
(19) United States
US 2002008331 OA1

(12) Patent Application Publication (10) Pub. No.: US 2002/0083310 A1
MORRIS et al. (43) Pub. Date: Jun. 27, 2002

(54) METHOD AND APPARATUS FOR
PREDICTING LOOP EXIT BRANCHES

(76) Inventors: DALE MORRIS, MENLO PARK, CA
(US); MIRCEA POPLINGHER,
CAMPBELL, CA (US); TSE-YU YEH,
MILPITAS, CA (US); MICHAEL
PAUL CORWIN, PALO ALTO, CA
(US); WENLIANG CHEN,
SUNNYVALE, CA (US)

Correspondence Address:
LEO W. NOVAKOSKI
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
124OO WILSHIRE BOULEVARD
7TH FLOOR
LOS ANGELES, CA 90025

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

410
LOOP START

(21) Appl. No.: 09/169,866

(22) Filed: Oct. 12, 1998

Publication Classification

(51) Int. Cl." ... G06F 7/38
(52) U.S. Cl. .. 712/233

(57) ABSTRACT

Aloop branch prediction System is provided to predict a final
iteration of a loop and resteer an associated fetch module to
an appropriate target address. The loop prediction System
includes a counter and an end of loop (EOL) module. In one
mode, the counter trackS loop branches in process. When a
termination condition is detected, the counter Switches to a
second mode to track the number of loop branches still to be
issued. The EOL module compares the number of loop
branches still to be issued with one or more threshold values
and generates a resteer Signal when a match is detected.

420
TRACKLOOP BRs IN

PROCESS

430
DETERMNE REMAINING

LOOP BRs

440
REMAININGLOOP BR

= THRESHOD?

450
SIGNAL RESTEER

Patent Application Publication Jun. 27, 2002. Sheet 1 of 6 US 2002/0083310 A1

&

s

i

a

e 3 a

s

Jun. 27, 2002 Sheet 2 of 6 US 2002/0083310 A1 Patent Application Publication

??HEELSERH

Patent Application Publication Jun. 27, 2002 Sheet 3 of 6 US 2002/0083310 A1

C
O)
(2
O
H

Z

S

É

Patent Application Publication Jun. 27, 2002 Sheet 4 of 6 US 2002/0083310 A1

: 1-II.
ASN

S

5.

5.s
s

Patent Application Publication Jun. 27, 2002 Sheet 5 of 6 US 2002/0083310 A1

410
LOOP START2

420
TRACKLOOP BRS IN

PROCESS

430
DETERMINE REMAINING

LOOP BRS

440
REMAINING LOOP BR

= THRESHOLD?

450
SIGNAL RESTEER

Fig. 4

Patent Application Publication

510
LOOP START

52O
NITIATE 1ST
COUNTER

530
TRACKN IN FLT

Jun. 27, 2002. Sheet 6 of 6

Fig. 5

US 2002/0083310 A1

550
DETERMINE
NTO ISSUE

560
NTO ISSUE =
HRESHOLD?

570
SIGNAL RESTEER

US 2002/008331.0 A1

METHOD AND APPARATUS FOR PREDICTING
LOOP EXIT BRANCHES

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates to the field of micro
processors, and in particular, to Systems and methods for
branch prediction in microprocessors.
0003 2. Background Art
0004 Advanced processors employ pipelining tech
niques to execute instructions at very high Speeds. On Such
processors, the Overall machine is organized as a pipeline
consisting of Several cascaded Stages of hardware. Instruc
tion processing is divided into a sequence of operations, and
each operation is performed by hardware in a corresponding
pipeline stage ("pipe stage'). Independent operations from
Several instructions may be processed Simultaneously by
different pipe Stages, increasing the instruction throughput
of the pipeline. Where a pipelined processor includes mul
tiple execution resources in each pipe Stage, the throughput
of the processor can exceed one instruction per clock cycle.
To make full use of this instruction execution capability, the
execution resources of the processor must be provided with
Sufficient instructions from the correct execution path.
0005 Branch instructions pose major challenges to keep
ing the pipeline filled with instructions from the correct
execution path. When a branch instruction is executed and
the branch condition met, control flow of the processor
jumps to a new code Sequence, and instructions from the
new code Sequence are transferred to the pipeline. Branch
execution typically occurs in the back end of the pipeline,
while instructions are fetched at the front end of the pipeline.
If changes in the control flow are not anticipated correctly,
Several pipe Stages worth of instructions may be fetched
from the wrong execution path by the time the branch is
resolved. When this occurs, the instructions must be flushed
from the pipeline, leaving idle pipe Stages (bubbles) until the
processor refills the pipeline with instructions from the
correct execution path.
0006 To reduce the number of pipeline bubbles, proces
Sors incorporate branch prediction modules at the front ends
of their pipelines. When a branch instruction enters the front
end of the pipeline, the branch prediction module forecasts
whether the branch instruction will be taken when it is
executed at the back end of the pipeline. If the branch is
predicted taken, the branch prediction module indicates a
target address to which control of the processor is predicted
to jump. A fetch module, which is also located at the front
end of the pipeline, fetches instructions beginning at the
indicated target address.
0007 Branch instructions are employed extensively in
loops to execute a Series of instructions (“the loop body'),
repeatedly. Modulo-Scheduled loops are loops that are orga
nized in a pipelined manner to improve eXecution efficiency.
For one type of loop (top loop), a branch condition is tested
following each iteration and control is returned to the first
instruction of the loop body if the branch condition is met.
The last iteration of the loop occurs when the branch
condition is not met, in which case control of the processor
passes (“falls through') to the instruction that follows the
loop branch. Thus, the loop branch is taken for all but the

Jun. 27, 2002

final iteration of the top loop. Top loops terminate when the
loop branch is not taken. Another type of loop (exit loop)
employs a branch at a location other than the end of the loop
body. In this case, the loop branch is not taken for all but the
final iteration of the loop. Exit loops terminate when the loop
branch is taken.

0008 Loops are very common programming structures,
and branch prediction Systems are typically designed to
predict the loop branch conditions correctly for the bulk of
the loop iterations. For example, the branch prediction
System may be set up to automatically predict top loop
branches as taken and exit loop branches as not taken. This
Strategy provides accurate branch predictions for all but the
last iteration of each loop, when the loop condition changes.
0009 Given the ubiquity of loop structures, mispredict
ing the loop branch on just the terminal iteration can have a
Significant impact on the Overall performance of the proces
Sor. This is especially true where the loop is nested within an
outer loop, when the loop count is Small, or when the loop
body is Small. In the first case, the misprediction penalty
asSociated with the terminal iteration of the inner loop is
repeated for each iteration of the outer loop. In the latter
cases, the misprediction penalty may exceed the total num
ber of cycles necessary to execute the loop.
0010. The present invention addresses these and other
limitations associated with available branch prediction Sys
temS.

SUMMARY OF THE INVENTION

0011. The present invention provides a system and
method for predicting loop branches, including the loop
branch that terminates the loop.
0012. In accordance with the present invention, a loop
prediction System includes a counter module, a control
module, and an end of loop (EOL) module. The counter
tracks the number of loop branches that are in process. The
control module determines when loop termination
approaches, and Switches the counter to track the number of
loop branches that remain to be issued. The EOL module
compares the number of loop branches that remain to be
issued with a threshold value and generates a resteer Signal
when a match is detected.

0013 For one embodiment of the invention, the counter
is a dual mode counter that tracks the number of loop
branches in process in a first mode and uses this number to
track the number of loop branches that remain to be issued
in the second mode. For another embodiment of the inven
tion, the counter includes a first counter to track the number
of loop branches in proceSS and a Second counter to track the
number of loop branches that remain to be issued.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The present invention may be understood with
reference to the following drawings in which like elements
are indicated by like numbers. These drawings are provided
to illustrate Selected embodiments of the present invention
and are not intended to limit the Scope of the invention.
0015 FIG. 1 is a block diagram of a processor pipeline
including a loop branch prediction System in accordance
with the present invention.

US 2002/008331.0 A1

0016 FIG. 2 is a block diagram of one embodiment of
the loop prediction system of FIG. 1.
0017 FIGS. 3A is circuit diagram of one embodiment of
the loop prediction system of FIG. 2.
0018 FIG. 3B is a circuit diagram of another embodi
ment of the loop prediction system of FIG. 2.
0019 FIG. 4 is an overview of a method for predicting
loop branches in accordance with the present invention.
0020 FIG. 5 is a flowchart of one embodiment of the
method shown in FIG. 4.

DETAILED DISCUSSION OF THE INVENTION

0021. The following discussion sets forth numerous spe
cific details to provide a thorough understanding of the
invention. However, those of ordinary skill in the art, having
the benefit of this disclosure, will appreciate that the inven
tion may be practiced without these specific details. In
addition, various well known methods, procedures, compo
nents, and circuits have not been described in detail in order
to focus attention on the features of the present invention.
0022. One of the difficulties of predicting the termination
of a loop is that the branch instructions that control looping
and update various loop Status counters are resolved at the
back end of the processor pipeline. Given the number of pipe
Stages in contemporary processors, timing constraints pre
clude any direct use of these loop Status counters and other
architectural data to anticipate a loop's termination and
resteer the pipeline appropriately. To be effective, loop
terminations and the consequent pipeline resteers should be
predicted from information available at the front end of the
pipeline, where the instruction fetch module can be resteered
Soon after the last loop branch enters the pipeline.
0023 The present invention provides a loop branch pre
diction System that allows the terminal branch of a loop to
be accurately predicted at the front end of the processor
pipeline. This is accomplished by monitoring loop branch
instructions that are in-flight (issued but not yet retired) and
available loop data to determine the number of loop
branches that are still to be issued. This number is updated
to reflect loop branches as they issue and compared with one
or more threshold values. When the number reaches a
threshold value, termination of the loop is indicated.
0024. For one embodiment, a default loop branch pre
diction is over-ridden when the threshold value is reached,
and the fetch module is resteered to the instruction that
follows the loop. The default branch prediction for a top loop
branch is, for example, that the branch is “taken” (“TK”).
This is overridden to “not taken” (“NT") when the threshold
value is reached. The threshold value may correspond to
Zero, one, or two loop branches, depending on the type of
loop involved and timing constraints for the processor
pipeline.
0.025 FIG. 1 is a block diagram of a processor pipeline
100 that includes branch prediction system 180 suitable for
use with the present invention. Pipeline 100 is represented as
a series of pipeline (“pipe”) stages 101-10x to indicate when
different resources operate on a given instruction. The last
stage in FIG. 1 is labeled 10x to indicate that one or more
pipe stages (not shown) my separate stage 10x from Stage
104. Except as noted, Signals propagate from left to right, So

Jun. 27, 2002

that the response of circuitry in, e.g., pipe Stage 101 on CLK
cycle N is propagated to the circuitry of pipe Stage 102 on
CLK cycle N--1.
0026 Staging latches 128 control the flow of signals
between pipe stages 101-10x. Other embodiments of the
present invention may employ different relative configura
tions of branch prediction elements and Staging latches 128.
For example, the staging latches at the inputs of MUX 150
may be replaced by a single staging latch at its output. The
present invention is independent of which relative configu
ration is employed.

0027 Loop branch prediction system 190 is shown as
part of branch prediction system 180, which also includes a
first branch prediction structure (BPS1) 120, a second
branch prediction structure (BPS2) 130, and a branch
decode module 160. Abranch execution unit (BRU) 170, an
instruction cache 110, an instruction pointer (IP) MUX 150,
and an instruction register 140 are also shown in FIG.1. The
disclosed embodiment of loop prediction system 190
employs signals from BPS1120, decode logic 160, and BRU
170 to anticipate the final iteration of a loop and to resteer
processor pipeline 100 to the instruction that follows the
loop.

0028) IP MUX 150 couples a selected IP to I-cache 110,
BPS1120, and BPS2130. On receipt of the IP, I-cache 110,
BPS1120 and BPS2130 perform their respective look-up
procedures to determine whether they have an entry corre
sponding to the received IP. When an IP hits, e.g. matches,
an entry in I-cache 110, data at the associated entry (the
instruction pointed to by the IP) is forwarded to the next
stage in pipeline 100. When an instruction hits in BPS1120
or BPS2130, branch prediction information is coupled back
to IPMUX 150 and branch decode module 160 is notified.

0029. In the disclosed embodiment of branch prediction
system 180, BPS1120 and BPS2130 are two structures in a
branch prediction hierarchy that is designed to provide rapid
resteering of pipeline 100. For one embodiment, BPS1120
accommodates branch prediction information for a limited
number of loop branch instructions. An embodiment of
BPS1120 having four fully associative entries indexed by
partial IPS may support single cycle (Zero bubble) resteers.
The target addresses of Selected top loop branches may be
stored in BPS1120 to resteer pipeline 100 on the repeated
iterations of the loop body. An embodiment of BPS2130
may store predicted resolution and target address informa
tion for 64 entries in a four way Set associative configura
tion.

0030 The present invention does not require a particular
branch prediction hierarchy as long as target addresses can
be provided for timely pipeline resteers. For example, a
Single Storage Structure for branch prediction information
may be employed in place of PBS1120 and BPS2130. An
advantage of the hierarchy in the disclosed embodiment is
that it reduces the Some of the timing constraints imposed on
loop branch predictions.

0031 Branch decode module 160 maintains the branch
prediction information in BPS1120 and BPS2130 and pro
vides information to loop predictor 190 on the types of
instructions in buffer 140. Decode module 160 may also
implement checks on various branch related information to
facilitate uninterrupted processing of branch-related instruc

US 2002/008331.0 A1

tions. Branch-related instructions include various types of
branch instructions as well as instruction that deliver pre
diction information to BPS1120 and BPS2130. Decode
module 160 includes logic to decode branch-related instruc
tions in buffer 140 and update BPS1120, BPS2120 (BR
Structures), and loop predictor 190 accordingly.
0.032 Buffer 140 provides instructions received from,
e.g., I-cache 110 to resources in the back end of pipeline 200.
These resources include BRU 170, which executes selected
branch-related instructions and generates information to
update the architectural State of the processor when and if
the instruction is retired. For example, BRU 170 provides
data for maintaining a loop counter (LC) and an epilog
counter (EC) to track the status of loops in process. When a
counted loop is detected, LC is initialized to a value indi
cating the number of times the counted loop will be iterated.
For a modulo-scheduled (“software pipelined”) loop, EC is
initialized to a value indicating the number of Stages in the
Software pipeline. Initial values of EC and/or LC may be
determined by the compiler and provided to the processor
through loop instructions.
0.033 For example, in a modulo-Scheduled counted loop,
LC is decremented on each iteration of the loop, reaching
Zero when the last loop branch, i.e. the last loop iteration, is
detected. This signals the Start of the epilog. EC is decre
mented as instructions are drained from the Stages of the
Software pipeline on Subsequent clock cycles. All instruc
tions in the final iteration of the loop are complete when EC
is zero. LC and EC may thus be used to determine when a
modulo-Scheduled counted loop is about to terminate. For
non-pipelined counted loops, a threshold value of LC may
be used to determine when loop termination approaches. For
modulo Scheduled “while' loops, the epilog begins when a
predicate associated with the loop condition becomes Zero.
Loop termination for “while” loops may thus be indicated by
the loop predicate and/or changes in EC.
0034). Because BRU 170 is at the back end of pipeline
200 and branch prediction system 180 is at the front end of
pipeline 200, it is not sufficient to monitor LC and EC to
predict the termination of a loop. Given the multiple stages
of pipeline 200, the final loop branch instruction will retire
(and LC and/or EC will be updated) multiple clock cycles
after pipeline 100 should have been resteered to the instruc
tion Sequence that follows the loop. A Successful loop
prediction Scheme provides a termination prediction while
loop branch instructions are still in process in pipeline 100.
The largest performance benefit is obtained when the loop
termination can be predicted Soon after the final loop branch
has entered pipeline 100.
0035 FIG. 2 is block diagram of one embodiment of
loop predictor 190 of FIG. 1. The disclosed embodiment of
loop predictor 190 includes a counter 210, an end of loop
(EOL) module 230, and a control module 240. Counter 210
includes circuitry to track the number of loop branch instruc
tions that are in process (N IN FLT) and the number of loop
branch instructions yet to issue (NTO ISSUE).
0036) For one embodiment of the invention, N IN FLT
includes all loop branch instructions that have been loaded
into buffer 140 but have not yet been retired. These may be
tracked by incrementing N IN FLT when a loop branch is
issued at the front end of pipeline 100 and decrementing
N IN FLT when a loop branch is retired at the back end of

Jun. 27, 2002

pipeline 100. In the disclosed embodiment, a signal L. BR is
asserted to counter 210 when a loop branch is issued, and a
signal BR RET is asserted to counter 210 when a loop
branch retires.

0037 For one embodiment of the invention, counter 210
begins tracking N TO ISSUE as the loop approaches its
terminal iteration, Signaling entry into termination mode.
For example, NTO ISSUE may be determined by the
difference between an expected number of loop branches
still to be retired (N TO RET) and N IN FLT as termina
tion mode is reached. Thereafter, NTO ISSUE is decre
mented for each additional loop branch issued, e.g. each
time L. BR is asserted.
0038. For one embodiment of the invention, counter 210
may be a dual mode counter in which N IN FLT is tracked
in a first mode and N TO ISSUE is tracked in a second, e.g.
termination, mode (FIG. 3B). For another embodiment of
the invention, counter 210 may include Separate counters to
track N IN FLT and N TO ISSUE (FIG. 3A).
0039. A switch between counting modes (or between
counters) is triggered when the terminal iteration of a loop
is approached. AS noted above, the point at which the Switch
occurs may depend on the type of loop involved. For
example, the approach of the terminal iteration for a counted
loop may be indicated by a value of LC below a threshold
value. The approach of termination for a modulo-Scheduled
counted loop, e.g. CEXIT or CTOP, may be indicated by a
value of LC and/or EC below a threshold value. For modulo
scheduled while loops, e.g. WEXIT or WTOP, approach of
the terminal iteration may be indicated by a value of EC
below a threshold value and/or by a change in the state of the
loop predicate.

0040 For another embodiment of the invention, a pre
dicted number of loop iterations may be used to determine
when the terminal iteration is being approached. For
example, processor 100 may store a number of iterations for
recent loops. When one of these loops is encountered again,
the difference between the current number of iterations and
the predicted number of iterations (based on the previous
encounter) may be compared with a threshold value. In this
embodiment, termination mode is indicated when the dif
ference falls below the threshold value.

0041. In the dual mode implementation of counter 210,
the counter is Switched to termination mode when the
terminal iterations of the loop approaches. In the two counter
implementation of counter 210, termination counter 214 is
activated. In both cases, the value of N IN FLT is used to
initialize N TO ISSUE. The two counter implementation of
counter 210 is discussed in conjunction with FIG. 3A. The
dual mode implementation of counter 210 is discussed in
conjunction with FIG. 3B.

0042. For one embodiment, counter 210 is initialized to
N TO ISSUE when termination mode is entered, using the
current values of N IN FLT and N TO RET N TO RET
may be derived, for example, from LC and/or EC. There
after, N TO ISSUE is adjusted to reflect any loop new loop
branch instructions that enter pipeline 100. The adjusted
value represents the expected number of loop branches Still
to be issued before the termination of the loop.
004.3 EOL module 230 is coupled to monitor N TO IS
SUE. E.OL module 230 compares N TO ISSUE to one or

US 2002/008331.0 A1

more threshold values and generates a resteer Signal when a
match occurs. The threshold value used may depend on a
number of factors, Such as the type of loop being monitored
and the timing necessary to resteer pipeline 100. When the
loop terminates on a fall through branch, e.g. the loop branch
is NT on the final iteration, the resteer address is just the
address of the instruction that follows the loop branch in
Sequence. For one embodiment of the invention, resteer is
accomplished by over-riding the default (branch taken)
target address indicated by BPS1120.
0044) Control module 240 initiates tracking of N IN
FLT, N TO RET, and triggers EOL module 230 as required.
In one embodiment of the invention, control module 240
monitors instructions entering buffer 140 and initializes
N IN FLT when a loop-start signal (L INI) is asserted. For
example, EC is typically initialized at the Start of a modulo
scheduled loop by a MOV TO EC instruction. For counted
loops, LC may also be initialized at this time by a MOV
TO LC instruction. For one embodiment of the invention,
L INI is asserted to control module 240 when a MOV
TO EC or MOV TO LC instruction is detected in buffer
140, depending on the loop type being monitored. L INI
may also be asserted on the first occurrence of a loop branch
following a flush of the back end stages of pipeline 100. In
this case, N IN FLT is reset to zero.
0.045 Control module 240 also receives a signal,
L TERM, which is asserted in response to the approach of
a terminal iteration of a loop. For one embodiment, control
module 240 deactivates in-flight counter 212 and activates
EOL module 230 when L TERM is asserted. For another
embodiment, control module 240 Switches counter modes
(to termination mode) and activates EOL module 230 when
L TERM is asserted.
0.046 FIG. 3A is a schematic diagram showing one
embodiment of a loop predictor pipeline 300 in accordance
with the present invention. Loop prediction pipeline 300 is
divided into pipeline stages (“pipe stages”) 301 and 302 to
indicate when various elements operate. Loop predictor
pipeline 300 is illustrated with exemplary embodiments of
counter 210, EOL module 230, and control module 240. The
exemplary embodiment of counter 201 includes in-flight
counter 212 and termination counter 214.

0047. In the disclosed embodiment, control module 240
activates in-flight counter 212 and EOL module 230 in
response to Signals from various components of pipeline
100. Control module 240 includes first and second OR gates
342, 344, and an AND gate 348 with an inverted input. OR
gate 342 asserts a CNTR ON signal to in-flight counter 212
when L INI is asserted. OR gate 344 and AND 348 assert
a termination mode signal (TMODE) when L TERM is
asserted and L INI is deasserted, e.g. when a loop that is in
progress approaches termination. T MODE is deasserted
when L INI is reasserted.
0048. In-flight counter 212 is initialized by CNTR ON to
track the number of loop branches that are in process. In
particular, in-flight counter 212 employs first and Second
MUXs 310,312, respectively, and first adder 314 to track the
number of valid loop branches loaded into, e.g., buffer 240.
MUX 310 couples Zeroes to a first input of adder 314 until
CNTR ON is asserted, after which it couples the output of
in-flight counter 212 (N IN FLT) to the first input of adder
314. The second input of adder 314 is driven by a hit signal

Jun. 27, 2002

(LBR) from BPS1120, which increments N IN FLT when
a loop branch hits in BPS1120. In an alternative embodi
ment, BPS2120 may be used to generate L BR to in-flight
counter 212, provided it can be done within the timing
constraints of pipeline 300.
0049. The incremented value of N IN FLT is coupled to
one input of MUX 312, the other input of which receives an
unincremented version N IN FLT (bypassed from MUX
310). MUX 312 couples the incremented or unincremented
value of N IN FLT to a second adder 316, according to
whether or not a valid loop branch is detected in pipe Stage
302. This is indicated by BR VLD, which may be set and
reset by branch decoder 160 to confirm that the hit in
BPS1120 was generated by a valid loop branch.
0050. A second adder 316 receives N IN FLT at its first
input and a branch retirement signal (BR RET) at its Second
input. BR RET is asserted each time a loop branch is retired.
It may be generated, for example, by BRU 170 or associated
retirement logic. Second adder 316 decrements N IN FLT
when a loop branch is retired (BR RET asserted), while first
adder 314 and MUX 312 increment N IN FLT when a valid
loop branch is issued. N IN FLT thus represents the number
of loop branches issued but not yet retired in pipeline 100.
0051) Control module 240 updates N IN FLT in this
manner until L TERM is asserted, causing loop predictor
160 to enter termination mode (T MODE asserted). When
termination mode is initiated, the latest value of N IN FLT
is provided to terminal counter 214, which uses it to deter
mine a number of loop branches yet to be issued (NTO IS
SUE). In termination mode, adder 314 and MUX 312 of
in-flight counter 312 couple LOOP BR unaltered to termi
nal counter 314, where it is used to update N TO ISSUE.
0.052) When L TERM is first asserted, termination
counter 314 receives the current value of N IN FLT along
with an indication of the number of iterations of the loop still
to be retired (N TO RET). Termination counter 314 adjusts
N TO RET to reflect the number of loop branches in flight
(N IN FLT), providing a signal (NTO ISSUE) that rep
resents the number of loop branches still to be issued.
Thereafter, NTO ISSUE is decremented by counter 312
each time a valid loop branch (BR VLD) reaches buffer
140. N TO ISSUE is used by E.OL module 230 to detect the
terminal iteration of the loop.
0053. The disclosed embodiment of termination counter
314 includes a MUX 324 and an adder 328. One input of
adder 328 receives N IN FLT from in-flight counter 212
when termination mode is entered. Thereafter, it receives an
indication of each valid loop branch that reaches buffer 140.
On assertion of L TERM, MUX 324 couples N TO RET to
adder 328, which subtracts N IN FLT to provide N TO IS
SUE. Thereafter (when L TERM is deasserted), MUX 324
couples the output of termination counter 314 (NTO IS
SUE) to adder 328, which adjusts it to reflect any additional
loop branches that have reached buffer 140 in the interim.
0054 EOL module 230 receives N TO ISSUE and com
pares it with one or more Selected threshold values. For one
embodiment, the threshold values indicate when to initiate a
resteer Signal in anticipation of the end of the loop. Depend
ing on the type of loop being predicted, threshold values of
0, 1, and 2 are compared with N TO ISSUE. E.OL module
230 generates a resteer signal (RESTEER), when N TO IS
SUE matches one of the threshold value.

US 2002/008331.0 A1

0055. The disclosed embodiment of EOL module 330
includes three comparators 331-333, four AND gates, 334,
335, 336, 337, and OR gate 338. Comparators 301-303
compare the threshold values 0, 1, and 2, respectively, with
the current value of N TO ISSUE. Their outputs are
coupled to inputs of AND gates 334-336, respectively,
which are enabled by T MODE. AND gate 336 must also be
enabled by LOOP BR, which is asserted when a loop
branch is detected in pipe stage 302. For selected loop
branch configurations, AND gate 336 eliminates timing
constraints that would otherwise be present when two loop
branches occur in close Succession.

0056) OR gate 338 asserts a signal (MATCH) to AND
337 when any of the threshold values has been reached. The
output of AND 337 is a signal (END) that is asserted when
L. BR and MATCH are asserted concurrently. The effect of
asserting END may depend on the type of loop being
processed. For one embodiment, the branch prediction pro
vided by BPS1 for CLOOP, CTOP and WTOP loops is TK.
Asserting END may alter the predicted direction to NT, or it
may trigger branch decoder 160 to ignore the predicted TK
direction and resteer pipeline 100 to the fall through address.
For example, a resteer module in branch decoder 160 may
provide the resteer address to IP MUX 250 when END is
asserted. For the case of a CEXIT or WEXIT loop, the
branch prediction provided by BPS1 is NT. Asserting END
may alter it to TK, or it may otherwise trigger a resteer to the
branch target address.
0057 FIG. 3B shows another embodiment of loop pre
diction pipeline 300' in accordance with the present inven
tion. Loop prediction pipeline 300' employs a single counter
350 having logic to enable two different counting modes. In
this embodiment, the functions of in-flight counter 312 and
termination counter 314 are incorporated in a counter 350
that is capable of operating in two modes, in-flight mode and
termination mode. Control module 240 and EOL module
230 are substantially the same as in FIG. 3A. The following
discussion focuses on operation of dual mode counter 350.
0.058 Dual mode counter 350 includes a MUX 354,
MUX control logic 358, first and second adders 360, 362,
and increment/decrement blocks 368, 370. MUX control
logic monitors T MODE, BR RET, L TERM, BRVLD,
and L. BR signals, and selects an output for MUX 354 from
one of its inputs, according to the States of the monitored
signals. The output of MUX 354 may represent N TO IS
SUE or N IN FLT, depending on the mode in which counter
350 is operating.

0059). MUX 354 receives as inputs (1) logical zero, (2) a
copy of its output, (3) a decremented copy of its output; (4)
an incremented copy of its output, (5) an output of adder
360, and (6) an output of adder 364. The output of adder 360
provides the difference between N TO RET and the current
value at the output of MUX354, e.g. N IN FLT. The output
of adder 364 provides the difference between N TO RET
and an incremented copy of the output of MUX 354. One of
the adder output values is selected to determine N TO IS
SUE when counter 350 transitions from its first mode to its
Second mode.

0060. In operation, MUX control module 358 triggers
MUX 354 to provide 0 at its output until CNTR ON is
asserted, at which point counter 350 enters a first mode
(in-flight mode). In first mode, counter 350 tracks

Jun. 27, 2002

N IN FLT at its output 352 by incrementing (via block 370)
or decrementing (via block 368) the value at output 352
depending on the states of signals L. BR, BR VLD, and
BR RET. For example, when a valid branch enters register
140, L. BR is asserted, BR VLD, and the incremented value
is provided to output 352. When a branch retires, BR RET
is asserted, and the decremented value is provided to output
352.

0061. When T MODE is asserted, counter 350 switches
to a second mode (termination mode). When T MODE is
asserted, MUX control module 358 causes MUX 354 to
couple the output of adder 360 or adder 364 to counter
output 352. The value is the difference between N TO RET
and N IN FLT or N TO RET and an incremented value of
N IN FLT. The first represents the number of loop branches
Still to be issued when there is no loop branch in pipe Stage
301. The second represents the number of loop branches still
to be issued when there is loop branch in pipe stage 301. The
various inputs to MUX 354 and the conditions under which
they are Selected are Summarized in Table 1.

TABLE 1.

MUX INPUT FIRST MODE SECOND MODE

O MOV TO LC, MOV TO LC,
MOV TO EC, MOV TO EC,
Back End Flush Back End Flush

C Non-loop events Non-loop events
C - 1 BR RET Asserted L BR Asserted
C + 1 L BR Asserted NA

N TO RET - C L TERM Asserted & NA
L BR Not Asserted

N TO RET – (C + 1) L TERM & NA
L BR Asserted

0062 Here, C represents the value at the output of MUX
354. This value is N IN FLT when counter 350 is in first
mode.

0063 FIG. 4 is an overview of a method 400 for pre
dicting loop branches in accordance with the present inven
tion. Method 400 is initiated 410 when the start of a loop is
detected. This may be done, for example, by monitoring one
or more counters that are used to track the Status of loops and
initiating method 400 when one of these counters is initial
ized. Following initiation, loop branches are tracked 420
through various stages of the process pipeline. In one
embodiment of the invention, loop branches that have been
issued to various execution resources and loop branches that
have been retired are tracked Separately. The number of loop
branches remaining to be issued is then determined 430 from
the tracked loop branches and available loop data. The loop
branches remaining to be issued are compared 440 against
one or more threshold values. If the comparison generates a
match, a resteer Signal is generated 450. Otherwise, method
400 continues tracking 420 loop branches.

0064 FIG. 5 represents one embodiment of method 400.
When a loop start is detected 510, a first counter is initiated
520. The first counter tracks the number of loop branches
that have been issued but not yet retired, e.g. N IN FLT. For
one embodiment, this is accomplished by incrementing the
first counter each time a loop branch is fetched to an
instruction buffer and decrementing the counter each time a
loop branch is retired. In addition to tracking 530 in process

US 2002/008331.0 A1

loop branches, a branch termination signal is checked 540 to
determine whether loop is close to its final iteration. This
may be determined, for example, by monitoring the EC
counter and asserting L TERM when EC indicates that the
loop pipeline is Starting to empty.
0065. When the loop approaches its final iteration 540,
the number of loop branches still to be issued is determined
550. For one embodiment, this is done by reducing the
number of loop branches still to be retired (N TO RET) by
the number of loop branches in process (N N FLT) and
thereafter updating N TO RET as additional loop branches
are issued, e.g. L. BR is asserted.
0.066 The issued loop branches can be monitored in the
front part of the pipeline. Consequently, the number of loop
branches still to be issued is useful for predicting the end of
the loop, Since pipeline resteering is handled in the front end
of the pipeline. In the disclosed embodiment, this is accom
plished by comparing 560 the number of loop branches
remaining to be issued with one or more threshold values. If
a match is detected 560, a resteer Signal is generated and the
predicted target address is overwritten by the resteer address.
If no match is detected 560, determining step 550 is
repeated. In the disclosed embodiment, steps 550 and 560
represent termination mode.
0067. There has thus been provided a system and method
for predicting loop branches and, in particular, for predicting
the termination of loop branches to eliminate a mispredic
tion on the terminating branch. The System employs a
counter to track the number of in-flight loop branches and
the number of loop branches that remains to be issued. The
number of remaining loop branches is compared with one or
more threshold numbers and a resteer Signal is generated
when a match is detected. In one embodiment, a control
module deactivates the first counter and activates the Second
counter and the comparison logic when the branch nears
termination.

What is claimed is:
1. A loop branch prediction System comprising:

a counter to track a number of loop branch instructions to
be issued; and

an end of loop (EOL) module to generate a resteer signal
when the number of loop branch instructions to be
issued reaches a threshold value.

2. The loop branch prediction System of claim 1, wherein
the counter tracks a number of loop branch instructions
in-flight and determines the number of loop branch instruc
tions to be issued from the number of loop branch instruc
tions in-flight when a loop termination condition is detected.

3. The loop branch prediction system of claim 2, further
comprising a control module to detect a loop termination
condition and trigger the counter to determine the number of
loop branch instructions to be issued.

4. The loop branch prediction system of claim 1, wherein
the counter has a first mode for tracking a number of loop
branch instructions in-flight and a Second mode for tracking
the number of loop branch instructions to be issued.

5. The loop branch prediction system of claim 4, further
comprising a control module to detect a loop termination
condition and trigger the counter to Switch from the first
mode to the Second mode.

Jun. 27, 2002

6. The loop branch prediction system of claim 5, wherein
the counter is initialized in the Second mode to a value
determined from a difference between an expected number
of loop branch instructions to be retired and the number of
loop branch instruction in flight.

7. The loop branch prediction system of claim 1, wherein
the counter includes a first counter to track a number of loop
branch instructions in flight and a Second counter to track the
number of loop branches to be issued.

8. The loop branch prediction system of claim 7, wherein
the Second counter is initialized to a value representing a
number of loop instructions to be issued when a termination
condition is detected.

9. The loop branch prediction system of claim 8, wherein
the number of loop branch instructions to be issued is a
difference between the number of loop branch instructions in
flight and an expected number of loop branch instructions
loop when the termination condition is detected.

10. A processor comprising:
a branch execution System to execute loop branch instruc

tions,
a counter to track a number of loop branch instructions yet

to issue to the branch execution System; and
an end of loop detector to generate a resteer signal when

the number of loop branch instructions yet to issue
reaches a Selected value.

11. The processor of claim 10, wherein the counter tracks
a number of branch instructions in-flight in a first mode,
tracks the number of branch instructions yet to issue in a
Second mode, and Switches from the first mode to the Second
mode responsive to a termination signal.

12. The processor of claim 11, further including a control
module to monitor various loop Status indicators and trigger
a mode Switch in the counter according to the monitored
loop Status indicators.

13. The processor of claim 12, wherein the number
tracked in the first mode is used to initialize the counter in
the Second mode, when a mode Switch is triggered.

14. The processor of claim 10, further including a decoder
to identify issued loop branch instructions to the counter.

15. The processor of claim 14, further including a resteer
module to provide a fall through address on receipt of the
resteer Signal.

16. A method for predicting loop branches comprising:
counting a number of in-flight loop branches:
counting a number of retired loop branches,
determining a number of outstanding loop branches from

the numbers of in-flight and retired loop branches,
asserting a loop branch resteer signal when the number of

Outstanding loop branches reaches a threshold value.
17. The method of claim 16, wherein counting the number

of in-flight loop branches comprises counting the number of
loop branches issued to an instruction queue.

18. The method of claim 16, wherein counting the number
of retired loop branches comprises counting the number of
loop branches retired by a branch execution unit.

19. The method of claim 16, wherein determining the
number of outstanding loop branches comprises:

determining a number of remaining loop branches from
the number of retired loop branches; and

US 2002/008331.0 A1

Subtracting the number of in-flight branches from the
number of remaining branches.

18. A processor comprising:

a counter to track loop branch instructions in flight and
loop branch instructions yet to issue;

a branch execution System to receive issued loop branch
instructions, retire the received loop branch instruc
tions, and track the retired loop branch instructions, and

an end-of-loop module to compare the loop branch
instructions yet to issue with a threshold value and
assert a resteer Signal when a match is indicated.

19. The processor of claim 18, wherein the end-of-loop
module compares the outstanding loop branch count to the
threshold value and assert the resteer signal a match is
detected.

20. The processor of claim 19, further comprising a
termination detector to Switch the counter between tracking
track loop branch instructions in flight and loop branch
instructions yet to issue on receipt of a loop termination
Signal from the branch execution System.

21. A processor comprising:

means for identifying a branch instruction associated with
a loop;

Jun. 27, 2002

means for executing the identified branch instruction; and
means for predicting termination of the loop using infor

mation from the identifying and processing means.
22. The processor of claim 21, wherein the predicting

means comprises:
means for tracking a difference between a number of

times the branch instruction is identified and a number
of time the branch instruction is retired; and

means for comparing the difference with a threshold value
to indicate loop termination when the difference and
threshold value match.

23. The processor of claim 22, wherein the tracking means
comprises:

a first counter to track the number of times the branch
instruction is identified; and

a Second counter to a number of times the branch instruc
tion will be identified, using the number of times the
branch has been identified and a total number of times
the branch instruction is expected to be retired.

24. The processor of claim 23, wherein the tracking means
further comprises a means for detecting loop termination to
detect an end of loop condition and initialize the Second
counter when the end of loop condition is detected.

k k k k k

