PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/31782
GOGF 11/00, 13/00, 11/34, HO3M 13/00 Al . L

(43) International Publication Date: 23 November 1995 (23.11.95)

(21) International Application Number: PCT/US95/05098 | (81) Designated States: AU, CA, CN, JP, KR, MX, European

(22) International Filing Date: 27 April 1995 (27.04.95)

(30) Priority Data:

08/241,767 12 May 1994 (12.05.94) Us

(71) Applicant: AST RESEARCH, INC. [US/US]; 16215 Alton
Parkway, Irvine, CA 92718 (US).

(72) Inventor: BUNNELL, James, C.; P.O. Box 50146, Irvine, CA
92619 (US).

(74) Agent: SIMPSON, Andrew, H.; Knobbe, Martens, Olson and
Bear, 16th floor, 620 Newport Center Drive, Newport Beach,
CA 92660 (US).

patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: CPU ACTIVITY MONITORING THROUGH CACHE WATCHING

/'20

/22

/‘.3’2

5 y
0.

- ll MAIN
cPU . 4 MEMORY
e 0 & L =

SysTEM [V
45\ /.3'5
READ /WRITE /""
DATA/CONTROL CYCLE . —
MEMORY/I0 CYOLE %0 MONITOR <::_
A — \24

ICLOCK |
26

A central processing unit ("CPU") activity monitor and method provides CPU (28) activity information. The CPU activity monitor
includes a timer and an activity event counter for receiving a plurality of mode signals from the CPU (28), a cache miss signal from a
cache memory system (30), and a clock signal from a clock (26). An activity-to-inactivity value defines when the CPU transitions from an
active state to an inactive state. An activity threshold defines when the CPU transitions from an inactive state to an active state.

(57) Abstract

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China
Czechostovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

IT

JP

KE
KG
KP

KR
KZ
LI
LK
LU
LV
MC

MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SI

SN

TG
T

UA
Us
UZ
VN

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

a1

CPU ACTIVITY MONITORING THROUGH CACHE WATCHING

Background of the Invention
Field of the invention

This invention relates to computer power control systems and, more particularly, to a central processing

unit ("CPU") activity monitor, and @ method for monitoring CPU activity.

Background of the invention

Power management systems are commonly used in computers to reduce power consumption. Such power
management systems are useful in connection with meeting environmental regulations, reducing operating costs, and
extending operating periods of hattéry-powered, or limited power-source computers. Generally, power management
systems reduce the power consumed by inactive components, peripherals and other devices within or connected to
the computer. However, to operate efficiently, power management systems need timely information regarding the
activity levels of various components.

In order to efficiently control power consumption, power management systems often deactivate unused
components, reduce clock speeds, suspend activity, turn inactive components off, etc. Therefore, an efficient power
management system needs accurate information regarding the activity status of a particular component. Untimely,
or inaccurate information on the activity status of components leads to inefficient power management which can
diminish battery life, reduce computer performance, and limit the number of supportable system configurations.

If activity information falsely indicates that a component is active when in fact it is inactive, the power
management system fails to reduce power consumption. If activity information falsely indicates that a component
is inactive when in fact it is active, the power management system deactivates a needed component, thus slowing
system response time.

Generally, power management is a joint effort between software and hardware. Together, the hardware
and software form a power management system. Typically the power management software implements the power
management strategy of controlling hardware devices. The power management software selects which devices to
monitor, monitors system activity, and device activity, and triggers power management functions.

Conventional power management software often monitors accesses to inputjoutput devices, interrupt
requests, and memory accesses in order to adjust power consumption rates. In one approach, power management
software monitors the accesses to a component or peripheral assigned to a particular memory location. Such
memory mapped devices aflow the power management software to monitor memory accesses to determine device
activity. However, the power management software must know which memory location is assigned to a device.
In addition, the power management software must be modified whenever a computer system is reconfigured with
different devices.

in addition to software monitoring, hardware can also provide information regarding the usage of the
components and peripherals in order to control power consumption. At present, a number of approaches exist in the

prior art that measure and control power usage. For example, peripherals, components and other devices have

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098
2.

internal power management circuitry that provides activity information. In addition, some peripherals can monitor
themselves and deactivate themselves when a period of inactivity occurs. Such self-deactivation is often called a
self time-out. Typically, the power management software can access the power management functions of the
peripheral and set activity parameters such as the interval for an inactivity time-out.

A device with internal power management functions can also interact with the power management software
to provide information on system activity. For example, when a device transitions from an active state to an inactive
state, the internal circuitry signals the power management software that the device is inactive. The power
management software can reduce the device's clock speed, stop the clock speed, turn the power off, etc. If, on
the other hand, a device transitions from an inactive state to an active state, the internal circuitry signals the power
management softwae to activate the device. The power management software can increase the clock speed to the
device, restart the clock, turn the power on, etc.

in conventional power management systems, the internal circuitry of a device communicates to the power
management software via an interrupt. The internal circuitry of a device generates a power system interrupt when
the device transitions from one activity state to another. The power system interrupt, sometimes called a trap,
causes the microprocessor to suspend its current operations, save the status of its work, and transfer control to
the power system software. The power system software then determines what caused a power system interrupt,
obtains the necessary information, and controls hardware devices accordingly.

Many devices such as disk drive controllers, keyboard controllers, and other input/output devices now
incorporate internal circuitry to monitor device activity. Therefore, some power management systems allow the
monitoring of most peripherals and components. However, conventional power management systems fail to provide
accurate information regarding the activity of the central processing unit {"CPU").

The CPU is a significant power consuming device. To control CPU power usage, the power management
software needs accurate information about CPU activity. Current methods of obtaining information regarding CPU
activity include monitoring interrupts, modem rings and parity errors. However, the CPU can be engaged in active
work without communicating via a modem, generating interrupts or generating parity errors. Therefore, a CPU
activity monitoring system that only monitors interrupts, modem rings and parity errors can falsely indicate that the
CPU is inactive.

Other conventional CPU monitoring devices monitor memory accesses to determine CPU activity. Monitoring
of memory accesses can falsely indicate that the CPU is active since accesses to memory can include accesses to
the stack, instruction cycles, access to memory mapped inputfoutput devices, and data read/write cycles when the
CPU is waiting for a certain event to occur. For example, if the CPU is executing a continuous loop while waiting
for some event to happen the CPU could repetitively access the same memory locations for instructions and data.
Therefore, in order for memory accesses to provide CPU activity information, the power management software needs
to analyze and to bias data accesses appropriately.

In order to determine if the CPU is engaged in useful work, the power management system needs to know

when the CPU is executing an "activity event" that signifies a new action by the CPU. The CPU is engaged in

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

3

useful activity when the CPU does not repetitively access the same memory locations. Therefore it is desirable to
differentiate repetitive CPU memory accesses (i.e. accesses to the stack, to the instructions in a repeating routine,
or to data locations in a repeating routine) from non-repetitive memory accesses that signify the CPU is engaged in
useful activity.

In order to analyze memory accesses, the power management system must track which memory locations
the CPU accesses and how often the CPU accesses such locations. Therefore, monitoring memory accesses often
requires storing past memory accesses and comparing each new memory access with past memory accesses to
determine when the CPU is engaged in productive work. Such an approach requires exclusive CPU processing power
and memory.

Other approaches that monitor memory accesses to determine CPU activity require the power management
software to know where the stack, operating system, and other frequently used memory locations are located within
the CPU memory. However, in this approach the power management software must be configured to the computer
and operating system. In addition, the power management software must adapt whenever the computer system is
reconfigured.

Furthermore, multi-tasking operating systems complicate the monitoring of memory accesses. Since multi-
tasking operating systems often shift applications to different memory locations, the power management software
needs additional information from the multitasking operating system in order to track repetitive accesses to

frequently used memory locations.

Summary of the Invention
The problems outlined above are in large measure solved by the method and apparatus of the present

invention. That is, the CPU activity monitoring device of the present invention provides information regarding whether
the CPU is performing useful work. Adjustable parameters allow the CPU activity monitor to provide accurate and
real time CPU activity monitoring information. The present invention also reduces the complexity of past CPU
monitoring devices and methods.

Accurate, real time CPU activity information allows the power management software to conserve power
consumption. Better control of power consumption enhances heat dissipation and battery performance, allows smaller
batteries, and provides more computer time from each battery charge. Accordingly, the present CPU activity
monitoring device allows the design of smaller and lighter portable devices. Lower power consumption also allows
computers to better meet environmental regulations and decrease operating costs.

Furthermore, the CPU activity monitoring device of the present invention offers flexibility for future computer
designs and configurations. The CPU activity monitoring device does not need information regarding the operating
system, the configuration of the memory map, input/output devices, peripherals and other components. Thus the CPU
activity monitoring device does not need system customization and can operate transparent to the user or the

applications software. Thus, a user need not set CPU power management parameters.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

4.

A further feature of the present invention allows the power management software to selectively change
parameters. The power management software adjusts the CPU activity monitoring device, and sets internal registers
in order to define a monitoring interval, an activity-to-inactivity transition value, and an activity threshold.

Broadly speaking, the present invention contemplates a CPU monitoring device which uses hardware to
monitor CPU accesses to main memory. The CPU activity monitor monitors a microprocessor with a CPU and a
cache memory system. The CPU and cache memory system connect to the CPU activity manitor via a cache miss
signal, a plurality of mode signals, the address bus, and the data bus. The plurality of mode signals communicate
the operating modes of the types of memory accesses executed by the microprocessor such as instruction fetch
cycles, memory read cycles, and (3) memory write cycles.

In addition, the cache memory system includes memory for holding the most recently used information for
future reuse by the CPU. Thus, the CPU views the cache as another memory module. The cache memory system
asserts a cache miss signal when the microprocessor accesses a storage location that does not exist in the cache
memory system (a miss). If the requested data is not in the cache, the CPU accesses main memory.

In order to provide more accurate information about the CPU, the present invention ignores instruction cycles
and only monitors data read and write cycles. Instruction fetch cycles can generate cache miss signals that falsely
indicate that the CPU is actively engaged in useful work. For example, in multi-tasking systems, the CPU often
swaps concurrently operating applications in and out of the cache while the CPU is waiting for some event to occur.

In a preferred embodiment of the present invention, cache miss information combined with data write cycles
can provide useful CPU activity information. For example, if the CPU is executing a continuous loop while waiting
for some event to happen, the CPU could repetitively access the same memory locations for data. If the CPU
repetitively accesses the same memory locations, the cache memory system stores the needed data. Thus a cache
miss does not occur. If however, the CPU is actively engaged in useful work, the CPU accesses a variety of memory
locations periodically generating a cache miss.

in addition, the CPU activity monitor receives a clock signal. The CPU activity monitor uses the clock
signal, the cache miss signal, and the plurality of mode signals to determine when the CPU transitions from an active
to an inactive state, or to determine when the CPU transitions from an inactive to an active state. The present
invention determines CPU activity by counting the number of activity events that occur within a certain time interval.
The preferred embodiment defines a CPU activity event as a CPU data write cycle that generates a cache miss
signal.

In another aspect of the present invention, the CPU activity monitor communicates CPU activity information
to the power management software. The power management software initializes the CPU activity monitor and
implements the power management strategy of controliing the CPU. The CPU activity monitor communicates with
the power management software via interrupt requests. To conserve power, the power management software can
reduce CPU clock speeds, and suspend CPU activity when the CPU is inactive.

The power management software can obtain CPU activity information by accessing status flags that the

CPU activity monitor maintains in a control register. The status flags include an activity event flag and an inactivity

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

5.

event flag that are accessible by the CPU. The activity and inactivity event flags indicate the activity status of the
CPU. '

In addition to CPU status information, the CPU activity monitor also maintains notification flags that
determine when to generate an interrupt. Two flags, the activity notification flag and the inactivity notification flag,
command the CPU activity monitor to notify the power management software when the CPU transitions from one
state to another. Accordingly, the activity notification flag directs the CPU activity monitor to generate an interrupt
when the CPU transitions from inactivity to activity. The inactivity notification flag directs the CPU activity monitor
to generate an interrupt when the CPU transitions from activity to inactivity.

A further aspect of the invention is that an activity-to-inactivity transition value, and an activity threshold
determine whether the CPU is active or inactive. The activity-to-inactivity transition value represents the number
of CPU activity events that the CPU activity monitor counts within a certain time interval. If the CPU monitor fails
to count the number of activity events specified by the activity-to-inactivity transition value, the CPU is inactive.
The activity threshold represents the number of successive time intervals in which the number fo CPU activity events
must rise above the activity-to-inactivity transition value. If the CPU executes enough activity events to rise above
the activity-to-inactivity transition value, for the specified number of successive time intervals, the CPU is active.

In accordance with the method of the invention, the CPU generates a plurality of mode signals that
correspond to the pperating mode of the CPU, and a cache memory system generates a cache miss signal when data
requested by the CPU is not stored in the cache memory. The plurality of mode signals and the cache miss signal
determine an activity event.

A timer defines the expiration of a time interval and a counter counts each activity event that occurs within
the time interval. The count is compared to the activity-to-inactivity transition value and an inactivity event signal
is generated when the count is less than or equal to the activity-to-inactivity transition value at the expiration of
the time interval. In addition, the number of successive time intervals where the number of CPU activity events rise
above the activity-to-inactivity transition point is compared to the activity threshold. An activity event signal is
generated when the number of successive time intervals is equal to or greater than the activity threshold.

These and other aspects, advantages, and novel features of the invention will become apparent upon reading

the following detailed description and upon reference to accompanying drawings in which:

Brief Description of the Drawings
FIG. 1 is a block diagram of the CPU activity monitoring system comprising a microprocessor, a main

memory, a CPU activity monitor, and a clock.
FIG. 2 is a block diagram of the CPU activity monitor showing an internal control bus connecting a control
circuit, a timing circuit, an event circuit, a threshold register, and an activity notification circuit.
FIG. 3 is a block diagram of the control circuit showing the address decode logic and the control register.
FIG. 4 is a block diagram of the timing circuit showing a time register, a time value counter, a comparator

and reset logic.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

-6

FIG. 5 is a truth table of the generation of the time reset signal from the retrigger timer enable flag, the
time signal, and the event overflow signal.

FIG. 6 is a block diagram of the event circuit comprising an event decoder, an event couhter, an event
comparator, an event reset logic and an event register.

FIG. 7 is a cycle decode table of CPU mode signals: the memory/I0 signal, the data/control signal, and the
read/write signal.

FIG. 8 is a truth table for generating the event detect signal from the read enable flag, the write enable
flag, and the cache miss signal for various read/write cycles.

FIG. 8 is a truth table for the generation of the event reset signal, the retrigger event enable flag, the time
signal, and the event overflow signal.

FIG. 10 is a block diagram of the activity notification circuit showing an inactivity comparator, an activity
comparator, and an interrupt generator.

FIG. 11 is a truth table of the interrupt generator which responds to the activity notify flag input, inactivity
notify flag input, and the activity event flag input, the inactivity event flag, to generate the interrupt request output,
the activity notify flag output, and the inactivity notify output.

FIGs. 12A, 128, and 12C show a state diagram of a method for operating a CPU activity monitor according
to the present invention.

FIG. 13 is a flow chart of a power management software interrupt routine according to the present
invention.

FIG. 14 is a block diagram of an alternative embodiment of the CPU activity monitoring system comprising
a microprocessor, a main memory, and a clock wherein the microprocessor further includes a CPU, a cache memory

system and a CPU activity monitor.

Detailed Description of the Invention

FIG. 1 illustrates a block diagram of a power management system that includes a microprocessor 20, a main

memory 22, a CPU activity monitor 24, and a clock 26. The microprocessor 20 further includes a central processing

.unit ("CPU") 28 and a cache memory system 30. The microprocessor 20 communicates to the CPU activity monitor

24 via a cache miss signal 36 and a plurality of mode signals 38, 40, and 42, an address bus 32, and a data bus
34. As explained in more detail below, the plurality of mode signals include a read/write signal 38, a data/control
signal 40, and a memory/l0 signal 42 that communicate the operating mode of the microprocessor 20.

The cache memory system 30 generates the cache miss signal 36 when the microprocessor 20 must access
the main memory 22. Whenever the CPU 28 requests data, the cache memory system 30 checks to see if data
already exists in the cache memory system 30 (a hit). If the data does not exist in the cache memory system 30
(a miss), the CPU 28 accesses the main memory 22. Thus, the cache memory system 30 generates the cache miss

signal 36 when the CPU 28 accesses data that is not stored in the cache memory system 30.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

b2

The CPU activity monitor 24 monitors the number of CPU activity events that occur during a certain time
interval. In the preferred embodiment, the duration of the time interval has a range of one to tens of milliseconds.
The clock 26 which generates a clock signal 44 is a system clock or a -division of the system clock. The CPU
activity monitor 24 uses the cache miss signal 36, the clock signal 44, and the plurality of mode signals 38, 40,
and 42 to generate an interrupt request 46. The interrupt request 46 connects to the microprocessor 20 and
initiates a power system interrupt service routine.

FIG. 2 illustrates a block diagram of the CPU activity monitor 24 constructed in accordance with the
present invention. The CPU activity monitor 24 includes a control circuit 50, a timing circuit 52, an event circuit
54, a threshold register 56, and an activity notification circuit 58. A control bus 60 interconnects the control circuit
50, the timing circu’t 52, the event circuit 54, the threshold register 56, and the activity notification circuit 58.

The control circuit 50, as illustrated in FIG. 3, includes address decode logic 62 and a control register 64.
The microprocessor 20 communicates with the control circuit 50 via the address bus 32, the data bus 34, and the
read/write signal 38. The address bus 32 and the read/write signal 38 connect to the address decode logic 62, and
the data bus 34 connects to the control register 64. The address decode logic 62 monitors the address lines of the
address bus 32 to determine when the microprocessor 20 wishes to read or write data to the CPU activity monitor
24. The address decode logic 62 in turn, generates enable signals to various registers within the CPU activity
monitor 24. In the preferred embodiment, the address decode logic 62 outputs a time register enable signal 66, an
event register enable signal 68 signal, and a threshold register enable signal 70.

A control register enable signal 72 connects to the control register 64. The control register B4 stores
configuration information received from the microprocessor 20 via the data bus 34. The control register 64 stores
an activity event flag 74, an inactivity event flag 76, a read cycle flag 78, a write cycle flag 80, an activity notify
flag 82, an inactivity notify fiag 84, a retrigger timer enable flag 86, a retrigger event enable flag 87, and an enable
count flag 88. The control register 64 outputs these flags onto the control bus 60.

The timing circuit 52, as illustrated in FIGs. 2 and 4, includes a time register 92, a timer 94, and time reset
logic 98. The time register enable signal 66 from the address decode logic 62 connects to the time register 92 and

allows the microprocessor 20 to load the time register 82 via the data bus 34 with a time interval value. As will

_be explained in more detail below, the time interval value stored in the time register 82 represents the number of

clock pulses that occur during a time interval.

The time register 92 loads the timer 94 with the time interval value via a time interval signal 96. The
clock signal 44 drives the timer 94 such that each clock cycle causes the timer 94 to count down. By counting
each clock pulse, the timer 94 monitors time durations in the computer system. When the timer 94 reaches zero,
it generates the time signal 90. In alternative embodiments, the timer 94 is set to zero and counts up. A comparator
(not shown) compares the value of the timer 94 to the value stored in the time register 92. When the value of the
timer 84 is equal to or greater than the value stored in the time register 92, the comparator generates the time

signal 90.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

.8

The timing circuit 52 also includes the time reset logic 88 for periodically resetting the timer 84. Two
contro! lines, an event overfiow signal 102 and the retrigger timer enable flag 86 determine when to assert a reset
signal 106. The retrigger timer enable flag 86 originates from the control register 64. The event overflow signal
102 originates from an event comparator 104 and is explained in more detail below. FIG. 5 illustrates a truth table
for generating the time reset signal 106 from the event overflow signal 102, the retrigger timer enable flag 86, and
the time signal 90. The time reset signal 106 resets the timer 94 and commands the timer 94 to reload the time
interval value from the time interval signal 96.

Turning now to the event circuit 54 illustrated in FIG. 2, the event circuit 54 includes an event
decoder/counter 108, event reset logic 110, an event register 112, and the event comparator 104. As illustrated
in more detail in FIG. 6, the event decoder/counter 108 includes an event decoder 113 and an event counter 114.
The event decoder 113 monitors the read cycle flag 78, the write cycle flag 80, the readwrite signal 38, the
data/control signal 40, the memory/10 signal 42, and the cache miss signal 36 to generate an event detect signal
116.

The microprocessor 20 provides the read/write signal 38, the datalcontrol signal 40, and the memory/l0
signal 42 as inputs to the event decoder 113. The truth table illustrated in FIG. 7 shows how the event decoder
113 monitors the read/write signal 38, the datalcontrol signal 40, and the memory/l0 signal 42 to determine when
the CPU 28 executes a data read or a data write cycle. As the truth table shows, when the CPU 28 executes a
data write cycle, it asserts the memory/I0 signal 42 and the datajcontrol signal 40 and does not assert the
readjwrite signal 38. When the CPU 28 executes a data read cycle or data write cycle, the CPU 28 asserts the
memory/10 signal 42, the datajcontrol signal 40, and the read/write signal 38.

In the preferred embodiment, the CPU activity monitor 24 monitors CPU data write cycles to main memory;
however, the CPU activity monitor 24 can also be configured to monitor CPU data read cycles. The read cycle flag
78 and the write cycle flag 80 direct the CPU activity monitor 24 regarding which cycles to monitor. The control
register 64 stores the read cycle flag 78 and the write cycle flag 80. If the read cycle flag 78 is asserted, the CPU
activity monitor 24 monitors data read cycles. If the write cycle flag 80 is asserted the CPU activity monitor 24

monitors data write cycles. In the preferred embodiment, only the write cycle flag 80 is asserted. Therefore, the

. event decoder 113 only monitors a data write cycle that generates the cache miss signal 36.

The truth table in FIG. 8 shows the output of the event detect signal 116 in response to the read cycle
flag 78, the write cycle flag 80, the data read cycle, the data write cycle, and the cache miss signal 36. As the
truth table indicates, if the write cycle flag 80 is enabled, the event decoder 113 generates the event detect signal
116 when the cache miss signal 36 occurs during a data write cycle. If the read cycle flag 78 is enabled, the event
decoder 113 generates the event detect signal 116 when the cache miss signal 36 occurs during a data read cycle.
If both the read cycle flag 78 and the write cycle flag 80 are enabled, the event decoder 113 generates the event
detect signal 116 when the cache miss signal 36 occurs on either a data read cycle or a data write cycle.

The event detect signal 116 drives the event counter 114. The event counter also receives the enable

count flag 88. If the enable count flag 88 is asserted, the event counter 114 counts each instance that the event

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

9.

decoder 113 asserts the event detect signal 116. If the enable count flag 88 is not asserted, the event counter
114 ignores the event detect signal 116. The event counter 114 outputs an event value 100 to the event
comparator 104 and the activity notification circuit 58.

The microprocessor 20 loads the activity-to-inactivity transition value into the event register 112. The
microprocessor 20 loads the event register 112 via the data bus 34. The CPU activity monitor 24 uses the value
stored in the event register 112 to determine when the CPU 28 transitions to an inactive state.

The output of the event register 112 and the output of the event counter 114 connect to the event
comparator 104. The event comparator 104 compares the value of the event counter 114 with the value stored
in the event register 112. When the value of the event counter 114 is greater than or equal to the value of the
event register 112, the event comparator 104 generates the event overflow signal 102.

The event circuit 54 also includes the event reset logic 110. The event reset logic 110 receives the time
signal 80, the retrigger event enable flag 87, and the event overflow signal 102. The event reset logic 110 resets
the event counter 114 with a event reset signal 120 as described by the truth table in FIG. 8. The event reset logic
110 resets the event counter 114 if the time signal 90 or the event overflow signal 102 is active when the retrigger
event enable flag 87 is asserted.

Turning to the threshold register 56 in FIG. 2, the microprocessor 20 stores the activity threshold in the
threshold register 56. The activity threshold represents the number of successive time intervals in which the CPU
28 remains active. The threshold register 56 receives data from the microprocessor 20 via the data bus 34, and
receives the threshold register enable signal 70 from the address decode logic 62 via the control bus 60. The value
stored in the threshold register 56 inputs into the activity notification circuit 58 via a threshold value signal 122.

FIG. 10 illustrates a block diagram of the activity notification circuit 58. The activity notification circuit
58 determines when the CPU 28 transitions from one activity state to another. The activity notification circuit 58
includes an inactivity comparator 124, an activity comparator 126, and an interrupt generator 128. The inactivity
comparator 124 monitors the transition of the CPU 28 from an active state to an inactive state. The activity
comparator 126 monitors the transition of the CPU 28 from an inactive state to an active state.

The inactivity comparator 124 receives the time signal 90 and the event overflow signal 102, and generates

.the inactivity event flag 76. If the timer 94 expires and generates the time signal 90 before the event overflow

signal 102, the inactivity comparator 124 asserts the inactivity event flag 76. If, on the other hand, the event
overflow signal 102 is asserted before the expiration of the timer 84, the inactivity comparator 124 does not assert
the inactivity event flag 76. Thus, the inactivity comparator 124 only asserts the inactivity event flag 76 when the
timer 94 asserts the time signal 90 before the event overflow signal 102. The inactivity event flag 76 outputs to
the control register 64, and the interrupt generator 128.

The activity comparator 126 receives the event overflow signal 102 from the event comparator 104, and
the threshold value 122 from the threshold register 56. The activity comparator 126 in turn generates the activity

event flag 74. In order to determine when the CPU 28 transitions from an inactive state to active state, the activity

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

-10-

comparator 126 counts each occurrence of the event overflow signal 102 and compares it to the value in the
threshold register 56.

Each occurrence of the event overflow signal 102 indicates that the CPU 28 executed enough activity
events to rise above the activity-to-inactivity transition value. Each event overflow signal 102 increments the activity
comparator 126. When the event overflow signal 102 count is equal to or greater than the threshold register 56,
the activity comparator 126 generates the activity event flag 74. In other words, the CPU 28 must rise above the
activity-to-inactivity transition value for successive time intervals before the activity comparator 126 will set the
activity event flag 74.

The interrupt generator 128 receives the inactivity event fiag 76, the activity event flag 74, the inactivity
notify flag 84, and the activity notify flag 82. The interrupt generator 128, in turn, also generates the activity
notify flag 82, the inactivity notify flag 84, and the interrupt request 46. The interrupt generator 128 generates
the interrupt request 46 when the CPU 28 transitions from an active state to an inactive state, or when the cPU
28 transitions from an inactive state to an active state.

If the CPU 28 is active, the inactivity notify flag 84 is asserted to signal the interrupt generator 128 to
generate an interrupt request if the CPU 28 transitions to an inactive state. In other words, the inactivity natify
flag 84 commands the interrupt generator 128 to notify the power management software (generate an interrupt) if
the CPU 28 transitions to an inactive state.

If the CPU 28 is inactive, the activity notify flag 82 is asserted to signal the interrupt generator 128 to
generate an interrupt request if the CPU 28 transitions to an active state. In other words, the activity notify flag
82 commands the interrupt generator 128 to notify the power management software by generating an interrupt if
the CPU 28 transitions to an active state.

For example, if the CPU 28 transitions from an inactive state to an active state, the interrupt generator
128 generates the interrupt request 46, and because the CPU 28 is active, the interrupt generator 128 clears the
activity notify flag 82 and sets the inactivity notify flag 84. Setting the inactivity notify flag 84 signals the
interrupt generator 128 to generate an interrupt (notify the power management software) if the CPU 28 transitions
to an inactive state.

FIG. 11 illustrates a truth table for the flags input to the interrupt generator 128 and the resulting outputs.
The activity notify flag 82, the inactivity notify flag 84, the activity event flag 74, and the inactivity event fiag 76
are input to the interrupt generator 128. The interrupt generator 128 in turn outputs the interrupt request 46, and
updates the activity notify flag 82 and the inactivity notify flag 84.

FIG. 12A, 12B, and 12C illustrate a state diagram of the CPU activity monitor 24. In a start state 130,
the microprocessor 20 initializes the CPU activity monitor 24 by writing to the control register 64, the time register
92, the event register 112 and the threshold register 56. In the preferred embodiment, the CPU 28 clears the read
cycle flag 78 and sets the write cycle flag 80. Clearing the read cycle flag 78 and setting the write cycle flag 80

directs the CPU activity monitor 24 to monitor the data write cycles to the main memory 22.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

a1

The value loaded in the time register 92 defines the time interval. The value stored in the event register
112 defines the activity-to-inactivity transition value. The value stored in the threshold register 56 defines the
activity threshold, which is the number of successive time intervals where the activity of the CPU 28 rises above
the activity-to-inactivity transition value. In the preferred embodiment, if the CPU activity monitor 24 determines
that the CPU 28 is inactive, the CPU activity monitor 24 remains in an inactive state until the activity of the CPU
28 rises above the activity threshold. If the CPU activity monitor 24 determines that the CPU 28 is active, the CPU
activity monitor 24 remains active until the activity of the CPU 28 drops below the activity-to-inactivity transition
value.

The CPU 28 also sets the retrigger timer enable flag 86 on, sets the retrigger event enable flag 87 on, sets
the activity notify flag 82 on, and sets the inactivity notify flag 84. Setting the retrigger timer enable flag 86 and
the retrigger event enable flag 87 directs the CPU activity monitor 24 to reset the timer 94 and the event counter
114 upon the occurrence of the time signal 90 or the event overflow signal 102.

After the CPU activity monitor 24 is initialized, the CPU activity monitor 24 enters an initial wait state 132.
While in the initial wait state 132, the CPU activity monitor 24 monitors the CPU 28. In the initial wait state 132,
the CPU activity monitor will determine if the CPU 28 is active or inactive. If the CPU 28 is active, the CPU
activity monitor 24 will branch to a CPU active state 134. If the CPU 28 is inactive, the CPU activity monitor 24
will branch to a CPU inactive state 138.

While in the initial wait state 132, the timing circuit 52 monitors the passage of time as the timer 94
counts down with each clock cycle of the clock signal 44. While the timing circuit 52 monitors the passage of time,
the event circuit 54 monitors each data write cycle or data read cycle that accesses the main memory 22. In the
preferred embodiment, the event circuit 54 monitors each data write cycle to the main memory 22. The event
decoder 113 monitors the read/write signal 38, the datafcontrol signal 40, the memory/I0 signal 42, and the cache
miss signal 36 to determine when the CPU 28 accesses the main memory 22

Each data write cycle to the main memory 22 causes the event decoder 113 to generate the event detect
signal 116 that drives the event counter 114. The value output by the event counter 114 and the value output by
the event register 112 are continuously compared in the event comparator 104. When the value in the event counter
114 is equal to or greater than the value stored in the event register 112, the event comparator generates the event
overflow signal 102.

Each assertion of the event overflow signal 102 is counted by the inactivity comparator 124 to determine
when the CPU 28 reaches the activity threshold stored in the threshold register 56. The activity comparator 126
counts each time interval in which the CPU 28 executes enough activity events to rise above the activity-to-inactivity
transition value. If the count is equal to or is greater than the value in the threshold register 56, the activity
comparator sets the activity event flag 74. The activity event flag 74 indicates that the CPU 28 is active, and the
CPU activity monitor 24 proceeds to the CPU active state 134.

In the CPU active state 134 the activity event flag 74 directs the interrupt generator 128 to generate the

interrupt request 46. The interrupt request 46 notifies the CPU 28 to suspend current operations and to transfer

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

12

control to the power management software 142 as discussed in more detail below. The interrupt generator 128
also resets the activity notify flag 82 to off and sets the inactivity notify flag 84 to on. Because the CPU 28 is
active, setting the inactivity notify flag 84 to on directs the CPU activity monitor 24 to generate an interrupt request
46 when the CPU 28 transitions from an active state to an inactive state.

In addition, the timer 94 and the event counter 114 are reset for the next time interval. The time reset
logic 98 resets the timer 94 in response to the event overflow signal 102, and the event reset logic 110 resets the
event counter 114. The CPU activity monitor 24 then proceeds to an active wait state 136 as shown in FIG. 12B.

In the active wait state 136, the CPU activity monitor 24 continues to monitor the CPU 28 to determine
when the CPU 28 transitions to an inactive state. In the active wait state 136, the CPU activity monitor 24 does
not generate the interrupt request 46. The CPU activity monitor 24 resets the timer 94 and the event counter 114
for each new time interval.

If the CPU 28 remains active, the CPU activity monitor 24 continues to monitor the CPU 28 in the active
wait state 136. However, if the CPU 28 transitions from an active state to an inactive state, the CPU activity
monitor 24 transitions from the active wait state 136 to the CPU inactive state 138. In order to determine when
the CPU 28 is inactive, the event overflow signal 102 and the time signal 90 connect to the inactivity comparator
124. The time signal 90 indicates that the time interval loaded into the timer 94 has expired. The event overflow
signal 102 indicates that the value in the event counter 114 is equal to or greater than the activity-to-inactivity
transition value loaded into the event register 112, The inactivity comparator 124 compares the event overflow
signal 102 to the time signal 90 to determine which signal occurs first. If the time signal 90 occurs first, the
inactivity comparator 124 sets the inactivity event flag 76. The CPU activity monitor 24 then proceeds to the CPU
inactive state 138.

Therefore, when the CPU 28 transitions from an active state to an inactive state, the CPU activity monitor
94 transitions from active wait state 136 to CPU inactive state 138. As explained above, the CPU activity monitor
94 can also enter the CPU inactive state 138 from the initial wait state 132. In the CPU inactive wait state 138,
the interrupt generator 128 generates the interrupt request 46 to notify the microprocessor 20 to suspend current
operations and to transfer control to the power system interrupt service routine.

The interrupt generator 128 also sets the activity notify flag 82 to on, and resets the inactivity notify flag
84 to off. Setting the activity notify flag 82 to on commands the interrupt generator 128 to generate the interrupt
request 46 when the CPU transitions from an inactive state to an active state. in addition, the time reset logic 98
resets the timer 94 and the event reset logic 110 resets the event counter 114 for the next time interval. The CPU
activity monitor 24 then proceeds to an inactive wait state 140 as shown in FIG. 12C.

In the inactive wait state 140, the CPU activity monitor 24 does not generate the interrupt request 46.
If the CPU 28 remains inactive, the CPU activity monitor 24 remains in the inactive wait state 140. If, on the other
hand, the CPU 28 transitions from an inactive state to an active state, the count of the event overflow signal 102
equals or exceeds the activity threshold stored in the threshold register 56. The CPU activity monitor 24 then

transitions from the inactive wait state 140 to the CPU active state 134 to repeat the process explained above.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098
13-

The following example illustrates the operation 6f the CPU activity monitor 24. In this example, the time
interval for monitoring the CPU activity monitor 24 is set to one millisecond, the activity-to-inactivity transition value
is set to one (1) activity event, and the activity threshold is set to five (5) successive time intervals. An activity
event is a data write cycle that generates the cache miss signal 36. The CPU 28 initializes the CPU activity monitor
24 in the start state 130 by writing to the control register 64, the time register 92, the event register 112 and the
threshold register 56. The CPU 28 clears the read cycle flag 78 and sets the write cycle flag 80. Clearing the read
cycle flag 78 and setting the write cycle flag 80 directs the CPU activity monitor 24 to only monitor data write
cycles that generate the cache miss signal 36.

The CPU 28 loads the time register 92 with a value that defines a one-millisecond time interval. If the
clock 26 runs at ore megahertz (one million clock cycles per second), each clock cycle has a duration of one
microsecond. Therefore, a value of 1,000 loaded into the timer register 92 represents the number of clock cycles
in a one-millisecond time interval. The CPU 28 also sets the activity-to-inactivity transition value to one activity
event by loading a one into the event register 112. The CPU 28 sets the threshold register 56 to five successive
time intervals by loading a five into the threshold register 56. Finally, the CPU 28 sets the retrigger timer enable
flag 86, the retrigger event enable flag 87, the activity notify flag 82, and the inactivity notify flag 84.

After initialization, the CPU activity monitor 24 enters the initial wait state 132. While in the initial wait
state 132, the timing circuit 52 monitors the passage of time as the timer 94 counts down with each clock cycle
of the clock signal 44. While the timing circuit 52 monitors the time duration, the event circuit 54 counts each
activity event.

For this example, the CPU 28 is about to transition from the CPU inactive state 138 to the CPU active
state 134. Each data write cycle that generates the cache miss signal 36 causes the event decoder 113 to generate
the event detect signal 116 that drives the event counter 114. When active, the CPU 28 executes enough activity
events to rise above the activity-to-inactivity transition value (one activity event stored in the event register), and
the event comparator 104 generates the event overflow signal 102. The activity comparator 126 counts each
occurrence of the event overflow signal 102 and when the count reaches equals five (the value stored in the
threshold register 56), the activity comparator 126 generates the activity event flag 74. The activity event flag 74
indicates that the CPU 28 is active, and the CPU activity monitor 24 then proceeds to the CPU active state 134.

In the CPU active state 134, the activity event flag 74 directs the interrupt generator 128 to reset the
activity notify flag 82 to off, to set the inactivity notify flag 84 to on, and to generate the interrupt request 46.
In addition, the time reset logic 98 resets the timer 94, and the event reset logic 110 resets the event counter 114.
The interrupt request 46 notifies the CPU 28 to suspend current operations, and to transfer control to the power
system interrupt service routine as discussed in more detail below. The CPU activity monitor 24 then proceeds to
the active wait state 136.

In the active wait state 136, the CPU activity monitor 24 continues to monitor the CPU 28 to determine
when the CPU 28 transitions to an inactive state. If the CPU 28 continues to execute at least one data write cycle

to the main memory 22, the CPU activity monitor 24 does not transition to the CPU inactive wait state 138.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

-14-

instead, the CPU activity monitor 24 remains in the active wait state 136 and continues to reset the timer 94 and
the event counter 114 at the end of each one millisecond time interval.

If the CPU 28 fails to execute a single data write cycle to the main memory 22, the timer 94 expires
before the event counter 114 asserts the event overflow signal 102. The inactivity comparator 124 sets the
inactivity event flag 76 to indicate that the CPU 28 is inactive, and the CPU activity monitor 24 proceeds to the
CPU inactive state 138.

The inactivity event flag 76 directs the interrupt generator 128 to set the activity notify flag 82 to on,
and reset the inactivity notify flag 84 to off, and to generate the interrupt request 46. The interrupt request 46
notifies the CPU 28 to suspend current operations and transfer control to the power system interrupt service routine.
in addition, the time reset iogic 98 resets the timer 94, and the event reset logic 110 resets the event counter 114
for the next time interval. The CPU activity monitor 24 then proceeds to the inactive wait state 140.

FIG. 13 shows a flowchart of the power management software 142. Together, the CPU activity monitor
24 and the power management software 142 form a power management system. The power management software
142 initializes the CPU activity monitor 24 and implements the power management strategy of controlling the CPU
28. The CPU activity monitor 24 communicates with the power management software 142 via the interrupt request
46. Thus the power management software is an interrupt service routine that manages power consumption. To
conserve power, the power management software 142 can reduce CPU clock speeds and suspend CPU activity.

Whenever the interrupt request 46 invokes the power management software 142, the power management
software determines which system component has generated an interrupt. The power management software
flowchart in FIG. 13 only shows a flowchart for interrupts from the CPU activity monitor 24; however, other routines
that service the disk drive, display, keyboard, etc., can also exist.

In a step 144, the power management software 142 determines if the CPU activity monitor 24 needs
initialization. The power management software 142 initializes the CPU activity monitor 24 on power up, during
system resets, etc. f initialization is necessary, the power management software proceeds to a step 146. In the
step 146, the software directs the CPU 28 to initialize the CPU activity monitor 24 by writing to the contro} register
64, the time register 92, the event register 112 and the threshold register 56. The initialization of the CPU activity

- monitor 24 in the step 146 corresponds to the start state 130 in the CPU activity monitor state diagram, as shown

in FIG. 12A.

After initializing the CPU activity monitor 24, the power management software proceeds to a step 148 to
end the interrupt service routine. The completion of the interrupt service routine returns control of the CPU 28 to
the operating software. Although the power management software 142 is no longer active, the CPU activity monitor
24 continues to monitor the CPU 28.

Returning to the step 144, if the software does not need to initialize the CPU activity monitor 24, the
software proceeds to a step 150. In the step 150, the software reads the status of the activity event flag 74 and
the inactivity event fiag 76 from the control register 64, and then proceeds to a step 152 If, for example, the CPU

is active, the software in the step 152 determines that the activity event flag 74 is asserted and proceeds to the

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

.15

step 154. In the step 154, the power management software 142 sets the CPU clock speed to a maximum speed.
After setting the CPU clock speed high, the power management software 142 ends in a step 148.

Returning to the step 152, if the CPU is inactive, the power management software 142 defermines that
the inactivity event flag 76 is set and then proceeds to a step 156. In the step 156, the power management
software reduces the CPU clock speed. If the CPU 28 remains inactive, the power management software 142 can
enable a suspend mode to reduce power further.

In other embodiments, the CPU activity monitor can exist on-chip with the CPU 28 and the cache memory
system 30. For example, FIG. 14 shows a microprocessor 20" having the CPU 28, the on-chip cache memory system
30, and an on-chip CPU activity monitor 24'. Preferably, the on-chip CPU activity monitor 24" includes the control
circuit 50, the timiny circuit 52, the event circuit 54, the threshold register 56, and the activity notification circuit
58 discussed ahove and shown in FIG. 3. The on-chip CPU activity monitor 24' continues to monitor the read/write
signal 38, the datajcontrol signal 40, the memory/I0 signal 42, the cache miss signal 36 and the clock 26.

In addition, the on-chip activity monitor 24' may also receive a stack information signal 158. The stack
information signal 158 provides information about accesses to the stack (not shown). The stack is a region of
reserved memory in which programs store status data such as procedure and function call return addresses, passed
parameters, and local variables. The microprocessor, the operating system, and application programs access the
stack. The stack is assigned a location in the cache memory system 30 or the main memory 22, for example, and
the on-chip CPU activity monitor 24’ can track stack accesses by monitoring the stack information signal.

The stack information signal is input to the event decoder 113 as shown in FIG. 6. The stack information
signal 158 indicates that the CPU 28 is accessing the stack. If a stack memory location does not exist in the cache
memory system 30, the CPU 28 accesses the main memory 22 and generates the cache miss signal 36. The stack
information signal 158 commands the event counter 114 (FIG. 6) to ignore any activity events. For example, if the
stack information signal 158 is asserted, the event counter 114 does not count a write cycle that generates the
cache miss signal 36. If the stack information signal 158 is not asserted, the event counter 114 operates as
explained in the preferred embodiment.

The embodiments of the CPU activity monitor 24, 24’ enclosed herein monitor the CPU 28 to determine

.when the CPU 28 is engaged in useful activity. As explained above, the CPU 28 is engaged in useful activity when

the CPU 28 does not repetitively access the same locations in the main memory 22. Therefore, it is desirable to
differentiate repetitive accesses by the CPU 28 to main memory 22 (i.e. accesses to the stack, to the instructions
in a repeating routine, or to the data locations in a repeating routine) from non-repetitive accesses by the CPU 28
to the main memory 22.

When the CPU 28 repetitively accesses the same locations in main memory 22, the cache memory system
30 stores the needed data. If however, the CPU 28 is actively engaged in useful work, the CPU 28 periodically
accesses data that is not stored in the cache memory system 30 causing the cache memory system to generate the

cache miss signal 36. The CPU activity monitor 24 counts each occurrence of the cache miss signal 36 during a

WO 95/31782 PCT/US95/05098
-16-
data write cycle or data read cycle. The count is compared to the activity-to-inactivity transition value and the
activity threshold to determine when the CPU is inactive or active.
While the above detailed description has shown, described and poihted out the fundamental novel features
of the invention as applied to various embodiments, it will be understood that various omissions and substitutions
and changes in the form and details of the illustrated device may be made by those skilled in the art, without

departing from the spirit of the invention

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

17

WHAT IS CLAIMED IS:
1. A central processing unit ("CPU") activity monitoring device comprising:
a timer in communication with a clock, said timer providing a time signal that indicates the end
of a time interval;
a counter in communication with a CPU and a cache memory unit, said counter receiving a cache
miss signal, said counter counting each occurance of said cache miss signal to provide a count; and
a comparator in communication with said time signal, and said count, said comparator respansive

to said time interval and said count.

2. The CPU activity monitoring device as defined in claim 1, further comprising a first storage location for

storing an activity-to-inactivity transition value.

3. The CPU activity monitoring device as defined in claim 2, further comprising a second storage location for

storing an activity threshold.

4, A central processing unit ("CPU") activity monitoring device comprising:

a timer in communication with a clock, said timer providing a time signal that indicates the end
of a time interval;

a counter in communication with a CPU and a cache memory unit, said counter receiving a cache
miss signal and a plurality of CPU mode signals wherein said cache miss signal and said plurality of CPU
mode signals determine the occurrence of an activity event, said counter counting each activity event to

provide a count;
a storage location for storing an activity-to-inactivity transition value; and
a comparator in communication with said time signal, said counter, and said storage location, said

comparator responsive to said time interval, said count and said activity-to-inactivity transition value.

b The CPU activity monitoring device as defined in claim 4, wherein said activity-to-inactivity transition value

specifies the maximum number of activity events that may occur within said time interval.

6. The CPU activity monitoring device as defined in claim 5, wherein said activity events are data write and

data read cycles to main memory that generate a cache miss signal.

1. The CPU activity monitoring device as defined in claim 5, wherein said activity events are data write cycles

to main memory that generate a cache miss signal.

10

15

20

25

30

WO 95/31782 PCT/US95/05098

8

-18-

The CPU activity monitoring device as defined in claim 7, further comprising:
aﬁ activity event flag in communication with said comparator, said comparator asserting said
activity event flag in response to a transition by said CPU from said active state to said inactive state; and
an inactivity event flag in communication with said comparator, said comparator asserting said

inactivity event flag in response to a transition by said CPU from said active state to said inactive state.

The CPU monitoring system as defined in claim 8, further comprising an interrupt request signal in

communication with said activity event flag and said inactivity event fiag, said interrupt request signal responsive

to the assertion of said activity event flag, and said inactivity event flag.

10.

1.

A CPU activity monitoring device comprising:

a timer in communication with a clock, said timer providing a time signal that indicates the end
of a time interval;

a counter in communication with a CPU and a cache memory unit, said counter receiving a cache
miss signal and a plurality of CPU mode signals wherein said cache miss signal and said plurality of CPU
mode signals determine the occurrence of an activity event, said counter counting each activity event to
provide‘ a count;

a first storage location for storing an activity-to-inactivity transition value;

an inactivity comparator coupled to said timer, said counter, and said first storage location, said
inactivity comparator providing an inactivity event flag responsive to said time interval, said count, and said
activity-to-inactivity transition value;

a second storage location for storing an activity threshold; and

an activity comparator in communication with said time signal, said counter, and said second
storage location, said activity comparator providing an activity event flag responsive to said time interval,

said count, and said activity threshold.

The CPU activity monitoring device as defined in claim 10, wherein said activity-to-inactivity transition value

specifies the maximum number of activity events that may occur within said time interval.

12.

The CPU activity monitoring device as defined in claim 11, wherein said activity threshold specifies the

minimum number of successive time intervals where said count of said activity events is greater than the activity-to-

inactivity transition value.

10

15

20

25

30

35

WO 95/31782 PCT/US95/05098

13.

.19

The CPU activity monitoring device as defined in claim 12, further comprising an interrupt request signal

in communication with said inactivity event flag and said activity event flag, said interrupt request signal responsive

to the assertion of said inactivity event flag and the assertion of said activity event flag.

14.

The CPU activity monitoring device as defined in claim 10, wherein said activity events are data write

cycles to main memory that generate a cache miss signal.

15.

16.

17.

A CPU activity monitoring system comprising:

a CPU, said CPU generating a plurality of mode signals;

a cache memory system coupled to said CPU, said cache memory system generating a cache miss
signal when data requested by said CPU is not stored in said cache memory system;

a clock; and

a CPU activity monitor coupled to said CPU, said cache memory system, and said clock, said CPU
activity monitor providing CPU activity information in response to said plurality of mode signals, said cache .

miss signal, and said clock.

A method for monitoring CPU activity comprising the steps of:
defining a time interval;
generating a cache miss signal;
counting each cache miss signal; and
putting a CPU into an active and an inactive state in accordance with the number of said cache

miss signals that occur within said time interval.

A method for monitoring CPU activity comprising the steps of:

defining a time interval;

generating a clock signal;

monitoring said clock signal to determine the end of said time interval;

generating a plurality of mode signals that correspond to the operating mode of a central
processing unit;

generating a cache miss signal when data is not stored in a cache memory system;

monitoring said plurality of mode signals and said cache miss signal to determine an activity event;

counting each activity event that occurs within said time interval;

defining an activity-to-inactivity transition value that specifies the maximum number of said activity
events that may occur within said time interval when said CPU is in an inactive state; and

generating an event signal when said CPU transitions from an active state to said inactive state,

or when said CPU transitions from said inactive state to said active state.

10

15

20

25

30

WO 95/31782 PCT/US95/05098

18.

-20-

The method as defined in claim 17, wherein said activity event is a data write cycle or a data read cycle

that generates a cache miss signal.

19. The method as defined in claim 17, wherein said activity event is a data write cycle that generates a cache
miss signal.
20. A methed for monitoring CPU activity comprising the steps of:
defining a time interval;
generating a clock signal;
monitoring said clock signal to determine the expiration of said time interval;
generating a plurality of mode signals that correspond to the operating mode of a central
processing unit;
generating a cache miss signal when data is not stored in a cache memory system; and
monitoring said plurality of mode signals and said cache miss signal to determine an activity event;
counting each activity event that occurs within said time interval;
defining an activity-to-inactivity transition value that specifies the maximum number of said activity
events that may occur within said time interval when said CPU is in an inactive state;
generating an inactivity event signal when said time interval expires before said count of said
activity events is greater than said activity-to-inactivity transition value;
defining an activity threshold, said activity threshold specifying the number of successive time
intervals wherein said count of said activity events is greater than the activity-to-inactivity transition value;
and
generating an activity event signal when said count of said successive time intervals is equal to
or greater than said activity threshold.
21. The method as defined in claim 20, wherein said activity event is a data write cycle or a data read cycle

_that generates a cache miss signal.

22,

The method as defined in claim 20, wherein said activity event is a data write cycle that generates a cache

miss signal.

PCT/US95/05098

WO 95/31782

1775

/[9L

gc

AHONW3NW
NIVIA

oo

N

0010
< 27
l/ \ N\/
V yoLNow | 0 — 3T0AD OI/AYONW3N
”v >hxmmw< - JT0AD JOHLNOD/VIVQ
B M<\\ 3L1M/av 3y
, &,
e ,me
N naLsAs
D] AYON3NW A“
JHOVD

NdO

(\(\\

e

Q
<z =/

QNt\

SUBSTITUTE SHEET (RULE 26)

WO 95/31782 PCT/US95/05098
2715
/50
| e —"--__-—"'__-_'___'.
BUS [ADDRESS |
READ /WRITE i ngggE |
.35—/ E 2 !
| conTROL |
1 REGISTER K~ ;
DATA — ;
BUS Ter T | 1
' o8 :
o ME K= / .
" | REGISTER !
| TIME !
| 96 [T RESET |~ A
45\ 9%\ 06|) Logic || 4 Ve
cLock ~= TIMER K 52 90 |
E \TIMING CIRCUIT __
——— -;5-:-;’: g Y Attt ACTIVITY
! ~ 770~ ' NOTIFICATION INTERRUPT
I N EvenT] | CIRCUIT
MEMORY/IO\ 40| |\ | DECODER/ LOGIC !
CACHE MisS'#2 | |1 | COUNTER | 1| 1o . |
_35 i { N i
| 772 :
| AN EVENT | !
L] EVENT COMPARATOR| ™ //zz
/| REGISTER |
e 2N - E¥ENT ey |
54
LojmResroo =}
REGISTER
56

FIG 2

SUBSTITUTE SHEET (RULE 26)

WO 95/31782

/ 62

/54
ADDRESS BUS)

READ /WRITE SIGNAL

N

ADDRESS
DECODE
LOGIC

PCT/US95/05098

375

b
TIME REGISTER ENABLE / .

EVENT REGISTER ENABLE /4%

THRESHOLD REGISTER ENABLE

CONTROL REGISTER ENABLE\70

64

.32\
< DATA BUS >

CONTROL
REGISTER

60

72 N
%

74
ACTIVITY EVENT FLAG N\

INACTIVITY EVENT FLAG 7O~

READ CYCLE FLAG 2

&0
WRITE CYCLE FLAG

ACTIVITY NOTIFY FLAG 22~

&4
INACTIVITY NOTIFY FLAG)\

RETRIGGER TIMER ENABLE FLAG

RETRIGGER EVENT ENABLE FLAG

ENABLE COUNT FLAG \57

S

&E

A1

CONTROL BUS

—1&6

N

FIG S5

SUBSTITUTE SHEET (RULE 26)

PCT/US95/05098

WO 95/31782

4775

7z 9L

o

Qm./
TYNDIS INIL —
- d3NIL — NEe)
01907 N ; //
13S3y g0/ or
3NIL | 9 m\
&6
96— A¥3Lso3y AL >N8
I(/NQ Z5 , viva
\n 4%
Ov14 318VN IVNIIS
YINIL m_m_o_m._.wm MOT4Y3A0 \u/ 318VN3
LIN3A3 99 | ¥31S1934 INIL

SN TOYLNOD

>

<

oo—"

SUBSTITUTE SHEET (RULE 26)

WO 95/31782 PCT/US95/05098

515

RETRIGGER TIMER EVENT OVERFLOW || _T'ME
RESET
ENABLE FLAG TIME SIGNAL SIGNAL SlgNiL
0 0 0 0
0 0] 0
0 : 0 0
0 : 1 0
1 0 0 0
K 0 1 0
: : 0 0
: : : 1

FI1G. &

SUBSTITUTE SHEET (RULE 26)

PCT/US95/05098

WO 95/31782

IVNDIS
MOT443A0 mwﬂm__\”,uwm_ %OM
- 1N3A3 m&\\\\ 319VYN3 -
HOLVYYINOD y3LSI93Y
LIN3A3 -
YA4#/4 1N3A3 YA¥4
l.lull.lmdﬂhwﬂ/$ﬁx
w&\ T SSIN 3HOVD N g
. m%// - OI/AYOW3N _ »4
9 -
2] viva
D 21907 4 Y3ILNNOD [~ IVNIIS N oEzoow o
ool 3L19M/av3y
13S3y 1IN3A .Q\\ 103130 NAS - or
LIN3A3 — IN3AT V13 F1OAD 3LIgm
_ I ozt %
OV INEYNI N 2 . —~ B V14
LN3A3 IVNDIS oVI4| Lo ——— J10A0 Qv %\
Y300IMLIY | 06 NI INNOD 318VYN3 £/ s —"

<

SN8 T0HLNOD

>

09—

SUBSTITUTE SHEET (RULE 26)

WO 95/31782

2/15

PCT/US95/05098

MORY /I

MESIGONAL/O DATQIGCNO:LTROL RE/;?G/N\XTTE BUS CYCLE
0 0 0 INTERRUPT ACKNOWLEDGE
0 0 1 HALT /SPECIAL CYCLE
0 1 0 1/0 READ
0 1 1 1/0 WRITE
1 0 0 INSTRUCTION FETCH
1 0 i RESERVED
1 1 0 DATA WRITE CYCLE
1 1 1 DATA READ CYCLE

/G 7

SUBSTITUTE SHEET (RULF 26)

WO 95/31782

875

PCT/US95/05098

READ | WRITE | CACHE DATA EVENT
ENABLE | ENABLE| MISS READ /WRITE DETECT
FLAG FLAG | SIGNAL CYCLE SIGNAL

0 0 0 READ 0

0 0 0 WRITE 0

0 0 1 READ 0

0 0 1 WRITE 0

0 1 0 READ 0

0 1 0 WRITE 0

0 1 1 READ 0

0 1 1 WRITE 1

1 0 0 READ 0

1 0 0 WRITE 0

1 0 1 READ 1

1 0 1 WRITE 0

1 1 0 READ 0

1 1 0 WRITE 0

1 1 1 READ 1

1 1 1 WRITE 1

FIG &

SUBSTITUTE SHEET (RULE 26)

WO 95/31782

PCT/US95/05098

SUBSTITUTE SHEET (RULE 26)

975

RETRIGGER EVENT TME OVERFLOW || EVENT
RESET
ENABLE FLAG TIME SIGNAL SIGNAL SoNAL

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 : 0

] 1 0 0

1 1 1 1

/G 9

PCT/US95/05098

WO 95/31782

&2/

N

70/15

1S3Nn03y

L1dNYYFLNI /
97

JOLVYH3INIO
1dNYYFLNI

cct
\ ATVA

JTOHS3HHL

IVNOIS
MO1483A0

dOLYHVJNOD cos

IN3A3

IVNOIS

ol oL oo
Y¥OLV YV INOD
ALIAILOV
#L
.~
OV1d IN3IAT ALIAILDY
P s
- OVI14 LIN3AT ALIAILOVNI ALIAILOVNI
\v%
- OVI14 AJILON ALIAILOVNI \
- %% #Z/
OV14 A4ILON ALIAILOY

|

JNIL

SN8 T108LNOD

<

SUBSTITUTE SHEET (RULE 26)

PCT/US95/05098

WO 95/31782

71775

[l O

! 0 0 0 L ! 0

0 L L ! 0 | 0

! 0 0 0 0 | 0

| 0 ! 0 | 0 b

0 L 0 ! 0 0 L

0 b 0 0 0 0 !

] 0 ! 0 L L !

0 | } L 0 ! |

! L 0 0 0 | L
(Ind1no) | (LndLno) | (LNdLNO) (LNdN1) (LNdNI) (LNdNI) (LNdN1)

ov4 ov4 ov4 ov14 ov14 ov14
AJILON AJILON 1S3n03Y LIN3A3 IN3A3 A3ILON AJILON

ALIAILOVNI | ALIAILOY | LdNYY3LINI || ALIAILOYNI | ALIAILOV | ALIAILOVNI | ALIAILOY

SUBSTITUTE SHEET (RULE 26)

WO 95/31782

72/75

PCT/US95/05098

COUNTER = Y EVENTS
ACTIVITY NOTIFY FLAG = ON
INACTIVITY NOTIFY FLAG = ON

RETRIGGER TIMER ENABLE FLAG
RETRIGGER EVENT ENABLE FLAG

INITIAL

TIME REGISTER = X MILLISECONDS

ON
ON

_ WAIT J

(FIG. 12B)

\ ! //.34 138 \

\

(FIG. 12C)

ACTIVITY NOTIFY FLAG = OFF
INACTIVITY NOTIFY FLAG = ON
RESET TIME VALVE COUNTER
RESET EVENT COUNTER
CPU SPEED = HIGH
SOFTWARE SUSPEND = HELD OFF

FIG. T2A

SUBSTITUTE SHEET (RULE 26)

CPU / CPU
/ ACTIVE \ INACTIVE)
CENERATE INTERRUPT CENERATE INTERRUPT

ACTIVITY NOTIFY FLAG = ON
INACTIVITY NOTIFY FLAG = OFF
RESET TIME VALVE COUNTER
RESET EVENT COUNTER
CPU SPEED = LOW
SOFTWARE SUSPEND = ACTIVE

(FIG. 12B) (FIG. 12C)

WO 95/31782

PCT/US9S5/05098

7375

(FROM FIG. 12A)

&

736
CPU TRANSACTIONS
ACTIVE \TO INACTIVE -®
_ WAIT J
CPU REMAINS (FIG. 12A)
ACTIVE

RESET TIME VALUE COUNTER
RESET EVENT COUNTER

FIG. 2B

(FROM FIG. 12A)

740
_ /TNACTIVE -©®
U WAIT_J
CPU REMAINS (FIG. 12A)
INACTIVE

=

RESET TIME VALUE COUNTER
RESET EVENT COUNTER

FIG. 72C

SUBSTITUTE SHEET (RULE 26)

WO 95/31782 PCT/US95/05098

7475

742
/

GOWER MANAGEME@
SOFTWARE

744

INITIALIZE

YES “cPU ACTIVITY
MONITOR /750
‘ READ
146 CONTROL
N\ REGISTER
/ INITIALIZE)
CPU ACTIVITY
MONITOR 50
LOAD CONTROL REGISTER No ~CP
LOAD TIME REGISTER ACTIVE
LOAD EVENT REGISTER 2
LOAD THRESHOLD REGISTER YES 754
SET WRITE ENABLE FLAG /
CPU SPEED = HIGH
SOFTWARE SUSPEND = INACTIVE
1 7485
756 END
v

—

CPU SPEED = LOW
SOFTWARE SUSPEND ACTIVE
‘ 748
(END)

FIG 75

SUBSTITUTE SHEET (RULE 28)

PCT/US95/05098

WO 95/31782

7575

AYOW3N
NIVIN

DL

N(\\

10
.QN‘\—
#—| ¥OLNOW [L VIS
- ALAILDY L=z | oy
Ndo \k
\QN\ .QM.\ > %M.QV\\
.Q\‘
WILSAS
V AYOWIN V
— IHOVD
- Ndo
4
A %N\

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Inmcrmational application No.

PCT/US95/05098

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 11/00, '13/(_)0. 11/34; HO3M 13/00
US CL :395/ 425, 573, 750; 371/66; 364/200
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/ 425, 575, 750; 371/66; 364/200

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS, IEEE CDROM, DIALOG, ORBIT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US, A, 5,369,771 (GETTEL) 29 November 1994, abstract,| 1-22
col. 7, lines 1-4, col. 8, lines 37-68, col. 12

Y US, A, 5,287,508 (HEJNA, Jr. ET AL.) 15 February 1994,] 1-22
abstract, col. 4, lines 38-51, co! b, line 1 to col. 6, line 17.

Y US, A, 5,980,836 (CARTER ET AL.) 25 December 1990, col.| 1-22
2, lines 6-49.

AP US, A, 5,367,656 (RYAN) 22 November 1994, col. 2, lines}| 1-22
50-63.

AP US,A, 5,325,499 (KUMMER ET AL.) 28 June 1994, entire| 1-22
document.

E)ﬂ Further documents are listed in the continuation of Box C. D Sce patent family annex.

°E°
oL

0

P

earlier document published oa or after the international filing date

doanulvlnd:mythmdwb.onpmmychm(l)orvhﬂ-
cited 10 establish the p ther citation or other

Mm(uwﬁd)
document referring 10 an oral disclosure, use, exhibition or other
moans

document published prior to the internationa! filing date but later than
the priority date claimed

y*

Y

. Special categories of cited documents: T Iater documnent published after the international filing date or priority
. date and not in conflict with the application but cited 10 understand the
A’ document defiming the gemeral state of the art which is not considered priacipis or theory waderlying the isveation
%0 be part of particular relcvance
X document of relevance; the claimed invention cannot be

considered uvd’u:ﬂhmh coasidered to mvolve an inventive step
when the docunent is takea alone

document of particular relevance; the claimed invention cannot be
considered 10 mvoive sa mventive step when the document is

combined with one or more other such documents, such combination
being obvious 10 & persoa skilled in the art

document member of the same patent famnily

Date of the actual completion of the international search

08 JUNE 1995

Dateofmunn of the intemnational search report

5§ AUG 1995

Facsimile No.

Name and mailing address of the ISA/US
Commmofmmmd'l'ndemm

wuhinalon, D.C. 20231

(703) 305-3230

Authorized o

ERT W. égd JR. fe
el oneNo

Form PCT/ISA/210 (second sheetXJuly 1992)«

INTERNATIONAL SEARCH REPORT International application No.

PCT/US95/05098
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation,'bf d;)cumcnt, with indication, where appropriate, of the relevant passages Relevant to claim No.
A SCHEURICH ET AL. "THE DESIGN OF LOCKUP-FREE 1-22

CACHE FOR HIGH-PERFORMANCE MULTIPROCESSORS",
IEEE 1988, pages 352-359, abstract.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

