

Dec. 31, 1963

G. J. VAN HECKE

3,115,752

FASTENER APPLYING TOOL AND POWER UNIT THEREFOR

Original Filed April 18, 1958

5 Sheets-Sheet 1

FIG. 1.

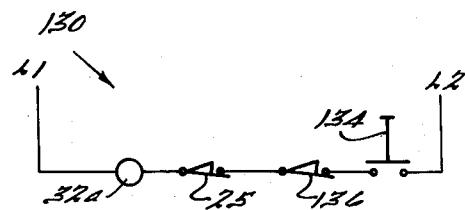
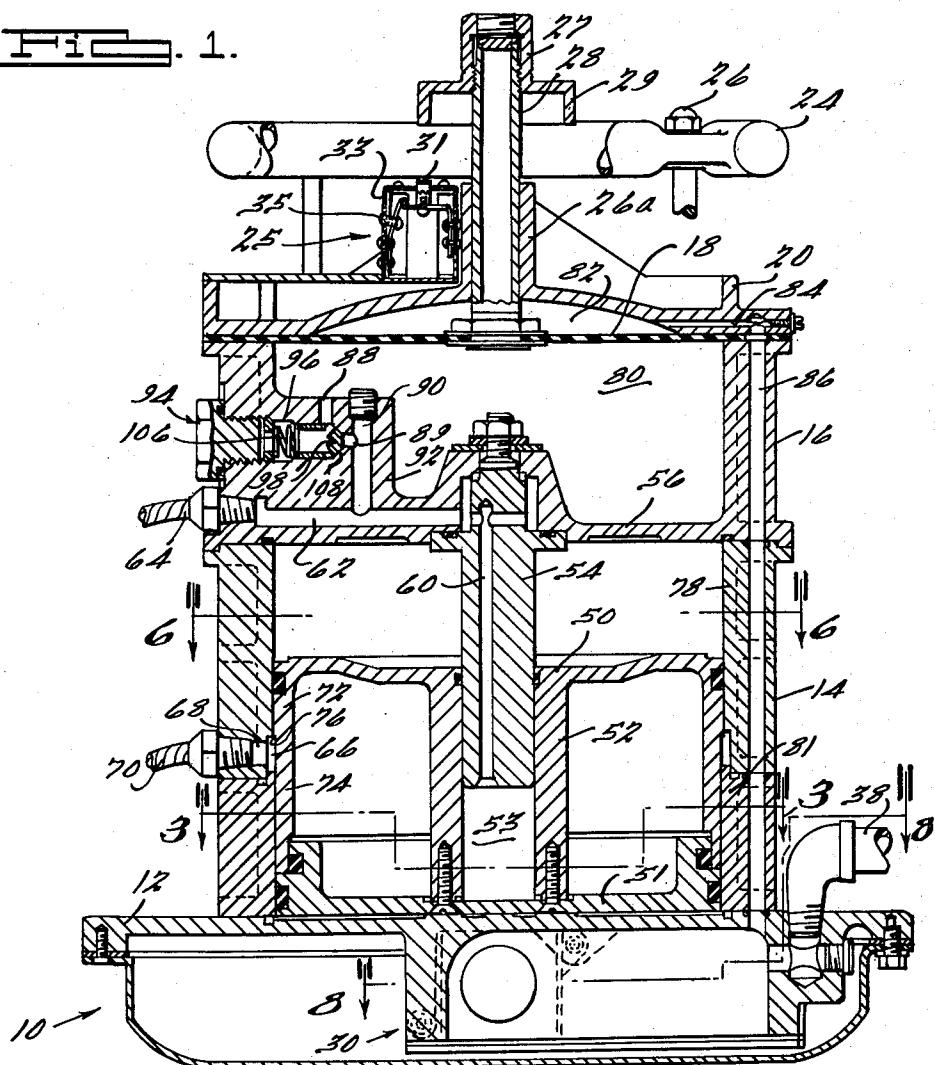




FIG. 11.

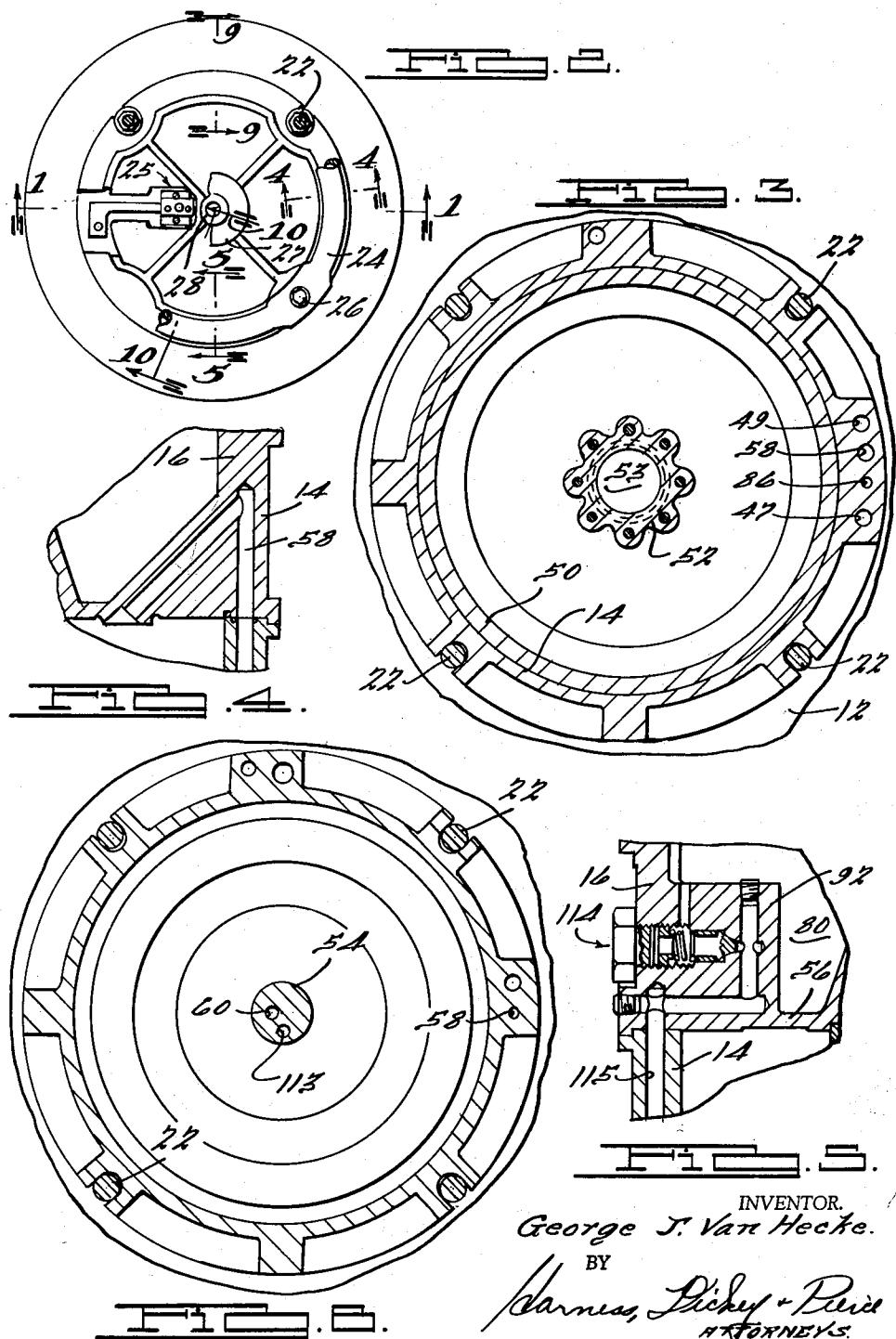
INVENTOR.

George J. Van Hecke.

BY

Harnes, Dickey & Pease  
ATTORNEYS.

Dec. 31, 1963


G. J. VAN HECKE

3,115,752

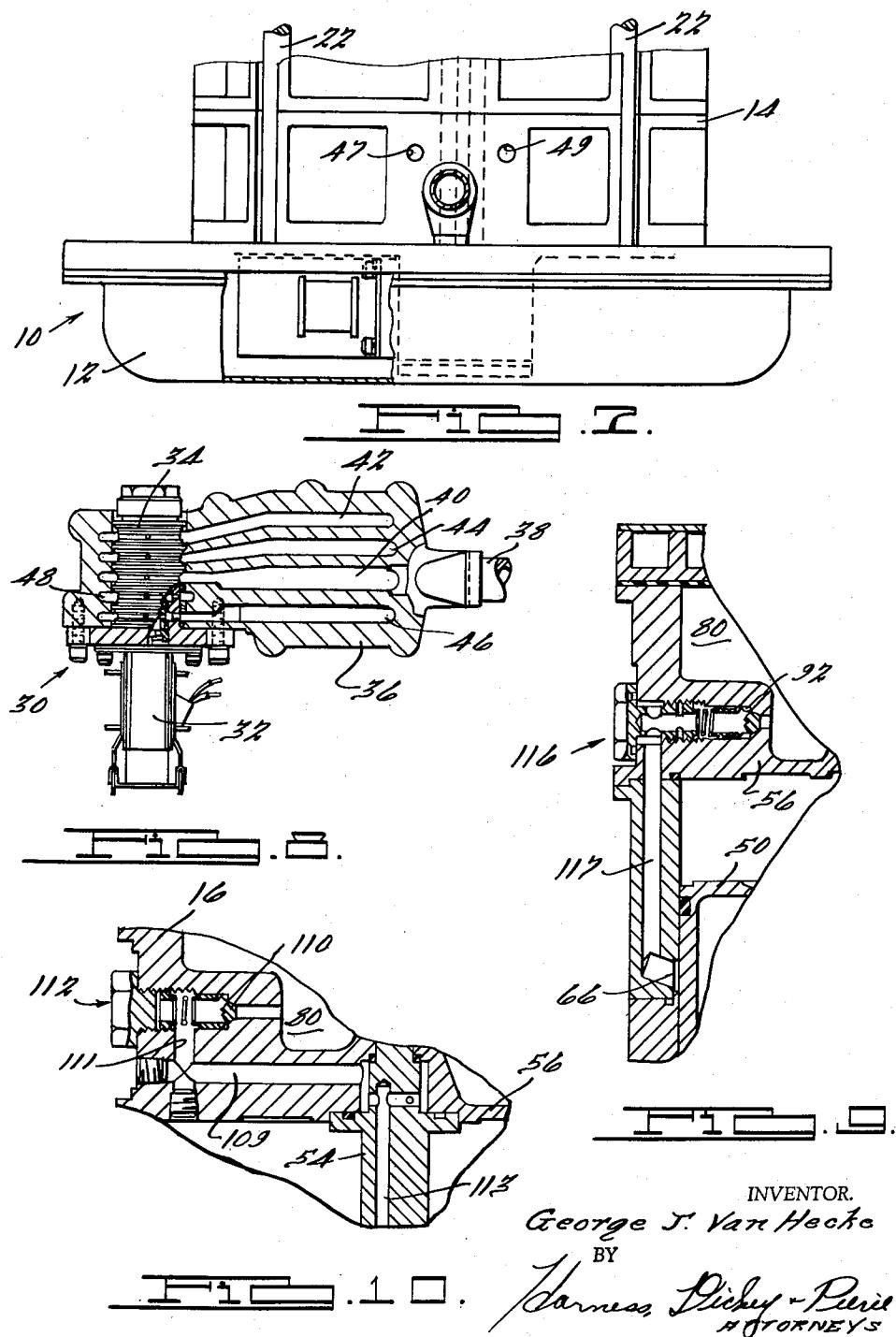
FASTENER APPLYING TOOL AND POWER UNIT THEREFOR

Original Filed April 18, 1958

5 Sheets-Sheet 2



Dec. 31, 1963


G. J. VAN HECKE

3,115,752

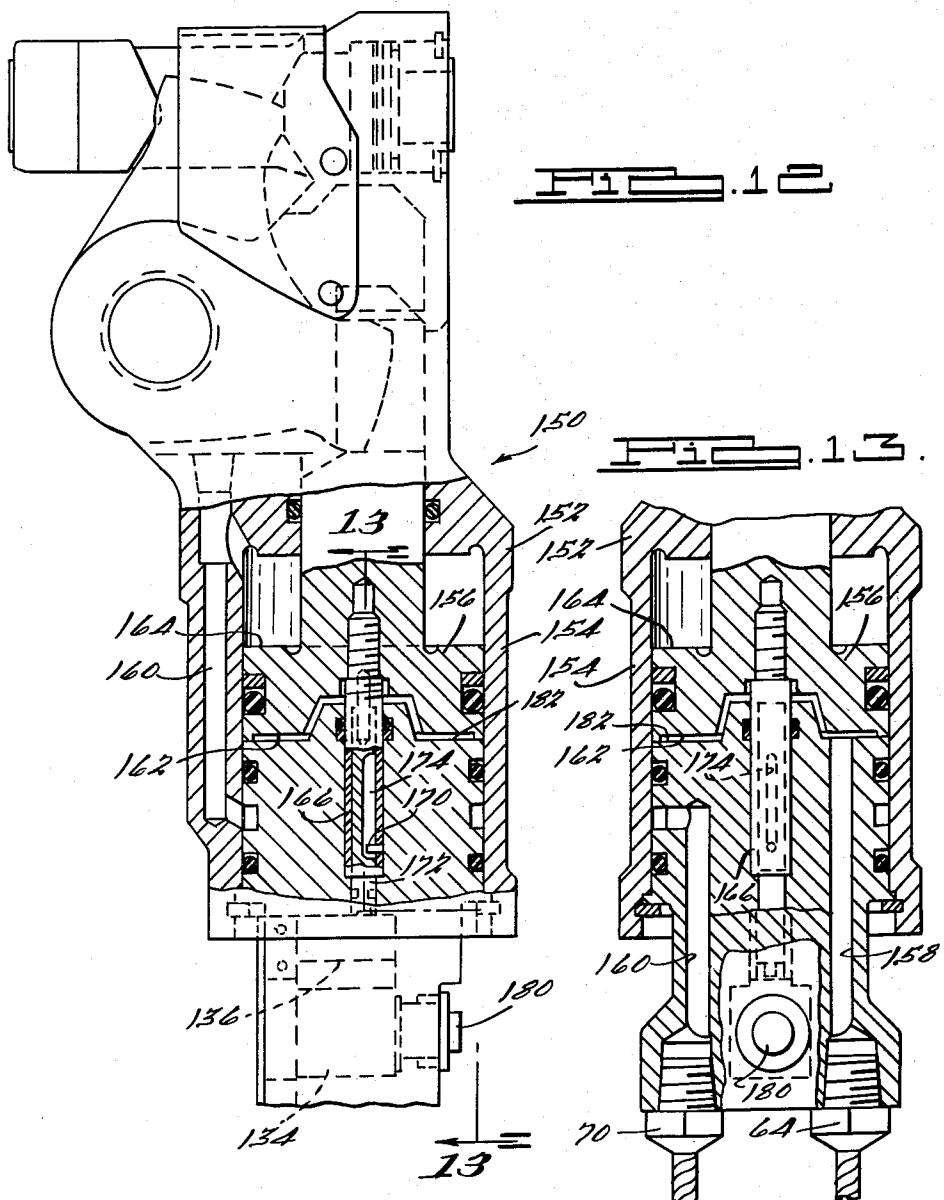
FASTENER APPLYING TOOL AND POWER UNIT THEREFOR

Original Filed April 18, 1958

5 Sheets-Sheet 3



Dec. 31, 1963


G. J. VAN HECKE

3,115,752

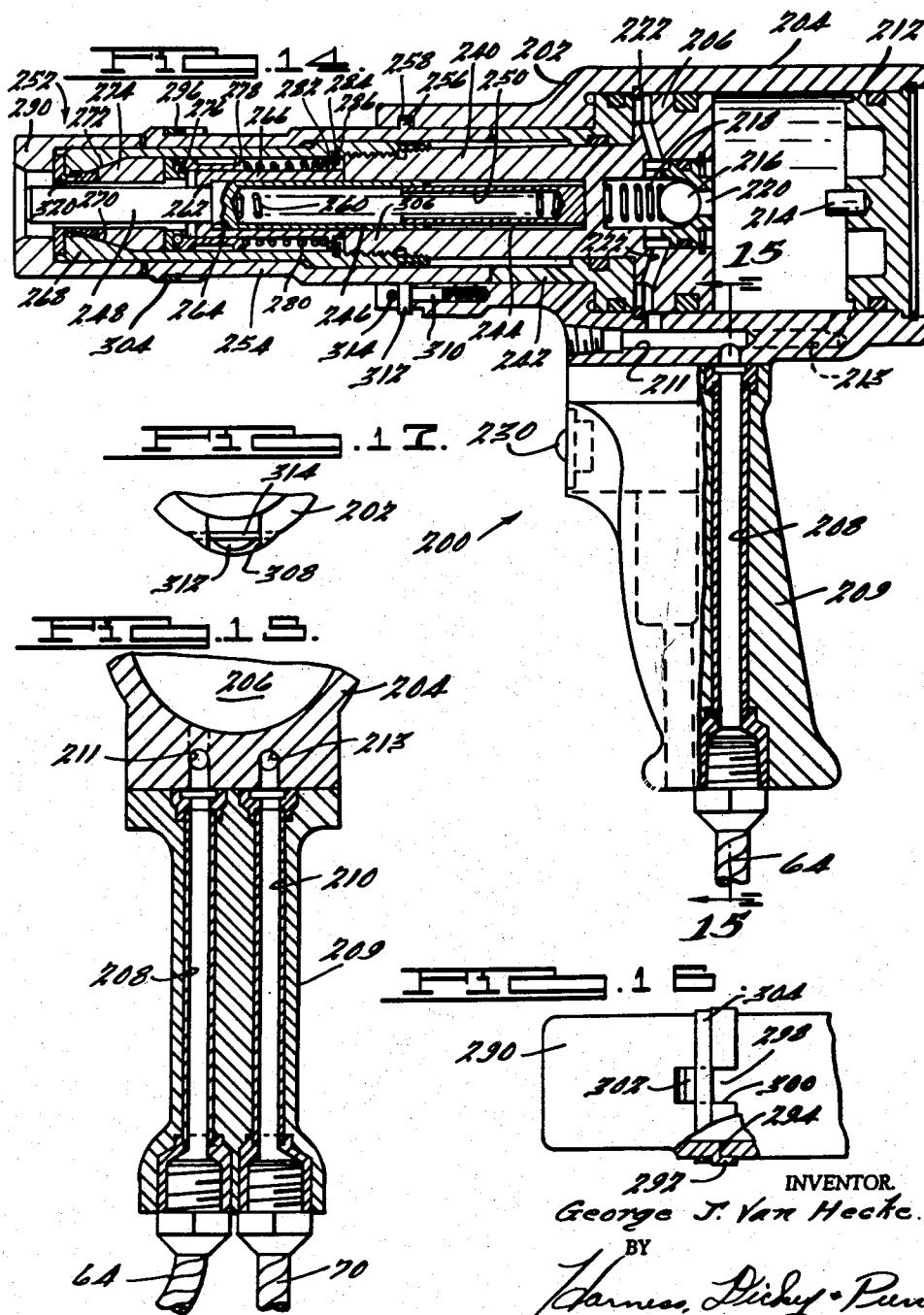
FASTENER APPLYING TOOL AND POWER UNIT THEREFOR

Original Filed April 18, 1958

5 Sheets-Sheet 4



Dec. 31, 1963


G. J. VAN HECKE

3,115,752

FASTENER APPLYING TOOL AND POWER UNIT THEREFOR

Original Filed April 18, 1958

5 Sheets-Sheet 5



INVENTOR  
George J. Van Hecke.

BY

Harness, Dickey & Purie  
ATTORNEYS.

**1**

3,115,752

**FASTENER APPLYING TOOL AND POWER  
UNIT THEREFOR**

George J. Van Hecke, Detroit, Mich., assignor to Huck Manufacturing Company, Detroit, Mich., a corporation of Michigan

Original application Apr. 18, 1958, Ser. No. 729,349, now Patent No. 3,052,099, dated Sept. 4, 1962. Divided and this application Mar. 30, 1962, Ser. No. 192,300

10 Claims. (Cl. 60—54.5)

This invention relates generally to mechanisms for applying fasteners and more particularly to a fastener applying tool and a hydraulic power unit for a fastener driving tool.

This application is a divisional application of the co-pending application of George J. Van Hecke, Serial No. 729,349, filed April 18, 1958, now Patent No. 3,052,099.

The fastener applying tools of the type to which this invention relates are fluid operated and are for driving fasteners of types such as the ones having a pin and a collar which is cold-swaged tightly into locking grooves in the pin. Each tool, therefore, includes an anvil engageable with the collar and a multiple jaw assembly engageable with pulling grooves on the pin. Either the anvil, the jaw assembly, or both parts, are moved so as to provide for a relative movement of the parts in opposite directions. The structure for accomplishing this relative movement includes a cylinder formed in the gun and a piston mounted in the cylinder for reciprocal movement. On movement of the piston in one direction, the tool anvil and jaw assembly are moved relative to each other to provide for driving of the fastener. The piston is then moved in an opposite direction to return the anvil and the jaw assembly to relative positions in which the tool is set for another driving operation.

In the tools now in use commercially, the structure for reversing the direction of travel of the piston consists of a valve mechanism assembled in the driving tool. Such a tool is, therefore, complex, heavy, and subject to mechanical mis-adjustments. Furthermore, since the operators of such tools are usually not capable of correctly adjusting the tools, additional difficulty is caused by unnecessary and improper operator adjustments.

An object of this invention, therefore, is to provide a power unit and driving tool assembly in which the necessary valve mechanism for reversing the direction of travel of the tool piston is incorporated in a unit which is remote from the tool so that the tool is of a simplified construction and is of light weight.

A further object of this invention is to provide an improved fastener applying tool which is of a simplified construction.

Another object of this invention is to provide a power unit which includes an auxiliary fluid chamber that is expansible for receiving additional fluid when the fluid pressure in the tool is above a predetermined pressure required for tool operation, with the auxiliary fluid chamber being also contractible to supply make-up fluid to these same passages when leakage has reduced the volume of fluid therein.

A further object of this invention is to provide a power unit for a fastener driving tool which is simple in construction, economical to manufacture, and efficient in

**2**

operation in providing the necessary fluid pressures for operating the tool.

Further objects, features and advantages of this invention will become apparent from a consideration of the following description, the appended claims and the accompanying drawing in which:

FIGURE 1 is a vertical sectional view of the power unit of this invention, looking substantially along the line 1—1 in FIG. 2;

10 FIG. 2 is a top view of the power unit of this invention, with parts of the handle therefor broken away;

FIG. 3 is a horizontal sectional view looking substantially along the line 3—3 in FIG. 1;

15 FIGS. 4 and 5 are fragmentary enlarged sectional views looking along the lines 4—4 and 5—5 in FIG. 2;

FIG. 6 is a horizontal sectional view looking along the line 6—6 in FIG. 1;

FIG. 7 is a fragmentary side elevational view of a lower portion of the power unit of this invention;

20 FIG. 8 is a horizontal sectional view looking substantially along the line 8—8 in FIG. 1;

FIGS. 9 and 10 are enlarged fragmentary sectional views looking along the lines 9—9 and 10—10 in FIG. 2;

FIG. 11 is a wiring diagram showing the circuit for the 25 switches and the valve operating solenoid in the power unit of this invention;

FIG. 12 is a side elevational view of a driving tool adapted to be used with the power unit shown in FIG. 1 with some parts broken away and other parts shown in 30 section for the purpose of clarity;

FIG. 13 is a fragmentary sectional view looking along the line 13—13 in FIG. 12;

FIG. 14 is a side elevational view of another driving tool adapted to be used with the power unit shown in 35 FIG. 1, with some parts broken away and other parts shown in section for the purpose of clarity;

FIG. 15 is a fragmentary sectional view as seen along the line 15—15 in FIG. 14.

FIG. 16 is a fragmentary plan view of the barrel portion of the tool shown in FIG. 14, with some parts broken away for the purpose of clarity; and

FIG. 17 is a fragmentary elevational view of a portion of the tool shown in FIG. 14.

45 With reference to the drawing, the power unit of this invention, indicated generally at 10, is illustrated in FIG. 1 as including a base 12 which carries an upwardly extending cylinder member 14. An upright reservoir member 16 is mounted on the upper end of the cylinder member 14. A cap or cover 20, for the reservoir 16, also acts to secure a horizontal flexible diaphragm 18 to the reservoir 16. Upright connecting bolts 22 extend between the base 12 and the cover 20 for holding the cylinder member 14, the reservoir member 16 and the cover member 20 in positions extending upwardly on the base 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315

button 35 for the unit 25 which is circuit-connected in a manner to be hereinafter described.

The hollow base 12 functions as a housing for a valve assembly 30 (FIG. 8) which includes a solenoid 32a mounted in a casing 32 and a valve body 34 actuated in response to energization of the solenoid 32a. A stationary valve passage member 36 connected to a supply line 38 for air under pressure is formed with substantially parallel air passages 40, 42, 44, 46 and 48 for a purpose to appear presently.

Mounted for up and down reciprocation in the cylinder 14 is a hollow piston member 50 which has a tubular central portion 52 arranged for up and down sliding movement on an upright piston member 54 secured to and extending downwardly from the lower wall 56 for the reservoir member 16. The lower wall 51 for the piston 50 closes the lower end of the tubular portion 52 so as to form a fluid chamber 53 in the tubular portion between the lower end of the piston 54 and the lower wall 51 of the piston 50.

The valve body 34 is movable between a first spring-urged position and a second solenoid-moved position when the solenoid 32a is energized. The passage 40 in the valve passage member 36 connects the valve body 34 with the air inlet line 38 in both the positions of the body 34. In the spring-urged position of the body 34, the passage 44 communicates, by way of the body 34, with the air inlet passage 40 and, through a passage 58 (FIG. 4) in the walls of the cylinder member 14 and the reservoir member 16, with the interior of the cylinder member 14 on the top side of the piston 50. In this position of the body 34, the passage 46, which is connected to an outlet passage 47 in the cylinder wall, communicates with the cylinder 14 below the piston 50, and the passages 42 and 48 are closed at the body 34. The piston 50 is thus moved downwardly in the cylinder 14. In the solenoid actuated position of the body 34 the passages 44 and 46 are closed, the passage 42 communicates with the passage 58 and with an exhaust passage 49 in the cylinder wall, and the passage 48 is connected through the body 34 with the supply passage 40 for supplying air under pressure to the cylinder 14 below the piston 50, so that the piston 50 is moved upwardly in the cylinder 14.

The chamber 53 and communicating fluid passages are filled with a hydraulic fluid so that when air is supplied to the cylinder 14 below the piston bottom wall 51 and the piston member 50 moves upwardly in the cylinder 14, fluid is forced out of the chamber 53 through an upright passage 60 in the fixed piston 54, through a horizontal passage 62 in the reservoir lower wall 56 to a flexible high pressure conduit 64 on the reservoir member 16. The member 64 communicates with a driving tool such as those shown in FIGS. 12-15, inclusive, to be operated by the power unit 10.

When the circuit for the solenoid 32a is opened so that air under pressure is supplied to the cylinder member 14 on the top side of the piston 50, the piston member is forced downwardly in the cylinder 14 so that fluid in an annular chamber 66 which surrounds the piston member 50 is forced out of the chamber 66 through a horizontal passage 68 in the cylinder wall into a flexible conduit member 70 which also communicates with the driving tool. As shown in FIG. 1, the piston member 50 has an upper portion 72 and a lower portion 74 of a reduced diameter relative to the portion 72 with a horizontal shoulder 76 being formed at the juncture of the portions. The cylinder 14 has corresponding reduced and enlarged bore sections 78 and 81 for slidably supporting the piston sections 72 and 74. On downward movement of the piston member 50, the upper enlarged portion 72 thereof acts to displace fluid in the annular chamber 66 to raise the pressure of the fluid and force it out of the chamber 66 and the conduit member 70.

It can thus be seen that in the solenoid-moved position of the valve body 34, air under pressure is supplied

5 to the bottom side of the piston 50 and exhausted from the top side so as to force fluid under pressure into the conduit member 64. By virtue of the relative areas of the lower ends of the piston members 50 and 54, fluid is delivered to the conduit 64 at a substantial pressure. When the valve body 34 is returned to its spring-urged position, air under pressure is supplied to the top side of the piston 50 and exhausted from the bottom side. The piston 50 is thus moved downwardly to force fluid under pressure through the conduit member 70. This pressure in the conduit member 70 is reduced relative to the pressure in the conduit 64.

10 The higher pressure fluid in the conduit member 64 is used to move the piston in the driving tool in a direction 15 to drive the fastener, as will be described in detail hereinafter. Fluid from the conduit member 70 returns the tool piston to a set position for the next driving operation.

A pair of driving tools 150 and 200 are shown in 20 FIGS. 12 and 14, respectively, that are adapted to be used 25 with the power unit 10. Since the tools 150 and 200 are conventional in the sense that they include the usual anvil, collet, and mechanical structure for moving these parts relative to each other, only the hydraulic mechanism and the control switches will be described in detail 30 hereinafter. The tool 150 includes a body 152 having a cylinder portion 154 in which a piston 156 is slidably mounted.

A pair of fluid passages 158 and 160 in the valve body 30 152 communicate with the cylinder 154 on what for convenience of description will be referred to as the bottom side 162 and top side 164, respectively, of the piston 156. The flexible conduits 64 and 70 are connected to the body 152 so that they communicate with the passages 158 and 160, respectively. As a result, when the piston 50 is 35 moved upwardly to force fluid under pressure out of the unit 10 through the conduit member 64, this fluid is delivered to the cylinder 154 so as to exert an upward force on the piston 156 and in turn operate the tool 150 to drive the fastener to which the tool is applied.

40 A tubular member 166 carried by the piston 156 moves upwardly along with the piston. The tubular member 166 carries a radially inwardly projecting pin 170 which rides in a groove 174 formed in a switch actuating rod 172 that is slidably supported in the tubular member 166. 45 When the piston 156 has traveled upwardly a distance necessary to move the pin 170 to the upper end of the groove 174, further upward movement of the piston causes upward movement of the rod 172 to open a switch 136 connected to the lower end of the rod. As shown 50 in FIG. 11, the switch 136 is connected in a circuit indicated generally at 130 which includes the usual leads L1 and L2, the solenoid 32a, the reservoir safety switch 25, and a switch 134 operated by a trigger 180 on the tool 150.

55 In a fastener driving operation, the operator actuates the trigger 180 to close the trigger switch 134 and energize the solenoid 32a which in turn acts to move the valve body 34 as previously described so that the unit 10 operates to move the tool piston 156 in a driving direction. At 60 the completion of the driving stroke of the piston 156, the switch 136 is opened by the actuating rod 172 so that the solenoid 32a is automatically de-energized. The valve body 34 returns and the power unit 10 operates to force fluid under pressure through the conduit 70 and piston 50 to return the tool piston 156 to a position in 65 readiness for a subsequent gun operation. The trigger 180 is of course released by the operator when the switch 136 is opened since it is apparent that the movement of the tool 150 to drive a fastener has been completed. Return of the piston 156 to a position against the cylinder bottom wall 182 moves the pin 170 against the rod 172 at the lower end of the groove 174 and moves the rod 172 downwardly to again close the switch 136.

70 The driving tool 200 likewise includes a body 202 having a cylinder portion 204 in which a piston 206 is mounted for reciprocal movement. Passages 208 and 210 in

the tool handle 209 communicate through other passages 211 and 213, respectively, with opposite ends of the cylinder 204 and are connected to the conduits 64 and 70, respectively.

The piston 206 has a forwardly projecting extension 240 arranged concentrically within an annular seal 242 mounted in the body 202. An annular slideway 244 for the tubular inner end portion 246 of a pintail ejecting plunger 248 is formed in the extension 240 by inserting a smaller hollow cylinder 250 in an elongated opening in the extension 240. The plunger 248 is part of a nose attachment, indicated generally at 252, removably mounted on the tool 200 for setting fasteners and rivets of the type having a pull pin. The nose attachment 252 includes a barrel 254 having a radially extending ear 256 positioned in a groove 258 in the body 202.

A spring 260 in the cylinder 250 engages the plunger 248 at the forward end of the tubular portion 246 and urges the plunger 248 in a direction outwardly of the tool to a stop position in which a shoulder 262 on the plunger engages a shoulder 264 on a tubular slide support 266 for the plunger 248. The slide support 266 is positioned within an actuating sleeve 268 having a tapered annular surface 270 at its forward or outer end which engages a similar surface 272 on an expandable and contractible annular jaw assembly 274. A ring 278 supports the outer end of the slide support 266 and engages the inner end of the jaw assembly 274. A spring 280 extends between the ring 278 and annular ears 282 on the inner end of the slide support 266 and urges the jaw assembly 274 axially outwardly of the sleeve 268 to maintain the inclined surfaces 270 and 272 in engagement. A retainer ring 284 in a groove 286 formed in the inner surface of the sleeve 268 maintains the jaw assembly 274, the ring 278 and its associated spring 280, and the slide support 266 in an assembled position within the sleeve 268 so that all of these parts can be handled as a unit when the nose assembly 252 is detached from the tool body 202.

The barrel 254 has a detachable anvil 290 at its forward or outer end which is replaceable when it becomes worn or damaged. The anvil 290 has a longitudinally extending flange 292 at its rear end which fits about the barrel 254 and a shoulder 294 which abuts the outer end of the barrel 254. The flange 292 is radially offset from the anvil 290 so as to form a shoulder 296 which extends radially outwardly from the outer surface of the anvil 290 for a purpose to appear presently. Longitudinally extending ears 298 on the outer end of the barrel 254 fit in slots 300 in the anvil 290 in a position of the barrel within the anvil flange 292. The ears 300 terminate at their outer ends in radially outwardly extending projections 302. To retain the anvil 290 on the barrel 254, a removable retaining ring 304 is extended about the anvil 290 between the shoulder 296 on the anvil and the projections 302 on the barrel. To remove the anvil 290 for replacement, it is only necessary to remove the ring 302 and withdraw the anvil from the barrel.

In the assembly of the nose attachment 252 and the tool body 202, the inner end of the actuating sleeve 266 is threaded onto an outer end portion 306 of the piston extension 240. The barrel 254 is extended into the tool body 202 to a position against the outer end of the seal 242 with the ear 256 on the barrel located in a slot 308 in the lower side of the barrel 254. On rotation of the barrel, the retaining ear 256 slides into the groove 258, which terminates at its ends at the slot 308, and prevents the barrel from being removed from the body 202. A spring-pressed pin 310 has an enlarged head 312 which engages a pin 314 extending across the slot 308 at a position radially outwardly of the ear 256 to position the head 312 at the ends of the groove 258 and in the path of the ear 256 so that the ear cannot be accidentally positioned in the slot 308 to permit removal of the barrel 254. In order to remove the nose attachment 252, it is necessary to first manually depress the pin 310 to a position in

which the head 312 is out of the path of movement of the ear 256.

In the operation of the tool 200, when fluid under pressure is delivered through the conduit 64 to the passage 208, the piston 206 is moved rearwardly toward a cylinder end wall 212 which carries a pin 214 projected toward a ball member 216 carried on the piston 206. A spring 218 urges the ball member 216 to a seated position at one end of an axial fluid passage 220 in the piston 206. The passage 220 communicates with the passage 208 through inclined piston passages 222 when the ball 216 is moved off its seat against the pressure of the spring 218. As a result, when the piston 206 has been moved to a position in which the pin 214 unseats the ball 216, the driving operation of the tool is completed because fluid from the conduit member 208 is merely dumped through the piston passages 220 and 222 into the passage 210 for return to the power unit 10. The operator then releases the tool trigger 230, which actuates a switch like the switch 134 connected in series with the solenoid 32a, so that the switch is opened and the solenoid 32a is deenergized and the power unit 10 is operated to force fluid under pressure through the conduit 70. In the event the full stroke of the piston 206 is not required to set the fastener, the trigger 230 is of course released as soon as the fastener is set.

Prior to actuation of the trigger 230, the nose attachment 252 is assembled with a fastener to be applied in the usual manner so that the fastener stem or pin extends axially through the contractible jaw assembly 274 and the ejector plunger 248 is forced inwardly to compress the spring 260. The sleeve 268 and the jaw assembly 274 cooperate in the manner described in patent No. 2,114,493 to effect first a gripping and then a pulling of the fastener pin as the piston 206 travels toward the cylinder wall 212. The reaction to the pulling force exerted on the fastener pin is applied through the anvil 290 to the fastener collar or sleeve. When the pin is fractured, the plunger 248 ejects the pin tail and the piston 206 moves the jaw assembly 274 and the sleeve 268 to positions in readiness for the next fastener setting operation. A spacer ring 320 on the outer end of the sleeve 268 prevents the jaw assembly 274 from being contracted on the plunger 248.

In the tool 200, the piston actuated switch 136 required in the tool 150 is dispensed with and the tool 200 utilizes instead the ball valve 216 in the piston 206.

The chamber 80 (FIG. 1) formed in the reservoir member 16 between the diaphragm 18 and the bottom wall 56 is filled with fluid. A chamber 82 formed between the cover 20 and the top side of the diaphragm 18 communicates through a horizontal passage 84 in the cover member 20 with an upright passage 86 extended through the walls of the cylinder member 14 and the reservoir member 16 and communicating at its lower end with the air inlet line 38. Consequently, the diaphragm 18 is subjected to a relatively constant air pressure which provides for a predetermined pressure of the diaphragm 18 on the fluid in the chamber 80 so as to likewise maintain this fluid at a predetermined constant pressure.

The chamber 80 communicates with the horizontal passage 62 in the reservoir member 16 through a pair of upright passages 88 and 90 and a horizontal passage 89 in an enlarged outer portion 92 of the reservoir lower wall 56. The passage 89 is aligned with an enlarged horizontal cavity in the reservoir in which a check valve unit 94 of conventional construction is disposed. The unit 94 includes a valve body 98 which is normally held against a seat 108 in the passage 89. When the pressure in the passage 90 is above a predetermined limit the body 98 moves inwardly to admit fluid from the passage 89 to the passage 88 and thence in the chamber 80. This flow continues until the pressure in the passage 89 has been reduced to a lower limit.

It is seen, therefore, that in the event fluid in the

passage 90, which in turn communicates with fluid in the chamber 53, is raised above a predetermined pressure, the one-way check valve unit 94 acts to provide for a flow of fluid into the chamber 80 which expands to accommodate this extra fluid and relieves the pressure in the chamber 53 and communicating fluid passages.

Conversely, in the event the total fluid volume in the chamber 53 and the communicating fluid passages which deliver high pressure fluid to the tool piston is reduced, the pressure of this fluid on a second check valve unit 112 (FIG. 10) mounted on the reservoir member 16 is reduced when the piston 59 is in the position shown in FIG. 1. The pressure of the fluid in the chamber 80 which is substantially constant acts on a valve body 110 for the one-way check valve 112 to move the body 110 inwardly when the pressure is reduced in the chamber 53 to provide for a flow of fluid through an upright passage 111 and a horizontal passage 109 in the reservoir lower wall 56 to an upright passage 113 in the fixed piston 54. The passage 113 communicates at its lower end with the chamber 53. The chamber 80 and the check valve unit 112 thus act to continually provide make-up fluid to the chamber 53 to provide for a volume make-up and for a minimum pressure therein for operating the driving tool 150 or 200.

A similar pair of check valve units 114 and 116 (FIGS. 5 and 9) are installed in the reservoir wall portion 92 and communicate through passages 115 and 117, respectively, with the chamber 66 to provide for a pressure relief and a volume make-up, respectively, for the annular chamber 66. The chamber 80 thus constitutes a fluid source for maintaining a constant volume of operating fluid in the power unit 10 and the tool 150 or 200 connected thereto. The chamber 80 also acts to accommodate extra fluid in the event the pressure in either of the chambers 53 or 66 becomes excessive. The check valve units 94 and 114 are adjustable to determine the pressures at which the valve units will open to provide the desired pressure relief, and the valve units 112 and 116 are likewise adjustable to determine the lower pressure limits in the chambers 53 and 66.

As fluid is moved out of the chamber 80, the diaphragm moves toward the reservoir bottom wall 56. The stem 28 and the collar flange 29 are correspondingly moved toward the cover 20 until the flange 29 engages the switch release button 31 and opens the switch 25. The chamber 80 must then be re-filled and the switch 25 reset with the button 35 before the power unit 10 can be operated.

From the above description it can be seen that when the power unit 10 is used, the fastener applying tool, such as one of the tools illustrated, is of a simplified construction without bulky and heavy valve mechanisms. Furthermore, the unit 10 provides for a continued supply of the necessary high pressure fluid to the driving tool while minimizing the danger of fluid leakage.

It will be understood that the specific construction of the improved power unit which is herein disclosed and described is presented for purposes of explanation and illustration and is not intended to indicate limits of the invention, the scope of which is defined by the following claims.

What is claimed is:

1. A power unit for operating a hydraulically operable fastener applying tool, said unit comprising a casing adapted to be located remote from and connected to said tool, a cylinder located in said casing and having first and second cylinder portions, said cylinder portions being of different sizes and means in said casing for supplying fluid under pressure to said tool, said means comprising a piston completely located in said cylinder, said piston having first and second portions of different sizes matably located in said first and second cylinder portions, respectively, an annular cavity for holding fluid defined by the smaller of said piston portions when located in the larger

of said cylinder portions, and passage means in communication with said annular cavity for providing a passage for the fluid to and from said cavity.

2. In a power unit for fastener applying tool, a chamber having a first fluid therein, means located in said chamber and actuatable by a source of a second fluid under pressure for subjecting said first fluid to a working pressure, a fluid reservoir of said first fluid having a diaphragm therein, means in communication with the source of said second fluid for applying a pressure to the diaphragm for applying a corresponding pressure to said first fluid in said reservoir, and automatic valve means communicating with said chamber and said reservoir and operable to maintain a predetermined relation of said chamber and reservoir pressures.

3. A power unit for a fastener applying tool having a cylinder portion and a piston mounted for reciprocal movement therein, said unit comprising a hollow base member, a cylinder member mounted on said base member, a reservoir member mounted on said cylinder member, a first piston member mounted for reciprocation in said cylinder member and having a tubular portion closed at one end, a second piston member arranged in a fixed position in said cylinder member in a coaxial relation with said tubular portion for reciprocating movement of the tubular portion along said second piston member during reciprocation of said first piston member, said second piston member having a fluid passage therein, a pair of conduit members on said unit connectible with said tool cylinder portion on opposite sides of the piston therein, fluid passage means in said unit connecting said piston fluid passage with one of said conduit members, means forming an annular fluid chamber extending about said first piston and communicating with said other conduit member, means on the first piston for displacing fluid in said chamber on movement of said first piston in a direction to withdraw said tubular portion from said second piston, said reservoir member having a chamber therein for fluid and a flexible wall for maintaining the fluid at a predetermined pressure, fluid passage means extending between said reservoir chamber and said fluid passage in the second piston, first valve means in said fluid passage means for communicating said reservoir chamber and said fluid passage when the pressure in the reservoir chamber exceeds the pressure in the fluid passage by a predetermined amount, second valve means in said fluid passage means for communicating said reservoir chamber and said fluid passage when the pressure in the reservoir chamber exceeds the pressure in the fluid passage by a predetermined amount, fluid passage means extending between said reservoir chamber and said annular chamber, third valve means in said last mentioned fluid passage means for communicating said reservoir chamber and said annular chamber when the pressure in the reservoir chamber exceeds the pressure in the annular chamber by a predetermined amount, and fourth valve means in said last mentioned fluid passage means for communicating said reservoir chamber and said annular chamber when the pressure in the annular chamber exceeds the pressure in the reservoir chamber by a predetermined amount.

4. In a power unit which includes a chamber for a liquid, drive means located in said chamber and actuatable by a source of air under pressure for placing said liquid in said chamber under pressure, means for maintaining the pressure in said chamber between predetermined high and low limits, said means comprising a reservoir member having a diaphragm disposed therein and a fluid chamber for the liquid on one side of the diaphragm, means in communication with the source of air for applying a predetermined pressure to the opposite side of the diaphragm for in turn applying a pressure to the liquid in said reservoir chamber, first passage means connecting said chambers, first one-way valve means in said first

passage means for communicating said chambers only when the pressure in the first mentioned chamber exceeds the pressure in said reservoir chamber by a predetermined amount, second passage means connecting said chambers, and second one-way valve means in said second passage means for communicating said chambers only when the pressure in the first mentioned chamber is below the pressure in said reservoir chamber by a predetermined amount.

5. For use with a fastener applying tool having a cylinder portion and a tool operating piston in the cylinder portion, a power unit separate from said tool, said unit comprising a casing adapted to be connected to said tool for supplying fluid to said cylinder portion on opposite sides of said piston, a piston mounted in a stationary position in said casing, a second piston mounted in the casing for reciprocal movement, said second piston having a tubular portion arranged in axial alignment with said stationary piston so that on movement in one direction of the second piston, fluid is forced out of said tubular portion to said tool cylinder portion on one side of said piston and on movement of said second piston in the opposite direction fluid is returned from said tool cylinder portion, a cylinder located in said casing and having first and second cylinder portions, said cylinder portions being of different sizes, said second piston being located completely in said cylinder and having first and second portions of different sizes matingly located in said first and second cylinder portions, respectively, an annular cavity for holding fluid defined by the smaller of said piston portions when located in the larger of said cylinder portions, and passage means for communicating said annular cavity with the opposite side of said tool cylinder portion, the fluid in said annular cavity being placed under pressure as said second piston moves in said opposite direction to thereby move said tool piston in an opposite direction.

6. A power unit for a fastener applying tool having a cylinder portion and a piston mounted for reciprocal movement therein, said unit comprising a hollow base member, a cylinder member mounted on said base member and defining a cylinder, a reservoir member mounted on said cylinder member and defining a fluid reservoir, a first piston member mounted for reciprocation in said cylinder and having a tubular portion closed at one end, a second piston member arranged in a fixed position in said cylinder member and extending inwardly into said cylinder in a coaxial relation with said tubular portion for reciprocating movement of the tubular portion along said second piston member during reciprocation of said first piston member, said second piston member having a fluid passage therein, a pair of conduit members on said unit connectible with said tool cylinder portion on opposite sides of the piston therein, fluid passage means in said unit connecting said piston fluid passage with one of said conduit members, means forming an annular fluid chamber extending about said first piston and communicating with said other conduit member, and means on the first piston for displacing fluid in said chamber on movement of said first piston in a direction to withdraw said tubular portion from said second piston, fluid passage means extending between said reservoir and said fluid chamber and between said reservoir and said cylinder, and valve means in said passage means for maintaining the pressures in said fluid chamber and said cylinder between predetermined high and low limits.

7. In a power unit for a fastener applying tool, fluid chamber means adapted to supply a first fluid under pressure to said tool means located in said chamber and actuatable by a source of second fluid under pressure for subjecting said first fluid to a working pressure, a fluid reservoir having said first fluid at a predetermined pressure disposed therein, means in communication with the source of said second fluid and operative with said

reservoir for placing said first fluid therein at a predetermined pressure, passage means in said unit communicating said reservoir with said chamber means, and valve means in said passage means arranged for opening movement when the fluid pressure in said chamber means is below a predetermined pressure.

8. In a power unit for a fastener applying tool, fluid chamber means adapted to supply a first fluid under pressure to said tool, means located in said chamber and actuatable by a source of second fluid under pressure for subjecting said first fluid to a working pressure, a fluid reservoir having said first fluid at a predetermined pressure disposed therein, means in communication with the source of said second fluid and operative with said reservoir for placing said first fluid therein at a predetermined pressure, passage means in said unit communicating said reservoir with said chamber means, valve means in said passage means arranged for opening movement when the fluid pressure in said chamber means is below a predetermined pressure, switch means actuatable for deactuating said fluid chamber means, and means for actuating said switch means responsively to the level of said first fluid in said fluid reservoir dropping to a preselected level.

9. In a power unit which includes a chamber for a liquid, drive means located in said chamber and actuatable by a source of air under pressure for placing said liquid in said chamber under pressure, means for maintaining the pressure in said chamber between predetermined high and low limits, said means comprising a reservoir member having a diaphragm disposed therein and a fluid chamber for the liquid on one side of the diaphragm, means in communication with the source of air for applying a predetermined pressure to the opposite side of the diaphragm for in turn applying a pressure to the liquid in said reservoir chamber, first passage means connecting said chambers, first one-way valve means in said first passage means for communicating said chambers only when the pressure in the first mentioned chamber exceeds the pressure in said reservoir chamber by a predetermined amount, second passage means connecting said chambers, second one-way valve means in said second passage means for communicating said chambers only when the pressure in the first mentioned chamber is below the pressure in said reservoir chamber by a predetermined amount, switch means actuatable for deactuating said drive means from the source of air, and means for actuating said switch means responsively to the level of said liquid in said fluid reservoir dropping to a preselected level.

10. A power unit for a fastener applying tool having a cylinder portion and a piston mounted for reciprocal movement therein, said unit comprising a hollow base member, a cylinder member mounted on said base member and defining a cylinder, a reservoir member mounted on said cylinder member and defining a fluid reservoir, a first piston member mounted for reciprocation in said cylinder and having a tubular portion closed at one end, a second piston member arranged in a fixed position in said cylinder member and extending inwardly into said cylinder in a coaxial relation with said tubular portion for reciprocating movement of the tubular portion along said second piston member during reciprocation of said first piston member, said second piston member having a fluid passage therein, a pair of conduit members on said unit connectible with said tool cylinder portion on opposite sides of the piston therein, fluid passage means in said unit connecting said piston fluid passage with one of said conduit members, means forming an annular fluid chamber extending about said first piston and communicating with said other conduit member, and means on the first piston for displacing fluid in said chamber on movement of said first piston in a direction to withdraw said tubular portion from said second piston, fluid passage means extending between said reservoir and said fluid chamber and between said reservoir and said cylinder, and valve means in said passage means for maintaining the pressures in said fluid chamber and said cylinder between predetermined high and low limits.

75 means extending between said reservoir and said fluid

## 11

chamber and between said reservoir and said cylinder, valve means in said passage means for maintaining the pressures in said fluid chamber and said cylinder between predetermined high and low limits, a diaphragm disposed over said reservoir member for substantially sealing one end of said reservoir, and a cap member disposable on said reservoir member and having a cavity therein, said diaphragm and said cavity defining a volume for receiving fluid under pressure for maintaining the fluid in said reservoir under pressure, and automatic valve means communicating with said chamber and said cylinder with said reservoir and operable to maintain a predetermined relation of said chamber, cylinder and reservoir pressures.

## 12

References Cited in the file of this patent

## UNITED STATES PATENTS

|           |                 |       |                |
|-----------|-----------------|-------|----------------|
| 718,365   | Martin          | ----- | Jan. 13, 1903  |
| 1,038,524 | Bossert         | ----- | Sept. 17, 1912 |
| 1,806,136 | Weiss           | ----- | May 19, 1931   |
| 2,223,449 | Huck            | ----- | Dec. 3, 1940   |
| 2,359,949 | Van Der Werff   | ----- | Oct. 10, 1944  |
| 2,365,536 | Fischer et al.  | ----- | Dec. 19, 1944  |
| 2,383,180 | Ellinwood       | ----- | Aug. 21, 1945  |
| 2,525,626 | Stouffer et al. | ----- | Oct. 10, 1950  |
| 2,597,050 | Audemar         | ----- | May 20, 1952   |
| 2,713,439 | Dumas           | ----- | July 19, 1955  |

## FOREIGN PATENTS

|         |        |       |               |
|---------|--------|-------|---------------|
| 329,680 | France | ----- | Feb. 23, 1903 |
|---------|--------|-------|---------------|