AT 00 R A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 September 2006 (14.09.2006)

(10) International Publication Number

WO 2006/095358 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/IN2005/000080

(22) International Filing Date: 11 March 2005 (11.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY L.P. [/US]; 20555 S.H. 249, Houston,
Texas 77070 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BHAT, Anand, Ga-
janan [IN/IN]; 603, Pragati Nagar, Sirsi 5811402 (IN).
MAKKAR, Manish [IN/IN]; 96 Harjinder Nagar, 11, Lal
Bangla, Kanpur 208007 (IN).

(74) Agent: NAMA, Prakash; Global IP Services PLLC, c/o
Intellevate Private Limited, Second Floor, A-20, Sector 2,
Noida 201 301, Uttar Pradesh (IN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ,LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA,7M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SUBSTITUTING SOFTWARE ROUTINES FROM ALTERNATIVE LIBRARIES

31\f\\

NO DETERMINE WHETHER
routine_name : vers_num
HAS BEEN SPECIFIED

33

YES

DETERMINE WHETHER

YES A PARTICULAR VERSION

OF ROUTINE CAN BE
ACCESSED

|35

NO

37
LOCATE SUBSTITUTE VERSION
. OF THE ROUTINE

LINKING AND COMPILING
THE ROUTINES AND SOURGE FILE
TO CREATE EXECUTABLE FILE

139

G0 (57) Abstract: A software development application determines whether routine name and version number parameters have been
W) identified (33). If so, the application determines whether the specified version of the routine can be accessed (35). If the specified
version cannot be accessed, the application locates a substitute version of the routine (37) and compiles and links the routines and a

WO 2006/0953

source file to produce an executable file (39).

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

METHODS, DEVICES AND SOFTWARE APPLICATIONS FOR FACILITATING
A DEVELOPMENT OF A COMPUTER PROGRAM

Field of the Invention

[0001] The present invention relates generally to
methods, devices and software applications for facilitating
a development of a computer program, and has particular -
but by no means exclusive - application to providing source

level compatibility for the computer program.

Background of the Invention

[0002] Software compatibility is an important aspect of
the software industry. Software compatibility essentially
relates to the ability of software to be used in different
environments such as those provided under dissimilar
operating systems. Software compatibiiity can be broadly
divided into two categories. The first category deals with
source level compatibility, which relates to allowing
source code to be used in different environments.

The second category deals with binary compatibility, which
relates to a compiled (binary) program’s ability to be
executed in different environments.

[0003] Whilst there exists various techniques for
providing source level compatibility, those techniques have
significant shortcomings. For example, object versioning
used with the GNU C library (glibc) involves creating a new
version of the glibc library whenever an object (routine)
in the library is updated such that the updated object is
incompatible with early versions of the object. A new
version of the glibc library creating using object
versioning is such that it contains soufces (code) for all
versions of objects contained in the library. As a result,
the glibc library can become bulky because it contains all
versions of the objects.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

[0004] Another problem closely associated with object
versioning in glibc is that dynamic linkers based on object
versioning tend to fail the application linking process if
the available glibc library does not contain the specific
version of an object that the linker requires.

[0005] A further example of an existing technique used
to provide source level compatibility is function level
versioning in HP-UX libraries. Function level versioning is
similar to objecting versioning in the glibc library in
that it involves creating a new library that contains all
versions of a particular object. As mentioned previously,
creating a new lib;ary that contains all versions of an

object has the potential to produce bulky libraries.

Summary of the Invention

[0006] In an embodiment of a method of facilitating a
development of a computer program, the embodiment includes
the step of determining whether there exists a first
version of a routine that is to be incorporated into the
computer program. Upon determining that the first version
of the routine does not exist, the embodiment of the method
proceeds to perform the step of locating a second version
of the routine as a substitute for the first version to
thereby facilitate the development.

[0007] The present invention will be more fully
understood from the following description of a specific
embodiment. The description is provided with reference to
the accompanying figs.

Brief Description of the Drawings

[0008] Fig. 1 illustrates a personal computer embodying
the present invention;

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

[0009] Fig. 2 is a flow chart of various steps performed
by the personal computer shown in fig. 1;

[0010] Fig. 3 is a flow chart of various steps performed
by the personal computer shown in fig. 1; and

[0011] Fig. 4 illustrates a data structure used by the

personal computer of fig. 1.

Detailed Description

[0012] Fig 1. shows an embodiment of the present
invention in the form of a personal computer 11. The
personal computer is made up of numerous components that
cooperate with each other. The components include: a power
supply; motherboard; random access memory; a video card; a
monitor; keyboard; and a hard disk loaded with the Linux
operating system and a software development application.
In alternative embodiments of the present invention, the
hard disk of the personal computer 11 is loaded with other
operating systems such as, for example, Microsoft XP, SunOS
and MacOS.

[0013] The software development application can be
executed by a software developer to essentially perform two
tasks that facilitate the development of a computer
program. The first of the tasks relates to creating a
software library that includes routines that can be used to
develop a computer program. The second of the tasks relates
to locating a library routine that is to be incorporated

into a computer program.

[0014] In relation to the first task of creating the
software library, the software development application can
be invoked by typing at a command line prompt: cc -c

file name, where cc is the file name of the software

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

development application, -c is an option that informs the
software development application to create a linkable
object file (that is, to create the software library); and
file name is the file name of the source file that is to be
used to create the linkable object file.

[0015] Once the software development application has
been invoked as specified in the preceding paragraph, the
personal computer 11 executes the various instructions
included in the software development application. Execution
of the instructions causes the personal computer 11 to
carry out the steps shown in the flow chart 21 of fig. 2.
With reference to fig. 2, the first step 23 that the
software development application performs is to obtain the
source file that is identified by the file name parameter.
The source file contains at least one routine that can be
incorporated into a computer program. As persons skilled in
the art will readily appreciate, a software developer can
create the source file using an application such as a text
editor or perhaps by using a more advanced application such
a software development tool. The source file is typically
written in a high level language such as C or C++ so that

it can be easily interpreted by software devélopers.

[0016] Subsequent to carrying out the first step 23, the
software development application proceeds to carry out the
second step 25 of compiling the source file (that was
obtained during the first step 23) to create the software
library, which is in the form of linkable object code. The
second step 25 of compiling the source file is such that
the software library contains only a single version of any
of the routines in the source file. The second step 25 of
compiling the source code is such that it is capable of
identifying the different versions of the routine in the
source file, and placing the latest version into the
library created during the compilation step 25. Earlier

versions of the routine reside in previous versions of the

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

- 5 -

software library. A consequence of the second step 25 is
that potentially there will be multiple versions of the
software library, each of which contains a single version
of the routine. An advantage of this is that unlike
existing techniques for providing source level
compatibility (for example, object versioning in glibc),
the software library created by the second step 25 does not
contain multiple version of a routine and therefore the
size of the library is minimised in comparison to existing
source level compatibility techniques. Whilst a software
library created by the second step 25 contains a sinéle
version of a routine, this does not preclude the library
from containing multiple routines, each of which performs a
different function. For example, a particular library may
have functions abc() and def(), but the library will only

contain a single version of abc() and def().

[0017] To ensure that each version of a software library
that the previous step 25 creates, the software development
application carries out the third step 27 of assigning the
software library a version number. In particular, the
version number is appended to a file name of the library.
For example, if the file name of the library is xyz.lib the
third step 27 is such that the library would have the file
name xyz.lib.10 where the library is the tenth version.
There would also be other versions of the library that have

the file names xyz.lib.1l, xyz.lib.2, xyz.1lib.3...xyz.lib.9.

[0018] In addition to the step 27 of assigning the
software library the version number, the software
development application also includes the fourth step 29 of
assigning the version number to the routine in the software
library. The version number assigned to the routine
corresponds to the version number assigned to the library
during the third step 27. For instance, the routines in
version 10 of a library (for example, xyz.lib.10) would be
assigned the version number 10. The forth step 29 is such

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

.15

20

25

30

35

that it assigns the version number to the routine by
assigning the version number to an entry in the software
library’s export table. The entry to which the version
number is assigned is the entry that represents the
routine. As persons skilled in the art will readily
appreciate, the export table is essentially information
contained in the library that enables a compiler to
determine details of the various routines that are in the

library.

[0019] Once the software library has been created it can
then be used by a software developer to develop-a computer
program (application). As persons skilled in the art will
readily appreciate the process of developing a computer
program initially involves developing a source code file.
The source code file can be developed by using a text
editor or a more advanced software development tool. The
source code file is usually written in a high level
language such as C or C++. To create a binary (executable)
version of the source file the software development
application can be invoked to compile the source file,
which includes linking the source code to the software
library in the event that the source file uses one or more
of the routines contained in the library.

[0020] To compile the source code file the software
development application can be invoked by typing at a
command line prompt: ee, routine namel:vers numl
routine name2:vers_num2 file name -o output name -
11ib name, where routine namel:vers numl is an optional
parameter that identifies the name (routine namel) of a
first routine in the software library and the version
number (vers num2) of the first routine,

routine name2:vers_num2 is a further optional parameter
that identifies the name (routine name2) of a second
routine in the software library and the version number

(vers_num2) of the second routine, file name is the file

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358

10

15

20

25

30

35

PCT/IN2005/000080

-7 -

name of the source code file to be compiled, -o is the name
of the binary (compiled) version of the source code file,
and -11ib _name is the file name of the software library. It
is noted that whilst the previous example of the command
line contains two optional parameters that are used to
identify routines in a library (routine namel:vers_numl and
routine name2:vers num2), it will be readily appreciated
that the command line is not restricted two parameters.

For example, the command line might contain the names and
version numbers of five routines in the software library.

A specific example of how the software development
application might be invoked is as follows: ec, abc:4
main.c -o main -1xyz, which effectively causes the software
development application to compile the main.c source file
into the binary file main and to resolve routine abc from

version 4 of library xyz.

[0021] Once the software development application has
been invoked as specified in the previous paragraph, the
personal computer 11 executes various instructions included
in the software development application. Execution of these
instructions causes the personal computer 11 to carry out
the steps shown in the flow chart 31 of fig. 3. With
reference to fig. 3, the first step 33 that the software
development application performs is to determine whether
the routine name:vers_num parameters have been specified.
If the routine name:vers _num parameters have not been
specified, the software development application proceeds to
the third step 37 (which is discussed in detail in
subsequent paragraphs of this specification) to obtain the
latest copy of library routines required to compile the
computer program into an executable file. If, on the other
hand, the routine name:vers_num parameters have been
specified, the software development application proceeds to
carry out the second step 35 of determining whether a
particular version (vers_num) of the routine

(routine_name)can be accessed.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

[0022] To carry out the second step 35 thé software
development application attempts to locate a software
library on the personal computer 11 that contains the
particular version of the routine. More specifically, the
second step 35 involves searching for a copy of the library
identified in the -11ib name parameter that has been
assigned the same version number as the routine, the ‘latter
of which is identified by the vers num parameter. To
determine whether the copy of the software library is
accessible, the software development application checks
whether the routine version number (vers num) is contained
in the file name of the software library. For example, if
the vers num parameter is “4” and the -1 parameter is
“xyz”, then the second step 35 effectively involves
determining whether librafy xyz.lib.4 exists. If it is
determined that the copy of the software library is
accessible, the software development application precedes
to carry out the final step 39, which is discussed in
detail in subsequent paragraphs of this specification.

[0023] If as a result of carrying out the second step 35
the software development application is unable to locate a
copy of the library (specified by the -1 parameter) that
contains the required version of the routine (vers num),
the software development application proceeds to carry out
the third step 37 of locating a substitute version of the
routine. An advantage of locating the substitute version is
that unlike existing techniques for providing source level
compatibility (such as that used with glibc), the software
development application will not fail the linking process
if it is unable to find the required version of a routine.
The software development application will use the
substitute version of the routine instead of the required
version. It is noted, however, that use of the substitute
version of the routine may cause the compiled computer

program to perform in an unexpected manner.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

[0024] To locate the substitute version of the routine,
the third step 37 involves locating the latest version of
the library identified by the -1 parameter. This is
achieved by looking for a copy of the library that has the
highest version number in its file name. This assumes that
version numbers are assigned in ascending order, which
results in the library with the highest version number
being the latest version of the library. Once the latest
version of the library has been located, the third step 37
involves processing a data structure that is stored in
memory and which'is associated with the latest version of
the library. The data structure is processed to obtain a
memory address from which the routine can be retrieved. The
data structure is in the form of a linked list, which
provides an advantage of being able to retrieve a routine
quicker than using an export table of the library. The
linked list is made up of nodes, each of which points to a
routine in the library. Each node also contains the name of
the associated routine and the routine’s version number.

Fig. 4 provides a representation of the linked list.

[0025] On completing the third step 37, the software
development application proceeds to carry out the final
step 39 of linking the routines obtained in the preceding
steps and compiling the routines with the source code file
to create a binary version thereof that can be executed on

a computer system.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

What is claimed is:

1. A method of facilitating a development of a
computer program, the method comprising the steps of:

5 determining whether there exists a first version
of a routine that is to be incorporated into the '‘computer
program; and

upon determining that the first version of the
routine does not exist, locating a second version of the
10 routine as a substitute for the first version to thereby

facilitate the development.

2. The method as claimed in claim 1, wherein
the step of determining whether the first version of the
15 routine exists comprises the step of attempting to locate a

software library that comprises the first version.

3. The method as claimed in c¢laim 2, wherein
the step of attempting to locate the software library
20 comprises the step of checking a version number that has

been assigned to the software library.

4, The method as claimed in claim 3, wherein
the step of checking the version number comprises the step
25 of checking whether a file name of the software library

comprises the version number.

5. The method as claimed in claim 2, wherein
the software library does not comprises any other version
30 of the routine.

6. . The method as claimed in claim 1, wherein
the step of locating the second version of the routine
comprises the step of obtaining an address of the second

35 version from a data structure that is stored in memory and
which is associated with an alternative software library

that comprises the second version.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

10

15

20

25

30

35

- 11 -

7. ‘The method as claimed in claim 6, wherein
the data structure comprises a linked listed that has a
node that identifies a name of the second version and a
version number assigned thereto.

8. The method as claimed in claim 6, wherein
the alternative software library does not contain any other
version of the routine. ’

9. A method of facilitating a development of a
computer program, the method comprising the step of
creating a software library that has a single version of a
routine that can be incorporated into the computer program
to thereby facilitate the development.

10. The method as claimed in claim 9, further
comprising the step of assigning the software library a
version number.

11. The method as claimed in claim 10, wherein
the step of assigning the software library the version
number comprises the step of incorporating the version

number into a file name of the software library.

12. The method as claim in claim 9, further
comprising the step of assigning the version number to the
routine.

13. The method as claimed in claim 12, wherein
the step of assigning the version number to the routine
comprises the step of incorporating the version number into
an entry in an export table that is associated with the
software library, the entry representing a name of the
routine.

14. A computing device comprising a data storage
means that has a software application comprising at least

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358

10

15

20

- 12 -

one instruction for causing the computing device to
out the method as claimed in claim 1.

15. A computing device comprising a data
means that has a software application comprising at
one instruction for causing the computing device to

out the method as claimed in claim 9.

16. A software application comprising at

PCT/IN2005/000080

carry

storage
least

carry

least

one instruction for causing a computing device to carry out

the method as claimed in claim 1.

17. A software application comprising at

least

one instruction for causing a computing device to carry out

the method as claimed in claim 9.

18. A computer program that has been developed

using the method as claimed in claim 1.

19. A software library that has been creating

using the method as claimed in claim 9.

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

1/4

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

2/4

21\./\

.23

OBTAIN SOURCEFILE 4
THAT IS IDENTIFIED BY

file_name PARAMETER

i

COMPILE SOURCE FILE /”25 .
INTO A LIBRARY THAT
CONTAINS SINGLE VERSION
OF A ROUTINE

i

27
ASSIGNAVERSION 4
NUMBER TO SOFTWARE
LIBRARY

|

29
ASSIGN THE VERSION /4
NUMBER TO THE ROUTINE

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

3/4

31\f\\

NO DETERMINE WHETHER A
routine_name : vers_num
HAS BEEN SPECIFIED

33

YES
Y

DETERMINE WHETHER

YES A PARTICULAR VERSION

OF ROUTINE CAN BE
ACCESSED

N

NO

Y

/]

!

39
LINKING AND COMPILING
THE ROUTINES AND SOURCE FILE
TO CREATE EXECUTABLE FILE

N

Y

Fig. 3

SUBSTITUTE SHEET (RULE 26)

WO 2006/095358 PCT/IN2005/000080

4/4

abc () abc ()
ver:4 /
def()
ver:4
def()
ghi()

ghi() \ ver:4

Jki()
ver:4

NULL

Jkl()

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.

PCT/IN05/00080
A CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 9/44
Us CL : 717/163

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
US. : 717/163

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST(USPAT, US-PGPUB, EPO, JPO, DERWENT, IBM_TDB)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,805,899 (EVANS et al) 8 September 1998 (08.09.1998), columns 4-16. 1-19
A US 6,658,659 B2 (HILLER et al) 2 December 2003 (02.12.2003), columns 1-16. 1-19
A US 2001/0039650 Al (BODO) 8 November 2001 (08.11.2001), pp. 1-3. 1-19
A US 2002/0133804 Al (SHEEDY) 19 September 2002 (19.09.2002), pp. 1-4. 1-19

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the intemational filing date or priority date
and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be of principle or theory underlying the invention
particular relevance
X" document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the intemational filing date considered novel or canriot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is combined
with one or mare other such documents, such combination being obvious
“0" document referring to an oral disclosure, use, exhibition or other means to a person skilled in the art
“P" document published prior to the intemational filing date but later than the “&" document member of the same patent family

priority date claimed

Date of the actual completion of the international search Date of mailing of the international,search report
14 September 2005 (14.09.2005) 3 0 SEP zuu;b
Name and mailing address of the ISA/US Authorized officer

Mail Stop PCT, Attn: ISA/US

Commissioner for Patents Tuan Q. Dam

P.O. Box 1450

Alexandria, Virginia 22313-1450 Telephone No. §

Facsimile No. (571) 273-8300

Form PCT/ISA/210 (second sheet) (April 2005) /

International application No.

INTERNATIONAL SEARCH REPORT PCT/IN05/00080

Continuation of Item 4 of the first sheet;

The title is too long.
NEW TITLE:
"SUBSTITUTING SOFTWARE ROUTINES FROM ALTERNATIVE LIBRARIES"

Form PCT/ISA/210 (extra sheet) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

