
(12) United States Patent
Spector

US008104075B2

(10) Patent No.: US 8,104,075 B2
(45) Date of Patent: Jan. 24, 2012

(54) TRUST MANAGEMENTSYSTEMS AND

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)
(58)

(56)

METHODS

Inventor: Vadim O. Spector, Redwood City, CA
(US)

Assignee: Intertrust Technologies Corp.,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 847 days.

Appl. No.: 11/836,647

Filed: Aug. 9, 2007

Prior Publication Data

US 2008/OO46987 A1 Feb. 21, 2008

Related U.S. Application Data
Provisional application No. 60/822,068, filed on Aug.
10, 2006.

Int. C.
G06F I7/00 (2006.01)
G06F 7/04 (2006.01)
G6F 5/16 (2006.01)
G06F 7/30 (2006.01)
U.S. Cl. .. 726/6; 726/1
Field of Classification Search 726/1, 6
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,173,939 A * 12/1992
6.256,734 B1* 7/2001
6.412,070 B1* 6/2002
6,460,141 B1 * 10/2002
6,772,167 B1 * 8/2004
7,478,421 B2 * 1/2009

2002fO144137 A1* 10, 2002
2002/0152254 A1* 10, 2002
2004/026O7 O2 A1* 12, 2004

Abadi et al. 1f1
Blaze et al. 713/157
Van Dyke et al. .. 726/17
Olden T26/4
Snavely et al. 1/1
Kodimer et al. ... 726/4
Harrah et al. ... T13/200
Teng TO9/100
Cragun et al. 7O7/1OO

2004/0260949 A1* 12/2004 Aoki et al. T13 201
2005/0027871 A1* 2/2005 Bradley et al. 709/227
2005/0149370 A1* 7/2005 Brown 705/8
2005/0273.521 A1* 12/2005 Patricket al. TO9,246
2006.0167863 A1* 7, 2006 Cole et al. .. 707 3
2006/024801.6 A1* 11/2006 Ginter et al. 705/54

OTHER PUBLICATIONS

PCT International Search Report and Written Opinion mailed Mar. 7,
2008, in related International Application No. PCT/US2007/017794.
Grandison, Tyrone, et al., “A Survey of Trust in Internet Applica
tions.” IEEE Communications Surveys and Tutorials, Fourth Quarter
2000, Imperial College, Department of Computing, London, U.K.
Jan. 24, 2001, http://www.comSoc.org/pubs/surveys, 30 pages.
Li, Ninghui, "Design of a Role-based Trust-management Frame
work.” IEEE Symposium on Security and Privacy, May 2002, 17
pageS.
PCT International Preliminary Report on Patentability dated Feb. 10,
2009 in related International Application No. PCT/US2007/01779, 6
pageS.
Office Action dated May 4, 2010 for related China Application No.
20078003.8027, 6 pages.

* cited by examiner
Primary Examiner — Kambiz Zand
Assistant Examiner — Aubrey Wyszynski
(74) Attorney, Agent, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner, LLP
(57) ABSTRACT
Systems and methods are presented for facilitating the con
figuration of a trust management framework for use in con
junction with web services, digital rights management sys
tems, and/or other applications. A method for configuring a
trust management framework involves providing graphical
user interfaces (GUIs) to a user that prompt the user to define
certain aspects of the trust management framework in a self
consistent manner. In one embodiment, a method comprises
providing a roles GUI that prompts a user to define roles, a
services GUI that prompts the user to define services corre
sponding to the roles, a principals GUI that prompts the user
to define principals, including associating at least one of the
roles with a principal, and a nodes GUI that presents role
bindings for principals that are designated to function as
nodes and that prompts the user to define interactions
between nodes.

35 Claims, 11 Drawing Sheets

Provide a roles graphical user interface that prompts
auser to define roles

1102.

Provide a services graphical user interface that prompts
the user to define services corresponding to the roles

1104

Provide a principals graphical user interface that prompts
the user to define principals, including associating at

least one of the roles with a principal
1106

Provide anodes graphical user interface that presents
role bindings for principals that are designated to

function as nodes and that prompts the user to define
interactions between nodes

1108

U.S. Patent Jan. 24, 2012 Sheet 1 of 11 US 8,104,075 B2

10

& Workflow Wizard
Nemo Network Trust Configuration

In this step, you can create, edit, or select an existing Nemo Network
Trust Model configuration file. If creating or editing the
configuration file in the NemoNetwork Trust Configuration
Editor, don't forget to save your changes before exiting the editor.

After you're done with your changes, you can close the Nemo
network trust configuration editor and return to this wizard to
continue with the following steps.

12

Nemo Network ConfigFile:

FIG.1

U.S. Patent Jan. 24, 2012 Sheet 2 of 11 US 8,104,075 B2

Application Domain Configuration - nemo-ConfigX.
File Tools

14

Role Alias
Leaf

Issuers W Invokers
ISSUER

Nemo configurationis valid

FIG.2

U.S. Patent Jan. 24, 2012 Sheet 3 of 11 US 8,104,075 B2

Application DOmain Configura.

NS

Role Alias
Leaf

Nemo configuration is valid

FIG.3

U.S. Patent Jan. 24, 2012 Sheet 4 of 11 US 8,104,075 B2

Configure nameSpaces

xsd http:lwww.w3.org/2001|XMLSchema http://www.w3.org/2001XMLSchema.
http:linemointertrust.com/services

FIG.4

U.S. Patent Jan. 24, 2012 Sheet 5 of 11 US 8,104,075 B2

role; Monitor
Service; Presence

Operation: ping -
request XSd;any
response XSd;any

2
CS
.S.
99
.S.
A.

ea
GO

t
O

HA
d
><

Nemo configuration is valid

FIG.5

U.S. Patent Jan. 24, 2012 Sheet 6 of 11 US 8,104,075 B2

14
Application Domain Configuration - nemo-confightml DX

File Tools

GsNS

20 Name Um NemoNode imported
CA Urn:nemOCA
RA Urn:nemORA
LeafNode UrminemOLeafNode

22 Monitorode Urn:nemO:Monitorode

24

-

26

28

Nemo configuration is valid

FIG.6

U.S. Patent Jan. 24, 2012 Sheet 7 of 11 US 8,104,075 B2

& Configure Extended Key Usages

FIG.7

US 8,104,075 B2 Sheet 8 of 11 Jan. 24, 2012 U.S. Patent

U.S. Patent Jan. 24, 2012 Sheet 9 of 11 US 8,104,075 B2

Input/output
System Memory 78 72

Operating System 80

Configuration Tool 82
Data Storage

76

Computer System 70

FIG.9

U.S. Patent Jan. 24, 2012 Sheet 10 of 11 US 8,104,075 B2

Configuration Tool
82

Roles Module

Services Module

Principals Module 88

Nodes module 90

Namespaces
Module

Extended Key Usages
Module

FIG.10

U.S. Patent Jan. 24, 2012 Sheet 11 of 11 US 8,104,075 B2

Provide a roles graphical user interface that prompts
a user to define roles

1102.

Provide a services graphical user interface that prompts
the user to define services corresponding to the roles

1104

Provide a principals graphical user interface that prompts
the user to define principals, including associating at

least one of the roles with a principal
1106

Provide a nodes graphical user interface that presents
role bindings for principals that are designated to

function as nodes and that prompts the user to define
interactions between nodes

1108

US 8,104,075 B2
1.

TRUST MANAGEMENT SYSTEMIS AND
METHODS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/822,068, filed Aug. 10, 2006, which is
hereby incorporated by reference.

COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

As network and computer security increases in importance,
the design and implementation of a robust trust management
framework has become a more important part of the creation
of networked services and other applications. However, the
design and implementation of a trust management framework
is often relatively unrelated to the functionality of the services
and applications that rely on it, and, as a result, the architects
of Such services or applications may lack the specialized
knowledge to design and implement a trust management
framework in an efficient, correct manner.

Trust management can entail the use of various building
blocks, such as cryptography, the public key infrastructure,
digital certificates (and the chaining thereof), Security asser
tion markup language (SAML) assertions (e.g., to define
roles), and the like. In general terms, a trust management
framework typically defines how a system verifies that enti
ties are who they say they are and ensures that entities are only
allowed to perform the actions that they are authorized to
perform. Configuring a self-consistent, secure trust manage
ment framework can be a complex task, since, in a given
system, there will typically be a variety of entities with over
lapping roles and authorizations.

SUMMARY

Systems and methods are presented for facilitating the
configuration of a trust management framework for use in
conjunction with web services, digital rights management
systems, and/or other applications. For example, without
limitation, the systems and methods described herein can be
used to assist various stakeholders interested in employing
technology, such as the Networked Environment for Media
Orchestration (NEMO) service orchestration technology
described in commonly assigned U.S. patent application Ser.
No. 10/863,551 (Publication No. 2005/0027871) (“the 551
application'), and/or the digital rights management (DRM)
technology described in commonly assigned U.S. patent
application Ser. No. 1 1/583,693 (Publication No. 2007/
0180519) (“the 693 application') for designing and imple
menting, e.g., secure DRM systems. The 551 application and
the 693 application are hereby incorporated by reference into
this application in their entirety.

In one embodiment, a method for configuring a trust man
agement framework for use in a network environment
involves providing various graphical user interfaces to a user
that prompt the user to define certain aspects of the trust

10

15

25

30

35

40

45

50

55

60

65

2
management framework. In particular, a method for config
uring a trust management framework for use in a network
environment comprises providing a roles graphical user inter
face that prompts a user to define roles, providing a services
graphical user interface that prompts the user to define ser
vices corresponding to the roles, providing a principals
graphical user interface that prompts the user to define prin
cipals, including associating at least one of the roles with a
principal, and providing a nodes graphical user interface that
presents role bindings for principals that are designated to
function as nodes and that prompts the user to define interac
tions between nodes. In one embodiment, the method ensures
that the trust management framework is configured in a self
consistent manner. For example, at many points, the configu
ration graphical user interfaces present a user with a set of
options to select from. To ensure self-consistency, the options
are limited to only valid options, where the validity of the
selection options is based on previous configuration deci
sions.

In one embodiment, a system for configuring a trust man
agement framework for use in a network environment
includes a roles module, a services module, a principals mod
ule, and a nodes module. The roles module prompts a user to
define roles. The services module prompts the user to define
services corresponding to the roles. The principals module
prompts the user to define principals, including associating at
least one of the roles with a principal, the nodes module
presents role bindings for principals that are designated to
function as nodes and prompts the user to define interactions
between nodes.

Other aspects and advantages of the inventive body of work
will become apparent from the following detailed descrip
tion, taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inventive
body of work.

BRIEF DESCRIPTION OF THE DRAWINGS

The inventive body of work will be readily understood by
referring to the following detailed description in conjunction
with the accompanying drawings, wherein like reference
numerals designate like elements and in which:

FIG. 1 shows an example of a workflow wizard for config
uring a trust management framework.

FIG.2 depicts a Roles GUI for defining certain attributes of
a role issuer.

FIG.3 depicts a Roles GUI for defining certain attributes of
a role invoker.

FIG. 4 depicts a namespace configuration editor.
FIG. 5 depicts a Services GUI for defining services.
FIG. 6 depicts a Principals GUI for defining principals and

their credentials.
FIG. 7 depicts an extended key usage editor for defining

extended key usages.
FIG. 8 depicts a Nodes GUI for defining nodes.
FIG.9 depicts an illustrative computer system for practic

ing embodiments of the configuration tool.
FIG. 10 depicts an expanded view of the configuration tool

from FIG. 9.
FIG. 11 is a process flow diagram of a method for config

uring a trust management framework in accordance with one
embodiment.

DETAILED DESCRIPTION

A detailed description of the inventive body of work is
provided below. While several embodiments are described, it

US 8,104,075 B2
3

should be understood that the inventive body of work is not
limited to any one embodiment, but instead encompasses
numerous alternatives, modifications, and equivalents. In
addition, while numerous specific details are set forth in the
following description in order to provide a thorough under
standing of the inventive body of work, some embodiments
can be practiced without some or all of these details. More
over, for the purpose of clarity, certain technical material that
is known in the related art has not been described in detail in
order to avoid unnecessarily obscuring the inventive body of
work.

Systems and methods are presented for facilitating the
configuration of a trust management framework for use with
web services, digital rights management systems, and/or
other applications. For example, without limitation, the sys
tems and methods described herein can be used to assist
various stakeholders interested in employing technology,
such as the Networked Environment for Media Orchestration
(NEMO) service orchestration technology described in the
551 application, and/or the digital rights management tech
nology described in the 693 application for designing and
implementing, e.g., secure DRM systems. It will be appreci
ated that these systems and methods are novel, as are many of
the components, systems, and methods employed therein.
As described in more detail in the 551 application, trust

management can entail the use of various building blocks,
Such as cryptography, the public key infrastructure, digital
certificates (and the chaining thereof), Security assertion
markup language (SAML) assertions (e.g., to define roles),
and the like. In general terms, a trust management framework
is typically concerned with defining how a system verifies
that entities are who they say they are and ensuring that
entities are only allowed to perform the actions that they are
authorized to perform. Defining a self-consistent, secure trust
management framework can be a complex task, since, in a
given system, there are typically a variety of entities with
overlapping roles and authorizations.

In preferred embodiments, a configuration tool (sometimes
referred to herein simply as “the tool) is used to facilitate the
configuration of a trust management framework for use with
web services, digital rights management systems, application
programs, and/or the like. Embodiments of the configuration
tool can be valuable in presenting complex networks (such as
those described in the 551 application, and/or any other
Suitable network) in an intuitive, graphical form that makes it
easier to grasp the relations between the various system ele
mentS.

Embodiments of the configuration tool can help system
architects by continuously validating a trust management
framework for internal consistency as the trust management
framework is being configured, and by capturing the configu
ration in an unambiguous, computer- and human-readable
form.

Embodiments of the configuration tool can enhance the
productivity of system implementers. From the network
model produced by the design process, the configuration tool
can be used to automatically generate all trust management
credentials for all NEMO principals. In some embodiments,
the configuration tool can also be used to generate a default
Java-based project with stub code for applications and Ser
vices implied by the model, such that a quickly realizable
implementation is able to perform live interactions between
NEMO nodes as defined by the model. Thus, embodiments of
the configuration tool can help developers to quickly obtain
the working baseline functionality, thereby enabling the
developers to concentrate on implementing the business logic
for NEMO services and consumer applications, while

10

15

25

30

35

40

45

50

55

60

65

4
remaining agnostic to the trust management issues which, in
the absence of the configuration tool, might otherwise con
sume a large share of the development effort.

In one embodiment, the configuration tool includes a trust
management editor that guides a user through the configura
tion of a trust management framework. FIG. 1 shows an
example of a workflow wizard dialog 10 that allows a user to
configure a new trust management framework or to modify
the configuration of an existing trust management frame
work. In the example shown in FIG. 1, selecting the
“Create... 'button 12 of the workflow wizard causes the user
to be presented with an application domain configuration
editor, also referred to herein as the trust management editor.

In a preferred embodiment, the trust management editor
includes four main modules that are presented to the user
through function-specific graphical user interfaces (GUIs).
The function-specific GUIs include a Roles GUI, a Services
GUI, a Principals GUI, and a Nodes GUI. An embodiment of
the trust management editor is described with reference to
FIGS. 2-8. With reference to FIG. 2, the trust management
editor includes a toolbar 14 and function-specific tabs 20, 22.
24, 26, and 28. The tool bar provides access to common
application operations, including, for example, file manage
ment operations and some application-specific operations
Such as namespace (NS) and extended key usage (XKU)
operations. The function-specific tabs are used to launch the
function-specific GUIs. The function-specific GUIs and their
associated functions are described below with reference to
FIGS 2-8.

Roles GUI
FIG. 2 depicts an embodiment of the trust management

editorin which the Roles GUI30 is displayed. The Roles GUI
prompts a user to define roles. In one embodiment, a role is a
set of services that a given peer exposes in combination with
a specific behavior pattern. In this embodiment, the Roles
GUI includes a two-column Role Name editor with the left
column labeled as the “Role' column and the right column
labeled as the “Alias’ column. The “Role' column is config
ured to be populated with a list of role names and the “Alias'
column is configured to be populated with corresponding role
aliases. In a preferred embodiment, role aliases are optional
and if defined, they are used to display role names in shorter
form. In the embodiment of FIG. 2, roles identified as the
“Leaf role and the “Monitor role are defined. For this
example, the Leaf role is a client-only role that exposes no
services and the Monitor role is a role that exposes one ser
vice, which is described in more detail below.

In the embodiment shown in FIG. 2, the Roles GUI also
includes Issuers and Invokers tabs, which, when selected,
present the user with a corresponding Issuers or Invokers
matrix. FIG. 2 depicts the Roles GUI with the Issuers matrix
32 selected. The Issuers matrix is used to define what roles
can be asserted by what roles. In one embodiment, a role
assertion identifies what role “X” a principal should possess,
in order to be entitled to issue a role assertion for role “Y” to
other principals. For example, “X” corresponds to an “Issuer
Role', while “Y” corresponds to a “Subject Role'. In the
embodiment of FIG. 2, the Issuers matrix includes Issuer
roles on the X-axis and Subject roles on the y-axis and each
axis of the matrix is automatically populated with each role
that is defined in the Role Name editor. Interactions between
roles are identified by marking the intersection point between
an Issuer role and a Subject role and in the embodiment of
FIG. 2, marking the intersection point between an Issuer role
and a Subject role indicates that the marked Issuer role can
assert the marked Subject role. That is, a marking at the
intersection between an Issuer role and a Subject role defines

US 8,104,075 B2
5

what role, as indicated in the X-axis, should a role issuer have
in order to assert the Subject role, as indicated in the y-axis.
Note that in the embodiment shown in FIG. 2, only a subset of
the defined roles happens to correspond to role issuers; other
roles may refer to the roles used by NEMO nodes to authorize
access to various NEMO services. In one embodiment, this is
due to overloading of the notion of “Role', resulting in two
separate matrices—"Issuers' and “Invokers’. The latter
describes interactions (invocations) between nodes, playing
different roles. The former how those roles get assigned in
the first place. Sometimes roles have both functions. For
example, services with the role “A” may issue role “B” asser
tions to the clients with the role “C”. In this example, the
Issuers matrix defines a “A”, “B” tuple, indicating that role
“A” may assert role “B”. At the same time, the “Invokers'
matrix defines a “C”, “A” tuple, meaning that any client
with the role “C” may contact a service with the role 'A'
most naturally, to ask for granting a new, role “B”, assertion,
to gain more capabilities as a participant in a given trust
management ecosystem.

FIG.3 depicts the Roles GUI 30 with the Invokers matrix
selected. The Invokers matrix 34 is used to define the rela
tionship between Requester and Responder roles. In the
embodiment of FIG. 3, the Invokers matrix includes
Requestor roles on the y-axis and Responder roles on the
X-axis and again each axis of the matrix is automatically
populated with each role that is defined in the Role Name
editor. Interactions between roles are identified by marking
the intersection point between a Requestor role and a
Responder role and in the embodiment FIG. 3, marking the
intersection point between a Requestor role and a Responder
role indicates that the marked Requester role can invoke the
marked Responder role. That is, a marking at the intersection
point between a Requester role and a Responder role defines
what role, as identified in the X-axis, is required for one node
to invoke a service on another node acting in the role, as
identified in the y-axis. In the example of FIG. 3, the checked
box indicates that the Leaf role (Requestor) can invoke the
Monitor role (Responder).

With the Roles GUI 30, a user is free to name any roles and
to define the relationships between roles in any fashion. As is
described below, the relationships specified in the Issuers and
Invokers matrices are reflected in Subsequent configuration
operations. The graphical representation of the relationships
between roles, as graphically expressed through the matrices,
is one of the features that makes the trust management tool
user friendly. Although the roles GUI uses the Issuers and
Invokers matrices as depicted in FIGS. 2 and 3 to graphically
depict the relationship between roles, other forms of presen
tation are possible.
Once the roles are named and the role relationships are

specified, services can be configured for the roles. In one
embodiment, prior to configuring per-role services, the user is
prompted to launch a namespaces configuration editor. The
namespaces configuration editor prompts a user to define
namespaces for schema types of all request and response
message payloads defined for services and their operations.
FIG. 4 depicts an embodiment of a namespaces configuration
editor 38 that is launched by pressing the “NS” button on the
tool bar of the trust configuration editor (see FIGS. 2 and 3).
In the embodiment of FIG. 4, the namespaces configuration
editor includes “Alias.” “Namespace.” and “Schema Loca
tion' columns. The “Alias’ column is used to define an alias
for each namespace, the "Namespace' column is used to
define the namespace of an XML schema, and the “Schema
Location' column is used to define the location of the schema
for the corresponding namespace. Once the namespaces are

10

15

25

30

35

40

45

50

55

60

65

6
configured, the user is returned to the active function-specific
GUI by selecting the “OK” button.

Services GUI
In one embodiment, after the roles and the namespaces

have been defined, the Services tab 22 is selected to launch the
Services GUI. FIG. 5 depicts an embodiment of the trust
management editor in which the Services GUI 40 is dis
played. The Services GUI includes a services editor that
prompts a user to define services corresponding to the roles
that were defined via the Roles GUI. A service encapsulates
the representation of a set of well-defined functionality
exposed or offered by a responder Node. In one embodiment,
the Services GUI is pre-populated with the roles that were
previously defined via the Roles GUI 30 (for example, the
“Leaf and “Monitor” roles that were defined in FIG.3). For
each role, the user may define the set of services that are
exposed by a node with the corresponding role. Note, that
Some roles may have no corresponding services because they
are either issuer roles or client-only roles. The exemplary
service depicted in FIG. 5 is a “Presence” service whose
function is to ensure that anode is available. It should be noted
that the number and type of services associated with the roles
is application-specific. The Software code associated with the
specified services is embodied in service-specific software
modules. Development of service modules for peer-to-peer
interactions is described, for example, in the 551 application.

Each service can have one or more corresponding opera
tions and each operation can have different messaging char
acteristics that can be defined. In the embodiment of FIG. 5,
the Services GUI 40 prompts the user to define certain mes
saging characteristics related to trust management. The char
acteristics are organized into columns within which the user
can make certain specifications. The particular messaging
characteristics presented in the Services GUI of FIG. 5 are:

(a) “Element” field XML element type representing the
XML schema type of the message payload;

(b) “Integrity' checkbox—an indication of whether or not
the message must be integrity-protected (e.g., digitally
signed);

(c) “Confidentiality' checkbox—an indication of whether
or not the message must be confidential (e.g., encrypted);

(d) “Timestamp' checkbox—an indication of whether or
not the message must be time-stamped;

(e) “Nonce' checkbox—an indication of whether or not the
message must include a nonce (number once) to guarantee its
uniqueness.

In the embodiment of FIG. 5, the Services GUI 40 orga
nizes the roles, corresponding services, and corresponding
operations in a hierarchical manner using folders and Sub
folders to graphically represent the relationships between the
various roles, the corresponding services, and the corre
sponding operations. The graphical representation of the rela
tionships between roles, services, and operations and the
associated messaging characteristics is one of the features
that makes the trust management editor more user friendly
than having to write service-related code for each new service
and read through lines of configuration code to decipher
similar relationships and characteristics.

Principals GUI
The Principals tab 24 is selected to launch the Principals

GUI. FIG. 6 depicts an embodiment of the trust management
editor in which the Principals GUI 50 is displayed. In one
embodiment, a Principal is an entity that has a unique identity.
That is, a Principal roughly corresponds to a notion of a single
identity, but how this identity is established is domain-spe
cific. For example, both X.509 certificates and SAML asser
tions have a notion of a “subject', to whom they are issued.

US 8,104,075 B2
7

Subject name is part of those credentials content, and it
should be the same for a given Principal. However, other
credentials may have no subject, e.g. secret keys. Once any
private credential leaks, this Principal may be impersonated.
The Principals GUI 50 prompts a user to define principals

of the trust management framework, including associating at
least one of the previously defined roles with a principal and
Supplying the principals with credentials that are appropriate
for their intended use within the trust management frame
work. In the embodiment of FIG. 6, the Principals GUI
includes a Principals Name editor and a Principals Creden
tials editor. The Principals Name editor includes a “Name”
column, a “URN column, a “NEMO Node' column, and an
“Imported column. The columns of the Principals Name
editor prompt a user to identify the following information for
each principal that is defined:
Name—a short, user-friendly name that is used elsewhere

in the tool to reference the principal;
URN the Uniform Resource Name (URN) used in cre

dentials issued for by the corresponding principal;
NemoNode whether the corresponding principal is a

NEMO node. If the principal is not a NEMO node then in one
embodiment the principal is to be only a credentials issuer,

Imported—whether the corresponding principal is an
internal principal to be defined and provisioned as part of the
designed system or a pre-existing external principal, whose
credentials must be imported and used inside the designed
system. Since the present example is a description of the
configuration of an entire trust management framework from
scratch, this box is un-checked in this example.

In one embodiment, the Principals Name editor may
include a column that prompts a user to identify how many
times the principal is to be replicated. In further embodi
ments, the Principals Name table may include additional
replication information Such as the starting identifier for the
principal that is to be replicated. In the case where a principal
is to be replicated, the URN of the principal will include a
floating character to indicate where a unique identifier is to be
inserted. For example, if a principal is to be replicated 100
times starting at ID=1, each principal will have a URN that
includes the same URN except for the ID, with the ID of the
100 different principals ranging from 1-100. This feature can
be applied to production environments where multiple simi
lar devices are being produced, with each device requiring a
different URN.

In the example of FIG. 6, the principals “CA.” “RA.”
“LeafNode, and “MonitorNode' are defined. In this
example, the principal CA is defined to act as a certificate
authority, the principal RA is defined to act as a role assertion
authority. For example, any Principal, which has one or more
certificates capable of signing other certificates, is the CA (for
X.509 certificates, it is key usage 4 "certificates signing').
Any Principal, which has one or more certificates capable of
data signing (key usage 128 "data signing) PLUS this
certificate is marked in the GUI as an attribute issuer, becomes
a Role Authority (RA). So, a Principal obtains its capabilities
from its credentials. The principal LeafNode is defined to
carry out the Leaf role, and the principal MonitorNode is
defined to carry out the Monitor role.

In one embodiment, the credentials of principals that are
defined in the Principals Name editor are defined via the
Principals Credentials editor. In a preferred embodiment,
there are two kinds of credentials, certificates and assertions,
where, for example, a certificate binds a name to a public key
and an assertion binds a name to a role. In the embodiment of

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 6, the Principals GUI 50 prompts a user to identify the
credentials of a principal in terms of the following character
istics:

Issuing Principal the principal from which a certificate is
issued

Issuing Certificate the name of the certificate from which
the current certificate is issued

Attribute Issuer—whether or not the certificate can func
tion as an attribute issuer
Usage—a code value that represents what the certificate

can be used for (e.g., standard enumerated key usages for
X.509 certificates).

Value—defines extended key usages for each certificate.
For example, in one embodiment, the Value field could be a
context-dependent field triggering pop-up dialog with more
detailed information for each credential type. For certificates,
the Value field may provide information like key usage, valid
ity dates, XKUs, etc. For SAML assertions, the Value field
may include a list of all attribute names and their values,
validity interval, etc.

Provisioned indicates whether a Principal gets originally
provisioned with these credentials, or acquires them during
operations in the field.

In one embodiment, each principal that is intended to be
used as a certificate authority is Supplied with at least one
certificate with the key usage for certificate issuing (e.g.,
usage certificate issuing). The certificate name should be
picked as a short user-friendly name used for reference else
where in the tool. Each principal intended to be used as a role
issuer is Supplied with at least one certificate for role signing
(usage data signing) and Zero or more role assertions, if some
role issuing rules were defined earlier. In one embodiment,
each principal that is identified as a NEMO node has at least
two certificates, one for data signing and one for key encryp
tion, to Support message integrity and confidentiality respec
tively.

In a preferred embodiment, attribute assertions are popu
lated with attributes. For example, an assertion “asserts' cer
tain information about its subject (Principal). Trust to an
assertion is based on trust to its signer (assertion issuer).
Attribute assertions consist of one or more attributes. In one
embodiment, each attribute has a name and Zero or more
values. Role assertion is justa simple case of an assertion with
a single attribute “role” and one or more values (role names).
In one embodiment, all attributes come with the “role”
attribute name by default. In one simplified embodiment, this
is the only attribute playing a role intrust management. In one
embodiment, to ensure self-consistency during configura
tion, the Principals Credentials table is programmed to only
allow the selection of the previously defined roles as a valid
attribute assertion.

Referring to the Principal Credentials table in the example
of FIG. 6, the principal “CA' has one certificate that is iden
tified as “CA-Cert, an Issuing Principal identified as “CA.”
an issuing certificate identified as “CA-Cert, and a usage of
4, where 4-certificate signing. The principal “RA has one
certificate identified as “RA-Cert an Issuing Principal iden
tified as “CA.” an issuing certificate identified as “CA-Cert.”
and a usage of 128, wherein 128-data signing. The Principal
“RA is also identified as an attribute issuer.
The principal “LeafNode' includes two certificates, “Leaf

Node-Cert’ and “LeafNode-ConfidentialityCert' and one
assertion, "LeafNode-LeafRole.”The certificate "LeafNode
Cert' has an Issuing Principal “CA.” an issuing certificate
“CA-Cert,” and a usage of 128 and the “LeafNode-Confiden
tialityCert' has an Issuing Principal “CA.” an issuing cert
“CA-Cert' and a usage of 32, where 32-encryption. In one

US 8,104,075 B2

example embodiment, an Issuing Cert is any certificate with
the key usage 4 (certificate signing). Correspondingly, an
Issuing Principal is a principal that possesses at least one
Issuing Certificate. The assertion “LeafNode-LeafRole' has
an issuing principal “RA and the attribute of the previously
defined “Leaf role. In one embodiment, in the usage field, a
user is presented only with the previously defined roles as
valid selection options. This feature helps to guide the user to
a self-consistent and valid configuration.

In the example shown in FIG. 6, the principal “MonitorN
ode' includes two certificates, “MonitorNode-Cert' and
“MonitorNode-ConfidentialityCert’ and one assertion,
“MonitorNode-MonitorRole. The certificate “MonitorN
ode-Cert' has an Issuing Principal “CA.” an issuing certifi
cate “CA-Cert, and a usage of 128 and the “MonitorNode
ConfidentialityCert' has an Issuing Principal “CA.” an
issuing cert “CA-Cert, and a usage of 32. The assertion
“MonitorNode-MonitorRole' has an issuing principal “RA'
and the attribute of the previously defined “Monitor role.

In one embodiment, extended key usages are defined using
an extended key editor, which is launched by selecting the
“XKU” button depicted in the toolbar 14 of the trust configu
ration editor. FIG. 7 depicts an embodiment of an extended
key editor 52 that includes an “OID column and an “Alias’
column. The OID column defines the object identifier (OID)
valid for extended key usages. The Alias column defines
short, user-friendly aliases used elsewhere in the tool.

Referring back to FIG. 6, the Principals Credentials table
of the Principals GUI 50 organizes the Principals and corre
sponding credentials (certificates and assertions) in a hierar
chical manner using folders and Subfolders to graphically
represent the relationships between the various Principals and
the corresponding credentials. Further, the configurable char
acteristics of the credentials are graphically displayed for
each Principal. The graphical representation of the relation
ships between Principals and credentials and the associated
credential characteristics makes the trust management editor
more user friendly than having to write program code to
configure each Principal or read through lines of configura
tion code to decipher similar relationships and characteris
tics.

In the example shown in FIG. 6, and the Principals GUI 50
in particular, the order of principals is important, in order to
avoid circular dependencies, like A signs B, B signs C, C
signs A. Accordingly, the list of available Issuing Principals
and Issuing Certificates, available for each principal's certifi
cate, is populated from the earlier created list of principals
(and, therefore, their credentials).
Nodes GUI
The Nodes tab 26 is selected to launch the Nodes GUI. FIG.

8 depicts an embodiment of the trust management editor in
which the Nodes GUI 60 is displayed. A node is a represen
tation of a participant in the system framework. A node may
act in multiple roles including that of a service consumer
and/or a service provider. Nodes may be implemented in a
variety of forms including consumer electronics devices,
Software agents such as media players, or virtual service
providers such as content search engines, DRM license pro
viders, or content lockers. The Nodes GUI presents role bind
ings for principals that are designated to function as nodes
(e.g., NEMO nodes) and prompts a user to define interactions
between nodes. In one embodiment, the Nodes GUI includes
a Node Definition table and a Node Interaction editor. The
Node Definition table graphically presents the role bindings
for the principals that are designated as NEMO nodes in the
Principals GUI 50 (see FIG. 6). In the example of FIG. 8, the
role bindings are presented as either client or service role

10

15

25

30

35

40

45

50

55

60

65

10
bindings based on the role relationships that were defined in
the Invokers matrix described with reference to FIG. 3. For
example, the list of available client and/or service bindings
for a given node can be based on a set of SAML assertions that
a principal has, and the roles those assertions define. In turn,
in this example, the roles that can be used in client binding, in
service bindings, or both, depends on the Invokers matrix
(recall that in one embodiment the same role can be defined in
the Invokers matrix both as “requester and “responder'). As
used herein, the term “node’ generally refers to a principal
that engage in interactions with other nodes (e.g., using its
credentials).

Further, in a preferred embodiment, the trust management
editor allows nodes to be configured for specific roles only if
their corresponding principals were configured with the cor
responding role assertions. Both of these features ensure that
a self-consistent configuration is being established.

In one embodiment, each service or client role binding
refers to one of the principal's role assertions. Once instanti
ated, a service role binding is automatically pre-populated
with service bindings for each service defined earlier for the
given role. In one embodiment, service bindings can be modi
fied, but not removed or added, for that would constitute a
breach of the role contract. As described above with regard to
FIG. 5, the Services GUI 40 defines the services that need to
be exposed for a node acting in a given role. In one embodi
ment, once a “service role binding is added for a given role
“X”, for a given node under the Nodes GUI 60, the following
assertions are made: a) the node has a SAML assertion defin
ing role “X” (verified automatically); b) the role “X” is men
tioned at least once in the “Invokers' matrix as a “responder
role” (verified automatically); and c) the node intends to use
this SAML assertion to provide services to other nodes. In
one embodiment, the role contract says that by accepting the
service role “X”, the node must provide all services defined
under the Services GUI for a given role “X”, not just their
subset. It is enforced in the Nodes GUI by auto-populating a
fixed list of all service bindings for a given role “X”.

In one embodiment, each client role binding is automati
cally pre-populated with client bindings for each service that
the client with the given role should be able to invoke. In one
embodiment, pre-population of the role bindings involves: a)
from the Invokers matrix, find all tuples where the role “X” is
a “requester role” and create a list of all “responder roles'; b)
from the Services GUI 40, for each “responder role.” get the
list of services; and c) combine all services lists into one big
list—this is the list of all client bindings. In one embodiment,
there is no such thing as a “Client Contract'. That is, just
because a node can actina client role 'X', does not mean that
the node must contact all services that the node is able to
contact with the given client role. Being able to issue requests
of the given types is a capability, while being able to respond
to requests of the given types at any time is an obligation. For
example, the roles (and therefore the services) that a client is
able to invoke are defined via the roles Invokers matrix 34
described above with reference to FIG. 3.

In one embodiment, each client or service binding is
defined in terms of the following characteristics:

Role Assertion—the name of the corresponding role asser
tion identified in the Principals GUI 50:

Service type for a service binding the field identifies the
type of exposed service, whereas for a client binding this field
identifies the service that can be invoked by a given client;

Integrity Cert—the name of the certificate that is used for
message signing:

Confidentiality Cert the name of the certificate that is
used for message encryption;

US 8,104,075 B2
11

Messaging TA (Trust Anchor)—the trust anchor certificate
defined for one of the certificate authority principals, to be
used for validating the peer’s certificates for message signing
and/or encryption;

Attribute TA (Trust Anchor)—the trust anchor certificate
defined for one of the certificate authority principals, to be
used to validate the peer's role signing certificates

Trusted AA (Attribute Assertion) Cert—certificate of the
principal, which is trusted with issuing peer's roles.

In the embodiment of FIG. 8, the Nodes GUI 60 organizes
the nodes, service role bindings, and client role bindings in a
hierarchical manner using folders and Subfolders to graphi
cally represent the relationships between the various nodes
and their corresponding role bindings. The graphical repre
sentation of the relationships between nodes, service role
bindings, client role bindings and the associated role binding
characteristics makes the trust management editor more user
friendly than having to read through lines of configuration
code to decipher similar relationships and characteristics.

In addition to listing all the client and service bindings, in
one embodiment the Nodes GUI 60 defines trust management
policies for each of those bindings. Each client or service
binding defines: a) what assertion to use to prove one’s role
(automatically inherited from the parent role binding); b)
what certificate to use for message signing, c) what certificate
to use for message encryption; d) what trust anchor certificate
to use to validate message certificates of other nodes that are
interacted with (Messaging Trust Anchor, or MTA); e) what
trust anchor certificate to use to validate role assertions sign
ing certificates (Attribute Trust Anchor, or ATA); and f) who
is the trusted role assertions signer, by name (Trusted
Attribute Authority, or TAA). In one embodiment, TM is
optional. Often, as long as one can authenticate a role asser
tion signer TAA using ATA, the TAA is trusted. In one
embodiment, the nodes GUI presents only valid certificate
choices: encryption and signing certificates must be the ones
of a given principal (one can only use its own certificates to
sign or encrypt its own messages), plus they must have cor
responding key usages (128 for signing and 32 for encryp
tion). MTA and ATA should be any certificate of another
principal with the key usage 4, for certificates signing. TAA
should be any certificate with data signing key usage 128,
additionally marked as “attribute authority” in the “Princi
pals' GUI.

The Node Interaction editor at the bottom of the Nodes
GUI 60 allows a user to enumerate node role binding pairs
that should invoke each other. In one embodiment, the trust
management engine checks whether each client binding con
figured under a specific requester node's role binding will be
able to invoke corresponding service bindings configured
under a given role binding of the responder node, where
“being able to invoke” refers to compatibility of credentials
configured for each node's bindings with their corresponding
trust management policies. In one embodiment, the user is
immediately notified if an enumerated role binding pair is
invalid. In one embodiment, the configuration editor deter
mines the validity of a role binding pair by checking the
compatibility of the assigned credentials. For example, in one
embodiment, for each interaction pair client role binding A,
service role binding B}, the following is verified: a) messag
ing trust anchor (MTA) certificate defined for binding A
should be an ancestor of both signing and encryption certifi
cates used in binding B and Visa Versa; and b) Attribute trust
anchor (ATA) defined for binding. A should be an ancestor of
a signer of the role assertion used in binding B-and visa
versa. In the embodiment of FIG. 8, a configuration status
window in the Nodes GUI provides an indication of the

10

15

25

30

35

40

45

50

55

60

65

12
validity of the configuration. If the configuration is invalid, an
indication of the configuration error is displayed in the con
figuration status window.

Referring once again to the Nodes GUI 60 of FIG. 8, while
working on the configuration, it is possible to view the under
lying XML representation of the created configuration at any
point by choosing the XML tab 28. While the presented XML
document is editable, direct altering of it is not recommended,
because it typically requires knowledge of the underlying
schema.
Once the network configuration is completed and the con

figuration status window indicates that the configuration is
valid, the configuration process is complete. The configura
tion can be saved on a local file system for future reference. At
this point implementers can continue the configuration wiz
ard in order to generate the implementation project.
The configuration tool described herein simplifies the con

figuration of a trust management framework for use with web
services, digital right management, and/or other applications.
The configuration of the trust management framework is con
stantly validated for consistency and can be saved for future
reference.
FIG.9 depicts an illustrative computer system 70 for prac

ticing embodiments of the configuration tool. The computer
system includes an input/output 72, a central processing unit
(CPU) 74, data storage 76, and system memory 78. The
input/output includes, for example, a display and/or a key
board. The CPU includes a conventional multifunction pro
cessor as is known in the field. The data storage includes, for
example, a magnetic disk and/or an optical disk, and/or any
other Suitable storage means. The data storage may be fixed or
removable as is know in the field. The system memory may
include, for example, some combination of random access
memory (RAM) and read only memory (ROM) for storing
information and instructions to be executed or used by the
CPU and/or for storing temporary variables or other interme
diate information during execution of instructions by the pro
cessor. In the embodiment of FIG. 9, the system memory
stores an operating system 80 and the above-described con
figuration tool 82. It should be understood, however, that FIG.
9 is provided for purposes of illustration, not limitation, and
that other computer systems with additional components and/
or some suitable subset of the components illustrated in FIG.
9 could also be used. Indeed one skilled in the art will appre
ciate that virtually any type of computing system can be used,
including, for example, personal computers and mainframes.

FIG. 10 depicts an expanded view of the configuration tool
82 from FIG. 9. In the example shown in FIG. 10, the con
figuration tool includes a roles module 84, a services module
86, a principals module 88, and a nodes module 90. In one
embodiment, each module includes executable instructions
for performing a function that corresponds to the above
described function-specific GUIs. The configuration tool also
includes a namespaces module 92 and an extended key usages
module 94. The namespaces module includes executable
instructions for implementing the namespaces editor as
described above with reference to FIG. 4 and the extended key
usages module includes executable instructions for imple
menting the extended key editor as described above with
reference to FIG. 7.

Although the function-specific GUIs are described as
being displayed in separate screen views, the function-spe
cific GUIs can be presented simultaneously in different com
binations. Further, although specific layouts of the GUIs are
provided, other layouts are possible.

FIG. 11 is a process flow diagram of a method for config
uring a trust management framework in accordance with one

US 8,104,075 B2
13

embodiment. At block 1102, a Roles GUI that prompts a user
to define roles is provided. At block 1104, a Services GUI that
prompts the user to define services corresponding to the roles
is provided. At block 1106, a Principals GUI that prompts the
user to define principals, including associating at least one of 5
the roles with a principal is provided. At block 1108, a Nodes
GUI that presents role bindings for principals that are desig
nated to function as nodes and that prompts the user to define
interactions between nodes is provided.
The process of configuring a trust management framework

may include the configuration of a new trust management
framework or the modification of a previously configured
trust management framework.

Although the foregoing has been described in Some detail
for purposes of clarity, it will be apparent that certain changes
and modifications may be made without departing from the
principles thereof. It should be noted that there are many
alternative ways of implementing both the processes and
apparatuses described herein. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive.

What is claimed is:
1. A method for configuring a trust management frame

work for use in a network environment, executed by a pro
cessor programmed to execute instructions to perform the
method, the method comprising:

providing, using the processor, a roles graphical user inter
face that prompts a user to define roles;

providing, using the processor, a services graphical user
interface that prompts the user to define services corre
sponding to roles defined using the roles graphical inter
face, wherein the service graphical user interface pro
vides a graphical representation of a relationship
between defined roles and corresponding services, and
corresponding operations and trust management mes
Saging characteristics associated with the corresponding
services in a hierarchical manner,

providing, using the processor, a principals graphical user
interface that prompts the user to define principals of the
trust management framework, including associating at
least one of the roles, defined using the roles graphical
interface, with a principal; and

providing, using the processor, a nodes graphical user
interface that presents role bindings for principals that
are designated to function as nodes and that prompts the
user to define interactions between nodes.

2. The method of claim 1 wherein providing a roles graphi
cal user interface comprises providing a graphical user inter
face that prompts a user to identify role names and to identify
interactions between the roles.

3. The method of claim 1 wherein providing a roles graphi
cal user interface comprises providing a graphical user inter
face that prompts a user to identify role names and to identify
which roles can be invoked by which roles.

4. The method of claim 3 wherein the roles graphical user
interface presents the role names in a matrix with requester
roles on one axis of the matrix and responder roles on another
axis of the matrix.

5. The method of claim 4 wherein interactions between
roles are identified by marking the intersection point between
a requestor role and a responder role in the matrix.

6. The method of claim 5 whereina mark at the intersection
point between a requestor role and a responder role indicates
that the marked requester role can invoke the marked
responder role.

10

15

25

30

35

40

45

50

55

60

65

14
7. The method of claim 6 wherein the roles graphical user

interface is configured to place each identified role name on
each axis of the matrix.

8. The method of claim 1 wherein providing a roles graphi
cal user interface comprises providing a graphical user inter
face that prompts a user to identify role names and to identify
which roles can assert which roles.

9. The method of claim 1 wherein the services graphical
user interface prompts a user to identify a name for a service
and to identify at least one operation associated with the
service.

10. The method of claim 9 wherein identifying at least one
operation associated with the service comprises defining a
message protocol.

11. The method of claim 10 wherein defining a message
protocol comprises at least one of:

indicating an XML Schema type of a message;
indicating whether or not a message must be integrity

protected;
indicating whether or not a message must be confidential;
indicating whether or not a message must be time-stamped;

and
indicating whether or not a message must include a nonce.
12. The method of claim 10 further comprising providing a

namespace graphical user interface that prompts a user to
define namespaces for schema types of messages associated
with the services.

13. The method of claim 9 wherein the services graphical
user interface is automatically populated with the roles that
are identified in the roles graphical user interface and wherein
the services are associated with roles.

14. The method of claim 1 wherein the principals graphical
user interface prompts the user to identify a principal name
and a universal resource name (URN) for each principal.

15. The method of claim 13 wherein the principals graphi
cal user interface prompts a user to identify whether or not
each principal is imported from an external source.

16. The method of claim 13 wherein the principals graphi
cal user interface prompts the user to identify credentials
related to each principal.

17. The method of claim 16 wherein the principals graphi
cal user interface prompts a user to identify the credentials of
a principal in terms of at least one of

an issuing principal;
an issuing certificate;
whether or not the principal is an attribute issuer; and
a usage specification.
18. The method of claim 1 wherein the nodes graphical user

interface presents role bindings in terms of client role bind
ings and service role bindings.

19. The method of claim 18 wherein, for each role binding,
the nodes graphical user interface presents at least one of:

a role assertion;
an indication of the type of service;
an identity of an integrity certificate;
an identity of a confidentiality certificate;
an identity of a messaging trust anchor;
an identity of an attribute trust anchor; and
an identity of a trusted attribute assertion certificate.
20. The method of claim 4 further comprising checking to

see if a client role binding configured as a requestor node is
able to invoke a corresponding service binding configured as
a responder node.

21. The method of claim 20 wherein the nodes graphical
user interface presents an indication as to whether a defined
interaction between nodes is valid.

US 8,104,075 B2
15

22. The method of claim 1 wherein the nodes graphical user
interface presents a node interaction table that prompts a user
to identify an interaction between two nodes.

23. The method of claim 22 wherein an interaction is rep
resented in the node interaction table by identifying a
requestor node, a requestor role binding, a responder node,
and a responder role binding.

24. A system for configuring a trust management frame
work for use in a network environment, the system compris
ing:

a roles module that prompts a user to define roles;
a services module that prompts the user to define services

corresponding to the roles defined using the roles mod
ule, wherein the service module provides a graphical
representation of a relationship between defined roles
and corresponding services, and corresponding opera
tions and trust management messaging characteristics
associated with the corresponding services in a hierar
chical manner;

a principals module that prompts the user to define princi
pals of the trust management framework, including
associating at least one of the roles, defined using the
roles module, with a principal; and

a nodes module that presents role bindings for principals
that are designated to function as nodes and that prompts
the user to define interactions between nodes.

25. The system of claim 24 wherein the roles module
prompts a user to identify role names and to identify which
roles can be invoked by which roles.

26. The system of claim 24 wherein the roles module
prompts a user to identify role names and to identify which
roles can assert which roles.

27. The system of claim 24 wherein the services module
prompts a user to identify a name for a service and to identify
at least one operation associated with the service.

28. The system of claim 27 wherein identifying at least one
operation associated with the service comprises defining a
message protocol, wherein defining a message protocol com
prises at least one of

indicating an XML Schema type of a message;
indicating whether or not a message must be integrity

protected;
indicating whether or not a message must be confidential;
indicating whether or not a message must be time-stamped;

and
indicating whether or not a message must include a nonce.
29. The system of claim 28 further comprising providing a

namespace module that prompts a user to define namespaces
for schema types of messages associated with the services.

30. The system of claim 24 wherein the services module
automatically populates a services definition editor with the
roles that are identified in the roles graphical user interface
and wherein the services are associated with roles.

31. The system of claim 24 wherein the roles module is
configured to check if a client role binding configured as a
requestor node is able to invoke a corresponding service
binding configured as a responder node.

10

15

25

30

35

40

45

50

55

16
32. The system of claim 31 wherein the nodes module

presents an indication as to whether a defined interaction
between nodes is valid.

33. The system of claim 24 wherein the nodes module
presents a node interaction table that prompts a user to iden
tify an interaction between two nodes, wherein an interaction
is represented in the node interaction table by identifying a
requestor node, a requestor role binding, a responder node,
and a responder role binding and wherein the nodes module is
configured to present an indication of the validity of the
identified interaction.

34. A system for configuring a trust management frame
work for use in a network environment, the system compris
ing:
means for prompting a user to define roles;
means for prompting the user to define services corre

sponding to the roles defined using the means for
prompting the user to define roles, wherein the means for
prompting the user to define services provides a graphi
cal representation of a relationship between defined
roles and corresponding services, and corresponding
operations and trust management messaging character
istics associated with the corresponding services in a
hierarchical manner;

means for prompting the user to define principals, includ
ing associating at least one of the roles with a principal of
the trust management framework; and

means for presenting role bindings for principals that are
designated to function as nodes and that prompts the
user to define interactions between nodes.

35. A non-transitory computer-readable medium contain
ing executable instructions for configuring a trust manage
ment framework, the executable instructions including
instructions for:

providing a roles graphical user interface that prompts a
user to define roles;

providing a services graphical user interface that prompts
the user to define services corresponding to roles defined
using the roles graphical using interface, wherein the
service graphical user interface provides a graphical rep
resentation of a relationship between defined roles and
corresponding services, and corresponding operations
and trust management messaging characteristics associ
ated with the corresponding services in a hierarchical
manner,

providing a principals graphical user interface that prompts
the user to define principals of the trust management
framework, including associating at least one of the
roles, defined using the roles graphical user interface,
with a principal; and

providing a nodes graphical user interface that presents
role bindings for principals that are designated to func
tion as nodes and that prompts the user to define inter
actions between nodes.

