(51) International Patent Classification:
B65D 85/804 (2006.01)

(21) International Application Number:
PCT/EP20 13/074446

(22) International Filing Date:
22 November 2013 (22.1.2013)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
12194775.8 29 November 2012 (29.11.2012) EP

(72) Inventors: KOHLI, Hans-Markus; Ch. des Secretaires 17, CH-1442 Montagny-pres-Yverdon (CH). ABRAHAM, Sophie; 7, routes des gits, F-25160 Remoray (FR). DOGAN, Nihan; Route des Monts-de-Lavaux 460, CH-1090 La Croix-sur-Lutry (CH). WYSS, Heinz; Chisemat-tweg 12, CH-3672 Oberdiessbach (CH). ZANGERLE, Wolfgang; Stetterstrasse 20, CH-5507 Mellingen (CH).

(74) Agent: BORNE, Patrice; Avenue Nestle 55, CH-1800 Vevey (CH).

(54) Title: CAPSULE FOR PREPARING A BEVERAGE OR NUTRITIONAL PRODUCT

(57) Abstract: The invention relates to a capsule (10) for preparing a beverage and/or nutritional product, comprising a body (20) for forming integrally a first compartment (21) for liquid injection and a second compartment (22) for containing beverage and/or nutritional ingredients, a separation wall (30) for separating the first compartment (21) and the second compartment (22), the separation wall (30) comprising an aperture (31) for the liquid transfer from the first compartment to the second compartment, a separate liquid injector (40) comprising a liquid inlet (41) and a liquid outlet (42), wherein the liquid injector (40) is inserted in and/or against the separation wall (30), and is arranged for transferring liquid from the first compartment (21) to the second compartment (22).

[Continued on next page]
Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(A))
— as to applicant's entitlement to claim the priority of the earlier application (Rule 4.17(H))

Published:

— of inventorship (Rule 4.17(iv))
— with international search report (Art. 21(3))
Capsule for preparing a beverage or nutritional product

Field of the invention

[0001] The present invention is directed to a capsule for preparing a beverage and/or nutritional product in a beverage preparation device. In the capsule of the present invention a section, into which liquid can be injected by a beverage preparation machine, is separated from a section for containing beverage and/or nutritional ingredients. The separation is bridged by internal injection means for injecting the liquid to the ingredients.

Background

[0002] From the prior art it is known to prevent a direct contact between the liquid injection means of a beverage preparation machine, for example designed as a needle or a connector, and the beverage or nutritional ingredients contained in a capsule.

[0003] For example, WO 2010/1 12353 A1 discloses a capsule for use in a beverage production device. The capsule comprises a filter for filtering a liquid injected into the capsule, a collection member placed downstream of the filter to collect the filtered liquid, and at least one restriction orifice in the collection member, in order to focus the flow of the liquid in at least one jet of liquid at high velocity into a compartment of the capsule, in which beverage ingredients are contained.

[0004] WO 2010/128028 A1 discloses a capsule for the preparation of a nutritional product for use in a device that is adapted to supply a liquid to the capsule. The capsule comprises a filter for removing contaminants contained in the injected liquid. After passing through the filter, the liquid is supplied to at least one compartment containing beverage ingredients. The capsule further comprises a selectively openable gas inlet, which is placed on or in the capsule to allow gas introduction from the outside into the ingredients compartment without passing through the filter.
[0005] WO 2010/128031 A1 discloses a capsule for the preparation of a nutritional product for use in a device that is adapted to inject a liquid to the capsule. The capsule comprises a compartment, which houses a filter for removing contaminants contained in the injected liquid. The capsule further comprises a compartment for beverage ingredients. The filter has a filtering surface, which is smaller than the cross-section of the mouth of the ingredient compartment.

[0006] WO 2010/128051 A1 discloses a capsule for the preparation of a nutritional product in a device that is adapted to supply a liquid into the capsule. The capsule comprises a filter unit, which comprises a filter membrane and an outlet wall for supporting the filter membrane. The outlet wall of the filter unit comprises at least one liquid outlet that communicates with a compartment of the capsule, in which beverage ingredients are contained.

[0007] None of the known prior art mentioned above takes into account that depending on the type of beverage and/or nutritional ingredients contained in a capsule, the injection of the liquid needs to be carried out differently, in order to properly dissolve different types of ingredients. For example, for some beverage ingredients in a capsule, a directed jet of liquid is optimal for dissolving, whereas for other beverage ingredients in a capsule, a spraying of the liquid onto the ingredients is optimal for dissolving.

[0008] Thus, there is a need for injection means that are designed to achieve a proper dissolution of ingredients in a capsule. In particular, there is a need for a capsule that provides a sufficiently flexible and versatile solution for different beverage and/or nutritional products.

[0009] Further, there is a need for a filtering function in the capsule for removing contaminants from the liquid, which is safe, simple and economical to implement industrially.

[0010] The prior art capsules have the further disadvantage that they encompass too many pieces, and are thus costly to produce. The prior art capsules also require time consuming and complex assembling operations to ensure the proper fluid flow path through the capsule. Consequently, there is a need to reduce
the number of pieces, facilitate the assembling and reduce the manufacturing costs of a capsule.

Summary of the invention

[0011] The present invention has the object to improve the prior art by addressing the above-mentioned disadvantages. In particular, the present invention aims to provide a capsule with injection means which can be easily and economically adapted for properly dissolving any type of ingredients in the capsule. The present invention has the further object to provide a simpler designed capsule, which enables a larger versatility in the choice of an injection solution, and for added functionalities like filtering, proper ingredient dissolution and/or foaming. Finally, an object of the present invention is to provide a capsule, which can be assembled faster and in a simpler manner, and can be manufactured at lower costs than the prior art solutions.

[0012] In general the solution to the above-mentioned objects is provided by a capsule for the preparation of a beverage and/or nutritional product comprising a separate insertable liquid injector. The capsule is particularly designed as described by the attached independent claims. The attached dependent claims develop further advantages of the invention.

[0013] The present invention is directed to a capsule for preparing a beverage and/or nutritional product, comprising a body for forming integrally a first compartment for liquid injection and a second compartment for containing beverage and/or nutritional ingredients, a separation wall for separating the first compartment and the second compartment, the separation wall comprising an aperture for liquid transfer from the first compartment to the second compartment, a liquid injector comprising a liquid inlet and a liquid outlet, wherein the liquid injector is inserted in and/or against the separation wall, and is arranged for transferring liquid from the first compartment to the second compartment.

[0014] A sustainable hygienic product delivery is obtained by the separation between the first compartment (into which the liquid is injected by injecting means of a beverage preparation machine) and the second compartment, which is for holding
the beverage and/or nutritional ingredients. The ingredients in the capsule cannot be contaminated by the injecting means.

[0015] Further, during assembling of the capsule of the present invention, differently designed liquid injectors can be inserted depending on the ingredients to be filled into the capsule. The liquid injector is preferably designed such that these ingredients to be filled into the capsule can be dissolved properly and no non-dissolved lump of product is left in the capsule or released from the capsule. For example, the liquid injector can be designed to form at its liquid outlet one or more jets of liquid or a spray of liquid for further injection into the second compartment. The liquid outlet can therefore be designed as one or more holes, orifices or channels having a diameter that is tailored to the specific needs. Thus, the capsule of the present invention offers an increased versatility of use. The liquid injector can be selectively adapted or selected at the manufacturing of the capsule while the rest of the capsule remains unchanged or with limited changes so that the capsule can be used for different intended beverage and/or nutritional ingredients. Furthermore, the capsule encompasses fewer pieces. Therefore, the capsules can be manufactured at lower costs.

[0016] Moreover, the insertion of the liquid injector into and/or against the separation wall allows for a fast and simple assembly of the capsule. Further, additional functionalities like a filtering before the injection of liquid into the ingredient compartment or foaming can be added due to the design of the capsule, as will be explained below in more detail.

[0017] Preferably, the liquid injector comprises an air injection channel with an air inlet separate from the liquid inlet.

[0018] The air can be injected by a beverage preparation machine, which also provides the injected liquid. The injected air helps to completely drain the capsule from the injected liquid after the liquid injection in the capsule. The air injection time generally depends on the volume of the capsule to be drained (i.e., the larger the volume, the longer the time). Injected air can also be injected during liquid injection into the second compartment such as to improve the dissolution of the
ingredients contained therein and/or voluntarily create air bubbles in the liquid. Injected air can for example increase the speed of one or more liquid jets directed through one or more openings of the liquid outlet of the liquid injector. Injected air can also enhance a spraying effect of the liquid, which leaves the liquid injector through a plurality of openings forming the liquid outlet. Injected air can also support the formation of foam of a beverage or nutritional liquid product that is produced.

[0019] The air inlet is positioned sufficiently remote from the ingredient compartment so that no contact is made possible between the air injection means of the device and the product or ingredient, even after liquid injection. For this, preferably an air channel is present between the air inlet and the air outlet communicating with the second compartment of the capsule. The air channel is preferably of a length greater than 5 mm.

[0020] In a mode, the liquid outlet of the liquid injector and air outlet are common. This provides the advantage that all liquid is removed from the injector. Also air under pressure can assist for dislodging solid particles from the liquid outlet(s) which may otherwise clog the outlet(s). The injector remains of simpler conception and can be built more compact. Additionally, a liquid air mixture can be provided to the beverage and/or nutritional ingredients in the capsule, which may promote the dissolution of the beverage ingredients.

[0021] In an alternative, the air outlet and liquid outlet are separately formed in the liquid injector. In such case, the air flow path and liquid flow path are separate. In another alternative, the liquid injector can be built without air inlet. It can be possible for example when the capsule can drain by itself without assistance of pressurized air.

[0022] Preferably, the liquid injector has insertion means for fitting the liquid injector into complementary receiving means of the separation wall. Most preferably, the insertion means and receiving means are arranged to permit an insertion of the liquid injector in or along the direction of extension of the separation wall so that the
liquid injector becomes immobilized in, at least the transversal direction to the
direction of extension of the separation wall.

[0023] The capsule is so simple to assemble, since the liquid injector is stably
fixed in engagement with the separation wall into the receiving means without need
for additional connection means. In particular, no permanent connecting means,
generally requiring specific manufacturing operations, such as welding, gluing or
riveting, is needed. Differently designed liquid injectors with equal insertion means
can be used. The number of necessary pieces to hold the liquid injector stably inside
the capsule in and/or against the separation wall is so minimized.

[0024] In a more specific mode, the insertion means are shaped as teeth
and/or studs. The teeth or studs preferably extends essentially in the direction of,
and/or parallel to, the separation wall. This allows the insertion of the liquid injector in
the direction of the separation wall.

[0025] Preferably, the receiving means are complementary shaped to receive
the teeth and/or studs. In particular, the receiving means are recesses and/or slots.
Therefore, the recesses and/or slots extend essentially in the direction of, and/or
parallel to, the separation wall.

[0026] Preferably, the first compartment and the second compartment are
arranged adjacent to each other in a direction that is orthogonal to the liquid and/or
air inlet of the liquid injector. Therefore, the separation wall forms at least a partial
separation orthogonal to the liquid and/or air inlet of the liquid injector. The separation
of the two compartments is preferably completed by the liquid injector in position of
insertion in and/or against the separation wall.

[0027] The first compartment and the second compartment are adjacent to
each other and separated, at least partially, by the separation wall when viewed from
above. This promotes an uncomplicated arrangement of liquid injecting means and
air injecting means of a beverage producing device. The capsule can also be
assembled easily in an automated manufacturing process.

[0028] In particular, the capsule further comprises an upper membrane for
closing the (so adjacent) first and second compartments, the upper membrane being
sealed on the separation wall and on edges of the compartments. The sealed upper membrane may further prevent the liquid injection from being freely removed in the opposed direction of the insertion. In other words, the membrane maintains the liquid injector in inserted position without possibility for the liquid injector to be removed.

[0029] Using only one membrane to seal both compartments reduces the number of pieces and lowers the assembling costs.

[0030] Preferably, the first compartment and the second compartment are side-by-side when viewed perpendicular to the upper membrane.

[0031] In a preferred mode, the first compartment comprises a filter for filtering liquid introduced in the first compartment. The filter is preferably a means separate from the liquid injector. The filter is preferably designed for removing contaminants from the fed liquid. Preferably, the filter is welded into the first compartment in a manner to prevent any bypass of unfiltered liquid to the liquid injector.

[0032] In a possible alternative, the first compartment is free of filter. The first compartment can simply form a chamber of relatively small size for simply lodging the liquid injection means, e.g., injection needle, of the beverage preparation device.

[0033] In another alternative, the first compartment contains a beverage or food ingredient distinct from the food ingredient contained in the second compartment. For example, the first compartment can comprise: probiotic(s), oligo-elements, vitamins, other food or nutritional additives, a taste enhancer, a sweetener, a flavor, a colorant, a creamer and combinations thereof.

[0034] The filter is preferably intended to remove liquid contaminants from the supplied liquid, before it is injected further into the second compartment containing the beverage and/or nutritional ingredients. Thereby, the hygiene of beverage production is improved.

[0035] The "contaminant" refers to microorganisms such as: bacteria, viruses, but may also encompass under certain circumstances: organic chemicals such as: acrylamide, benzene, carbofuran; inorganic chemicals such as: arsenic, cadmium, cyanide, fluoride, mercury, nitrate, nitrite; disinfectants such as: chloramines, chlorine, chlorine dioxide; disinfection byproducts such as: bromate, chlorite,
haloacetic acids (HAA5), trihalomethanes (TTHMs); metals such as: zinc, silver, lead; radionuclides; organic or inorganic macro-elements such as: sand, hair or dirt; abnormal pH; and undesired odor.

[0036] For example, the filter can be any one of: a nano- or micro-porous membrane, a filtering porous block (e.g. a sintered ceramic or metallic material), ion-exchange resin, an active carbon filter, an adsorbing or desorbing medium, a metallic mesh screen, a filtering bed of inert particles and combinations thereof.

[0037] Preferably, the capsule further comprises a support means in the first compartment to support the filter. The support means can be a grid placed downstream of the filter for supporting the filter in the first compartment or be support elements, positioned downstream of the filter, and formed integrally with the compartment. The filter can be laid onto the support grid during assembling and can be welded, for example, to a step structure in the first compartment. The assembling of the filter in the capsule is thus easy and fast. Furthermore, by providing support to the filter, the support grid helps to prevent that the filter is damaged during the injection of liquid into the capsule under high pressure.

[0038] In a particular preferentially mode, the filter is preferably a thin membrane, which is prone to accidental rupture under excessive liquid pressure.

[0039] For antimicrobial purpose, the filter membrane has preferably a pore size of less than 0.4 microns, most preferably of less than 0.2 microns. It may have a thickness of less than 500 microns, preferably between 10 and 300 microns. The material of the membrane can be chosen from the list consisting of PES (polyethersulfone), cellulose acetate, cellulose nitrate, polyamide and combinations thereof.

[0040] Preferably, the support grid is clipped in the first compartment. Thus, the assembly of the support grid is again easy and fast. The support grid is more preferably made of hard injected plastic. The grid may have a wall thickness providing a sufficient rigidity such as between 0.5 and 2 mm.

[0041] Preferably, the support grid (or respectively support elements) is (respectively, are) supported on a bottom wall of the first compartment. The support
grid comprises a plurality of through-holes and the support grid and/or the first compartment comprises means for maintaining a flow path between the bottom wall of the first compartment and the support grid.

[0042] A liquid flow path including the filter is thus realized in a simple manner and with only few pieces within the capsule. Means for maintaining the flow path provided to the support grid can be designed as ridges and/or braces disposed on one surface of the grid. Means for maintaining the flow path provided to the first compartment can be designed as ridges provided to the bottom wall, preferably provided integrally with said bottom wall, of the first compartment.

[0043] The beverage and/or nutritional ingredient in the second compartment can be chosen amongst: infant formula, milk (solid or liquid) concentrate, ground coffee, soluble coffee, leaf tea, soluble tea, herbal tea, cocoa, chicory, culinary powder, soup powder, nutritional composition, and combinations thereof.

[0044] The present invention is further directed to a method for manufacturing a capsule for preparing a beverage or nutritional product, comprising the steps of forming integrally a first compartment for liquid injection and a second compartment for containing beverage and/or nutritional ingredients of a body with a separation wall between the first compartment and the second compartment; providing a liquid injector comprising a liquid inlet and a liquid outlet, inserting the liquid injector in and/or against the separation wall so that the liquid injector is arranged for transferring liquid from the first compartment to the second compartment.

[0045] The manufacturing method of the invention allows for versatile, cost effective and easy assembling of capsules suitable for different kinds of beverage and/or nutritional ingredients. These capsules might differ essentially in the liquid injector that is used and inserted into the separation wall.

Brief description of the figures

[0046] In the following the present invention will be described in more detail with reference to the attached drawings.
Figure 1 shows a perspective view of a disassembled capsule of the present invention.

Figure 2 shows a perspective view of an assembled capsule of the present invention.

Figure 3 shows an upper part of a capsule of the present invention.

Figure 4 shows a lower part of a capsule of the present invention.

Figure 5a to 5d show perspective views of a capsule of the present invention.

Figure 6a to 6d show perspective views of a liquid injector of a capsule of the present invention.

Figure 7a to 7d show perspective views of the support grid of a capsule of the present invention.

Figure 8a to 8d show perspective views of an upper membrane of a capsule of the present invention.

Detailed description

Figures 1 and Figure 2 show a capsule 10 of the present invention. Figure 1 shows the capsule 10 in a disassembled state, wherein the individual parts of the capsule are illustrated in an exploded view. Figure 2 shows the capsule 10 having the same parts in an assembled state. The capsule 10 of the present invention could also be called a cartridge, container, cassette or the like.

The capsule 10 comprises a body 20 for forming integrally a first compartment 21 and a second compartment 22. The body 20 is preferably made of a plastic, but can also be made of a thin metal, or cardboard laminate (e.g., moulded cellulose pulp), or starch-based polymer. The second compartment 22 is for holding beverage and/or nutritional ingredients. The ingredients are preferably held in powdered or semi-liquid (e.g., liquid concentrate) form. Such beverage and/or nutritional ingredients are for example coffee, tea, chocolate, milk based products, food products and the like. The first compartment 21 is for receiving a liquid, like water or another suited diluent such as milk, into the capsule 10, supplied from
injection means of a beverage preparation machine. The injection means of the beverage preparation machine, such as an injection needle, does not come into direct contact with the beverage and/or nutritional ingredients in the capsule 10. Thereby, the risk of contaminating the ingredients is significantly reduced.

[0057] The second compartment 22 has preferably a larger volume and a mouth opening larger than the first compartment 21. The first compartment 21 has a bottom wall 26 and the second compartment 22 has a bottom wall with a liquid outlet 27 on the lower side of the capsule 10. The body 20 forms both compartments 21 and 22 in such a manner that they are open on the upper side of the capsule 10. The second compartment 22 can thus be filled with the beverage and/or nutritional ingredients. Into the first compartment 21 e.g. a filter can be inserted. The filter can be designed to selectively remove certain contaminants (upon needs) of the liquid fed in the first compartment. The upper side of the capsule body 20 is delimited by an edge 23 or a rim. The edge or rim forms a continuously closed circumference which demarcates the compartments outwardly.

[0058] Between the first compartment 21 and the second compartment 22 is arranged a separation wall 30 for separating the two compartments 21, 22. The separation wall 30 can be formed integrally with the body 20 of the capsule. The separation wall 30 comprises an aperture 31 or a through-hole designed such that liquid could pass from the first compartment 21 to the second compartment 22.

[0059] An upper membrane 50 is attached during assembling of the capsule 10 to the upper edge 23 of the body 20. The upper membrane 50 is used for closing off the first compartment 21 and the second compartment 22, respectively, at the liquid inlet side of the capsule 10. The upper membrane 50 is preferably sealed (e.g., heat or ultrasonically welded) on the separation wall 30 and on the edges 23 of the compartments 21 and 22. The upper membrane 50 is preferably of material suitable to protect the ingredients inside the capsule 10 against moisture and external air, and prevent contamination of the inside of the capsule 10 from external contamination sources. The upper membrane 50 can, for example, be made of aluminum, other thin
metal sheets or a plastic such as PP or PE, or a laminate of plastics such as PP-EVOH-PET, PP-SiOx-PET, PP-PET or plastic/metal such as PP-Aluminium.

[0060] For injecting liquid into the capsule 10, a beverage preparation machine can perforate the upper membrane 50 above the first compartment 21 with injection means like a perforating connector or a needle, and can thus supply the liquid into the first compartment 21. The injected liquid is further transferred from the first compartment 21 to the second compartment 22.

[0061] When the delivery of liquids is intended with an elevated safety or hygiene requirement, such as for an infant formula, the capsule 10 preferably comprises a filter 70, which is provided in the first compartment 21, for filtering contaminants from liquid supplied by the beverage preparation machine. A good hygienic solution is obtained by a filter 70 which is a membrane with nano- or micropores such as discussed in WO 2008/012314. The filter 70 is used to prevent contamination of the beverage and/or nutritional ingredients in the capsule 10 by the supplied filtered liquid.

[0062] Preferably, the filter is clipped or clamped into the first compartment 21. Thereby, the filter 70 is preferably supported at least indirectly by the bottom wall 26 of the first compartment 21. The Figures 1 and 2 show that the filter 70 is preferably supported on a support grid 80. As a result, the deflection of the filter is controlled and the filter can withstand high pressure liquid that is injected into the capsule. The support grid 80 is preferably supported on the bottom wall 26 of the first compartment 21. The support grid 80 is provided preferably with distancing means 24, or on distancing means 24, which ensure that a liquid flow path remains open between the bottom wall 26 of the first compartment 21 and the support grid 80. Through said flow path the liquid can flow into the aperture 31, and further to the second compartment 22. The means 24 can be provided either on the bottom wall 26 of the first compartment 21 or on the support grid 80.

[0063] The filter membrane can be connected to the grid before insertion in the first compartment ("pre-assembling"). This has the advantage that the filter can more
easily be manipulated during its placement in the capsule. For instance, the filter is welded to the grid in localized areas.

[0064] The separation wall 30 between the two compartments 21 and 22 has receiving means 32, which are preferably designed as recesses and/or slots, and are provided into the upper surface of the separation wall 30. The receiving means 32 are arranged complementarily with insertion means of the liquid injector 40 so that the insertion means fit in the receiving means such as in a tight sliding fit relationship. The liquid injector 40 is thus provided with insertion means 45, which are designed preferably as teeth and/or studs designed to fit into the receiving means 32 of the separation wall 30 in a sliding manner. The liquid injector 40 is thus selectively insertable and removable into or against the separation wall 30 during assembling of the capsule 10. In the assembled capsule 10 the liquid injector 40 is inserted in and/or against the separation wall 30.

[0065] The liquid injector 40 has a liquid inlet 41 and a liquid outlet 42. When inserted into and/or against the separation wall 30, the liquid injector 40 is arranged such that liquid can flow from the first compartment 21, into the aperture 31, and into the liquid inlet 41 of the liquid injector 40. The liquid is then guided through the liquid injector 40 and is finally injected (or expelled) into the second compartment 22 via the liquid outlet 42. The liquid outlet 42 is preferably oriented perpendicular to the plane of the upper membrane 50, i.e. oriented preferably parallel to the direction of the liquid injection into the capsule 10, and preferably orthogonal to the direction, into which the first compartment 21 and the second compartment 22 are arranged side-by-side, which is preferably also the extension direction of the aperture 31 through the separation wall 30. In an alternative, the liquid outlet 42 is oriented in an inclined fashion (e.g., from 10 to 45 degrees) relative to the extension direction of the separation wall.

[0066] The liquid inlet 41 may be formed as a single opening as illustrated in the illustrated example or be formed of two or more openings. Similarly, the liquid outlet 42 may be formed as a single opening as illustrated in the illustrated example or be formed of two or more openings.
[0067] The liquid injector 40 can be designed according to the beverage and/or nutritional ingredients, which are to be filled into the second compartment 22 of the capsule 10. For example, the liquid injector 40 can have a liquid outlet 42, which injects the liquid into the second compartment 22 as one liquid jet having high velocity. The liquid outlet 42 could also be designed to provide a plurality of liquid jets, or to provide a liquid spray (not jet-like) to the second compartment 22. For each desired form of liquid injection by the liquid injector 40, the liquid outlet 42 can be designed appropriately. For example, multiple comparably larger openings of the liquid outlet 42 promote a spraying effect. Comparably smaller and fewer openings promote high velocity liquid jets.

[0068] Preferably, the liquid injector 40 can further have an air inlet 44 for providing air into the second compartment 22. The air preferably by-passes the filter 70. In other words, air injected in the capsule does not pass through the filter or first compartment but directly in the second compartment from the air inlet. Preferably, the liquid outlet 42 is an outlet for both air and liquid. Injected air can for example be used to promote liquid jets, or to ensure a complete draining of the liquid from the capsule 10 after beverage production.

[0069] Figure 3 shows in more detail the upper part of the capsule 10 with the first compartment 21 and the liquid injector 40. In the first compartment 21 the support grid 80 is supported on distancing means 24 for providing a distance to the bottom wall 26. The distancing means 24 can be braces, which are provided on a surface of the support grid 80, or can be ridges, which are provided on the bottom wall 26 of the first compartment 21, so as to maintain a distance between support grid 80 and the bottom wall 26; such distance being sufficient (e.g., between 0.5-3 mm) for the liquid to circulate without excessive hindering or blockage. On the support grid 80 the filter 70 is supported. The filter 70 can be a nano- or micro-porous membrane. The filter 70 is further preferably welded along its circumference to a step that can be provided in the first compartment 21, wherein the step is formed preferably integrally with the body 20. The support grid 80 preferably has a plurality of
openings 81, through which liquid injected into the first compartment 21 by a beverage preparation machine and filtered by the filter 70 can pass.

[0070] Optionally, a bracing member (not shown) may be inserted in the first compartment 21 between the filter 70 and the membrane 50 to mechanically support the membrane and prevent it from collapsing and/or breaking accidentally. The bracing member may comprise transversal walls for supporting the membrane properly and transversal and/or axial openings for enabling injected liquid to be distributed across the entire surface area of the filter. The bracing member may further comprise a central tubular inlet wall for providing a support for the external liquid injection means. The bracing member can, for instance, be clipped to the sidewall of the compartment.

[0071] In Figure 3, the flow path of liquid inside the capsule 10 is further indicated, when the capsule 10 is used in a beverage preparation machine. The liquid is provided to the capsule 10 by liquid injection means of the beverage preparation machine through the part of the upper membrane 50 that covers at least the first compartment 21. For example, the liquid injection means is a water injection needle or other equivalent means. The injected liquid, which is preferably water or milk, is then filtered by the filter 70, and is further passed through the plurality of through-holes 81 of the support grid 80 supporting the filter 70. After passing these through-holes 81, the liquid flows along the flow path that is created by the distance of the supporting grid 80 to the bottom wall 26, enters the aperture 31 provided in the separation wall 30, and then enters the liquid inlet 40 of the liquid injector 40. The liquid flows further through the liquid injector 40, and is finally guided, preferably vertically in respect to the upper membrane 50, through a preferably vertically arranged liquid outlet 42 into the second compartment 22.

[0072] Within the liquid injector 40, the liquid can be guided or formed as desired. For example, the liquid can be formed into one or more liquid jets or liquid spray. The liquid injector 40 preferably comprises an air channel 43, in which the liquid provided through the liquid inlet 41 is mixed with air, which is provided via an air inlet 44 separate from the liquid inlet 41. Air can be provided by an air injection
means of the beverage producing device. An injection means for air through the membrane in the air channel 43 can be formed as a hollow needle or conduit. The injected air then flows together with the liquid through the liquid outlet 42 into the second compartment 22, where it interacts with the beverage and/or nutritional ingredients, causes a proper dissolution and produces a beverage and/or nutritional product, which exits the outlet 27 of the capsule 10.

[0073] Figures 3 and 6a also show how the liquid injector 40 is provided with several insertion means 45 in order to position the liquid injector 40 stably in the capsule 10, and in a well defined position in respect to the first compartment 21 and the second compartment 22. More particularly, a front longer insertion member 45a engages against the separation wall 30 and rear lateral insertion members 45b are inserted into lateral slots of the separation wall 30. The insertion means 45, 45a, 45b are thus designed to provide a tight-fit mechanical arrangement between the liquid injector and the separation wall.

[0074] Figure 4 shows a bottom part of the capsule 10, wherein the bottom wall of the capsule 10 comprises an outlet structure 27. The capsule 10 is further provided with a lower membrane 90, which seals the beverage and/or nutritional ingredients inside the second compartment 22 to the outside before use, and thus prevents contamination. When liquid enters the second compartment 22, liquid pressure starts building up inside the second compartment 22, which finally presses the lower membrane 90 against a member 12 for tearing the lower membrane 90. When the membrane 90 is torn, the liquid can flow into the outlet structure 27 of the capsule 10. The lower part of the capsule 10 can be further provided with means 11 for redirecting, guiding and/or eventually emulsifying the liquid, which passes the torn lower membrane 90.

[0075] Figures 5a - 5d show the capsule 10 in perspective views, respectively. Figure 5a shows the capsule 10 from a top view, i.e. a view perpendicular to the surface of the upper membrane 50. When viewed from this perspective the first compartment 21 is arranged side-by-side with the second compartment 22. The first compartment 21 is of smaller cross-section than the second compartment 22.
However, it could be envisaged that the first compartment is of about the same size as the second compartment, in particular, if it also contains a beverage or food ingredient. The aperture 31 for passing liquid from the first compartment 21 to the second compartment 22 is preferably arranged orthogonally to the liquid/air injection direction into the capsule 10, which is preferably perpendicular to the plane of the upper membrane 50. Figure 5b shows that a volume of the second compartment 22 is much larger than a volume of the first compartment 21, preferably by a ratio in the range of 2:1 to 20:1, more preferably 5:1 to 10:1. Figure 5d shows ridges, which are provided to the bottom wall 26 of the first compartment 21. The ridges serve as the means 24 for distancing the support grid 80 from the bottom wall 26 of the first compartment 21.

[0076] Figures 6a - 6d show the liquid injector 40. Figure 6a shows the liquid injector 40 viewed from below (i.e. viewed perpendicular to the surface of the upper membrane 50). In figure 6a the fluid outlet 42 is a single opening of a diameter that is much smaller than the air inlet 44. The diameter of the fluid outlet 42 is in this case so small that a liquid and/or gas jet of high velocity is formed and is injected into the second compartment 22. The opening thus acts as a venturi. The diameter of the liquid outlet 42 is preferably in the range of 0.1 to 1 mm, more preferably 0.2 to 0.7 mm. The liquid outlet 42 can also be a plurality of openings for providing multiple liquid jets or a liquid spray into the second compartment 22. For liquid spraying the plurality of openings of the liquid outlet 42 are preferably in a range of 0.2 to 3 mm, more preferably 0.5 to 2 mm.

[0077] In Figure 6b, the insertion means 45 are shown, wherein in the illustrated specific configuration first insertion means 45a are configured to be inserted into the receiving means 32 of the separation wall 30, and second insertion means 45b are configured to be inserted into the second compartment 22 so as to abut against the separation wall 30 for providing additional stability. Figure 6d shows the liquid inlet 41, which is configured such that when the liquid injector 40 is inserted into the separation wall 30, the liquid inlet 41 is positioned to receive the liquid from the aperture 31. Preferably the liquid inlet 41 is slanted against the direction of the
aperture 31 so that the liquid is pushed upwards in the liquid injector 40, i.e. in direction of the opening mouth of the second compartment 22. As shown in Figure 3, when air and liquid are injected at the same time, the liquid can then be pushed into an air channel 43 of the liquid injector 40, which acts as a mixing chamber for air, which is introduced via the air inlet 44, and the liquid.

[0078] Figures 7a - 7d show perspective views of the support grid 80. Figure 7a shows that the support grid 80 is provided with a plurality of through-holes 81 for the liquid filtered by the filter 70. The through-holes 81 can be arranged periodically in perpendicular directions on the support grid 80 as shown in Figure 7a. However, the through holes 81 can also be arranged in other ways. The through holes have preferably a diameter of 0.2 to 3 mm, preferably 0.5 to 2.5 mm, more preferably 1 to 2 mm.

[0079] The support grid 80 is preferably clipped into the first compartment 21. To this end the support grid 80 preferably has a peripheral ridge 82, which is suited for clipping the support grid 80 into the first compartment 21, or is shaped to interact with fastening means in the first compartment 21 so as to provide a stable positioning of the support grid 80. The support grid 80 shown in figures 7a and 7b is preferably rectangular and flat and matches the size of the filter 70. Preferably, the support grid 80 is supported on ridges on the bottom wall 26 of the first compartment 21 as described before. Alternatively, the support grid 80 can be provided on one of its surfaces which braces or other means 24 for maintaining a distance to the bottom wall 26.

[0080] Figures 8a - 8d show perspective views of the upper membrane 50. In particular, the shape of the upper membrane 50 is the same as the shape of the cross-section of the capsule 10 when viewed from above. The shape preferably resembles two circles of different diameter, which overlap each other. The smaller circle defines the mouth size of the first compartment 21, the larger circle defines the mouth size of the second compartment 22. The upper membrane 50 is preferably made of a metal like aluminum, or a laminate of plastic and metal, or a laminate of plastics, and has a thickness preferably in a range of 0.05 to 1 mm.
In summary, the present invention provides a capsule 10, which has two compartments 21 and 22 that are separated by a separation wall 30. The first compartment 21 is for injecting a liquid by a beverage preparation machine into the capsule 10. The second compartment 22 is for containing a beverage or nutritional ingredients. Thus the ingredients are prevented from contamination, since no direct contact to outside means occurs.

Into the separation wall 30 or against the separation wall 30 is inserted a separate liquid injector 40 for transferring liquid that is injected into the first compartment 21 to the second compartment 22. The liquid injector 40 can form a directed jet of liquid or a spray of liquid for injection into the second compartment 22. Different liquid injectors 40 can be used for capsules 10 to be filled with different beverage and/or nutritional ingredients. Thus, the capsule 10 of the present invention enables a more versatile choice for an injection solution, and a proper dissolution of the ingredients can be ensured.

A filter 70 is preferably present in the first compartment 21 to remove contaminants from the injected liquid before the transfer by the liquid injector 40. The filter may pertain to different filtering technology upon specific needs such as a microporous membrane, active carbon or ion-exchange resins, as possible examples. Thus, the risk of a contamination of the beverage and/or nutritional ingredients is further reduced. The solution of the capsule 10 according to the present invention provides also the possibility for added functionalities like filtering or foaming, either on the outlet side of the capsule 10 or by means of the liquid injector 40.

Alternatively, the first compartment is free of filter and may even contain a food or beverage ingredient which becomes transferred with the injected liquid, from the first to the second compartment, which contains a second ingredient in the second compartment.

As an example, the first compartment may comprise a probiotic or probiotics, a taste enhancer, a sweetener, a flavor, a colorant, minerals, vitamins, other food additives, a creamer and combinations thereof.
For assembling the capsule 10, the body 20 is manufactured first, preferably integrally. Then preferably the filter 70 and the support grid 80 are clipped into the first compartment 21, the liquid injector 40 is inserted into the separation wall 30, and the capsule 10 is sealed by the upper membrane 50 and the lower membrane 90. Manufacturing and assembly of the capsule 10 is thus very simple, and of low cost. Overall, the capsule 10 of the present invention provides significant advantages in view of the prior art.
Claims

1. Capsule (10) for preparing a beverage and/or nutritional product, comprising
a body (20) for forming integrally a first compartment (21) for liquid injection
and a second compartment (22) for containing beverage and/or nutritional
ingredients,
 a separation wall (30) for separating the first compartment (21) and the second
 compartment (22), the separation wall (30) comprising an aperture (31) for the liquid
 transfer from the first compartment to the second compartment,
 a separate liquid injector (40) comprising a liquid inlet (41) and a liquid outlet
 (42),
 wherein the liquid injector (40) is inserted in and/or against the separation wall
 (30), and is arranged for transferring liquid from the first compartment (21) to the
 second compartment (22).

2. Capsule (10) according to claim 1, wherein
 the liquid injector (40) comprises an air injection channel (43) with an air inlet
 (44) separate from the liquid inlet (41).

3. Capsule (10) according to claim 2, wherein
 the liquid outlet (42) of the liquid injector (40) also functions as air outlet.

4. Capsule (10) according to one of the claims 1 to 3, wherein
 the liquid injector (40) has insertion means (45) for fitting the liquid injector (40)
 into complementary receiving means (32) of the separation wall (30).

5. Capsule (10) according to one of the claims 1 to 4, wherein
 the insertion means (45) and receiving means (32) are arranged to permit an
 insertion of the liquid injector in or along the direction of extension of the separation
 wall (30).
6. Capsule (10) according to claims 4 or 5, wherein the insertion means (45) are shaped as teeth and/or studs.

7. Capsule (10) according to one of the claims 4 to 6, wherein the receiving means (32) are recesses and/or slots.

8. Capsule (10) according to one of the claims 3 to 7, wherein the first compartment (21) and the second compartment (22) are arranged adjacent to each other in a direction that is orthogonal to the liquid and/or air inlet(41, 44) of the liquid injector (40).

9. Capsule (10) according to one of the claims 1 and 8 further comprising an upper membrane (50) for closing the first compartment (21) and the second compartment (22), the upper membrane (50) being sealed on the separation wall (30) and on edges (23) of the compartments (21, 22).

10. Capsule (10) according to claim 9, wherein the first compartment (21) and the second compartment (22) are side-by side when view perpendicular to the upper membrane (50).

11. Capsule (10) according to one of the claims 1 to 10, wherein a filter (70) is welded into the first compartment (21).

12. Capsule (10) according to claim 11, wherein the filter (70) is any one of: a nano- or micro-porous membrane, a filtering porous block (e.g. a sintered ceramic or metallic material), ion-exchange resin, an active carbon filter, an adsorbing or desorbing medium, a metallic mesh screen, a filtering bed of inert particles and combinations thereof.
13. Capsule (10) according to one of the claims 11 to 12, further comprising a support grid (80) for supporting the filter (70) in the first compartment (21).

14. Capsule (10) according to claim 13, wherein the support grid (80) is clipped in the first compartment (21).

15. Capsule (10) according to one of the claims 13 to 14, wherein the support grid (80) is supported on a bottom wall (26) of the first compartment (21), the support grid (80) comprises a plurality of through holes (81), and the support grid (80) and/or the first compartment (21) comprises means (24) for maintaining a flow path between the bottom wall (26) of the first compartment (21) and the support grid (80).

16. Method for manufacturing a capsule for preparing a beverage or nutritional product, comprising the steps of forming integrally a first compartment (21) for liquid injection and a second compartment (22) for containing beverage and/or nutritional ingredients of a body (20), with a separation wall (30), providing a liquid injector (40) comprising a liquid inlet (41) and a liquid outlet (42), inserting the liquid injector (40) in and/or against the separation wall (30) so that the liquid injector (40) is arranged for transferring liquid from the first compartment (21) to the second compartment (22).
A. CLASSIFICATION OF SUBJECT MATTER

INV. B65D85/804

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B65D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2010/112353 Al (NESTEC SA [CH]; ROUILIN ANNE [CH]; EPARS YANN [CH]; ABRAHAM SOPHIE [FR]) 7 October 2010 (2010-10-07) cited in the application on the whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>wo 2010/128028 Al (NESTEC SA [CH]; DOLEAC FREDERIC [FR]; ABRAHAM SOPHIE [FR]; DOUDIN YASM) 11 November 2010 (2010-11-11) cited in the application on the whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>wo 2010/128031 Al (NESTEC SA [CH]; DOLEAC FREDERIC [FR]; ABRAHAM SOPHIE [FR]; DOUDIN YASM) 11 November 2010 (2010-11-11) cited in the application on the whole document</td>
<td>1-16</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search: 10 February 2014

Date of mailing of the international search report: 26/02/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Due, Emmanuel
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2010/128051 AI (NESTEC SA [CH]; DOLEAC FREDERIC [FR]; ABRAHAM SOPHIE [FR]; DOUDIN YASM) 11 November 2010 (2010-11-11) cited in the application of the whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010112353 Al</td>
<td>07-10-2010</td>
<td>AR 076039 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 550269 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2755426 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102365214 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2382717 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1149532 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2236437 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 174230 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201043179 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012015080 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010112353 Al</td>
</tr>
<tr>
<td>WO 2010128028 Al</td>
<td>11-11-2010</td>
<td>AR 076846 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010244518 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2761123 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102802443 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2427065 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2398928 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1168739 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012525879 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2427065 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011149208 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 175354 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201102034 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012052159 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010128028 Al</td>
</tr>
<tr>
<td>WO 2010128031 Al</td>
<td>11-11-2010</td>
<td>AR 076844 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010244521 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2761127 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102458149 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2427066 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2398930 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1168738 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012525880 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2427066 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2427067 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011149209 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 175793 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201102029 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012052163 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010128031 Al</td>
</tr>
<tr>
<td>WO 2010128051 Al</td>
<td>11-11-2010</td>
<td>AR 076845 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010244463 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2761133 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102413717 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2427067 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2401676 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1168256 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012526074 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011149203 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 175278 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201102030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012052164 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010128051 Al</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602004000020 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1440905 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2242951 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2397507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1065765 A1</td>
</tr>
</tbody>
</table>