-20-

WO 2012/051600 PCT/US2011/056477

are now invalid and updates the page status table and superblock table to reflect those

invalidations.

[0077] After block 655, the garbage collection process ends. In some
embodiments, the SSD controller repeats blocks 603-655 a predetermined number
times, or until a particular condition is satisfied, in order to free up additional invalid

pages in multiple other superblocks.

[0078] Figure 7 is a flowchart illustrating a process 700 for wear leveling. By
implementing wear leveling, the SSD module may help improve the longevity of the
SSD. In some embodiments, the SSD module will periodically begin the garbage
collection process 600 and the wear-leveling process 700 in parallel.

[0079] The wear leveling process begins at decision block 705, where the SSD
module determines whether one or more superblocks have a wear count above a
predetermined threshold value, which may be mandated, for example, by a user-
controlled policy. If so, the wear leveling operation continues at block 710, otherwise it
ends. For example, the SSD module may determine whether any superblocks in the
SSD have a wear count that exceeds 80% of a maximum wear count for which the
SSD is rated. Of course the SSD module may implement wear leveling upon the
occurrence of other triggers (e.g., at periodic intervals, scheduled times, etc.). In some
embodiments, the SSD module will proceed with the wear-leveling process in parallel
with a garbage collection process 600 if either the condition at block 705 or the
condition at block 601 is satisfied.

[0080] At block 710, the SSD module selects a worn superblock, a fresh
superblock, and a target superblock. The SSD module may consider any combination
of factors to select the worn superblock, fresh superblock, and target superblocks
including as nonexhaustive examples, free page count, valid page count, invalid page
count, last modification time, wear count, the data type of data stored in a superblock
(e.g., metadata versus user versus raw), or any other information about superblocks (or
their constituent pages, including page status or DIF header information), such as the
other information shown in the superblock table, other management data structures, or

information obtained from the controller or file system.

[0081] In some embodiments, the SSD module selects the superblock having the

highest wear count as the worn superblock and selects a free superblock from the

-21-

WO 2012/051600 PCT/US2011/056477

over-provisioning pool as the target superblock. In some embodiments, the SSD
module selects the fresh superblock on the basis of a combination of factors including
wear count, type of data stored by the superblock, and the last modification time of the
superblock. For example, the SSD module may select a fresh superblock having a
wear count that is less than a predetermined percentage of the maximum wear count
for the SSD, contains user data (which may be rewritten less frequently than metadata
or raw data), and/or has a last modification time falling within a predetermined time

period (e.g., is at least 10 days old).

[0082] At block 715, the SSD module copies the contents of the worn superblock
to the target superblock and erases the worn superblock. In some embodiments, the
copying and erasure at block 715 is performed as described in blocks 605 through 655,
so that invalid pages in the worn superblock are garbage collected and the

management data structures are updated to reflect the copying and erasure.

[0083] In other embodiments, the invalid pages in the worn superblock are not
garbage collected at block 715. Instead, the SSD module instructs the controller to
copy the contents of all pages in the worn superblock over to the target superblock
(even invalid pages), erases the worn superblock and updates the data structures to
reflect the movement and erasure. In such embodiments, the SSD module may
update the page status table by (1) copying the page status information related to the
worn superblock over to the pages related to the target superblock, and then (2)
marking the pages associated with the worn superblock as free. For each FLBA that
was previously mapped to an old PLBA associated with the worn superblock, the SSD
module updates the PLBA entry in the mapping table (e.g., so that it includes the
superblock identifier associated with the target superblock). In some embodiments, to
reflect the erasure of the worn superblock, the SSD module modifies the entry in the
superblock table corresponding to the worn superblock as follows: (a) setting state to
CLEAN, (b) zeroing out the valid page count, invalid page count, next superpage, and
next page entries, (c) incrementing the wear count to reflect the erasure, (d) deleting

any page detail array, and (e) updating the last modified time.

[0084] At decision block 720, the SSD module determines whether the fresh
superblock has a much lower wear count than the target superblock. For example the

SSD module may determine whether the wear count of the fresh superblock is less

22-

WO 2012/051600 PCT/US2011/056477

than 90% (or another predetermined percentage) of the wear count of the target
superblock. If so, the wear leveling process proceeds to block 725, otherwise the
process ends. At block 725, the SSD module copies the contents of the fresh
superblock to the worn superblock and erases the fresh superblock. In some
embodiments, the copying and erasure at block 725 is performed as described in
blocks 605 through 655, so that invalid pages in the fresh superblock are garbage
collected and the management data structures are updated to reflect the copying and
erasure. In other embodiments, the invalid pages in the fresh superblock are not
garbage collected at block 725. Instead, the SSD module instructs the controller to
copy the contents of all pages in the fresh superblock over to the worn superblock
(even invalid pages), erases the fresh superblock, and updates the data structures to
reflect the movement and erasure, as described previously at block 715.

[0085] The wear leveling process then proceeds to block 730 where the SSD
module copies the contents of the target superblock to the fresh superblock and erases
the target superblock. In some embodiments in which the SSD module performs
garbage collection at block 715, to improve efficiency, no further garbage collection is
performed. In such embodiments, at block 730, the SSD module simply instructs the
controller to copy the contents of all pages in the target superblock over to the fresh
superblock, erases the target superblock and updates the data structures to reflect the
movement and erasure, e.g., as described previously at block 715. In some
embodiments, including embodiments where the SSD module did not perform garbage
collection at block 715, the SSD module may perform the copying and erasure as
described in blocks 605 through 655, so that invalid pages in the target superblock are
garbage collected and the management data structures are updated to reflect the
copying and erasure. After block 730, the wear leveling process ends. In some
embodiments, the SSD controller repeats blocks 705-730 a predetermined number
times, or until a particular condition is satisfied, in order to promote additional wear
leveling across multiple other superblocks.

[0086] Recovery of Management Data Structures

[0087] Figure 8 is a flowchart illustrating a process 800 for restoring SSD
management data. The restoration process begins at block 805 where the SSD

module attempts to read a portion of a management data structure (or multiple

-23-

WO 2012/051600 PCT/US2011/056477

management data structures), such as a mapping table, page status table, or
superblock table, from an SSD. At decision block 808 the SSD module determines
whether or not it has encountered a read error during its attempt. For example, the
SSD module may determine that it has received corrupted data from the SSD. If the
SSD module has not encountered an error, the restoration process ends. Otherwise at
block 810, the SSD module reads restoration data from the DIF header region of one
or more pages in the SSD. Next at block 815, the SSD module uses the DIF data to
reconstruct some or all of the unreadable portion of the management data structure(s).
As described previously, during a write operation the SSD module generally writes an
I/O timestamp, a logical write position indicator, a PLBA and an FLBA to the DIF
header region of each written page. Therefore, at block 815, the SSD module can
verify that each PLBA/FLBA combination encountered in the DIF header regions of
valid pages are reflected in the mapping table, as described in greater detail herein.
Also, the SSD module can use the I/O timestamp to differentiate between invalid and
valid pages, as described in greater detail herein in order to populate the page status
table. Moreover, the SSD module can use the logical write position indicator to
reconstruct the logical write position information in the page status table. Next, at block
820, once the portion of the data management structure has been restored, the SSD

module resumes normal operation. The restoration process then ends.

[0088] As a first example, if the SSD module is able to read the entire page status
table, but is unable to read a portion of the mapping table, the module may read the
DIF header region of all or some of the valid pages in the SSD until the module has
reconstructed the missing portion of the mapping table. As described previously,
during a write operation the SSD module generally writes both a PLBA and FLBA to the
DIF header region. Therefore, during the restore process above, the SSD module can
traverse only the valid pages and verify that each PLBA/FLBA combination it

encounters in the DIF header regions of the pages is reflected in the mapping table.

[0089] As a second example, if the SSD module is unable to read both a portion of
the page status table and a portion of the mapping table, the module may read the DIF
header region of all or some of the pages in the drive (including valid, invalid and free
pages) until it has reconstructed some or all of the missing portions of the page status

table and mapping table. The reconstruction proceeds similarly to that described in the

-24-

WO 2012/051600 PCT/US2011/056477

first example. However, since the SSD module may not have information from the
page status table indicating which pages are valid versus invalid, in this second
example, the SSD module now traverses both valid and invalid pages. Therefore,
during its traversal, the SSD module may encounter a particular FLBA multiple times,
for example, if the same FLBA was overwritten one or more times by rewrite
operations. The SSD module will resolve multiple PLBAs associated with a single
FLBA by selecting, for each unique FLBA encountered, the newest PLBA that is stored
in conjunction with the most recent 1/0 timestamp in a DIF header region. The module
will then store the newest PLBA in conjunction with the FLBA in the mapping table. In
the page status table, the SSD module will mark the page associated with the most
recent PLBA as valid and the pages associated with the other, earlier PLBAs as invalid.
The module may also determine logical write position information for a page by reading

the information from the DIF header region of the page.

[0090] In the second example, the data structures may not be fully restored to
their original condition, but may be sufficiently restored to permit the SSD module to
perform basic data management tasks normally. For example, during restoration,
some pages that contain stale data may be incorrectly marked valid in the page status
table. Since the SSD module evaluates the age of various timestamps to determine
the validity or invalidity of a page, the SSD module will be unable to detect when a
page was previously marked invalid during a deletion operation. However, since the
overlying file system has de-allocated the FLBA that was previously associated with the
deleted page, the SSD module should not receive a read request for the data stored in
the deleted page. Moreover, when the file system does re-allocate that FLBA, the SSD
module will then mark the deleted page as invalid, because to the SSD module, it will
appear to be a rewrite operation. Therefore, although the SSD module may be
temporarily unaware of a small number of deleted pages, it will still be able to provide
basic data management operations including accurate FLBA to PLBA remapping and

garbage collection of most invalid pages.

[0091] As a third example, if the SSD module is unable to read all or a portion of
the page status table but the mapping table is healthy and uncorrupted, the module
may recreate all or part of the page status table by using the mapping table. For
example, since the mapping table typically stores PLBAs only for valid pages (not

-25-

WO 2012/051600 PCT/US2011/056477

invalid pages), the SSD module may traverse the mapping table to identify each page
associated with a PLBA and FLBA in the mapping table and mark those pages as valid
in the page status table. The module may also determine logical write position
information for some or all of the valid pages thus identified by reading the logical write
position indicator from the DIF header region of the page.

[0092] Many of the columns in the superblock table provide aggregate information
that can be rebuilt from the more granular information in the page status table and
mapping table, with the exception of wear count information, which can be obtained by
querying the SSD controller, and the last modification time, which can be estimated by
analyzing the 1/0 timestamps stored in DIF header regions. Therefore, if some or all of
the superblock table is corrupt, the SSD module can rebuild it using the page status
table and mapping table if those are both available and uncorrupted. If one or both of
the page status table and mapping table are also corrupted, the SSD may reconstruct
those two data structures using DIF data as described previously, and then use the
reconstructed data structures to rebuild the superblock table.

[0093] Of course, one having skill in the art will appreciate that other methods of
data recovery may be available in addition to, or in lieu of, using DIF header data. For
example, if the SSD array is configured as a RAID group, data may be recovered using
RAID recovery techniques.

[0094] Computer Systems and Other Devices

[0095] Figure 9 is a block diagram showing some of the components typically
incorporated in at least some of the computer systems and other devices on which the
SSD module executes. In various embodiments, these computer systems and other
devices 900 can include server computer systems, desktop computer systems, laptop
computer systems, tablets, netbooks, mobile phones, personal digital assistants,
televisions, digital video recorders, set top boxes, cameras, automobile computers,
electronic media players, etc. In various embodiments, these computer systems and
devices 900 may include one or more central processing units ("CPUs") 901 for
executing computer programs; a computer memory 902 for storing programs and data
while they are being used, including the SSD module and associated data; a persistent
storage device 903, such as a hard drive for persistently storing programs and data; a

computer-readable media drive 904, such as a floppy, CD-ROM, or DVD drive, for

-26-

WO 2012/051600 PCT/US2011/056477

reading programs and data stored on a computer-readable medium; and a network
connection 905 for connecting the computer system to other computer systems, such
as via the Internet or another data transmission network and its networking hardware,
such as switches, routers, repeaters, electrical cables and optical fibers, light emitters
and receivers, radio transmitters and receivers, and the like, so that data signals such
as data signals conveying data structures, programs, and unstructured data may be
sent between such computer systems. While computer systems configured as
described above are typically used to support the operation of the SSD module, those
skilled in the art will appreciate that the SSD module may be implemented using

devices of various types and configurations, and having various components.

[0096] It will be appreciated by those skilled in the art that the above-described
system may be straightforwardly adapted or extended in various ways. For example, in
some embodiments, the SSD permits erasure at a scale larger than or smaller than a
superblock and some of the erasures described herein are performed at a scale
different than a superblock. As another example, in some embodiments, the SSD
permits programming at a scale larger than or smaller than a page and some of the
programming operations described herein are performed at a scale different than a
page. As yet another example, while various processes (e.g., rewrite operations,
garbage collection, and wear leveling) have primarily been described as copying data
from one location in a first SSD to the same, first SSD, of course, the various
processes could instead copy data from one location in a first SSD to a different,
second SSD that is also managed by the same SSD module. In this way, the SSD
module may achieve system-level advantages, such as system-level garbage collection
and system-level wear-leveling. While the foregoing description makes reference to
particular embodiments, the scope of the invention is defined solely by the claims that
follow and the elements recited therein.

27-

WO 2012/051600 PCT/US2011/056477

CLAIMS

I/We claim:

[en1 1. A storage system comprising:

solid-state memory configured to store data persistently;

a controller, coupled to the solid-state memory, that is configured to execute
firmware in order to read, program, and erase physical portions of the solid-state
memory, the controller associating each different physical portion of the solid-state
memory with a different physical logical block address (PLBA); and

a management module configured to:

receive a first input-output request generated by a file system, the file
system organizing units of user data and metadata by associating each unit of user
data or metadata in the file system with a file system logical block address (FLBA), the
first request including an indication of an FLBA associated with a particular unit of data
that is a subject of the first request;

translate the indicated FLBA into a PLBA associated with a particular
physical portion of the solid-state memory; and

transmit a second input-output request to the controller via a device
driver, the second request including an indication of the PLBA in order to indicate which
physical portion of the solid-state memory the controller should read, program, or erase

in order to fulfill the first request.

[c2] 2. The system of claim 1, wherein the first request includes an indication of
a data type of the particular unit of data that is a subject of the first request and the
management module translates the included FLBA into the PLBA based at least in part

on the indicated data type.
[c3] 3. The system of claim 1, wherein the indication of a data type of the

particular unit of data indicates whether the unit of data is metadata, user data, or raw

data.

-28-

WO 2012/051600 PCT/US2011/056477

[c4] 4. The system of claim 1, wherein the controller and firmware do not include

garbage collection logic or wear leveling logic.

[e5] ©S. The system of claim 1, wherein the solid-state memory is organized into
multiple superblocks, each superblock further comprises multiple superpages, each
superpage further comprises multiple pages, and a PLBA comprises a combination of a

superblock address, a superpage address, and a page address.

[c6] 6. The system of claim 5, wherein the controller erases physical portions of
the solid-state memory by erasing all data in an entire superblock, and programs a

physical portion of the solid-state memory by programming all data in an entire page.

[c11 7. The system of claim 5, wherein at least some pages in the solid-state
memory each comprise:

a storage space region that stores user data, metadata, or raw data; and

a data integrity field header region that stores restoration data useable to permit
the management module to reconstruct at least portions of management data

structures used by the management module.

[c8] 8. The system of claim 7, wherein the restoration data comprises a PLBA,

an FLBA, and an indicator of a time when the first input-output request was received.

[co1 9. The system of claim 1, wherein the file system is a ZFS file system.

[c10] 10. The system of claim 1, wherein the solid-state memory is NAND flash

memory.

[c11 11. The system of claim 1, wherein the solid-state memory is one of the
following: flash memory, magnetoresistive random access memory (MRAM), phase-
change memory (i.e., PCM, PRAM, PCRAM, Ovonic Unified Memory, Chalcogenide
RAM, or C-RAM), ferroelectric random access memory (FeRAM or FRAM), conductive-

-29-

WO 2012/051600 PCT/US2011/056477

bridging RAM or programmable metallization cell memory, Silicon-Oxide-Nitride-Oxide-
Silicon (SONOS) memory, resistive random access memory (RRAM), Racetrack
Memory, Nano-RAM (NRAM), Millipede memory, dynamic random access memory
(DRAM), static random access memory (SRAM), thyristor random access memory (T-
RAM), zero capacitor random access memory (Z-RAM), or twin transistor random

access memory (TTRAM).

[c12] 12. The system of claim 1, further comprising one or more additional solid-
state memories, wherein the management module is configured to perform data

management operations for all of the multiple solid-state memories in the system.

[c131 13. A method for performing a write operation to a solid-state drive (SSD)
having solid-state memory, the method comprising the steps of:

receiving a request from a file system to perform an operation to write source
data to an SSD, the received request including an indication of a file system logical
block address (FLBA) associated with the source data in the file system and a data
type of the source data;

identifying superblocks in the SSD that are available as candidate superblocks
to store the source data;

selecting a candidate superblock to store at least some of the source data in
order to fulfill the requested operation, the selection being based at least on the data
type of the source data;

determining a physical logical block address (PLBA) associated with a target
physical location within the selected superblock; and

sending, via a device driver, a write request to the SSD to write the source data

at the target physical location.

[c14] 14. The method of claim 13, further comprising:
determining restoration data, the restoration data including the determined
PLBA, a logical write position indicator, a timestamp indicating an approximate time

when the write request was received, and the indicated FLBA; and

-30-

WO 2012/051600 PCT/US2011/056477

sending the determined restoration data within the write request to the SSD, the
write request indicating that the SSD should write the restoration data in a data integrity

field header region at the target physical location.

[c151 15. The method of claim 13, wherein the selection of a candidate superblock
is also based on at least of one the following factors:

a data type of data already stored in each candidate superblock;

a wear count of each candidate superblock;

a last modification time of each candidate superblock; and

a physical layout of the solid-state memory in the SSD.

[c16] 16. The method of claim 13, wherein the selection of a candidate superblock
gives preference to candidate superblocks that are currently storing data of the same

data type as the source data.

(171 17. The method of claim 13, wherein selecting a candidate superblock
comprises removing from consideration any candidate superblocks that are already

storing a different type of data than the data type of the source data.

[c18] 18. The method of claim 13, wherein the selection of a candidate superblock
gives preference to candidate superblocks having lower wear counts as compared to

other candidate superblocks.

[c19] 19. The method of claim 13, wherein the selection of a candidate superblock
is based on a determination of which candidate superblocks offer a faster write time as

compared to other superblocks.
[c200 20. The method of claim 13, wherein selecting a candidate superblock

comprises removing any candidate superblocks that are being used to fulfill another in-

progress or pending input-output request.

-31-

WO 2012/051600 PCT/US2011/056477

[c21] 21. The method of claim 13, wherein selecting a candidate superblock
comprises evaluating whether a physical layout of the solid-state memory causes some

candidate superblocks to have a faster write time than other candidate superblocks.

[c22] 22. The method of claim 13, further comprising updating a mapping table to
associate in the table the indicated FLBA with the determined PLBA.

[c23] 23. The method of claim 13, further comprising updating a page status table
to indicate a relative position of a page associated with the determined PLBA within a

logical write operation.

[c24] 24. The method of claim 13, further comprising updating, in a superblock
table, at least two of the following values that are associated with the selected
superblock in the table: a superblock state, a valid page count, an invalid page count, a

next superpage, next page, a stored data type, and a last modification time.

[c251 25. The method of claim 13, further comprising:

receiving a first read request from a file system to perform an operation to read
data from the SSD, the received request including an indication of an FLBA associated
with target data in the file system;

using the indicated FLBA as a lookup into a mapping table in order to identify a
corresponding PLBA for the read request;

sending a second read request, including the identified PLBA, to the SSD via a
device driver,

in response to sending the second read request, receiving a copy of the target
data associated with the corresponding PLBA; and

providing the copy of the target data to the file system in response to the first

read request.

[c26] 26. The method of claim 13, further comprising:

initiating a deletion operation associated with a particular FLBA;

-32-

WO 2012/051600 PCT/US2011/056477

calculating a PLBA associated with the particular FLBA using a mapping table;

indicating in the mapping table that the particular FLBA is no longer associated
with the calculated PLBA; and

updating management data structures to reflect that a page associated with the
calculated PLBA is invalid.

[c271 27. The method of claim 26, wherein the initiation is triggered by detecting a
file system block release whereby the file system moves the particular FLBA to the file

system's free storage pool.

[c28] 28. The method of claim 26, wherein the initiation is triggered by receiving an
explicit command from the file system to mark a page associated with the particular
FLBA as invalid.

[c29] 29. A method for restoring one or more management data structures used by
a solid-state drive (SSD) management module, the method comprising the steps of:

receiving a request from a file system to perform an operation to write source
data to an SSD, the received request including an indication of a file system logical
block address (FLBA) associated with the source data in the file system;

selecting a superblock to store at least some of the source data in order to fulfill
the requested operation;

determining a physical logical block address (PLBA) associated with a target
page within the selected superblock;

determining restoration data, the restoration data including a combination of at
least the determined PLBA, a logical write position indicator, a timestamp indicating an
approximate time the request was received, and the indicated FLBA;

sending, via a device driver, a write request to the SSD to write the source data
at a storage space region of the target page and to write the restoration data into a
data integrity field header region of the target page;

encountering a read error when attempting to read a portion of a management

data structure from the SSD;

-33-

WO 2012/051600 PCT/US2011/056477

reading the determined restoration data from the data integrity field header
region at the target page, including reading the combination of the determined PLBA
and indicated FLBA; and

analyzing the restoration data from the data integrity field header region to

reconstruct at least some of the management data structure.

[c30] 30. The method of claim 29, wherein analyzing the restoration data from the
data integrity field header region to reconstruct at least some of the management data
structure comprises determining if the combination of the determined PLBA and

indicated FLBA is present in a mapping table.

[c311 31. The method of claim 29, wherein analyzing the restoration data from the
data integrity field header region to reconstruct at least some of the management data
structure comprises determining if the target page is valid based on an analysis of the

timestamp.

[32] 32. A method for managing a garbage collection operation for a solid-state
drive (SSD), the method comprising:

selecting as a source superblock a superblock having a highest humber of
invalid pages as compared to other superblocks in the SSD;

selecting as a target superblock a superblock that stores a same type of data as
the source superblock; and

copying contents of valid source pages from the source superblock to the target

superblock.

[33] 33. The method of claim 32 further comprising erasing contents of the source

superblock.
[c34] 34. The method of claim 32 further comprising:

determining whether a number of free superblocks in the SSD falis below a

predetermined threshold; and

-34-

WO 2012/051600 PCT/US2011/056477

performing the other steps in the method in response to the number of free

superblocks in the SSD falling below a predetermined threshold.

[c35] 35. The method of claim 32 wherein the garbage collection operation is

performed in conjunction with a wear-leveling operation.

[c36] 36. The method of claim 32 wherein selecting a source superblock and target
superblock comprises evaluating two or more of the following factors related to the
superblocks: free page counts, valid page counts, invalid page counts, last modification

times, wear counts, and data types of data stored by the superblocks.

[e371 37. The method of claim 32 further comprising determining which source

pages within the source superblock are valid by accessing a page status table.

[c38] 38. The method of claim 32 further comprising selecting a superblock to store
contents of a particular valid source page on the basis of stored information that

indicates a relative position of the valid source page within a logical write operation.

[c39] 39. The method of claim 32 further comprising monitoring a file system to

determine if pages in the source superblock are invalidated during the copying.

[c40) 40. A method for wear leveling a solid-state drive (SSD), the method
comprising:

selecting a worn superblock at least on the basis of a comparison of a wear
count of the worn superblock to wear counts of other superblocks;

selecting as a target superblock a free superblock from an over-provisioning
pool;

selecting a fresh superblock on the basis of at least two of the following factors:
a wear count of the fresh superblock, a data type of data stored in the fresh
superblock, and a last modification time of the fresh superblock;

copying contents of the worn superblock to the target superblock;

erasing the worn superblock;

-35-

WO 2012/051600 PCT/US2011/056477

copying contents of the fresh superblock to the worn superblock;
erasing the fresh superblock;
copying contents of the target superblock to the fresh superblock; and

erasing the target superblock.

[c411 41. The method of claim 40, wherein selecting a fresh superblock comprises
selecting a superblock that satisfies at least two of the following criteria: the superblock
has a wear count that is less than a predetermined percentage of a maximum wear
count for the SSD, the superblock stores user data, and the superblock has a last

modification time falling within a predetermined time period.

[c421 42. The method of claim 40 wherein selecting a worn superblock is made at
least on the basis of the worn superblock having a higher wear count as compared to
other superblocks, and one or more of the following factors: free page count of the
worn superblock, valid page count of the worn superblock, invalid page count of the
worn superblock, last modification time of the worn superblock, and a data type of data

stored in the worn superblock.

[c43] 43. The method of claim 40 wherein selecting a worn superblock is made at
least on the basis of the worn superblock having a highest wear count as compared to

other superblocks.

[ca4] 44. The method of claim 40, further comprising:

determining whether one or more superblocks have a wear count above a
predetermined threshold value; and

performing the other steps in the method when one or more superblocks have a
wear count above a predetermined threshold value, otherwise not performing the other

steps.

[c45) 45. The method of claim 40, further comprising performing a garbage

collection process.

-36-

WO 2012/051600 PCT/US2011/056477

[ca6] 46. The method of claim 40, wherein during at least one of the following steps
garbage collection is performed so that invalid pages are not copied:

copying contents of the worn superblock to the target superblock,

copying contents of the fresh superblock to the worn superblock, and

copying the contents of the target superblock to the fresh superblock.

[c471 47. The method of claim 40, further comprising:
determining a difference between a wear count of the target superblock and a
wear count of the fresh superblock;
when the difference exceeds a predetermined threshold, performing the steps
of:
copying contents of the fresh superblock to the worn superblock;
erasing the fresh superblock;
copying contents of the target superblock to the fresh superblock; and
erasing the target superblock;
otherwise, when the difference does not exceed the predetermined threshold,

not performing these four steps.

[c48] 48. One or more computer memories collectively storing a page status data
structure comprising multiple entries, each entry representing a current status of a
single page of data stored in solid-state memory, each entry for a page comprising:

a logical write position indicator for the page that indicates a relative position of
the page within a larger logical write operation requested by a file system, indicating
whether the page was a starting page, a middle page, or an end page of the logical
write operation; and

a page status indicator for the page that indicates whether the page has not
been programmed since it was last erased, the page contains valid data that is still in
use, or the page contains invalid data that is stale;

such that the contents of the page status data structure are useable to identify

an invalid page that may be reclaimed during a garbage collection operation.

-37-

WO 2012/051600 PCT/US2011/056477

[c49] 49. The one or more computer memories of claim 48, wherein the page

status data structure is organized as a bitmap.

[cs0] 50. One or more computer memories collectively storing a mapping data
structure comprising multiple entries, each entry representing physical addressing
information for a unit of data associated with a particular file system logical block
address (FLBA) used by a file system to address the unit of data, each entry for a unit
of data comprising:

a data type indicator for the unit of data that indicates whether the unit of data is
a unit of metadata, user data or raw data;

a superblock address indicating a superblock that physically stores the unit of
data, the superblock forming a portion of a solid-state memory;

a superpage address indicating a superpage that physically stores the unit of
data, the superpage forming a portion of the superblock;

a page address indicating a page that physically stores the unit of data, the page
forming a portion of the superpage; and

such that the contents of the mapping data structure are useable to identify a

physical location for a unit of data in response to an input-output request.

[cs11 51. The one or more computer memories of claim 50, wherein the mapping

data structure is organized as a hash table.

[c52] 52. The one or more computer memories of claim 50, wherein each entry for
a unit of data further comprises a sector address indicating a sector that physically

stores the unit of data, the sector forming a portion of the page.

[c53] 53. One or more computer memories collectively storing a superblock data
structure comprising multiple entries, each entry representing a current status of a
superblock of data stored in solid-state memory, each entry for a superblock
comprising:

a wear count that indicates how many times the superblock has been erased:;

-38-

WO 2012/051600 PCT/US2011/056477

a valid page count and an invalid page count that indicate how many pages
within the superblock are valid and invalid, respectively;

an indication of a physical location of a next page within the superblock that is
available for writing new data;

a last modification time that indicates approximately the most recent time at
which any page within the superblock was invalidated or programmed; and

a data type indicator that indicates whether the superblock stores metadata,
user data or raw data;

such that the contents of the superblock data structure are useable to identify
superblocks useable to perform a garbage collection operation, wear leveling

operation, or input-output operation.

-39-

PCT/US2011/056477

WO 2012/051600

1/10

I O1d

"zl (31 ¥vgid)

az9l (&1 '%vg1d)

19l|onu0)

OV

Ly

a1

oo s3]

V0L

_ avol 1

d0l.*

>

Sl
vzoL . ("1'va1d)

09l \

FINACN J3AIEA

7
(SOV14 ¥ ¥ '¥*vaid)

2[4 NP

(SOVv1d *°a %1 'fvald) vzsl, - (89v14 YA "Y1 Yvad)

A

mwm_f\.
0st .\\.

F1NAOW LNIWIOVNVYIN ASS

A

aoLl

e oo NSOV '8Q 97 'fygTd)

A

VoLl (SOVTd Ya Y1 Yvald)

A

.\.Amo‘«._n_ ¥Q ¥ Hygid)
d3911

F1NAOW NOILOALO¥Hd V1VA ANV AONVYANNA3H

m:.\.

ZLL —(dVYW 3AIEA 'SOVI4 1 'vald)

A

o:\.

FTNAONW INJWIOVNVYIN T00d TVNLYIA

8oL . (SOV14 1 'va1d)

A

G0l

(SINILSAS T4

001

PCT/US2011/056477
2/10

WO 2012/051600

¢ OIA

Jajjosuon
ovl

yoojquadng
NOiT |

obediadng Noojquadng
ssiz, T~~~ €01

yoojgqiadng

vol¢e
Gel

7
s
!
L
/
!
!
/
!
i
!
'.

abed
doze \

r'd
e
7

A

s
s
z
..
\
\
\
\

obediadng
wmm& N H91¢C 17

voce

a0¢ce obediadng . M

obed -1 veke e gvor
soeds abelojg | 41 -147Vv0ce -7 Vote .

0%z 747 VoIZ dvol

!
”
A\
\
\
\
\

\

\
\
\

Svl

PCT/US2011/056477

WO 2012/051600

3/10

} L ce 14%° ejep Jasn N 13>
€ S 022 19 ejepels 0 7 EGlE
ssayagav | ssayaav ss3ayaay ss3yaav
¥0L03S 39Vd IOVdYIdNS | M0018¥3dNS S aivaid AH
f m m w w f oge
o|qeL
80z¢ poze 202¢ qaoze B0ZE
J02€ Bbuiddepy
pijeAau] yels € 7 PSO¢
TN pug Z " 960¢
JIE7Y 3IPPI L ™ as0¢
PifeA ueig 0 > egog AN
00€
snejg obed uonisod UM |ealbo Q| abed
w et o
201t qole eole snjels abed

PCT/US2011/056477

WO 2012/051600

4/10

/8286 0 9l 726 BO8E AN
S$SaIppy 6 ;e
ane
vald | aiebed m_o%m_ oh_ov_%%m_m >mt<
q (C C lleyaq ebed
PS8e eGge 9G8€ s8¢
eeguesn | HEEOLC | [jasiebey S g9 |3snNi LbL 958 zov b _~aove
10:11:60
ejepejsy LL/S/S [14siebed 0 0 NV310 0 0 Sl 0 < eove
adA) awi| ejeq abed obedisadng sabed sabeg aixoolg
weq | ‘powise] abeq XoN XaN DS | pueauis | puear | leoay | 4edns
AGEE feee Yygee beee Jlelol] agee vam omMm n_mMm mmMm
ANlo o|ge]
«fo0o|qiadng

WO 2012/051600

5/10

C Write Operation)

l 405

Receive request to perform
write operation, including
indication of data type

i 410

Retrieve information from
management data structures

v s

Select a superblock and PLBA
for the requested operation

i 430

Update management data
structures to reflect selection

i 435

Determine restoration data for
storage in DIF

l 440

Send write request to SSD,
including determined DIF
restoration data

v 445

Update file system metadata

v
(o)

FIG. 4

PCT/US2011/056477

400

WO 2012/051600 PCT/US2011/056477

6/10

500
(Delete OperatioD 5
v 510

Initiate deletion operation

v st

Calculate PLBA from FLBA

¢ 520

Empty PLBA entry

¢ 525

Update management data
structures to reflect invalid
pages

l 530

Update file system metadata

v

(oo)

FIG. 5

WO 2012/051600 PCT/US2011/056477

7/10

(Garbage collectiorD
600

601

Number of
free superblocks below
threshold?

603

Identify source superblock and
target superblocks

605

\ 4 640 For each valid source page

Update state of source within the source superblock

and target superblocks

v 642 v 610

- - — Identify data type of source

Monitor for invalidation of page
> pages in source

superblock l 815

Select a new target superblock
location for source page data

Invalidation

detected? ¢ 620

Instruct SSD controller to move
data from source page to
selected target superblock

Update delta data
structure to reflect 625
invalidation Update management data

structures to reflect move

648 ¢

Still moving data from
source superblock?

630

‘ Next valid source page

l 650

Instruct SSD controller to erase
source superblock

.

655
Update management data
structures to reflect erasure,
detected invalidations, state of
source/target superblocks

v

(Done).__

FIG. 6

WO 2012/051600

700

8/10

Superblocks
w/iwear count above
threshold?

Select worn superblock, fresh
superblock, and target
superblock

v 115

Copy contents of worn
superblock to target superblock
and erase worn superblock
(e.g., blocks 605-655)

Fresh SB has
much lower wear count
than target SB?

725

Copy contents of fresh
superblock to worn superblock
and erase fresh superblock
(e.g., blocks 605-655)

l 730

Copy contents of target
superblock to fresh superblock
and erase target superblock

v
A Done

FIG. 7

F

PCT/US2011/056477

WO 2012/051600

PCT/US2011/056477

9/10

Restore SSD 800
Management Data

l 805

Read management data
structure(s)

Error Encountered?

Read restoration data from DIF
region of page(s)

i 815

Use read DIF data to
reconstruct management data
structure(s)

l 820

Resume normal operation

v

(Done >_

FIG. 8

WO 2012/051600 PCT/US2011/056477

10/10
computer system 900
CPU 901
memory 902
persistent storage 903

computer-readable
media drive 904

network connection 905

FIG. 9

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings

