

US 20140199337A1

(19) **United States**

(12) **Patent Application Publication**
Realpe-Quintero et al.

(10) **Pub. No.: US 2014/0199337 A1**
(43) **Pub. Date: Jul. 17, 2014**

(54) **INFLUENZA H5 VACCINES**

(75) Inventors: **Mauricio Realpe-Quintero**, Zapopan (MX); **Paulino Carlos Gonzalez-Hernandez**, Hamburg (DE); **Eric Vaughn**, Ames, IA (US)

(73) Assignees: **BOEHRINGER INGELHEIM VETMEDICA S.A. DE C.V.**, Guadalajara (MX); **BOEHRINGER INGELHEIM VETMEDICA GMBH**, Ingelheim am Rhein (DE)

(21) Appl. No.: **14/238,796**

(22) PCT Filed: **Aug. 15, 2012**

(86) PCT No.: **PCT/EP2012/065940**

§ 371 (c)(1),

(2), (4) Date: **Mar. 20, 2014**

Related U.S. Application Data

(60) Provisional application No. 61/523,772, filed on Aug. 15, 2011.

Publication Classification

(51) **Int. Cl.**

A61K 39/145 (2006.01)
A61K 39/17 (2006.01)
C07K 14/005 (2006.01)

(52) **U.S. Cl.**

CPC *A61K 39/145* (2013.01); *C07K 14/005* (2013.01); *A61K 39/17* (2013.01)
USPC *424/186.1*; *530/350*

(57) **ABSTRACT**

The present invention is based on the surprising finding that H5 protein of clade 1 H5N1 induces, in particular by a single-shot vaccination, a cross-clade protective immune response to influenza viruses with H5N1 HA. In one aspect, the invention is thus directed to H5 protein of clade 1 H5N1 virus for use in a method of treating or preventing infections with H5N1 virus of a different clade, namely of a clade different from clade 1 or from any clade with the exception of clade 1, respectively.

INFLUENZA H5 VACCINES**FIELD OF THE INVENTION**

[0001] The present invention relates to the field of medicine, preferably to the field of infectious diseases. In particular the present invention relates to influenza proteins and vaccines. Most particularly, the present invention relates to the use of any of such proteins or vaccines for the treatment and prevention of influenza infections, furthermore for the prevention of intra- and inter-species transmission of influenza virus.

BACKGROUND OF THE INVENTION

[0002] Influenza infection remains an important infection in animals and humans. Influenza is caused by viruses that undergo continuous antigenic changes/modifications and that possess an animal reservoir. Thus new epidemics and pandemics may occur in the future, and eradication of the disease will be difficult to achieve. Influenza viruses are well known in the art and described more in detail for example by P. Palese, *Nature Medicine*, vol. 10, no. 12, pp. S 82 to S 86 of December 2004, with further references. Briefly, the genome of the influenza A virus consists of eight single-stranded segments, and the viral particles has two major glycoproteins on its surface: hemagglutinin (H) and neuraminidase (N). With at least 16 different hemagglutinin (H1 to H16) and 9 different neuraminidase (N1 to N9) subtypes, there is a considerable antigenic variation among influenza viruses.

[0003] Influenza virus of type H5N1 Fowl Plague virus has been demonstrated to infect poultry, pigs and man. The viruses can also be transmitted directly from avian species to humans (Claas et al., *Lancet* 1998, 351: 472; Suarez et al., *J. Virol.* 1998, 72: 6678; Subbarao et al., *Science* 1998, 279: 393; Shortridge, *Vaccine* 1999, 17 (Suppl. 1): S26-S29). Mortality in known human clinical cases approaches about 50%.

[0004] Over the last century pigs have been an important vector for influenza pandemics. Pigs, camels, and seals, preferably pigs, can serve as a 'mixing chamber' for avian influenza viruses, and therefore represent a potential risk factor for overcoming the species hurdles from poultry, the naturally reservoir of influenza viruses, to mammals. This normally occurs by double infections of the susceptible animals, e.g. pig, with both, an established mammalian (porcine), as well as an avian influenza virus. This double infection may create new recombinant viruses that may be the cause of human or porcine pandemics. Recent evidence would, however, indicate that a recombination of current avian H5 strains with mammalian influenza viruses will not result in highly virulent recombinants. On the other hand, avian influenza virus can infect pigs and by spontaneous mutations can become adapted to pigs. The critical hurdle will be overcome as soon as the virus can cause horizontal infections within a pig (or other mammalian) population.

[0005] Yet, a major part of Southeast Asian pigs have been infected with avian (H5) influenza virus strains originating from neighbouring poultry husbandry. As those infections have so far been sub-clinical, they can only be diagnosed by laboratory methods and thus are frequently overlooked. There is a high risk that those sub-clinically-infected pigs will serve as an opportunity for the virus to adapt to the mammalian system, spread within the porcine population, and also infect human beings.

[0006] Current influenza vaccines include a subunit vaccine (Babai et al., *Vaccine* 1999, 17(9-10):1223-1238; Crawford et al., *Vaccine* 1999, 17(18):2265-2274; Johansson et al., *Vaccine* 1999, 17(15-16):2073-2080) attenuated vaccine (Horimoto et al., *Vaccine* 2004, 22(17-18):2244-2247), DNA vaccine (Watabe et al., *Vaccine* 2001, 19(31):4434-4444) and inactivated influenza vaccine (Cao et al., *Vaccine* 1992, 10(4): 238-242), with the latter being the most widely used on a commercial scale (Lipatov et al., *J Virol* 2004, 78(17):8951-8959).

[0007] Subunit vaccines, recombinant hemagglutinin and neuraminidase (Babai et al., *Vaccine* 1999, 17(9-10):1223-1238; Crawford et al., *Vaccine* 1999, 17(18):2265-2274; Johansson et al., *Vaccine* 1999, 17(15-16):2073-2080) may be an attractive alternative to the inactivated vaccine, although none are currently in use as commercial vaccines. The preparation of such vaccines is obviously safer than for an inactivated vaccine. Moreover, subunit vaccines do not generate antibody responses to internal influenza viral proteins and thus allow distinction between vaccinated and infected animals (Crawford et al., *Vaccine* 1999, 17(18): 2265-2274).

[0008] Hemagglutinin protein is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The entire hemagglutinin protein (HA) from the H5N1 is composed of 568 amino acids, with a molecular weight of 56 kDa. The HA molecule consists of HA1 and HA2 subunits, with the HA1 subunit mediating initial contact with the cell membrane and HA2 being responsible for membrane fusion (Chizmadzhev, *Bioelectrochemistry* 2004, 63(1-2):129-136).

[0009] Baculovirus/insect cell systems have been used to express hemagglutinin genes isolated from avian influenza subtypes (Babai et al., *Vaccine* 1999, 17(9-10):1223-1238; Crawford et al., *Vaccine* 1999, 17(18):2265-2274; Johansson et al., *Vaccine* 1999, 17(15-16):2073-2080); Nwe et al., *BMC Microbiology* 2006, 6(16):doi:10.1186/1471-2180-6-16). However, those recombinant proteins seem not to be protective in any case, or only less effective at least for some species (Treanor et al., *Vaccine* 2001, 19: 1732-1737).

[0010] The document Lin et al. (J Vet Med Sci. 2008 70(11):1147-52) discloses the use of a baculovirus/insect cell system for the production of H5 protein of clade 2 H5N1 virus A/duck/China/E319-2/03, which is usable for a prime-boost vaccination for preventing an infection with the clade 2 virus A/duck/China/E319-2/03.

[0011] Bright et al. (PLoS One. 2008 30; 3(1):e1501) describes the use of a baculovirus/insect cell system for generating virus-like particles (VLPs) which include neuraminidase, hemagglutinin and matrix 1 protein from clade 2 H5N1 virus for inducing a cross-clade protective immune response against a challenge with clade 1 H5N1 virus A/VN/1203/2004 in mice. However, the production of VLPs is not without problems, since in order to generate a functional VLP that effectively mimic a real virus, multiple virus structural proteins are needed which must then be correctly assembled into a particle that reproduces the confirmation of the outer shell (capsid) of the infectious virus. Further, study also reveals that in vitro assembly of VLPs competes with aggregation (Ding et al. *Biotechnology and Bioengineering* 107 (3): 550-560).

[0012] Thus, there is a need to increase availability of improved vaccines and new vaccination approaches to provide better approaches to control influenza infections and to have a positive impact on disease load. In particular, there is

a strong need for a simple, effective and easy-to-handle system inducing, preferably by a single-shot vaccination, a cross-clade protective immune response to influenza viruses with H5N1 HA.

DESCRIPTION OF THE INVENTION

[0013] Before the embodiments of the present invention it shall be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a preparation" includes a plurality of such preparations; reference to the "carrier" is a reference to one or more carriers and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. All given ranges and values may vary by 1 to 5% unless indicated otherwise or known otherwise by the person skilled in the art, therefore, the term "about" was omitted from the description. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the substances, excipients, carriers, and methodologies as reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

[0014] The solution to the above technical problem is achieved by the description and the embodiments characterized in the claims.

Influenza Proteins and Nucleic Acid Molecules Coding for Those

[0015] The present invention is based on the surprising finding that H5 protein of clade 1 H5N1 induces, in particular by a single-shot vaccination, a cross-clade protective immune response to influenza viruses with H5N1 HA. As one feature, the H5 protein of clade 1 H5N1 virus, which is for reasons of clarity also termed "H5 protein (1)" herein, comprises or consists of a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence set forth in SEQ ID NO:1.

[0016] A "single-shot vaccination" refers to an immunogenic composition that is effective at reducing the incidence of or severity of infection after a single dose thereof, without the need for a booster.

[0017] In one aspect, the invention is thus directed to H5 protein (1) of clade 1 H5N1 virus for use in a method of treating or preventing infections with H5N1 virus of a different clade, namely of a clade different from clade 1 or from any clade with the exception of clade 1, respectively, wherein said H5 protein (1) comprises or consists of a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1.

[0018] The term "clade" or "clades" as used herein relates to the clade(s) of the WHO Nomenclature System for the highly Pathogenic Avian Influenza Virus (H5N1), which is summarized at the WHO website URL: who.int/csr/disease/avian_influenza/guidelines/nomenclature/en/ (12 Aug. 2011), which is incorporated herein by reference.

[0019] 10 distinct initial clades of viruses (numbered 0-9) are defined (WHO/OIE/FAO H5N1 Evolution Working Group, 2008), which are called first order clades. Clades are strictly defined on the nucleotide level as meeting the following three specific clade definition criteria developed by the WHO/OIE/FAO H5N1 Evolution Working Group:

[0020] sharing of a common (clade-defining) node;

[0021] monophyletic grouping with a bootstrap value of ≥ 60 at the clade-defining node (after 1000 neighbor-joining bootstrap replicates); and

[0022] average percentage pairwise nucleotide distances between and within clades of $>1.5\%$ and $<1.5\%$, respectively.

[0023] As the viruses within these 10 clades continue to evolve, new sublineages (potential H5N1 clades) periodically emerge. Once these sublineages meet the same three specific clade definition criteria as the initial 10 clades (numbered 0-9), they are designated as separate clades (WHO/OIE/FAO H5N1 Evolution Working Group Emerg. Inf. Dis. 14, 7 (2008)). These new clades are defined as second (or third, etc) order clades and assigned a numerical 'address' which links them to their original clade using a hierarchical decimal numbering system. For example, within the antigenically distinct clade 2.3, third order clades meeting the clade definition are designated as clades 2.3.1 and 2.3.2 and so on. This logical hierarchical numbering system is objectively related to HA phylogeny.

[0024] The criteria used for the clade designation according to the WHO Nomenclature System for H₅N1 are:

[0025] 1 Maintain previously designated clade numbers where possible (i.e., clade 2.2 remains 2.2 and clade 1 remains 1)

[0026] 2 New clade designations based on phylogenetic tree topology derived from all available sequences (the large tree)

[0027] H5N1 progenitors (closest to Gs/Guangdong/1/96) re-designated as clade 0

[0028] Subsequent clades numbered starting from clade 3 (i.e., clades 3-9)

[0029] Clades designated by presence of a distinct common node shared by at least 4 isolates (in a monophyletic group)

[0030] Additional branches designated as a single clade evolves into more than one distinct lineage (i.e., clade 2.2 or clade 2.3.1; based on sharing of a common node and monophyletic grouping)

[0031] 3 Average percentage pairwise distances between and within clades (using Kimura 2-parameter)

[0032] Distinct clades should have $>1.5\%$ average distances between other clades

[0033] Distinct clades should have $<1.5\%$ average distances within the clade (may be slightly higher in clades with highly evolved outliers; i.e., Ck/Shanxi/2/2006 in clade 7)

[0034] 4 Bootstrap (based on 1,000 neighbor-joining bootstrap replicates) $\geq 60\%$ bootstrap value at clade-defining node

[0035] (taken from Table 1 of: WHO/OIE/FAO H5N1 Evolution Working Group Emerg. Inf. Dis. 14, 7 (2008)).

[0036] The prototype strain for each clade is listed in the following Table:

Clade	Prototype strain
0	Gs/Guangdong/1/96
3	Ck/Hong Kong/YU562/2001
4	Gs/Guiyang/337/2006
5	Gs/Guangxi/914/2004
6	Ck/Hunan/01/2004
7	Ck/Shanxi/2/2006
8	Ck/Hong Kong/YU777/2002
9	Dk/Guangxi/2775/2005
1	Vietnam/1203/2004
2.1.1	Ck/Indonesia/BL/2003
2.1.2	Indonesia/538H/2006
2.1.3	Indonesia/5/2005
2.2	BHGs/Qinghai/1A/2005
2.3.1	Dk/Hunan/303/2004
2.3.2	Ck/Guangxi/2461/2004
2.3.3	Ck/Guiyang/3055/2005
2.3.4	Dk/Fujian/1734/2005
2.4	Ck/Yunnan/115/2004
2.5	Ck/Korea/ES/2003
2.5	Ck/Korea/ES/2003

(taken from Table 2 of: WHO/OIE/FAO H5N1 Evolution Working Group Emerg. Inf. Dis. 14, 7 (2008)).

[0037] The publication WHO/OIE/FAO H5N1 Evolution Working Group Emerg. Inf. Dis. 14, 7 (2008), which is incorporated herein by reference, is found at the CDC website URL: cdc.gov/EID/content/14/7/e1.htm (12 Aug. 2011).

[0038] An overview of the clade classification of known H5N1 viruses is provided by the phylogenetic tree at the WHO website URL: who.int/csr/disease/avian_influenza/H5CompleteTree.pdf (15 Aug. 2011), which is hereby incorporated by reference.

[0039] For determining the clade of a H5 protein of H5N1, for example, the web based tool “Highly Pathogenic Avian Influenza (HPAI) H5N1 HA clade prediction” can be used, which is described by Lu, Davis, Rowley, and Donis: “A Web-based tool for the clade designation of highly pathogenic avian influenza H5N1 viruses” in Options for the Control of Influenza VI. J. M. Katz, N. Cox & A. W. Hampson (Eds.) London: Blackwell, 2007, herein incorporated by reference, and which is found at the website URL: h5n1.flugene.org/grouping.php (12 Aug. 2011).

[0040] For example, a H5 protein of clade 1 H5N1 virus (H5 protein (1)) is thus a HA with an amino acid sequence encoded by a nucleotide sequence of a clade 1 according to the above-mentioned WHO Nomenclature System for H5N1.

[0041] A clade 2.3.1 H5N1 virus, for instance, is hence a H5N1 falling under the criteria of a clade 2.3.1 according to the above-mentioned WHO Nomenclature System for H5N1.

[0042] In a preferred embodiment, the H5 protein (1) according to the invention, namely the H5 protein of clade 1 H5N1 virus as described herein, comprises or consists of a polypeptide sequence having at least 98.1%, preferably at least 98.2%, more preferably at least 98.3%, and most preferably at least 98.4% sequence identity with the polypeptide sequence of SEQ ID NO:1.

[0043] Sequence identity in the context of the invention is understood as being based on determined pairwise similarity between protein sequences. The determination of percent similarity between two sequences is preferably accomplished using a computational algorithm, in particular the well-known Basic Local Alignment Search Tool (Altschul S F,

Gish W, Miller W, Myers E W, Lipman D J: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410). For purposes of the present invention, percent sequence identity of an amino acid sequence is determined using the BLAST blastp homology search algorithm using the following parameters: an expected threshold of 10, word size 3, BLOSUM62 matrix, gap opening penalty of 11, a gap extension penalty of 1, and conditional compositional score matrix adjustment. The database to search against is the set of non-redundant protein sequences (nr). The BLAST homology search algorithm is described in Altschul SF (1990), J Mol Biol 1990, 215(3):403-410, which is herein incorporated by reference.

[0044] A variant may, for example, differ from the reference accession number BAE07201 molecule without signal peptide (N-terminal 16 amino acid residues are not shown in SEQ ID NO:1) by as few as 1 to 15 amino acid residues, as few as 1 to 10 amino acid residues, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.

[0045] In one exemplary embodiment, the H5 protein (1) according to the invention, i.e. the H5 protein (1) of clade 1 H5N1 virus for use in a method of treating or preventing infections with H5N1 virus of a different clade, is preferably a H5 protein of influenza virus, wherein the H5 protein having the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted. Said preferred H5 protein (1) is also termed Mut k+ or mutK+ in the following. Preferably, such H5 protein and any further H5 protein according to the invention is an isolated H5 protein.

[0046] The term “H5 protein (1) of clade 1 H5N1”, as used herein, preferably means “H5 protein (1) as single antigen of clade 1 H5N1 virus” or in particular “H5 protein (1) as single antigen”.

[0047] The terms “hemagglutinin 5 (H5)” or “H5 of avian influenza virus” or “H5 protein” as used herein are equivalent and mean, but are not limited to any naturally occurring H5 protein and any modified forms of H5 protein, including any deletion, substitution and/or insertion mutant of H5 protein.

[0048] The numbering of the amino acid positions of the H5 protein (1) Mut k+ as used herein refers to the amino acid position as exemplarily given in SEQ ID NO:2. SEQ ID NO:2 represents the amino sequence of the hemagglutinin of strain duck/China/E319-2/03 but lacking the amino terminal signal peptide. In other words, if reference is made to the amino acid at position 223 (amino acid 223), the amino acid residue is meant which corresponds to amino acid 223 of SEQ ID NO:2. However, this does not mean that the H5 protein Mut k+ according to the invention has the identical amino acid sequence with SEQ ID NO:2. It only says, that the corresponding amino acids of the H5 proteins according to the inventions code for the amino acid residue, as explicitly mentioned. In the current case, amino acid 223 would be Serine (S). The terms “223N”, or “155N” exemplarily mean, that the amino acid at positions 223 and 155, respectively—numbering according to the amino acid positions of SEQ ID NO:2—that shall code for the amino acid Asparagine (N). In other words, if reference is made to “H5 protein (1) having the amino acid 223N”, a H5 amino acid molecule that normally codes for Serine at amino acid position 223—numbering according to the amino acid positions of SEQ ID NO:2—that

amino acid shall be substituted by an Asparagine (N). The term “328K+” or “modification 328K+” means, that at amino acid position 328 of H5 protein—numbering according to the amino acid positions of SEQ ID NO:2—, a second Lysine (K+) is inserted. In cases where amino acids sequences at positions 328 and 329 naturally codes for Lysine-Lysine, no further Lysine (K) shall be inserted. However, most of the known H5 sequences code at amino acid positions 328 and 329 for Lysine-Arginine. In any such cases, the term 328K+ modification means, that a second Lysine (K) shall be inserted between Lysine at position 328 and Arginine at position 329. The modified sequence would read then Lysine-Lysine-Arginine (KKR).

[0049] Regarding the present example, the hemagglutinin of strain duck/China/E319-2/03 is shifted to a H5 protein (1) of clade 1 H5N1, since it resembles the H5 sequence of the clade 1 H5N1 virus A/HongKong/213/2003, the year/location/host of this HK isolate, and shows reactivity with clade-1-specific antibodies. Hence the Mut K+ sequence is classified as a H5 sequence of a clade 1 H5N1. Within the context of the invention, the designed Mut K+ sequence is thus understood and defined to be a H5 protein of clade 1 H5N1 virus.

[0050] Thus, in particular also any designed H5 protein is understood and defined as a H5 protein of clade 1 H5N1 virus according to the invention, if it is encoded by a nucleotide sequence which fulfills the criteria of a nucleotide sequence of a clade 1 according to the above-mentioned WHO Nomenclature System for H5N1.

[0051] Thus, in one embodiment, the present invention is implemented with a H5 protein and any modified forms of H5 protein, including any deletion, substitution and/or insertion mutant of H5 protein, wherein those H5 proteins having the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted. It is self-explanatory, that any of the H5 proteins as provided herewith are antigenic, which means they show antigenic properties in a standard hemagglutinin inhibition assay for influenza viruses.

[0052] According to a further embodiment, the present invention also relates to any part of the H5 protein (1), which means any peptide-fragment which shows antigenic properties in a standard hemagglutinin inhibition assay, having in one embodiment at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted.

[0053] A H5 protein (1) shows antigenic properties if it inhibits hemagglutination in a standard hemagglutinin inhibition assay, for example, as described in Example 2. Normally said antigenic part of H5 protein (1) comprises 200, 180, 160, 150, 140, 130, 120, 110 or most preferably 105 contiguous amino acids of the amino acid sequence that codes for the H5 protein as mentioned above, modified or non-modified, which shows antigenic properties in a standard hemagglutinin inhibition assay as described in Example 2. A standard hemagglutinin inhibition assay for example is also described in Stephenson et al., Virus Research vol. 103, pp. 91-95 (2004) with further references. However, the HI assay

as described in Example 2 shall be understood to be the relevant reference assay in connection with all aspects of the invention as described herein:

[0054] Briefly, HI assay was performed to detect the presence of HA-specific antibodies. A heterologous H5N2 virus, A/chicken/Mexico/232/94, was used at a concentration of four hemagglutinating units [4 HA units] in the HI assay. In U-bottomed microtiter plates serial two-fold serum dilutions in PBS were subsequently mixed with equal volumes (25 µL) containing 4 HA units of virus, and incubated at room temperature (about 25° C.) for 30 min. Chicken red blood cells, at a concentration of 0.5% in PBS, were added to the serum-virus containing wells and incubated for 40 min at room temperature. The HI titers were determined as reciprocals of the highest serum dilutions in which inhibition of hemagglutination was observed.

[0055] Of note, Haesebrouck and Pensaert (1986) found “that there may exist a correlation between the HI titers against the challenge virus and protection from challenge”. Haesebrouck and Pensaert (1986) also determined that pigs with HI titers of ≥ 40 were “completely resistant to challenge and no replication of the virus occurred in the respiratory tract at challenge”. Thus, the development of HI titers ≥ 40 in the vaccinated swine would correlate to protection. (F. Haesebrouck and M. B. Pensaert, 1986). Effect of intratracheal challenge of fattening pigs previously immunized with an inactivated influenza H1N1 vaccine (*Veterinary Microbiology*, 11 (1986) 239-249). It has to assume that equivalent or at least nearly equivalent H5 HI titers will also result in a complete immune protection of swine against avian influenza virus. Lower titers, at least result in a seroconversion of the vaccinated animals and result in partial immune protection of those animals, which also can dramatically reduce the risk of a pandemics.

[0056] Moreover, an antigenic part of the H5 protein (1) according to the invention includes, but is not limited to deletion mutants of H5 protein, which comprises:

[0057] i. at least 35, 30, 25, 20, 18, 15, 13, 10, 9, or most preferably 8 contiguous amino acids of the amino acid sequence that surrounds and includes the amino acid 223N; and

[0058] ii. at least 35, 30, 25, 20, 18, 15, 13, 10, 9, or most preferably 8 contiguous amino acids of the amino acid sequence that surrounds and includes the amino acid modification 328K+, and

[0059] iii. wherein any of such antigenic part of H5 protein shows hemagglutinin inhibition in a standard hemagglutinin inhibition assay as described in Example 2.

[0060] Preferably, those surrounding amino acids of amino acid 223N and/or 328K+ are encoded by SEQ ID NO:2 or SEQ ID NO:5.

[0061] Furthermore preferred H5 proteins (1) according to the invention are:

[0062] i. any of those mentioned above having the amino acid 223N and the modification 328K+;

[0063] ii. any of those mentioned above having the amino acid 94N/223N and the modification 328K+;

[0064] iii. any H5 protein of avian origin having the amino acid 223N, and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from a poultry infected with avian influenza virus type 5; or

[0065] iv. any H5 protein of avian origin having the amino acids 94N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0066] v. any H5 protein of avian origin having the amino acids 155N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0067] vi. any H5 protein of avian origin having the amino acid 120N/155N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0068] vii. any H5 protein having the modifications 94N/223N and the modification 328K+; or

[0069] viii. any H5 protein having the modifications 94N/155N/223N and the modification 328K+; or;

[0070] ix. any H5 protein having the modifications 94N/120N/155N/223N and the modification 328K+; or

[0071] x. any H5 protein having the modifications 223N, the modification 328K+, and one or more of the following amino acid clusters selected from the group consisting of:

- [0072] a. aa 93-95: GNF
- [0073] b. aa 123-125: SDH
- [0074] c. aa 128-130: SSG
- [0075] d. aa 138-140: GSS
- [0076] e. aa 226-228: MDF
- [0077] f. aa 270-272: EVE
- [0078] g. aa 309-311: NKL; or

[0079] xi. any H5 protein having the amino acid 223N, and the modification 328K+, and one or more of the following amino acid clusters selected from the group consisting of:

- [0080] a. aa 93-95: GNF
- [0081] b. aa 128-130: SSG
- [0082] c. aa 138-140: GSS; or

[0083] xii. any H5 protein having the amino acid sequence of SEQ ID NO:5.

[0084] Furthermore preferred H5 proteins (1) as provided herewith include the H5 proteins as described by Hoffmann et al, *PNAS*, vol. 106, no. 36, pp. 12915-12920 of Sep. 6, 2005, wherein that H5 proteins includes one or more of the modifications as described above, at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted. The disclosure of this reference shall be entirely included herein by reference.

[0085] Furthermore preferred H5 proteins (1) as provided herewith include H5 proteins which comprise a peptide that comprises the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted, and:

[0086] i. the amino acid sequences of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6 or SEQ ID NO:7; or

[0087] ii. any peptide that has at least 85% sequence homology, more preferably at least about 90% sequence homology, still more preferably at least about 95% sequence homology, even more preferably at least about 97% sequence homology, still even more preferably at least about 98% sequence homology, and even more preferably at least about 99% sequence homology to the polypeptide of i) that comprises hemagglutinin inhibition in a standard hemagglutinin inhibition as described above; or

[0088] iii. any antigenic part of the polypeptides of i) or ii) comprising at least 35, 30, 25, 20, 18, 15, 13, 10, 9, or most preferably 8 contiguous amino acids of any of peptides of i) or ii).

[0089] iv. any peptides of i), ii) or iii) having the amino acids 36T, 36K, 83A, 83T, 83D, 86A, 86V, 120N, 120S, 155N, 155S, 156A, 156T, 189R, 189K, 212K, 212R, 212E, 223N, 223N, or 120N/155N.

[0090] v. any peptide of i), ii), iii) or iv) having one or more of the following amino acid clusters selected from the group consisting of:

- [0091] a. aa 93-95: GNF
- [0092] b. aa 123-125: SDH
- [0093] c. aa 128-130: SSG
- [0094] d. aa 138-140: GSS
- [0095] e. aa 226-228: MDF
- [0096] f. aa 270-272: EVE
- [0097] g. aa 309-311: NKL; or

[0098] vi. any peptide of i), ii) iii) or iv) having one or more of the following amino acid clusters selected from the group consisting of:

- [0099] a. aa 93-95: GNF
- [0100] b. aa 128-130: SSG
- [0101] c. aa 138-140: GSS.

[0102] “Sequence homology”, as used herein, refers to a method of determining the relatedness of two sequences. To determine sequence homology, two or more sequences are optimally aligned, and gaps are introduced if necessary. In contrast to sequence identity, conservative amino acid substitutions are counted as a match when determining sequence homology. In other words, to obtain a polypeptide or polynucleotide having 95% sequence homology with a reference sequence, 85%, preferably 90%, even more preferably 95% of the amino acid residues or nucleotides in the reference sequence must match or comprise a conservative substitution with another amino acid or nucleotide, or a number of amino acids or nucleotides up to 15%, preferably up to 10%, even more preferably up to 5% of the total amino acid residues or nucleotides, not including conservative substitutions, in the reference sequence may be inserted into the reference sequence. Preferably the homolog sequence comprises at least a stretch of 50, even more preferred of 100, even more preferred of 250, even more preferred of 500 nucleotides. Upon such alignment, sequence homology is ascertained on a position-by-position basis, e.g., the sequences are “homolog” at a particular position if at that position, the nucleotides or amino acid residues are identical. The total number of such position identities is then divided by the total number of nucleotides or amino acid residues in the reference sequence to give % sequence homology. Sequence homology can be readily calculated by known methods, including but not lim-

ited to, those described in Computational Molecular Biology, Lesk, A. N., ed., Oxford University Press, New York (1988), Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York (1991); and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988), the teachings of which are incorporated herein by reference. Preferred methods to determine the sequence homology are designed to give the largest match between the sequences tested. Methods to determine sequence homology are codified in publicly available computer programs which determine sequence identity between given sequences.

Examples of such programs include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research, 12(1):387 (1984)), BLASTP, BLASTN and FASTA (Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S. et al., NCVI NLM NIH Bethesda, Md. 20894, Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990), the teachings of which are incorporated herein by reference). These programs optimally align sequences using default gap weights in order to produce the highest level of sequence homology between the given and reference sequences.

[0103] Furthermore preferred H5 proteins (1) include H5 proteins which comprise the 328K+ modification as mentioned above, and the amino acid sequence provided in TABLE 1, or any immunogenic part thereof:

TABLE 1

Sequence name	Basic- sequence	Amino acid positions [#]									
		36	83	86	120	155	156	189	212	223	263
223N/328K+	any HA H5	—	—	—	—	—	—	—	—	N	—
36T/223N/328K+	any HA H5	T	—	—	—	—	—	—	—	N	—
36K/223N/328k+	any HA H5	K	—	—	—	—	—	—	—	N	—
83A/223N/328k+	any HA H5	—	A	—	—	—	—	—	—	N	—
83T/223N/328k+	any HA H5	—	T	—	—	—	—	—	—	N	—
83D/223N/328k+	any HA H5	—	D	—	—	—	—	—	—	N	—
86A/223N/328k+	any HA H5	—	—	A	—	—	—	—	—	N	—
86V/223N/328k+	any HA H5	—	—	V	—	—	—	—	—	N	—
120N/223N/328k+	any HA H5	—	—	—	N	—	—	—	—	N	—
120S/223N/328k+	any HA H5	—	—	—	S	—	—	—	—	N	—
155N/223N/328k+	any HA H5	—	—	—	—	N	—	—	—	N	—
155S/223N/328k+	any HA H5	—	—	—	—	S	—	—	—	N	—
156A/223N/328k+	any HA H5	—	—	—	—	—	A	—	—	N	—
156T/223N/328k+	any HA H5	—	—	—	—	—	T	—	—	N	—
189R/223N/328k+	any HA H5	—	—	—	—	—	—	R	—	N	—
189K/223N/328k+	any HA H5	—	—	—	—	—	—	K	—	N	—
212K/223N/328k+	any HA H5	—	—	—	—	—	—	—	K	N	—
212R/223N/328k+	any HA H5	—	—	—	—	—	—	—	R	N	—
212E/223N/328k+	any HA H5	—	—	—	—	—	—	—	E	N	—
223N/263A/328k+	any HA H5	—	—	—	—	—	—	—	—	N	A
223N/263T/328k+	any HA H5	—	—	—	—	—	—	—	—	N	T
120N/155N/223N/328k+	any HA H5	—	—	—	N	N	—	—	—	N	—
A/duck/China/E319-2/03/328k+	AAR99628	T	A	A	S	D	A	R	K	N	A
A/duck/China/E319-2/03_223N/328k+	AAR99628	T	A	A	S	D	A	R	K	N	A

TABLE 1-continued

Sequence name	Basic- sequence	H5 antigens										
		36	83	86	120	155	156	189	212	223	263	Amino acid positions [#]
A/duck/China/E319- 2/03_120N/223N/ 328k+	AAR99628	T	A	A	N	D	A	R	K	N	A	
A/duck/China/E319- 2/03_155N/223N/ 328k+	AAR99628	T	A	A	S	N	A	R	K	N	A	
A/duck/China/E319- 2/03_120N/155N/ 223N/328k+	AAR99628	T	A	A	S	N	N	R	K	N	A	
HA/HK/213/03/328k+	AY518362	T	A	A	N	N	A	R	K	N	A	
HA/Vietnam/1203/04		K	T	V	S	S	T	K	R	N	T	
HA/Vietnam/1203/ 04_223N/328k+		K	T	V	S	S	T	K	R	N	T	
HA/Vietnam/3046/ 04_223N/328k+		T	A	V	S	S	T	K	R	N	T	
HA/Vietnam/3062/ 04_223N/328k+		T	A	V	S	S	T	K	R	N	T	
HA/chicken/Vietnam/ 39/04_223N/328k+		T	A	V	S	S	T	K	R	N	T	
HA/falcon/HK- D0028/04_223N/328k+		T	A	A	S	S	A	K	E	N	A	
HA/duck/Singapore/ 3/97_223N/328k+		T	D	V	S	N	A	K	E	N	A	
HA/HK/156/97/328k+		T	A	A	S	S	A	K	E	N	T	

[#]the amino acid positions given in TABLE 1 refers to the positions as exemplarily defined in SEQ ID NO:2. In other words amino acid 223 of TABLE 1 refers to the amino acid 223 of the sequence of SEQ ID NO:2.

— means that the amino acids at this positions are variable as compared to the reference sequence.

[0104] Furthermore, the present invention also relates to H5 proteins (1) having at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted, and comprises:

[0105] i. a peptide having the sequences of NCBI Accession No. AAT65209, CAJ32556, ABC47656, CAF21874, CAF21870, AAC58998, AAC58997, AAC58996, AAC58994, AAC58993, AAC58992, AAC58991, AAC58990, AAC58995, AAS45134, AAN17270, AAN17269, AAN17268, AAN17267, AAN17266, AAN17265, AAN17264, AAN17263, AAN17262, AAN17261, AAN17260, AAN17259, AAN17257, AAN17256, AAN17255, AAN17254, AAA43083, AAA43082, AAB19079, BAE48696, BAE48693, BAE48696, BAE48695, BAE48694, BAE48692, BAE48691, BAE48690, BAE48689, BAE48688, BAE48687, BAE48686, BAE48685, BAE48684, BAE48683, AAC58999, ABC72082, AAV91149, AAP71993, AAP71992, AAP71991, AAP71990, AAP71989, AAP72011, AAP72010,

AAP72009, AAP72008, AAP72007, AAP72006, AAP72005, AAP72004, AAP72003, AAP72002, AAP72001, AAP72000, AAP71999, AAP71998, AAP71997, AAP71996, AAP71995, AAP71994, AAF99718, ABF58847, AAG38534, AAC32102, AAC32099, AAL75847, AAC32101, AAC32098, AAC32088, AAC32078, AAC32078, AAC32100, AAC49555, AAL75843, AAL75839, AADI3573, AAD13568, AAF04720, AAF04719, AAC34263, AAR16155, AAD13574, AAD13570, AAD13575, AAD13572, AAD13569, AAD13567, AAD13566, AAK57506, AAG01225, AAG01215, AAG01205, AAG01195, or ABD83813 modified in a manner described above, which means that those sequences include the above-mentioned modifications 223N and 328 K+ which are not part of the wild-type sequences; or

[0106] ii. any peptide that has at least 85% sequence homology, more preferably at least about 90% sequence homology, still more preferably at least about 95% sequence homology, even more preferably at least about 97% sequence homology, still even more preferably at least about 98% sequence homology, and even more preferably at least about 99% sequence homology to the

polypeptide of i) and that show hemagglutinin inhibition in a standard hemagglutinin inhibition as described above;

[0107] iii. any of the peptides of i) or ii) having the amino acids 36T, 36K, 83A, 83T, 83D, 86A, 86V, 120N, 120S, 155N, 155S, 156A, 156T, 189R, 189K, 212K, 212R, 212E, 263A, 263T, or 120N/155N; or

[0108] iv. any of such peptides of i), ii), or iii) having one or more of the following amino acid clusters selected from the group consisting of:

[0109] a. aa 93-95:GNF

[0110] b. aa 123-125 SDH

[0111] c. aa 128-130: SSG

[0112] d. aa 138-140:GSS

[0113] e. aa 226-228: MDF

[0114] f. as 270-272: EVE

[0115] g. aa 309-311: NKL; or

[0116] v. any peptide of i), ii) iii) or iv) having one or more of the following amino acid clusters selected from the group consisting of:

[0117] a. as 93-95:GNF

[0118] b. aa 128-130: SSG

[0119] c. aa 138-140:GSS

[0120] Preferably, the H5 protein (1) for use in a method of treating or preventing infections with H5N1 virus of a different clade is recombinantly expressed and/or produced by a baculovirus expression system, preferably in cultured insect cells.

[0121] The term "H5 protein (1)" as mentioned herein is thus, in particular, equivalent to the term "recombinant H5 protein" used herein.

[0122] Regarding the H5N1 virus of a different clade, as mentioned herein, said H5N1 virus of a different clade is preferably selected from the group consisting of clade 0 H5N1 virus, clade 2 H5N1 virus, clade 3 H5N1 virus, clade 4 H5N1 virus, clade 5 H5N1 virus, clade 6 H5N1 virus, clade 7 H5N1 virus, clade 8 H5N1 virus and clade 9 H5N1 virus.

[0123] In a further preferred embodiment of the invention, the H5N1 virus of a different clade is clade 2.2 H5N1 virus or a clade 2.3 H5N1 virus.

[0124] In a particular preferred embodiment of the invention, the H5N1 virus of a different clade is a clade 2.2.1 H5N1 virus or a clade 2.3.2 H5N1 virus.

[0125] For reasons of clarity, H5 protein of the H5N1 virus of a different clade is termed "H5 protein (2)" hereinafter. Hence, H5 protein (2) as mentioned herein is in particular a H5 protein coded by the genome of a H5N1 of any clade with the exception of clade 1.

[0126] In still a further preferred embodiment, the H5N1 virus of a different clade is a H5N1 virus of North African or of Vietnamese origin, wherein said H5N1 virus of North African origin is preferably a H5N1 virus comprising a H5 protein (2) of influenza virus, wherein said H5 protein (2) has

[0127] (a) the amino acids 113D, 126H, 145(–), 156R, 160F, 167T, and 181N, wherein the modification 145(–) means that amino acid position 145 of H5 is deleted, or

[0128] (b) the amino acids 87P, 145L, 172T, 201E, 206I, 208K, 254T, 341G and 421K, or

[0129] (c) the amino acids 145L, 172T, and 254V,

[0130] and wherein the numbering of the amino acid positions of the H5 protein (2) refers to the amino acid position as exemplarily given in SEQ ID NO:8;

[0131] or wherein said H5 protein (2) consists of or comprises an amino acid sequence which is at least 95%, preferably at least 96%, more preferably at least 97%, still more preferably at least 98%, yet more preferably at least 99%, or in particular preferred 100% homolog with any one of the sequences as set forth in SEQ ID NOs: 9 to 46.

[0132] In the context of the invention, said H5 protein (2) according to (a) is a Subclade A protein, and said H5 protein according to (b) or (c) is a Subclade B protein.

[0133] Within the context of the invention, it is understood that the term "amino acid" in particular refers to an amino acid residue or, respectively, to an amino acid which has been covalently linked via peptide bonds to two further amino acids or, if the amino acid is N- or C-terminally located in the peptide sequence, to one further amino acid.

[0134] In a still more preferred embodiment of the invention, the H5N1 virus of a different clade comprises H5 protein (2) having

[0135] (a) the amino acids 87L, 113D, 126H, 145(–), 156R, 160F, 167T, and 181N, or

[0136] (b) the amino acids 87P, 113N, 126R, 145L, 160Y, 172T, 181H, 201E, 206I, 208K, 254T, 341G and 421K, or

[0137] (c) the amino acids 87L, 113N, 126R, 145L, 156G, 160Y, 172T, 181H, and 254V,

[0138] and/or

wherein such H5 protein (2) comprises a peptide that comprises:

[0139] i. any one of the amino acid sequences of SEQ ID NOs: 9 to 46;

[0140] ii. any peptide that has at least 85%, preferably at least 95%, even more preferably at least 96%, even more preferably at least 97%, even more preferably at least 98%, even more preferably at least 99%, most preferably 100% sequence homology to the polypeptide of i) and that comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay; or

[0141] iii. any part of the polypeptides of i) or ii) comprising at least 334 contiguous amino acids of any of such peptides of i) or ii) and wherein any of such peptide comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay,

[0142] and/or

[0143] wherein such H5 protein (2) consists of or comprises a contiguous amino acid sequence which has at least 95% even more preferably at least 96%, even more preferably at least 97%, even more preferably at least 98%, even more preferably at least 99%, most preferably 100% sequence identity with any one of the sequences as set forth in SEQ ID NOs: 9 to 46.

[0144] More particular, the H5N1 virus of a different clade preferably comprises H5 protein (2) which consists of or comprises an amino acid sequence which is at least 95%, preferably at least 96%, more preferably at least 97%, still more preferably at least 98%, yet more preferably at least 99%, or in particular preferred 100% homolog with any one of the sequences as set forth in SEQ ID NOs: 15 or 20, and wherein such H5 protein (2) comprising or consisting of the amino acid sequence set forth in SEQ ID NO:20 are in particular more preferred.

[0145] In particular, the present invention is directed to the H5 protein (1) described herein for use in a method of treating or preventing infections

[0146] (A) with Subclade A H5N1 virus of North African origin, namely an infection with a H5N1 virus comprising a H5 protein (2) having the amino acids according to (a) of claim 13 or 14 or comprising a H5 protein according to claim 16 or 17 relating to any one of the sequences as set forth in SEQ ID NOs: 9 to 19, or 42 or 43,

[0147] or

[0148] (B) with Subclade B H5N1 virus of North African origin, namely an infection with a H5N1 virus comprising a H5 protein having the amino acids according to (b) or (c) of claim 13 or 14 or comprising a H5 protein according to claim 16 or 17 relating to any one of the sequences as set forth in SEQ ID NOs: 20 to 41, or 44 to 46.

[0149] According to a further embodiment, the present invention also relates to nucleic acid molecules, which code for any of the H5 proteins (1), as described supra, for use in a method of treating or preventing infections with H5N1 virus of a different clade. Preferably, those nucleic acid molecules are RNA, DNA or copy (c)DNA molecules. Thus, the present invention relates to a nucleic acid molecule, preferably a cDNA molecule coding for a H5 protein or any modified forms of H5 protein, including any deletion, substitution and/or insertion mutant of H5 protein, wherein those H5 proteins having the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted.

[0150] According to a further embodiment, the present invention also relates to a nucleic acid molecule, preferably a cDNA molecule coding for any part of the H5 protein (1), which means encoding for any peptide-fragment which shows antigenic properties in an standard hemagglutinin inhibition assay as described supra, and having at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted. Normally such nucleic acid molecules, which code for an antigenic part of H5 protein, comprise 600, 540, 480, 450, 420, 390, 360, 330 or most preferably 315 contiguous nucleotides of the nucleotide sequence that codes for the H5 protein as mentioned above, modified or non-modified, and which shows antigenic properties in an standard hemagglutinin inhibition assay as described herein.

[0151] Further embodiments of antigenic parts of the H5 protein (1) are described supra. It is in the common knowledge of a person skilled in the art to construct any such nucleic acid molecules, preferably cDNA molecules which codes for the antigenic part of the H5 protein as described supra. This also include but is not limited to the construction of nucleic acid molecules, preferably of cDNA molecules, which codes for antigenic parts of the H5 protein as mentioned above including deletion mutants of H5 protein, which comprises:

[0152] i. at least 105, 90, 75, 60, 48, 45, 39, 30, 27, or most preferably 24 contiguous amino nucleotides of the nucleotide sequence that surrounds and includes the coding sequence that codes for amino acid 223N; and

[0153] ii. at least 105, 90, 75, 60, 48, 45, 39, 30, 27, or most preferably 24 contiguous amino nucleotides of the

nucleotide sequence that surrounds and includes the coding sequence that codes for modification 328K+, and

[0154] iii. wherein any of such antigenic part of H5 protein show hemagglutinin inhibition in a standard hemagglutinin inhibition assay as described in Example 2.

[0155] Preferably, those surrounding nucleotides of the nucleotides, which code for amino acids 223N and/or 328K+, coding for SEQ ID NO:2 or SEQ ID NO:5.

[0156] Furthermore preferred nucleic acid molecules encoding for the H5 protein (1) according to the invention are:

[0157] i. any of those mentioned supra encoding for the amino acid 223N and the modification 328K+;

[0158] ii. any of those mentioned supra encoding for the amino acid 94N/223N and the modification 328K+;

[0159] iii. any nucleic acid molecules of avian origin encoding for the amino acid 223N, and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0160] iv. any nucleic acid molecules of avian origin encoding for the amino acids 94N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0161] v. any nucleic acid molecules of avian origin encoding for the amino acids 155N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0162] vi. any nucleic acid molecule encoding for H5 protein of avian origin having the amino acid 120N/155N/223N and the modification 328K+, wherein avian origin means that the H5 sequence derived from a virus isolate that was originally isolated from poultry infected with avian influenza virus type 5; or

[0163] vii. any nucleic acid molecule encoding for H5 protein having the modifications 94N/223N and the modification 328K+; or

[0164] viii. any nucleic acid molecule encoding for H5 protein having the modifications 94N/155N/223N and the modification 328K+; or

[0165] ix. any nucleic acid molecule encoding for H5 protein having the modifications 94N/120N/155N/223N and the modification 328K+; or

[0166] x. any nucleic acid molecule encoding for H5 protein having the modifications 223N, the modification 328K+, and one or more of the following amino acid clusters selected from the group consisting of:

[0167] a. aa 93-95: GNF

[0168] b. aa 123-125: SDH

[0169] c. aa 128-130: SSG

[0170] d. aa 138-140: GSS

[0171] e. aa 226-228: MDF

[0172] f. aa 270-272: EVE

[0173] g. aa 309-311: NKL; or

[0174] xi. any nucleic acid molecule encoding for H5 protein having the amino acid 223N, the modification 328K+, and one or more of the following amino acid clusters selected from the group consisting of:

[0175] a. aa 93-95: GNF

[0176] b. aa 128-130: SSG

[0177] c. aa 138-140: GSS; or

[0178] xii. any nucleic acid molecule encoding for H5 protein having the amino acid sequence of SEQ ID NO:5.

[0179] Furthermore preferred H5 proteins (1) as provided herewith include the H5 proteins as described by Hoffmann et al, *PNAS*, vol. 106, no. 36, pp. 12915-12920 of Sep. 6, 2005, wherein that H5 proteins includes one or more of the modifications as described above, at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted. The disclosure of this reference shall be entirely included herein by reference. Thus according to a further embodiments, the present invention also relates to any nucleic acid molecule, preferably a cDNA molecule coding for any of such proteins described by Hoffmann et al, *PNAS*, vol. 106, no. 36, pp. 12915-12920 of Sep. 6, 2005, wherein that H5 proteins includes one or more of the modifications as described above, at least the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted.

[0180] Methods, of how to introduce any of the above-mentioned modifications within the nucleotide sequence, including the encoding sequence of the H5 protein of an influenza virus, are well known in the art. The genomic sequence of the entire influenza virus can be modified according to the invention, for example according to the methods described in U.S. Pat. No. 6,951,754, with further references.

[0181] Furthermore, there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art to modify a nucleic acid sequence coding for an antigen as described herein. Such techniques are explained fully in the literature. See, e.g., Sambrook et al., *Molecular Cloning: A Laboratory Manual, Second Edition* (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; *DNA Cloning: A Practical Approach*, Volumes I and II (D. N. Glover ed. 1985); *Oligonucleotide Synthesis* (M. J. Gait ed. 1984); *Nucleic Acid Hybridization* [B. D. Hames & S. J. Higgins eds. (1985)]; *Transcription And Translation* [B. D. Hames & S. J. Higgins, eds. (1984)]; *Animal Cell Culture* [R. I. Freshney, ed. (1986)]; *Immobilized Cells And Enzymes* [IRL Press, (1986)]; B. Perbal, *A Practical Guide To Molecular Cloning* (1984); F. M. Ausubel et al. (eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc. 1994).

[0182] According to a further embodiment, the present invention also relates to a vector that comprises any of such nucleic acid molecules as described supra. In other words, the present invention relates to a vector, that includes the coding sequence of any such H5 protein (1), or part thereof as described supra. Preferably, said vector is an expression vector, which allows the expression of any such H5 protein (1) or part thereof as described supra. Vectors according to the invention are those which are suitable for the transfection or infection of bacterial, yeast or animal cells, *in vitro* or *in vivo*.

[0183] Vectors and methods for making and/or using vectors (or recombinants) for expression can be by or analogous to the methods disclosed in: U.S. Pat. Nos. 4,603,112, 4,769,330, 5,174,993, 5,505,941, 5,338,683, 5,494,807, 4,722,848, 5,942,235, 5,364,773, 5,762,938, 5,770,212, 5,942,235, 382, 425, PCT publications WO 94/16716, WO 96/39491, WO 95/30018, Paoletti, "Applications of pox virus vectors to vac-

cination: An update," *PNAS USA* 93: 11349-11353, October 1996, Moss, "Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety," *PNAS USA* 93: 11341-11348, October 1996, Smith et al., U.S. Pat. No. 4,745,051, (recombinant baculovirus), Richardson, C. D. (Editor), *Methods in Molecular Biology* 39, "Baculovirus Expression Protocols" (1995 Humana Press Inc.), Smith et al., "Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector", *Molecular and Cellular Biology*, December, 1983, Vol. 3, No. 12, p. 2156-2165; Pennock et al., "Strong and Regulated Expression of *Escherichia coli* B-Galactosidase in Insect Cells with a Baculovirus vector," *Molecular and Cellular Biology* March 1984, Vol. 4, No. 3, p. 399-406; EPA0 370 573, U.S. application Ser. No. 920,197, filed Oct. 16, 1986, EP Patent publication No. 265785, U.S. Pat. No. 4,769,331 (recombinant herpesvirus), Roizman, "The function of herpes simplex virus genes: A primer for genetic engineering of novel vectors," *PNAS USA* 93:11307-11312, October 1996, Andreansky et al., "The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors," *PNAS USA* 93: 11313-11318, October 1996, Robertson et al. "Epstein-Barr virus vectors for gene delivery to B lymphocytes", *PNAS USA* 93: 11334-11340, October 1996, Frolov et al., "Alphavirus-based expression vectors: Strategies and applications," *PNAS USA* 93: 11371-11377, October 1996, Kitson et al., *J. Virol.* 65, 3068-3075, 1991; U.S. Pat. Nos. 5,591,439, 5,552,143, WO 98/00166, allowed U.S. application Ser. Nos. 08/675,556, and 08/675,566 both filed Jul. 3, 1996 (recombinant adenovirus), Grunhaus et al., 1992, "Adenovirus as cloning vectors," *Seminars in Virology* (Vol. 3) p. 237-52, 1993, Ballay et al. *EMBO Journal*, vol. 4, p. 3861-65, Graham, *Tibtech* 8, 85-87, April, 1990, Prevec et al., *J. Gen Virol.* 70,42434, PCT WO 91/11525, Feigner et al. (1994), *J. Biol. Chem.* 269, 2550-2561, *Science*, 259: 1745-49, 1993 and McClements et al., "Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease", *PNAS USA* 93: 11414-11420, October 1996, and U.S. Pat. Nos. 5,591,639, 5,589,466, and 5,580,859, as well as WO 90/11092, WO93/19183, WO94/21797, WO95/11307, WO95/20660, Tang et al., *Nature and Furth et al. Analytical Biochemistry, relating to DNA expression vectors, inter alia. See also WO 98/33510*; Ju et al., *Diabetologia*, 41: 736-739, 1998 (lentiviral expression system); Sanford et al., U.S. Pat. No. 4,945,050; Fischbach et al. (Intracel), WO 90/01543; Robinson et al., seminars in Immunology vol. 9, pp. 271-283 (1997), (DNA vector systems); Szoka et al., U.S. Pat. No. _____ (method of inserting DNA into living cells); McCormick et al., U.S. Pat. No. 5,677,178 (use of cytopathic viruses); and U.S. Pat. No. 5,928,913 (vectors for gene delivery), as well as other documents cited herein, each of which is incorporated by reference herein.

[0184] A viral vector, for instance, selected from pig herpes viruses, such as Aujeszky's disease virus, porcine adenovirus, poxviruses, especially vaccinia virus, avipox virus, canarypox virus, and swinepox virus, as well as DNA vectors (DNA plasmids) are advantageously employed in the practice of the invention.

Methods of Producing the H5 Proteins (1) According to the Present Invention

[0185] According to another aspect, the present invention provides methods of producing and/or recovering high

amounts of recombinant H5 protein: i) by permitting infection of susceptible cells in culture with a recombinant viral vector containing H5 DNA coding sequences, wherein H5 protein is expressed by the recombinant viral vector, and ii) thereafter recovering the H5 protein from cell culture. High amounts of H5 protein means, but are not limited to, more than about 20 $\mu\text{g}/\text{mL}$ cell culture, preferably more than about $\mu\text{g}/\text{mL}$, even more preferred more than about 30 $\mu\text{g}/\text{mL}$, even more preferred more than about 40 $\mu\text{g}/\text{mL}$, even more preferred more than about 50 $\mu\text{g}/\text{mL}$, even more preferred more than about 60 $\mu\text{g}/\text{mL}$, even more preferred more than about 80 $\mu\text{g}/\text{mL}$, even more preferred more than about 100 $\mu\text{g}/\text{mL}$, even more preferred than about 150 $\mu\text{g}/\text{mL}$, most preferred more than about 190 $\mu\text{g}/\text{mL}$.

[0186] According to a preferred embodiment, the H5 protein (1) is recovered by harvesting the whole (i.e. intact) SF+ cells expressing the H5 protein.

[0187] Preferred cells are those susceptible for infection with an appropriate recombinant viral vector, containing a H5 DNA and expressing the H5 protein (1). Preferably the cells are insect cells, and more preferably, they include the insect cells sold under the trademark SF+ insect cells (Protein Sciences Corporation, Meriden, Conn.). Preferred cell cultures have a cell count between about 0.3–2.0 $\times 10^6$ cells/mL, more preferably from about 0.35–1.9 $\times 10^6$ cells/mL, still more preferably from about 0.4–1.8 $\times 10^6$ cells/mL, even more preferably from about 0.45–1.7 $\times 10^6$ cells/mL, and most preferably from about 0.5–1.5 $\times 10^6$ cells/mL.

[0188] Preferred viral vectors include baculovirus such as BaculoGold (BD Biosciences Pharmingen, San Diego, Calif.), in particular provided that the production cells are insect cells. Although the baculovirus expression system is preferred, it is understood by those of skill in the art that other expression systems will work for purposes of the present invention, namely the expression of H5 into the supernatant of a cell culture. Such other expression systems may require the use of a signal sequence in order to cause H5 expression into the media.

[0189] Appropriate growth media will also be determinable by those of skill in the art with a preferred growth media being serum-free insect cell media such as Excell 420 (JRH Biosciences, Inc., Lenexa, Kans.) and the like.

[0190] The recombinant viral vector containing the H5 DNA sequences has a preferred multiplicity of infection (MOI) of between about 0.03-1.5, more preferably from about 0.05-1.3, still more preferably from about 0.09-1.1, and most preferably from about 0.1-1.0, when used for the infection of the susceptible cells. Preferably the MOIs mentioned above relates to one mL of cell culture fluid. Preferably, the method described herein comprises the infection of 0.35–1.9 $\times 10^6$ cells/mL, still more preferably of about 0.4–1.8 $\times 10^6$ cells/mL, even more preferably of about 0.45–1.7 $\times 10^6$ cells/mL, and most preferably of about 0.5–1.5 $\times 10^6$ cells/mL with a recombinant viral vector containing a H5 DNA and expressing the H5 protein having a MOI (multiplicity of infection) of between about 0.03-1.5, more preferably from about 0.05-1.3, still more preferably from about 0.09-1.1, and most preferably from about 0.1-1.0.

[0191] The infected cells are then incubated over a period of up to ten days, more preferably from about two days to about ten days, still more preferably from about four days to about nine days, and most preferably from about five days to about eight days. Preferred incubation conditions include a temperature between about 22-32° C., more preferably from

about 24-30° C., still more preferably from about 25-29° C., even more preferably from about 26-28° C., and most preferably about 27° C. Preferably, the SF+ cells are observed following inoculation for characteristic baculovirus-induced changes. Such observation may include monitoring cell density trends and the decrease in viability during the post-infection period. It was found that peak viral titer is observed 3-5 days after infection and peak H5 protein expression in the cells is obtained between days 5 and 8, and/or when cell viability decreases to less than 10%.

[0192] Thus, one aspect of the present invention provides a method of producing and/or recovering recombinant H5 protein, preferably in amounts described above, by i) permitting infection of a number of susceptible cells (see above) in culture with a recombinant viral vector with a MOI as defined above, ii) expressing H5 protein by the recombinant viral vector, and iii) thereafter recovering the H5 protein from the cells obtained between days 5 and 8 after infection and/or cell viability decreases to less than 10%. Preferably, the recombinant viral vector is a recombinant baculovirus containing H5 DNA coding sequences and the cells are SF+ cells. Additionally, it is preferred that the culture be periodically examined for macroscopic and microscopic evidence of contamination or for atypical changes in cell morphology during the post-infection period. Any culture exhibiting any contamination should be discarded.

[0193] For recovery of H5 protein (1) that will be used in an immunogenic or immunological composition such as a vaccine, the inclusion of an inactivation step is preferred in order to inactivate the viral vector.

[0194] An “immunogenic or immunological composition” refers to a composition of matter that comprises at least one antigen which elicits an immunological response in the host of a cellular and/or antibody-mediated immune response to the composition or vaccine of interest. Usually, an “immunological response” includes but is not limited to one or more of the following effects: the production or activation of antibodies, B cells, helper T cells, suppressor T cells, and/or cytotoxic T cells and/or gamma-delta T cells, directed specifically to an antigen or antigens included in the composition or vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms normally displayed by an infected host, a quicker recovery time and/or a lowered viral titer in the infected host.

[0195] As used herein, “vaccine” refers to that term as it is used by those of skill in the art. More particularly, “vaccine” refers to an immunogenic composition that, when administered to an animal in need thereof, results in a reduction in the incidence of or severity of clinical signs of influenza infection up to and including the complete prevention of such clinical signs. Preferably, the reduction in incidence or severity is at least 10%, more preferably at least 20%, still more preferably at least 30%, even more preferably at least 40%, more preferably at least 50%, still more preferably at least 60%, even more preferably at least 70%, more preferably at least 80%, still more preferably at least 90%, even more preferably at least 95%, and most preferably 100% in comparison to an animal or group of animals that did not receive the compositions of the present invention but that were exposed to infectious levels of influenza virus that would normally result in influenza infection resulting in exhibiting clinical signs.

[0196] Thus, the present invention also relates to a method of producing and/or recovering recombinant H5 protein, preferably in amounts described above, by i) permitting infection of a number of susceptible cells (see above) in culture with a recombinant viral vector with a MOI as defined above, ii) expressing H5 protein by the recombinant viral vector, iii) recovering the H5 expressed in cells obtained between days 5 and 8 after infection and/or cell viability decreases to less than 10%, and iv) inactivating the recombinant viral vector.

[0197] Preferably, this inactivation is done either just before or just after the filtration step, with after the filtration step being the preferred time for inactivation. Any conventional inactivation method can be used for purposes of the present invention. Thus, inactivation can be performed by chemical and/or physical treatments. In preferred forms, the volume of harvest fluids is determined and the temperature is brought to between about 32-42° C., more preferably between about 34-40° C., and most preferably between about 35-39° C. Preferred inactivation methods include the addition of cyclized binary ethylenimine (BEI), preferably in a concentration of about 1 to about 20 mM, preferably of about 2 to about 10 mM, still more preferably of about 2 to about 8 mM, still more preferably of about 3 to about 7 mM, most preferably of about 5 mM. For example the inactivation includes the addition of a solution of 2-bromoethyleneamine hydrobromide, preferably of about 0.4M, which has been cyclized to 0.2M binary ethylenimine (BEI) in 0.3N NaOH, to the fluids to give a final concentration of about 5 mM BEI. Preferably, the fluids are then stirred continuously for 72-96 hours and the inactivated harvest fluids can be stored frozen at -40° C. or below or between about 1-7° C. After inactivation is completed a sodium thiosulfate solution, preferably at 1.0M is added to neutralize any residual BEI. Preferably, the sodium thiosulfate is added in equivalent amount as compared to the BEI added prior to for inactivation. For example, in the event BEI is added to a final concentration of 5 mM, a 1.0M sodium thiosulfate solution is added to give a final minimum concentration of 5 mM to neutralize any residual BEI.

[0198] Thus, one further aspect of the present invention relates to a method of producing recombinant H5 protein, preferably in amounts described above, by i) permitting infection of a number of susceptible cells (see above) in culture with a recombinant viral vector with a MOI as defined above, ii) expressing H5 protein by the recombinant viral vector, iii) recovering the H5 expressed in the cells obtained between days 5 and 8 after infection and/or cell viability decreases to less than 10%, and iv) inactivating the recombinant viral vector. Preferably, the recombinant viral vector is a baculovirus containing H5 DNA coding sequences and the cells are SF+ cells. Preferred inactivation steps are those described above. Preferably, inactivation is performed between about 35-39° C. and in the presence of 2 to 8 mM BEI, still more preferred in the presence of about 5 mM BEI.

[0199] According to one further aspect of the present invention, the method described above also includes a neutralization step after step iv). This step v) comprises adding of an equivalent amount of an agent that neutralizes the inactivation agent within the solution. Preferably, if the inactivation agent is BEI, addition of sodium thiosulfate to an equivalent amount is preferred. Thus, according to a further aspect, step v) comprises adding of a sodium thiosulfate solution to a final concentration of about 1 to about 20 mM, preferably of about 2 to about 10 mM, still more preferably of about 2 to about 8 mM,

still more preferably of about 3 to about 7 mM most preferably of about 5 mM, when the inactivation agent is BEI.

[0200] In preferred forms and especially in forms that will use the recombinant H5 protein in an immunogenic composition such as a vaccine, each lot of harvested H5 protein will be tested for inactivation by passage in the anchorage dependent, baculovirus susceptible insect cells, such as Sf9 cells. In a preferred form of this testing, 150 cm² of appropriate cell culture monolayer is inoculated with 1.0 mL of inactivated H5 fluids and maintained at 25-29° C. for 14 days with at least two passages. At the end of the maintenance period, the cell monolayers are examined for cytopathogenic effect (CPE) typical of H5 baculovirus. Preferably, positive virus controls are also used. Such controls can consist of one culture of Sf9 cells inoculated with a non-inactivated reference H5 baculovirus and one flask of Sf9 cells that remain non-inoculated. After incubation and passage, the absence of virus-infected cells in the BEI treated viral fluids would constitute a satisfactory inactivation test. The control cells inoculated with the reference virus should exhibit CPE typical of H5 baculovirus and the non-inoculated flask should not exhibit any evidence of H5 baculovirus CPE. Alternatively, at the end of the maintenance period, the supernatant samples could be collected and inoculated onto a Sf9 96 well plate, which has been loaded with Sf9 cells, and then maintained at 25-29° C. for 5-6 days. The plate is then fixed and stained with anti-H5 antibody conjugated to FITC or any labeled antibody directed to baculovirus specific proteins (i.e. gp64). The absence of CPE, H5 expression, or expression of baculovirus specific proteins (i.e. gp64) in the BEI treated viral fluids constitutes a satisfactory inactivation test. The control cells inoculated with the reference virus should exhibit CPE and IFA activity and the non-inoculated flask should not exhibit any evidence of H5 baculovirus CPE and contain no IFA activity.

[0201] Thus a further aspect described herein, relates to an inactivation test for determining the effectiveness of the inactivation of the recombination viral vector expressing H5 protein (1), comprises the steps: i) contacting at least a portion of the culture fluid containing the recombinant viral vector with an inactivating agent, preferably as described above, ii) adding a neutralization agent to neutralize the inactivation agent, preferably as described above, and iii) determining the residual infectivity by the assays as described above.

[0202] After inactivation, the relative amount of recombinant H5 protein in a sample can be determined in a number of ways. Preferred methods of quantitation include SDS-PAGE densitometry, ELISA, and animal vaccination studies that correlate known quantities of vaccine with clinical outcomes (serology, etc.). When SDS-PAGE is utilized for quantitation, the sample material containing an unknown amount of recombinant H5 protein is run on a gel, together with samples that contain different known amounts of recombinant H5 protein. A standard curve can then be produced based on the known samples and the amount of recombinant H5 in the unknown sample can be determined by comparison with this standard curve. Because ELISAs are generally recognized as the industry standard for antigen quantitation, they are preferred for quantitation.

Vaccines Comprising H5 Proteins (1 or Nucleic Acid Molecules or Vectors Coding for Those

[0203] The invention further provides a combination of

[0204] (a) the H5 protein (1) described herein

and

[0205] (b) an inactivated Newcastle disease virus for use in a method of treating or preventing infections with H5N1 virus of a different clade, in particular for use in any

method of treating or preventing infections with H5N1 virus of a different clade as described herein.

[0206] Said combination is also termed "the combination described herein" hereinafter.

[0207] According to the invention it is understood that the combination described herein is preferably included in a multivalent combination vaccine or the combination described herein is in particular directed to a combined vaccination, more particular to an administration of the H5 protein (1) described herein and of the inactivated Newcastle disease virus within a maximum of 24 hours to an animal, in particular poultry, or human being in need thereof.

[0208] Preferably, the inactivated Newcastle disease virus is an inactivated whole Newcastle disease virion.

[0209] In another preferred embodiment, the inactivated Newcastle disease virus is an inactivated Newcastle disease virus obtained by inactivation of a Newcastle disease virus comprising a RNA polynucleotide having at least 70%, preferably at least 80%, more preferably at least 90%, still more preferably at least 95% or in particular 100% sequence identity with a RNA copy of the polynucleotide set forth in SEQ ID NO: 51 (cDNA sequence of LaSota strain virus), which has been inactivated.

[0210] In particular, the inactivated Newcastle disease virus is an inactivated Newcastle disease LaSota strain virus.

[0211] In one preferred embodiment the inactivated Newcastle Disease Virus is a Newcastle Disease Virus which has been inactivated with a reagent selected from the group consisting of Formaldehyde, binary ethyleneimine (BEI), Beta-Propio-Lactone (BPL), and combinations thereof.

[0212] The amount of inactivated Newcastle disease virus in the combination described herein is preferably between 10^2 and 10^{10} equivalents of egg infectious doses (EID50), preferably between 10^6 and 10^9 EID50, in particular preferably between 10^7 and 10^9 EID50. The amount of the H5 protein (1) in the combination described herein is preferably the same as mentioned hereinafter.

[0213] The amount of the H5 protein (1) according to the invention is preferably between 10 and 1000 Hemagglutination units (HAU's) per dose, more preferably between 50 and 950 HAU's per dose, even more preferably between 100 and 900 HAU's per dose, even more preferably between 200 and 800 HAU's per dose, even more preferably between 300 and 700 HAU's per dose, still more preferably between 300 and 500 HAU's per dose.

[0214] According to a further aspect, the present invention relates to vaccines or pharmaceutical compositions in general, that comprises,

[0215] i. one or more of the H5 proteins (1) as described herein or the combination described herein;

[0216] ii. one or more of the nucleic acid molecules as described herein, coding for any such H5 proteins (1); and/or

[0217] iii. one or more of the vectors as described herein, including any such nucleic acid molecules and coding for any such H5 proteins (1) as described herein; and

[0218] iv. a pharmaceutical acceptable carrier and/or excipient.

[0219] The term "pharmaceutical composition" "Pharmaceutical/vaccine composition" as described herein, includes but is not limited to, vaccines for the reduction or prevention of an infection or to a composition of matter for the treatment and lessening of an infection.

[0220] The preparation of nucleic acid based vaccines, preferably cDNA vaccines, coding for influenza hemagglutinin are described for example in Deck et al, *Vaccine* 1997; 15(1):71-78; Ulmer et al., *Science* 1993; 259:1745-1749; Ulmer et al., *Vaccine* 1994; 12(16):1541-1544. Any of those methods can be used for the production of nucleic acid based vaccines, preferably cDNA vaccines, coding for an influenza H5 protein as described herein.

[0221] Moreover, a vaccine, which comprises H5 protein (1) or parts thereof as described herein, can be produced by conventional approaches, e.g. by recombinant expression techniques or by biochemical purification and separation techniques. Recombinant expression techniques, including the expression in insect cells are well known in the art, and described for example in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; *DNA Cloning: A Practical Approach, Volumes I and II* (D. N. Glover ed. 1985); *Oligonucleotide Synthesis* (M. J. Gait ed. 1984); *Nucleic Acid Hybridization* [B. D. Hames & S. J. Higgins eds. (1985)]; *Transcription And Translation* [B. D. Hames & S. J. Higgins, eds. (1984)]; *Animal Cell Culture* [R. I. Freshney, ed. (1986)]; *Immobilized Cells And Enzymes* [IRL Press, (1986)]; B. Perbal, *A Practical Guide To Molecular Cloning* (1984); F. M. Ausubel et al. (eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc. 1994). Further examples of well established recombinant expression systems are bacterial expression systems such as *E. coli* or *B. subtilis*, yeast-based expression systems such as *S. cerevisiae* or *S. pombe*, or mammalian cell expression systems such as the BHK-, CHO- and/or NSO-based expression systems. Such systems are well known in the art and generally available, e.g. commercially through Clontech Laboratories, Inc. 4030 Fabian Way, Palo Alto, Calif. 94303-4607, USA. Further expression strategies are for example described in Lüscher et al., *Vaccine* no. 19 (2001), pp. 4249-4259, or Veit et al., *PNAS* vol. 103 (2006), pp. 8197-8202. Furthermore, recombinant adeno-associated virus systems are well established and for example described in U.S. Pat. No. 5,436,146 or WO200203872 with further references. Moreover, vaccinia (pox) virus based expression systems, for example as described in U.S. Pat. No. 6,265,183 with further references, are also well established and suitable to produce recombinant antigen(s), antigenic composition(s) as used according to the invention. Further suitable expression systems make use of recombinant popova viruses, such as SV40, fowl pox virus, pseudorabies viruses and retroviruses.

[0222] The relevant pharmaceutical/vaccine compositions as described herein, can also comprise inactivated virus which comprises H5 protein (1) as described herein, an apathogenic version of a live virus comprising H5 protein (1) as described herein, preparation and/or fragments of a virus, wherein said preparation and/or fragment comprise the H5 protein (1) as described herein.

[0223] The skilled person knows additional components which may be comprised in said compositions/vaccines together with antigen (see for example, *Remington's Pharmaceutical Sciences*. (1990). 18th ed. Mack Publ., Easton). The expert may use known injectable, physiologically acceptable sterile solutions. For preparing a ready-to-use solution, aqueous isotonic solutions, such as e.g. saline or corresponding plasma protein solutions, are readily available. The pharmaceutical composition/vaccine may be present as lyophilisates or dry preparations, which can be reconstituted

with a known injectable solution directly before use under sterile conditions, e.g. as a kit of parts.

[0224] In addition the pharmaceutical/vaccine compositions of the present invention can include one or more veterinary-acceptable carriers. As used herein, "a veterinary-acceptable carrier" includes but is not limited to any and all solvents, dispersion media, coatings, adjuvants, stabilizing agents, diluents, preservatives, antibacterial and antifungal agents, isotonic agents, adsorption delaying agents, and the like.

[0225] Diluents can include water, saline, dextrose, ethanol, glycerol, and the like. Isotonic agents can include sodium chloride, dextrose, mannitol, sorbitol, and lactose, among others. Stabilizers include albumin and alkali salts of ethylendiaminetetraacetic acid, among others.

[0226] A preservative as used herein, refers to an anti-microbial active agent, such as for example Gentamycin, Merthiolate, and the like. In particular adding of a preservative is most preferred for the preparation of a multi-dose composition. Those anti-microbial active agents are added in concentrations effective to prevent the composition of interest for any microbiological contamination or for inhibition of any microbiological growth within the composition of interest.

[0227] "Adjuvants" as used herein, can include aluminum hydroxide and aluminum phosphate, saponins e.g., Quil A, QS-21 (Cambridge Biotech Inc., Cambridge Mass.), GPI-0100 (Galenica Pharmaceuticals, Inc., Birmingham, Ala.), water-in-oil emulsion, oil-in-water emulsion, water-in-oil-in-water emulsion.

[0228] The emulsion can be based in particular on light liquid paraffin oil (European Pharmacopoeia type); isoprenoid oil such as squalane or squalene; oil resulting from the oligomerization of alkenes, in particular of isobutene or decene; esters of acids or of alcohols containing a linear alkyl group, more particularly plant oils, ethyl oleate, propylene glycol di-(caprylate/caprate), glycercyl tri-(caprylate/caprate) or propylene glycol dioleate; esters of branched fatty acids or alcohols, in particular isostearic acid esters. The oil is used in combination with emulsifiers to form the emulsion. The emulsifiers are preferably nonionic surfactants, in particular esters of sorbitan, of mannide (e.g. anhydromannitol oleate), of glycol, of polyglycerol, of propylene glycol and of oleic, isostearic, ricinoleic or hydroxystearic acid, which are optionally ethoxylated, and polyoxypropylene-polyoxyethylene copolymer blocks, in particular the Pluronic products, especially L121. See Hunter et al., The Theory and Practical Application of Adjuvants (Ed. Stewart-Tull, D. E. S.). John Wiley and Sons, NY, pp 51-94 (1995) and Todd et al., Vaccine 15:564-570 (1997). Examples for suitable oil-in water emulsions are Emulsigen-based adjuvants, such as EMULSIS-GEN®, EMULSISGEN-D®, EMULSISGEN-P®, EMULSIS-GEN-75® (MVP Laboratories, Inc. Omaha, Nebr., USA). It has been surprisingly found, that pharmaceutical/vaccine compositions that comprise H5 protein, preferably recombinant H5 protein as described herein, have been effectively adjuvanted with oil-in water emulsions, preferably with such Emulsigen-based adjuvants, more preferably with EMULSIS-GEN® and EMULSISGEN-D®.

[0229] Moreover, it is possible to use the SPT emulsion described on page 147 of "Vaccine Design, The Subunit and Adjuvant Approach" edited by M. Powell and M. Newman, Plenum Press, 1995, and the emulsion MF59 described on page 183 of this same book.

[0230] A further instance of an adjuvant is a compound chosen from the polymers of acrylic or methacrylic acid and the copolymers of maleic anhydride and alkenyl derivative. Advantageous adjuvant compounds are the polymers of acrylic or methacrylic acid which are cross-linked, especially with polyalkenyl ethers of sugars or polyalcohols. These compounds are known by the term carbomer (Phameuropa Vol. 8, No. 2, June 1996). Persons skilled in the art can also refer to U.S. Pat. No. 2,909,462 which describes such acrylic polymers cross-linked with a polyhydroxylated compound having at least 3 hydroxyl groups, preferably not more than 8, the hydrogen atoms of at least three hydroxyls being replaced by unsaturated aliphatic radicals having at least 2 carbon atoms. The preferred radicals are those containing from 2 to 4 carbon atoms, e.g. vinyls, allyls and other ethylenically unsaturated groups. The unsaturated radicals may themselves contain other substituents, such as methyl. The products sold under the name Carbopol; (BF Goodrich, Ohio, USA) are particularly appropriate. They are cross-linked with an allyl sucrose or with allyl pentaerythritol. Among them, there may be mentioned Carbopol 974P, 934P and 971P. Most preferred is the use of Carbopol 971P. Among the copolymers of maleic anhydride and alkenyl derivative, the copolymers EMA (Monsanto) which are copolymers of maleic anhydride and ethylene. The dissolution of these polymers in water leads to an acid solution that will be neutralized, preferably to physiological pH, in order to give the adjuvant solution into which the immunogenic, immunological or vaccine composition itself will be incorporated.

[0231] Further suitable adjuvants include, but are not limited to, the RIBI adjuvant system (Ribi Inc.), Block co-polymer (CytRx, Atlanta Ga.), SAF-M (Chiron, Emeryville Calif.), monophosphoryl lipid A, Avridine lipid-amine adjuvant, heat-labile enterotoxin from *E. coli* (recombinant or otherwise), cholera toxin, or muramyl dipeptide among many others.

[0232] Preferably, the adjuvant is added in an amount of about 100 µg to about 10 mg per dose. Even more preferred the adjuvant is added in an amount of about 100 µg to about 10 mg per dose. Even more preferred the adjuvant is added in an amount of about 500 µg to about 5 mg per dose. Even more preferred the adjuvant is added in an amount of about 750 µg to about 2.5 mg per dose. Most preferred the adjuvant is added in an amount of about 1 mg per dose.

[0233] The pharmaceutical/vaccine compositions, can further include one or more other immunomodulatory agents such as, e.g., interleukins, interferons, or other cytokines. The pharmaceutical/vaccine compositions can also include Gentamicin and Merthiolate. While the amounts and concentrations of adjuvants and additives useful in the context of the present invention can readily be determined by the skilled artisan, the present invention contemplates compositions comprising from about 50 µg to about 2000 µg of adjuvant and preferably about 250 µg/1 ml dose of the vaccine composition. In another preferred embodiment, the present invention contemplates vaccine compositions comprising from about 1 µg/ml to about 60 µg/ml of antibiotics, and more preferably less than about 30 µg/ml of antibiotics.

[0234] Thus, according to a further embodiment, the present invention also relates to a pharmaceutical/vaccine composition comprising

[0235] i. a therapeutically effective amount of any one of the H5 proteins of influenza virus as described herein, wherein the H5 protein having the amino acid 223N and

the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2 and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted; and

[0236] ii. a pharmaceutically acceptable adjuvants as described above.

[0237] Preferably, the adjuvant is selected from the group consisting of:

[0238] a) EMULSIGEN®, a oil-in-water emulsion (o/w);

[0239] b) EMULSIGEN-D®, a oil-in-water (o/w) with dimethyldioctadecylammonium bromide (DDA);

[0240] c) a Polygen, a copolymer

[0241] d) EMULSIGEN-P®, a oil-in-water (o/w) with a proprietary immunostimulant

[0242] e) Carbigen is a cross-linked polymer

[0243] f) EMULSIGEN-75®, a double adjuvants comprise of a oil-in-water (o/w) with a cross-linked polymer

[0244] g) ISA 70 is a water-in-oil (w/o)

[0245] Most preferably, the adjuvants is a oil-in-water emulsion such as an emulsigen-based adjuvant selected from the group consisting of EMULSIGEN®, EMULSIGEN-D®, EMULSIGEN-P®, EMULSIGEN-75®, EMULSIGEN® and EMULSIGEN-P®. Most preferably EMULSIGEN® and EMULSIGEN-P® are used in the formulation of the current invention.

[0246] According to a further aspect, the pharmaceutical vaccine compositions as provided herewith, comprise one or more antigen. Preferably, that further antigen is an antigen of a poultry or mammalian pathogen. According to a further embodiments, that additional antigen is an further influenza antigen such as hemagglutinin H5, H7, H9, or any other hemagglutinin of influenza virus, wherein the H5 is preferably a H5 protein of a H5N1 virus of a clade different than clade 1, in particular of a H5N1 virus of North African origin, such as the H5 protein (2) described herein. The additional antigen(s) can be added in a purified form, as part of an antigenic preparation, in the form of a killed microorganism or in the form of a modified live microorganism.

[0247] The term "antigen", as used herein means, but is not limited to, peptides, polypeptides, glycopeptides, or polysaccharides which are capable of specifically interacting with an antigen recognition molecule of the immune system, such as an immunoglobulin (antibody) or T cell antigen receptor in order to elicit, activate or stimulate an immune response directed to said antigen in a host to which said antigen is administered. The term "antigen" also refers to nucleic acid molecules, preferably DNA- or RNA-molecules, each of which codes for and express a peptide, polypeptide, or glycopeptide that is capable of specifically interacting with an antigen recognition molecule of the immune system, such as an immunoglobulin (antibody) or T cell antigen receptor in order to elicit, activate or stimulate an immune response against the antigen that is coded by the nucleic acid molecule. The antigen used for the preparation of the pharmaceutical composition which is used according to the invention is a microorganism or an antigenic part and/or preparation of said microorganism. In this connection, the term "immunization", as used herein, means but is not limited to, any cause or enhancement of an immune response. The term "immune response" is already described supra.

[0248] Administration strategies for influenza vaccines are well known in the art. Mucosal vaccination strategies for inactivated and attenuated virus vaccines are contemplated. While the mucosa can be targeted by local delivery of a vaccine, various strategies have been employed to deliver immunogenic proteins to the mucosa.

[0249] In a specific embodiment, the vaccine can be administered in an admixture with, or as a conjugate or chimeric fusion protein with, cholera toxin, such as cholera toxin B or a cholera toxin A/B chimera (Hajishengallis, *J Immunol.*, 154:4322-32, 1995; Jobling and Holmes, *Infect Immun.*, 60:4915-24, 1992). Mucosal vaccines based on use of the cholera toxin B subunit have been described (Lebens and Holmgren, *Dev Biol Stand* 82:215-27, 1994). In another embodiment, an admixture with heat labile enterotoxin (LT) can be prepared for mucosal vaccination.

[0250] Other mucosal immunization strategies include encapsulating the virus in microcapsules (U.S. Pat. No. 5,075,109, U.S. Pat. No. 5,820,883, and U.S. Pat. No. 5,853,763) and using an immunopotentiating membranous carrier (WO 98/0558). Immunogenicity of orally administered immunogens can be enhanced by using red blood cells (rbc) or rbc ghosts (U.S. Pat. No. 5,643,577), or by using blue tongue antigen (U.S. Pat. No. 5,690,938).

[0251] According to another aspect, the present invention relates to a method for preparing a pharmaceutical/vaccine composition as described above, preferably a method for producing a vaccine which comprises a recombinant, baculovirus expressed H5 protein as described supra. Generally, this method includes the steps of transfecting a construct into a virus, wherein the construct comprises i) recombinant H5 cDNA as described herein, ii) infecting cells in growth media with the transfected virus, iii) causing the virus to express the recombinant H5 protein as described herein iv) recovering the expressed H5 protein from the culture v) and preparing the composition by blending the expressed H5 protein with a suitable adjuvant and/or other pharmaceutically acceptable carrier.

[0252] Preferred adjuvants are those described above. Thus according to a further aspect, the method for preparing an antigenic composition, such as for example a vaccine, for invoking an immune response against influenza infections comprises i) preparing and recovering H5 protein, and ii) admixing this with a suitable adjuvants.

[0253] In addition, the vaccine composition of the present invention can also include diluents, isotonic agents, stabilizers, an/or preservatives. Diluents can include water, saline, dextrose, ethanol, glycerol, and the like. Isotonic agents can include anorganic or organic salts, e.g. sodium chloride, dextrose, mannitol, sorbitol, and lactose, saccharides, trehalose, mannitol, saccharose among others. Stabilizers include albumin and alkali salts of ethylenediaminetetraacetic acid, among others. Suitable adjuvants, are those described above.

Medicinal Use of any of Such H5 Proteins (1), Nucleic Acid Molecules, Vectors, Vaccines, and Combinations Described Herein

[0254] The H5 proteins (1) as provided herewith, the nucleic acid molecules coding for any such H5 proteins (1), the vectors comprising any such nucleic acid molecules coding for any such H5 proteins (1) as described herein, and any pharmaceutical/vaccine composition comprising any of such H5 protein (1), nucleic acid molecule or vector or the combination described herein can be used as a medicine, prefer-

ably for the treatment and prophylaxis of infections, caused by influenza virus, most preferably by influenza A virus. The H5 proteins (1) as provided herewith, the nucleic acid molecules encoding for any such H5 proteins, the vectors comprising any such nucleic acid molecules encoding for any such H5 proteins (1) as described herein, and any pharmaceutical/vaccine composition comprising any of such H5 protein (1), nucleic acid molecule or vector, as described herein, or the combination described herein can be used for the treatment or prophylaxis of human beings as well as in veterinary medicine. When used in veterinary medicine, the treatment of poultry, preferably bird, chicken, duck, turkey and the like as well as mammals, preferably pigs, cattle, horses, seals, camels, dogs, cats, hamsters, mice and the like, is preferred.

[0255] In terms of the present invention, "prophylaxis" refers to the reduction in the incidence of or severity of clinical signs of influenza infection up to an including the complete prevention of such clinical signs. Preferably, the reduction in incidence or severity is at least 10%, more preferably at least 20%, still more preferably at least 30%, even more preferably at least 40%, more preferably at least 50%, still more preferably at least 60%, even more preferably at least 70%, more preferably at least 80%, still more preferably at least 90%, even more preferably at least 95%, and most preferably 100% in comparison to an animal or group of animals that did not receive the compositions of the present invention but that were exposed to infectious levels of influenza virus that would normally result in influenza infection resulting in exhibiting clinical signs.

[0256] Thus, according to another aspect the present invention relates to the use of H5 proteins (1) as provided herewith, the nucleic acid molecules encoding for any such H5 proteins (1), the vectors comprising any such nucleic acid molecules encoding for any such H5 proteins (1) as described herein and any pharmaceutical/vaccine compositions comprising any of such H5 protein (1), nucleic acid molecule or vector as described herein or the combination described herein, can be used as a medicine, preferably as a medicine for human beings and/or as veterinary medicine, preferably for poultry, in particular for chicken.

[0257] Moreover, H5 proteins (1) as provided herewith, the nucleic acid molecules coding for any such H5 proteins (1), the vectors comprising any such nucleic acid molecules coding for any such H5 protein (1), as described herein, or the combination described herein can be used for the preparation of a pharmaceutical composition, as described herein, preferably of a single-shot vaccine or a one dose vaccine, for the prophylaxis or treatment of infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein. As mentioned above, those pharmaceutical compositions/vaccine compositions can be used for the treatment and/or prophylaxis of human beings as well as for the treatment and/or prophylaxis of animals, such as poultry, preferably bird, chicken, duck, turkey and the like as well as mammals, preferably pigs, cattle, horses, seals, camels, dogs, cats, hamsters, mice and the like.

[0258] According to a further aspect, the present invention also relates to a method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein, wherein the method comprising administration of a therapeutically effective amount of the H5 pro-

tein (1) as described herein or of the combination described herein, to a subject in need of such a treatment. Moreover, the present invention also relates to a method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein, wherein the method comprising administration of a therapeutically effective amount of any H5 nucleic acid molecule or vector as described herein, that codes for any H5 protein (1) as described herein, to a subject in need of such a treatment. Furthermore, the present invention also relates to a method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade described herein, wherein the method comprising administration of a therapeutically effective amount of the vaccine comprising any such H5 protein (1), nucleic acid molecule or vector, as described herein, to a subject in need of such a treatment. The subject in need thereof can be a human being as well as an animal, preferably poultry, even more preferably bird, chicken, duck, turkey or a mammal, preferably pig, cattle, horse, seal, camel, dog, cat, hamster, mouse and the like.

[0259] Preferably, the administration, as described herein, is a single-shot administration or a one dose administration.

[0260] Preferably, when chicken are vaccinated, the H5 protein as described herein can be used for vaccination at day 1 of age or later, e.g. at day 10, or at day 1 to 10, or at day 10 or later.

[0261] Preferably the influenza infection that can be treated by the administration of any H5 protein (1), the nucleic acid molecule or vector encoding for any such H5 protein, or any pharmaceutical/vaccine compositions as described herein, is caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein and, as the case may be, also in combination with another avian, swine or human influenza virus or any combination or hybrid thereof.

[0262] A further advantage of the present invention is that it benefits a 'DIVA' (Differentiation of Infected and Vaccinated Animals) concept with specific Elisa Kits for differentiating between vaccinated human beings or animals and human beings or animals infected with H5N1 virus.

[0263] According to another aspect, the present invention relates to a kit of parts, that comprises i) any of such H5 protein (1) as described herein, the nucleic acid molecule or vector encoding for any such H5 protein, or any pharmaceutical/vaccine composition comprising any of such H5 protein, nucleic acid molecule or vector as described herein, and ii) a package leaflet indicating the use of such H5 protein, nucleic acid molecule, vector or vaccine for the treatment or prophylaxis of infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein. When chicken are vaccinated, the H5 protein (1) as described herein can be used for vaccination at day 1 on age or later.

[0264] It is thus understood that the kit of parts as mentioned herein is for the use, or is used, respectively, for the treatment or prophylaxis of infections caused by H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein.

[0265] According to a further embodiment, that kit in parts comprises at least one further antigen of a poultry or mammalian pathogen and the information indication the medicinal, human or veterinary use of that additional antigen, in particular the further antigen as mentioned above.

[0266] The invention further provides a method for reducing viral shedding in a subject, comprising administering the H5 protein (1) described herein or the combination as described herein to a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein.

[0267] The invention also relates to the H5 protein (1) described herein or the combination as described herein for use in a method for reducing viral shedding in a subject, wherein said H5 protein (1) or said combination is to be administered to a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1, and wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein.

[0268] Also, the invention provides the use of the H5 protein (1) described herein or of the combination as described herein for the preparation of a medicament for reducing viral shedding in a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1, wherein said H5N1 virus of a clade other than clade 1 is preferably the H5N1 virus of a different clade as described herein.

[0269] Preferably, the H5 protein (1) according to the invention, the combination described herein, the vaccine as described herein or the kit mentioned herein is for use as a single-shot vaccine or in a one-dose vaccination.

EXAMPLES

[0270] The following examples set forth preferred materials and procedures in accordance with the present invention. It is to be understood, however, that these examples are provided by way of illustration only, and nothing therein should be deemed a limitation upon the overall scope of the invention.

Example 1

Construction of a Recombinant Baculoviruses Coding for and Expressing HA H5 Antigens

[0271] The recombinant baculovirus containing the H5 HA antigen was generated as follows: the coding sequences of the

H5 HA (SEQ ID NO:3) was chemically synthesized and subcloned into the transfer vector pVL1392 (BD Biosciences Pharmingen, San Diego, Calif.). The H5 HA MutK+ (SEQ ID NO:5) was generated by using oligonucleotide primers and the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Calif.) and subcloned into the transfer vector pVL1392 (BD Biosciences Pharmingen, San Diego, Calif.). The pVL1392 plasmids containing the genes coding for H5 HA antigen (SEQ ID NO:3) and H5 HA MutK+ (SEQ ID NO:5) were then co-transfected with DiamondBac® (Sigma) baculovirus DNA into SF9 insect cells (BD Biosciences Pharmingen) to generate the recombinant baculovirus containing the genes H5 HA coding for SEQ ID NO:3 and H5 HA mutK+ coding for SEQ ID NO:5. The recombinant baculoviruses containing the genes coding for H5 HA (SEQ ID NO:3) and H5 HA MutK+ (SEQ ID NO:5) were plaque-purified and Master Seed Viruses (MSVs) were propagated on the SF9 cell line, aliquoted, and stored at -70° C. Insect cells infected with H5 HA baculoviruses As described above to generate MSV or Working Seed Viruses express H5 HA antigen (SEQ ID NO:3) and H5 HA MutK+ (SEQ ID NO:5) antigen as detected by polyclonal serum or monoclonal antibodies in an indirect fluorescent antibody assay or Western blot.

[0272] After being seeded with the appropriate amounts of recombinant baculoviruses (H5 HA and H5 HA MutK+, respectively), spinner flasks containing SF9 cells (Protein Sciences, Inc., Meriden, Conn.) were then incubated at 27±2° C. for 7 days and with stirring 100 rpm during that time. The flasks used ventilated caps to allow for air flow. The crude whole cell culture containing baculovirus infected SF9 cells and the cell culture supernatants of each culture were harvested.

Example 2

Preparation of Pharmaceutical Compositions (Vaccines) Comprising HA H5 Antigens

[0273] The crude whole cell H5 HA protein and H5 HA MutK+ protein expressed in insect cells by baculovirus-based expression system were harvested. Baculoviruses were inactivated in the presence of 5 mM cyclized binary ethylenimine (BEI) (final concentration) between about 32 and 39° C. for 72 to 96 hours. After inactivation is completed, a 0.3 M sodium thiosulfate solution was added to a final concentration of 5 mM to neutralize any residual BEI. After neutralization, various adjuvants were added and the following vaccine/pharmaceutical compositions were generated.

VACCINES

Generic product name	501
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsgen.
Generic product name	502
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsgen-D.

-continued

VACCINES	
Generic product name	503
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Polygen.
Generic product name	504
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen-P.
Generic product name	505
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Carbigen.
Generic product name	506
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen-75.
Generic product name	507
Antigen	Crude whole-cell H5 HA protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with ISA 70.
Generic product name	508
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen.
Generic product name	509
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen-D.
Generic product name	510
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Polygen.
Generic product name	511
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen-P.
Generic product name	512
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Carbigen.
Generic product name	513
Antigen	Crude whole-cell H5 HA mutK+ protein expressed in insect cells by a baculovirus-based expression system.

-continued

VACCINES

Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with Emulsigen-75.
Generic product name	514
Antigen	Crude whole-cell H5 HA K+ protein expressed in insect cells by a baculovirus-based expression system.
Formulation	An experimental vaccine comprised of cultured insect cells and supernatant expressing recombinant H5 HA. The vaccine was adjuvanted with ISA 70.

Example 3

Vaccination of Chicken Against Avian Influenza

[0274] A combination vaccine comprising H5 HA MutK+ (Fraction 1) and inactivated Newcastle disease virus (Fraction 2), named "BACULO AI+ND KV" has been evaluated in animal trials. The vaccine was formulated with the haemagglutinin H5 produced in the Baculovirus expression system based on the MutK+ construct (Examples 1 and 2). The origin of the Newcastle Disease (ND) virus fraction is the whole virus.

Fraction 1:

[0275] Recombinant, baculovirus-expressed, H5 hemagglutinin (H5 HA) from Avian Influenza H5N1 virus. Avian Influenza (AI) fraction.

[0276] AI fraction is inactivated with binary ethyleneimine (BEI). No residual infectivity coming from Baculovirus vector is allowed.

Fraction 2:

[0277] Whole virion, Newcastle Disease Virus (ND), LaSota Strain. Newcastle Disease fraction.

[0278] ND fraction is inactivated with Formaldehyde, BEI or Beta-Propio-Lactone (BPL). No residual infectivity coming from ND virus is allowed.

Formula Composition:

[0279] Inactivated harvest material from H5 HA protein and ND are blended into a water/oil emulsion. The mixture includes mineral oil as an adjuvant.

[0280] For evaluation of vaccine efficacy, three clinical parameters were considered: 1) Morbidity/mortality. 2) Antibodies levels. 3) Viral shedding.

[0281] In all studies SPF chickens were vaccinated, administration of the vaccine was by subcutaneous route, in the back of the neck. A dose of 0.5 ml was administered unless otherwise stated.

[0282] Chickens were maintained inside isolator units during the whole duration of the studies. Studies were compliant with OIE international guidelines for evaluation of Avian Influenza vaccines.

[0283] Challenge was conducted to evaluate the Avian Influenza (AI) antigenic fraction. Chickens were inoculated 3 weeks after vaccination by the intra-nasal (50 µl) and oral (50 µl) route administering a total of 100 µl of allantoic fluid containing 10^6 EID₅₀ of the challenge virus.

[0284] To evaluate protection from challenge against HPAI H5N1 two studies were conducted:

1) Protectotypes study, using a single or double vaccination (evaluating boosting effect), ages of 1 day old or 10 days old chickens (evaluating age effect), and doses of 0.5 or 0.2 ml (evaluating dose effect).

[0285] Two different challenge strains were used for this study: a) A subclade 2.3.2 Vietnamese strain (isolated in 2006) which has been recently causing disease in South-East-Asia (China, Vietnam) Poultry production. b) A subclade 2.2.1 group B1 Egyptian strain (isolated in 2010), which has been recently causing disease in Egyptian Poultry production. Challenge strains are not genetically close to the vaccine baculovirus construct (MutK+). Results are interpreted in the context of protectotypes as broadening up the protection conferred for two immunizations with similar or different vaccines.

Conclusions:

[0286] 1) Protection between 80 and 100% was observed depending on the age or dose. 100% protection was observed when administered as 0.5 ml dose at 10 days old of the bivalent formulation.

[0287] 2) When administered as a single 0.5 ml immunization of BACULO AI+ND KV at 10 days of age, the same protection is observed than administering two shots of the inactivated traditionally-produced commercial Volvac AI KV vaccine.

[0288] 3) When administered as a single 0.5 ml immunization of BACULO AI+ND KV at 10 days of age, similar level of H5-specific antibodies were detected in comparison with administering two shots of the inactivated traditionally-produced commercial Volvac AI KV vaccine.

[0289] 4) Low levels of viral shedding were observed until 3 days post-challenge, when the vaccine was administered as a single 0.5 ml immunization of BACULO AI+ND KV at 10 days of age.

2) BACULO efficacy study, using a single, unique vaccination at 10 days of age.

[0290] Three different challenge strains were used for this study: a) A subclade 2.2.1 Egyptian strain (isolated in 2008). b) A subclade 2.2.1 group A1 Egyptian strain (isolated in 2010). c) A subclade 2.2.1 group B1 Egyptian strain (isolated in 2010). The last two have been recently causing disease in Egyptian Poultry production.

Conclusions:

[0291] 1) Protection between 90 and 100% was observed.

[0292] 2) Vaccine BACULO AI+ND KV showed performance compliant with European Medicine Agency (EMA) guidelines for vaccines against HPAI virus in birds.

[0293] 3) This is the first report available demonstrating efficacy with a single shot administration for a baculovi-

2. Results & Data Analysis

[0302] Results & Data analysis are summarized in the table below (Table A): Column 4 (HI GMT (Geometric Mean Titre) 3 weeks post-vaccination, pre-challenge), column 5 (Percentage of survival, 2 weeks post-challenge), and column 6 (Detection of viral shedding, RT-PCR positive samples).

TABLE A

Summary of the experimental design and of the results and data analysis of Example 4.							
Experimental group (10 chickens)	Challenge dose	GMT measured at 31 days of age		Percentage of survival	Viral Shedd② Detection②	viral RNA us② RT-PCR② (#positives/tc②)	
		Vaccine ID-	(age)				
each) -Vaccine ID-	Vaccine Dose (age)	-Strain 1063-	(age)	Homologous (vaccine strain)	Heterologous (challenge virus)	post- challenge (%)	viral RNA us② RT-PCR② (#positives/tc②)
Mut K+ No vaccine	0.5 ml (10 days of age)	10^6 EID ₅₀ (31 days of age)	9.1	0.9	100	2/10	10/10

② indicates text missing or illegible when filed

rus-based vaccine including a hemagglutinin genetically distant from those of the viruses used for challenge.

Example 4

1. Experimental Design

[0294] This experiment was designed and conducted similar to the above described Example 3:

[0295] For evaluation of vaccine efficacy, three clinical parameters were considered: 1) Morbidity/mortality. 2) Antibodies levels. 3) Viral shedding.

[0296] In all studies SPF chickens were vaccinated, the administration of the vaccine was by subcutaneous route, in the back of the neck. A vaccine prototype containing a clade 1 H5 protein was used (called Mut K+) formulated as a bivalent product with a second, ND (Newcastle disease virus) antigenic fraction.

[0297] A dose of 0.5 ml was administered unless otherwise stated. Animals were vaccinate at 10 days of age.

[0298] Chickens were maintained inside isolator units during the whole duration of the studies. Studies were compliant with OIE international guidelines for evaluation of Avian Influenza vaccines.

[0299] Challenge was conducted to evaluate the Avian Influenza (AI) antigenic fraction. Chickens were inoculated 3 weeks after vaccination by the intra-nasal (50 µl) and oral (50 µl) route administering a total of 100 µl of allantoic fluid containing 10^6 EID₅₀ of the challenge virus.

[0300] This is also summarized in the table (Table A) below (Vaccination was performed at 10 days of age, column 1 (ID of experimental groups according to the vaccine applied), column 2 (Vaccine dose), and column 3 (Challenge age)).

[0301] Challenge virus was A/Chicken/Egypt/1063/2010, which is classified as subclade 2.2.1.1 HP AIV H5N1 subtype. This is the official challenge strain used in Egypt for evaluation of vaccine batches. The challenge dose was 10^6 EID₅₀.

3. Conclusions

[0303] The vaccinated group survived the challenge. The vaccine prototype triggered an efficient immune response, as measured as HI titration using the homologous antigen.

[0304] The Mut K+ vaccine prototype provided good virological protection, as measured as ability to reduce viral shedding. RT-PCR Ct values were far low to represent infectious virus but only residual genetical material instead.

In the Sequence Listing (SEQ ID NOs: 1 to 51):

[0305] SEQ ID NO: 1 corresponds to H5 of A/Hong Kong/213/2003(H5N1) without signal peptide,

[0306] SEQ ID NOs: 2-7 correspond to SEQ ID NOs: 1-6 of the international (PCT) application number PCT/US2007/082699,

[0307] SEQ ID NO: 8 corresponds to H5 sequence of H5N1 “1709-6”,

[0308] SEQ ID NO: 9 corresponds to H5 sequence of H5N1 “1553-1/A1”,

[0309] SEQ ID NO: 10 corresponds to H5 sequence of H5N1 “1553-15/A1”,

[0310] SEQ ID NO: 11 corresponds to H5 sequence of H5N1 “2095-50/A1”,

[0311] SEQ ID NO: 12 corresponds to H5 sequence of H5N1 “3982-2/A1”,

[0312] SEQ ID NO: 13 corresponds to H5 sequence of H5N1 “3982-5/A1”,

[0313] SEQ ID NO: 14 corresponds to H5 sequence of H5N1 “3982-7/A1”,

[0314] SEQ ID NO: 15 corresponds to H5 sequence of H5N1 “3982-8/A1”,

[0315] SEQ ID NO: 16 corresponds to H5 sequence of H5N1 “3982-9/A1”,

[0316] SEQ ID NO: 17 corresponds to H5 sequence of H5N1 “3982-12/A1”,

[0317] SEQ ID NO: 18 corresponds to H5 sequence of H5N1 "3982-20/A1",
 [0318] SEQ ID NO: 19 corresponds to H5 sequence of H5N1 "3982-44/A1",
 [0319] SEQ ID NO: 20 corresponds to H5 sequence of H5N1 "1553-2/B1",
 [0320] SEQ ID NO: 21 corresponds to H5 sequence of H5N1 "1553-6/B1",
 [0321] SEQ ID NO: 22 corresponds to H5 sequence of H5N1 "1553-13/B2",
 [0322] SEQ ID NO: 23 corresponds to H5 sequence of H5N1 "1553-26/B2",
 [0323] SEQ ID NO: 24 corresponds to H5 sequence of H5N1 "1553-28/B1",
 [0324] SEQ ID NO: 25 corresponds to H5 sequence of H5N1 "2095-39/B2",
 [0325] SEQ ID NO: 26 corresponds to H5 sequence of H5N1 "2095-46/B1",
 [0326] SEQ ID NO: 27 corresponds to H5 sequence of H5N1 "2095-49/B1",
 [0327] SEQ ID NO: 28 corresponds to H5 sequence of H5N1 "2095-65/B1",
 [0328] SEQ ID NO: 29 corresponds to H5 sequence of H5N1 "2095-68/B2",
 [0329] SEQ ID NO: 30 corresponds to H5 sequence of H5N1 "2095-70/B2",
 [0330] SEQ ID NO: 31 corresponds to H5 sequence of H5N1 "2095-73/B2",
 [0331] SEQ ID NO: 32 corresponds to H5 sequence of H5N1 "2095-75/B2",
 [0332] SEQ ID NO: 33 corresponds to H5 sequence of H5N1 "3982-3/B1",
 [0333] SEQ ID NO: 34 corresponds to H5 sequence of H5N1 "3982-4/B1",

[0334] SEQ ID NO: 35 corresponds to H5 sequence of H5N1 "3982-13/B1",
 [0335] SEQ ID NO: 36 corresponds to H5 sequence of H5N1 "3982-14/B2",
 [0336] SEQ ID NO: 37 corresponds to H5 sequence of H5N1 "3982-19/B3",
 [0337] SEQ ID NO: 38 corresponds to H5 sequence of H5N1 "3982-21/B2",
 [0338] SEQ ID NO: 39 corresponds to H5 sequence of H5N1 "3982-43/B1",
 [0339] SEQ ID NO: 40 corresponds to H5 sequence of H5N1 "3982-50/B1",
 [0340] SEQ ID NO: 41 corresponds to H5 sequence of H5N1 "3982-52/B1",
 [0341] SEQ ID NO: 42 corresponds to H5 sequence of H5N1 "3982-55/A1",
 [0342] SEQ ID NO: 43 corresponds to H5 sequence of H5N1 "3982-56/A1",
 [0343] SEQ ID NO: 44 corresponds to H5 sequence of H5N1 "3982-78/B2",
 [0344] SEQ ID NO: 45 corresponds to H5 sequence of H5N1 "4794-17/B",
 [0345] SEQ ID NO: 46 corresponds to H5 sequence of H5N1 "4794-18/B",
 [0346] SEQ ID NO: 47 corresponds to H5 sequence translated from SEQ ID NO: 50,
 [0347] SEQ ID NO: 48 codes for a H5 sequence of H5N1 "3982-8/A1" (SEQ ID NO: 15),
 [0348] SEQ ID NO: 49 codes for a H5 sequence of H5N1 "1553-2/B1" (SEQ ID NO: 20),
 [0349] SEQ ID NO: 50 corresponds to the consensus sequence obtained after analysis of the 38 H5 HA gene sequences coding for SEQ ID NOS: 9 to 46,
 [0350] SEQ ID NO: 51 corresponds to the cDNA of Newcastle Disease Virus LaSota strain.

 SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 51

<210> SEQ ID NO 1

<211> LENGTH: 552

<212> TYPE: PRT

<213> ORGANISM: Avian influenza virus

<400> SEQUENCE: 1

```

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 1           5           10          15

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 20          25           30

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
 35           40           45

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 50           55           60

Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val
 65           70           75           80

Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asp Phe Asn
 85           90           95

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
100          105          110

Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Ser His Glu Ala Ser

```

-continued

115	120	125
Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser Phe Phe		
130	135	140
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Ala Tyr Pro Thr Ile		
145	150	155
160		
Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp		
165	170	175
Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln		
180	185	190
Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg		
195	200	205
Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Asn Gly		
210	215	220
Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn		
225	230	235
240		
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile		
245	250	255
Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Leu Glu Tyr Gly		
260	265	270
Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser		
275	280	285
Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys		
290	295	300
Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser		
305	310	315
320		
Pro Gln Arg Glu Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile		
325	330	335
Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr		
340	345	350
Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys		
355	360	365
Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser		
370	375	380
Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe		
385	390	395
400		
Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp		
405	410	415
Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met		
420	425	430
Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu		
435	440	445
Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly		
450	455	460
Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu		
465	470	475
480		
Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala		
485	490	495
Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly		
500	505	510
Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala		
515	520	525

-continued

Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
 530 535 540

Ser Leu Gln Cys Arg Ile Cys Ile
 545 550

<210> SEQ ID NO 2
 <211> LENGTH: 551
 <212> TYPE: PRT
 <213> ORGANISM: Avian influenza virus

<400> SEQUENCE: 2

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 1 5 10 15

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 20 25 30

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
 35 40 45

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 50 55 60

Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val
 65 70 75 80

Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 85 90 95

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
 100 105 110

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser
 115 120 125

Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Ser Ser Ser Phe Phe
 130 135 140

Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp Ala Tyr Pro Thr Ile
 145 150 155 160

Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
 165 170 175

Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln
 180 185 190

Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
 195 200 205

Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
 210 215 220

Arg Met Asp Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn
 225 230 235 240

Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile
 245 250 255

Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Val Glu Tyr Gly
 260 265 270

Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser
 275 280 285

Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 290 295 300

Tyr Val Lys Ser Asn Lys Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 305 310 315 320

Pro Gln Arg Glu Arg Arg Arg Lys Arg Gly Leu Phe Gly Ala Ile Ala

-continued

325	330	335	
Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly			
340	345	350	
Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu			
355	360	365	
Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile			
370	375	380	
Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn			
385	390	395	400
Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly			
405	410	415	
Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu			
420	425	430	
Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr			
435	440	445	
Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn			
450	455	460	
Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser			
465	470	475	480
Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg			
485	490	495	
Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr			
500	505	510	
Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu			
515	520	525	
Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser			
530	535	540	
Leu Gln Cys Arg Ile Cys Ile			
545	550		

<210> SEQ ID NO 3

<211> LENGTH: 567

<212> TYPE: PRT

<213> ORGANISM: Avian influenza virus

<400> SEQUENCE: 3

Met Glu Lys Thr Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser			
1	5	10	15
Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val			
20	25	30	
Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile			
35	40	45	
Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys			
50	55	60	
Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn			
65	70	75	80
Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val			
85	90	95	
Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn			
100	105	110	
Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu			
115	120	125	

-continued

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser
 130 135 140
 Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Ser Ser Ser Phe Phe
 145 150 155 160
 Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp Ala Tyr Pro Thr Ile
 165 170 175
 Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Trp
 180 185 190
 Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln
 195 200 205
 Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
 210 215 220
 Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
 225 230 235 240
 Arg Met Asp Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn
 245 250 255
 Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile
 260 265 270
 Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Val Glu Tyr Gly
 275 280 285
 Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser
 290 295 300
 Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 305 310 315 320
 Tyr Val Lys Ser Asn Lys Leu Val Ala Thr Gly Leu Arg Asn Ser
 325 330 335
 Pro Gln Arg Glu Arg Arg Lys Arg Gly Leu Phe Gly Ala Ile Ala
 340 345 350
 Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly
 355 360 365
 Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu
 370 375 380
 Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile
 385 390 395 400
 Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn
 405 410 415
 Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly
 420 425 430
 Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu
 435 440 445
 Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr
 450 455 460
 Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn
 465 470 475 480
 Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser
 485 490 495
 Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg
 500 505 510
 Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr
 515 520 525
 Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu

-continued

530	535	540
Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser		
545	550	555
Leu Gln Cys Arg Ile Cys Ile		
565		
 <210> SEQ ID NO 4		
<211> LENGTH: 568		
<212> TYPE: PRT		
<213> ORGANISM: Avian influenza virus		
 <400> SEQUENCE: 4		
Met Glu Lys Ile Val Leu Leu Phe Ala Ile Val Ser Leu Val Lys Ser		
1	5	10
Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val		
20	25	30
Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile		
35	40	45
Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys		
50	55	60
Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn		
65	70	75
Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val		
85	90	95
Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asp Phe Asn		
100	105	110
Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu		
115	120	125
Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Ser His Glu Ala Ser		
130	135	140
Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser Phe Phe		
145	150	155
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Ala Tyr Pro Thr Ile		
165	170	175
Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp		
180	185	190
Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln		
195	200	205
Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg		
210	215	220
Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Asn Gly		
225	230	235
Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn		
245	250	255
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile		
260	265	270
Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Leu Glu Tyr Gly		
275	280	285
Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser		
290	295	300
Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys		
305	310	315
		320

-continued

Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 325 330 335

Pro Gln Arg Glu Arg Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
 340 345 350

Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
 355 360 365

Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
 370 375 380

Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400

Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415

Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
 420 425 430

Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
 435 440 445

Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
 450 455 460

Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
 465 470 475 480

Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu
 485 490 495

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
 500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
 530 535 540

Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
 545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 5

<211> LENGTH: 568

<212> TYPE: PRT

<213> ORGANISM: Avian influenza virus

<400> SEQUENCE: 5

Met Glu Lys Thr Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser
 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
 50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80

Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val
 85 90 95

Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 100 105 110

-continued

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
 115 120 125
 Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Asp His Glu Ala Ser
 130 135 140
 Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Ser Ser Ser Phe Phe
 145 150 155 160
 Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Ala Tyr Pro Thr Ile
 165 170 175
 Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
 180 185 190
 Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln
 195 200 205
 Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
 210 215 220
 Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Asn Gly
 225 230 235 240
 Arg Met Asp Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn
 245 250 255
 Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile
 260 265 270
 Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Val Glu Tyr Gly
 275 280 285
 Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser
 290 295 300
 Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 305 310 315 320
 Tyr Val Lys Ser Asn Lys Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 325 330 335
 Pro Gln Arg Glu Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
 340 345 350
 Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
 355 360 365
 Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
 370 375 380
 Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400
 Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415
 Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
 420 425 430
 Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
 435 440 445
 Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
 450 455 460
 Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
 465 470 475 480
 Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu
 485 490 495
 Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
 500 505 510

-continued

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
 530 535 540

Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
 545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 6

<211> LENGTH: 263

<212> TYPE: PRT

<213> ORGANISM: Avian influenza virus

<400> SEQUENCE: 6

His Ala Asn Asn Trp Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn
 1 5 10 15

Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly
 20 25 30

Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys
 35 40 45

Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Ile
 50 55 60

Asn Val Pro Glu Trp Ser Tyr Ile Val Glu Lys Ala Asn Pro Ala Asn
 65 70 75 80

Asp Leu Cys Tyr Pro Gly Asp Phe Asn Asp Tyr Glu Glu Leu Lys His
 85 90 95

Leu Leu Ser Arg Ile Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys
 100 105 110

Asn Ser Trp Ser Ser His Glu Ala Ser Leu Gly Val Ser Ser Ala Cys
 115 120 125

Pro Tyr Gln Gly Lys Ser Ser Phe Phe Arg Asn Val Val Trp Leu Ile
 130 135 140

Lys Lys Asn Asn Ala Tyr Pro Thr Ile Lys Arg Ser Tyr Asn Asn Thr
 145 150 155 160

Asn Gln Glu Asp Leu Leu Val Trp Gly Ile His His Pro Asn Asp
 165 170 175

Ala Ala Glu Gln Thr Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser
 180 185 190

Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr
 195 200 205

Arg Ser Lys Val Asn Gly Gln Asn Gly Arg Met Glu Phe Phe Trp Thr
 210 215 220

Ile Leu Lys Pro Asn Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe
 225 230 235 240

Ile Ala Pro Glu Tyr Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Ala
 245 250 255

Ile Met Lys Ser Glu Leu Glu
 260

<210> SEQ ID NO 7

<211> LENGTH: 290

<212> TYPE: PRT

<213> ORGANISM: Avian influenza virus

-continued

<400> SEQUENCE: 7

Gly Ser Ala Thr Met Glu Lys Thr Val Leu Leu Leu Ala Ile Val Ser
 1 5 10 15

Leu Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
 20 25 30

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
 35 40 45

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu
 50 55 60

Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
 65 70 75 80

Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp
 85 90 95

Ser Tyr Ile Val Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro
 100 105 110

Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile
 115 120 125

Asn His Phe Glu Lys Ile Gln Ile Pro Lys Ser Ser Trp Ser Asp
 130 135 140

His Glu Ala Ser Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Ser
 145 150 155 160

Ser Ser Phe Phe Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp Ala
 165 170 175

Tyr Pro Thr Ile Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu
 180 185 190

Leu Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr
 195 200 205

Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr
 210 215 220

Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn
 225 230 235 240

Gly Gln Ser Gly Arg Met Asp Phe Phe Trp Thr Ile Leu Lys Pro Asn
 245 250 255

Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr
 260 265 270

Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu
 275 280 285

Val Glu
 290

<210> SEQ ID NO 8

<211> LENGTH: 562

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 8

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser
 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45

-continued

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
 50 55 60
 Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80
 Pro Met Cys Asp Glu Phe Leu Asn Val Ser Glu Trp Ser Tyr Ile Val
 85 90 95
 Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 100 105 110
 Asn Tyr Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu
 115 120 125
 Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser
 130 135 140
 Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr
 145 150 155 160
 Arg Asn Val Val Trp Leu Ile Lys Lys Asp Asn Ala Tyr Pro Thr Ile
 165 170 175
 Lys Lys Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
 180 185 190
 Gly Ile His His Pro Asn Asp Glu Ala Glu Gln Thr Arg Leu Tyr Gln
 195 200 205
 Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
 210 215 220
 Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
 225 230 235 240
 Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Ala Ile Asn
 245 250 255
 Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile
 260 265 270
 Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
 275 280 285
 Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser
 290 295 300
 Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 305 310 315 320
 Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 325 330 335
 Pro Gln Gly Glu Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
 340 345 350
 Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
 355 360 365
 Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
 370 375 380
 Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400
 Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415
 Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
 420 425 430
 Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
 435 440 445

-continued

Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
 450 455 460

Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
 465 470 475 480

Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu
 485 490 495

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
 500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
 530 535 540

Leu Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly
 545 550 555 560

Ser Leu

<210> SEQ ID NO 9
 <211> LENGTH: 567
 <212> TYPE: PRT
 <213> ORGANISM: H5N1

<400> SEQUENCE: 9

Met Glu Lys Ile Met Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser
 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu Asp Gly Val Lys
 50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80

Pro Met Cys Asp Glu Phe Leu Asn Val Pro Glu Trp Ser Tyr Ile Val
 85 90 95

Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Lys Phe Asn
 100 105 110

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
 115 120 125

Lys Ile Gln Ile Ile Pro Arg Asn Ser Trp Ser Asp His Glu Thr Ser
 130 135 140

Gly Val Ser Ser Ala Cys Gln Tyr Gln Gly Arg Ser Ser Phe Phe Arg
 145 150 155 160

Asn Val Val Trp Leu Thr Lys Lys Asp Asn Ala Tyr Ser Thr Ile Lys
 165 170 175

Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly
 180 185 190

Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln Asn
 195 200 205

Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu
 210 215 220

Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg
 225 230 235 240

-continued

Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Ala Ile Asn Phe
 245 250 255

Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val
 260 265 270

Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn
 275 280 285

Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met
 290 295 300

Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr
 305 310 315 320

Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro
 325 330 335

Gln Glu Glu Arg Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala
 340 345 350

Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly
 355 360 365

Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu
 370 375 380

Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile
 385 390 395 400

Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn
 405 410 415

Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly
 420 425 430

Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu
 435 440 445

Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr
 450 455 460

Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn
 465 470 475 480

Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser
 485 490 495

Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg
 500 505 510

Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr
 515 520 525

Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu
 530 535 540

Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly Ser
 545 550 555 560

Leu Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 10

<211> LENGTH: 567

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 10

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Ile Val Lys Ser
 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

-continued

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45
 Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu Asp Gly Val Lys
 50 55 60
 Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80
 Pro Met Cys Asp Glu Phe Leu Asn Val Pro Glu Trp Ser Tyr Ile Val
 85 90 95
 Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 100 105 110
 Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
 115 120 125
 Lys Ile Gln Ile Ile Pro Lys Gly Ser Trp Ser Asp His Glu Ala Ser
 130 135 140
 Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Ser Ser Phe Phe Arg
 145 150 155 160
 Asn Val Val Trp Leu Thr Lys Asn Asn Ala Tyr Pro Thr Ile Lys
 165 170 175
 Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly
 180 185 190
 Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln Asn
 195 200 205
 Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu
 210 215 220
 Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg
 225 230 235 240
 Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Ala Ile Asn Phe
 245 250 255
 Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val
 260 265 270
 Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn
 275 280 285
 Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met
 290 295 300
 Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr
 305 310 315 320
 Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro
 325 330 335
 Gln Gly Glu Arg Arg Arg Lys Arg Gly Leu Phe Gly Ala Ile Ala
 340 345 350
 Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly
 355 360 365
 Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu
 370 375 380
 Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile
 385 390 395 400
 Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn
 405 410 415
 Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly
 420 425 430

-continued

Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu
 435 440 445

Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr
 450 455 460

Asp Arg Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn
 465 470 475 480

Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser
 485 490 495

Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg
 500 505 510

Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr
 515 520 525

Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu
 530 535 540

Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly Ser
 545 550 555 560

Leu Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 11
 <211> LENGTH: 560
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (560)..(560)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 11

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Gly
 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu Asp Gly Val Lys
 50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80

Pro Met Cys Asp Glu Phe Leu Asn Val Pro Glu Trp Ser Tyr Ile Val
 85 90 95

Glu Lys Ile Tyr Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 100 105 110

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
 115 120 125

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser
 130 135 140

Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Ser Ser Phe Phe Arg
 145 150 155 160

Asn Val Val Trp Leu Thr Lys Asp Asn Ala Tyr Pro Thr Ile Lys
 165 170 175

Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Ile Leu Trp Gly
 180 185 190

Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln Asn

-continued

195	200	205
Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu		
210	215	220
Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg		
225	230	235
Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Ala Ile Asn Phe		
245	250	255
Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val		
260	265	270
Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn		
275	280	285
Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met		
290	295	300
Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr		
305	310	315
Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro		
325	330	335
Gln Gly Glu Arg Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala		
340	345	350
Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly		
355	360	365
Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu		
370	375	380
Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile		
385	390	395
Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn		
405	410	415
Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly		
420	425	430
Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu		
435	440	445
Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr		
450	455	460
Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn		
465	470	475
Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser		
485	490	495
Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg		
500	505	510
Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr		
515	520	525
Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu		
530	535	540
Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly Xaa		
545	550	555
		560

<210> SEQ ID NO 12

<211> LENGTH: 544

<212> TYPE: PRT

<213> ORGANISM: H5N1

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(1)

-continued

<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (544) . . . (544)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

 <400> SEQUENCE: 12

Xaa	Leu	Leu	Ala	Ile	Val	Ser	Ile	Val	Lys	Ser	Asp	Gln	Ile	Cys	Ile
1									10						15
Gly	Tyr	His	Ala	Asn	Asn	Ser	Thr	Glu	Gln	Val	Asp	Thr	Ile	Met	Glu
								20		25					30
Lys	Asn	Val	Thr	Val	Thr	His	Ala	Gln	Asp	Ile	Leu	Glu	Lys	Thr	His
								35		40					45
Asn	Gly	Lys	Leu	Cys	Asn	Leu	Asp	Gly	Val	Lys	Pro	Leu	Ile	Leu	Arg
								50		55					60
Asp	Cys	Ser	Val	Ala	Gly	Trp	Leu	Leu	Gly	Asn	Pro	Met	Cys	Asp	Glu
								65		70					80
Phe	Leu	Asp	Val	Pro	Glu	Trp	Ser	Tyr	Ile	Val	Glu	Lys	Ile	Asn	Pro
								85		90					95
Ala	Asn	Asp	Leu	Cys	Tyr	Pro	Gly	Asn	Phe	Asn	Asp	Tyr	Glu	Glu	Leu
								100		105					110
Lys	His	Leu	Leu	Ser	Arg	Ile	Asn	His	Phe	Glu	Lys	Ile	Gln	Ile	Ile
								115		120					125
Pro	Lys	Asn	Ser	Trp	Ser	Asp	His	Glu	Thr	Ser	Gly	Val	Ser	Ser	Ala
								130		135					140
Cys	Pro	Tyr	Gln	Gly	Arg	Ser	Ser	Phe	Phe	Arg	Asn	Val	Val	Trp	Leu
								145		150					160
Thr	Lys	Lys	Asn	Thr	Ala	Tyr	Pro	Thr	Ile	Lys	Lys	Ser	Tyr	Asn	Asn
								165		170					175
Thr	Asn	Gln	Glu	Asp	Leu	Leu	Val	Leu	Trp	Gly	Ile	His	His	Pro	Asn
								180		185					190
Asp	Ala	Ala	Glu	Gln	Thr	Arg	Leu	Tyr	Gln	Asn	Pro	Thr	Thr	Tyr	Ile
								195		200					205
Ser	Val	Gly	Thr	Ser	Thr	Leu	Asn	Gln	Arg	Leu	Val	Pro	Lys	Ile	Ala
								210		215					220
Thr	Arg	Ser	Lys	Val	Asn	Gly	Gln	Ser	Gly	Arg	Met	Glu	Phe	Phe	Trp
								225		230					240
Thr	Ile	Leu	Lys	Ser	Asn	Asp	Ala	Ile	Asn	Phe	Glu	Ser	Asn	Gly	Asn
								245		250					255
Phe	Ile	Ala	Pro	Glu	Asn	Ala	Tyr	Lys	Ile	Val	Lys	Lys	Gly	Asp	Ser
								260		265					270
Thr	Ile	Met	Lys	Ser	Glu	Leu	Glu	Tyr	Gly	Asn	Cys	Asn	Thr	Lys	Cys
								275		280					285
Gln	Thr	Pro	Ile	Gly	Ala	Ile	Asn	Ser	Ser	Met	Pro	Phe	His	Asn	Ile
								290		295					300
His	Pro	Leu	Thr	Ile	Gly	Glu	Cys	Pro	Lys	Tyr	Val	Lys	Ser	Asn	Arg
								305		310					320
Leu	Val	Leu	Ala	Thr	Gly	Leu	Arg	Asn	Ser	Pro	His	Gly	Glu	Arg	Arg
								325		330					335
Arg	Lys	Lys	Arg	Gly	Leu	Phe	Gly	Ala	Ile	Ala	Gly	Phe	Ile	Glu	Gly
								340		345					350
Gly	Trp	Gln	Gly	Met	Val	Asp	Gly	Trp	Tyr	Gly	Tyr	His	His	Ser	Asn
								355		360					365

-continued

Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala
 370 375 380
 Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn
 385 390 395 400
 Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg
 405 410 415
 Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp
 420 425 430
 Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu
 435 440 445
 Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu
 450 455 460
 Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe
 465 470 475 480
 Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr
 485 490 495
 Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu
 500 505 510
 Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser
 515 520 525
 Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Val Xaa
 530 535 540

<210> SEQ ID NO 13
 <211> LENGTH: 534
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)...(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <400> SEQUENCE: 13

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
 1 5 10 15
 Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
 20 25 30
 Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu
 35 40 45
 Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
 50 55 60
 Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Leu Asn Val Glu Trp Ser
 65 70 75 80
 Tyr Ile Val Glu Lys Ile Asn Pro Thr Asn Asp Leu Cys Tyr Pro Gly
 85 90 95
 Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn
 100 105 110
 His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn Tyr Trp Ser Asp His
 115 120 125
 Glu Thr Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Pro Ser
 130 135 140
 Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys Asn Asn Ala Tyr Pro
 145 150 155 160

-continued

Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val
 165 170 175
 Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu
 180 185 190
 Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn
 195 200 205
 Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln
 210 215 220
 Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Ala
 225 230 235 240
 Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr
 245 250 255
 Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu
 260 265 270
 Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn
 275 280 285
 Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys
 290 295 300
 Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg
 305 310 315 320
 Asn Ser Pro Gln Gly Glu Arg Arg Arg Lys Lys Arg Gly Leu Phe Gly
 325 330 335
 Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly
 340 345 350
 Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala
 355 360 365
 Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val
 370 375 380
 Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg
 385 390 395 400
 Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met
 405 410 415
 Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val
 420 425 430
 Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys
 435 440 445
 Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu
 450 455 460
 Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys
 465 470 475 480
 Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu
 485 490 495
 Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser
 500 505 510
 Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser
 515 520 525
 Leu Ala Leu Ala Ile Met
 530

<210> SEQ ID NO 14
 <211> LENGTH: 548
 <212> TYPE: PRT

-continued

```

<213> ORGANISM: H5N1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (548)..(548)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 14

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
1           5           10           15

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
20          25           30

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu
35          40           45

Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
50          55           60

Leu Leu Gly Asn Pro Met Cys Asp Lys Phe Leu Asn Val Pro Glu Trp
65          70           75           80

Ser Tyr Ile Val Glu Lys Ile Asn Pro Thr Asn Asp Leu Cys Tyr Pro
85          90           95

Gly Asn Phe Asn Asp Tyr Glu Glu Lys His Leu Leu Ser Arg Ile
100         105          110

Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Asp
115         120          125

His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Ser
130         135          140

Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys Asn Asn Ala Tyr
145         150          155          160

Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu
165         170          175

Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg
180         185          190

Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu
195         200          205

Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly
210         215          220

Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp
225         230          235          240

Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala
245         250          255

Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu
260         265          270

Glu Tyr Gly Asp Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile
275         280          285

Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu
290         295          300

Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Ala Thr Gly Leu
305         310          315          320

Arg Asn Ser Pro Gln Gly Glu Arg Arg Lys Lys Arg Gly Leu Phe
325         330          335

Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp

```

-continued

340	345	350	
Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala			
355	360	365	
Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys			
370	375	380	
Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly			
385	390	395	400
Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys			
405	410	415	
Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu			
420	425	430	
Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val			
435	440	445	
Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys			
450	455	460	
Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu			
465	470	475	480
Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser			
485	490	495	
Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu			
500	505	510	
Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser			
515	520	525	
Ser Leu Ala Leu Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys			
530	535	540	
Ser Asn Gly Xaa			
545			

<210> SEQ ID NO 15
 <211> LENGTH: 541
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (541)..(541)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <400> SEQUENCE: 15

 Xaa Ile Val Ser Ile Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His
 1 5 10 15

 Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val
 20 25 30

 Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys
 35 40 45

 Leu Cys Asn Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser
 50 55 60

 Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Leu Asn
 65 70 75 80

 Val Pro Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Thr Asn Asp
 85 90 95

 Leu Cys Tyr Pro Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu

-continued

100	105	110	
Leu Ser Arg Ile Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn			
115	120	125	
Ser Trp Ser Asp His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr			
130	135	140	
Gln Gly Arg Ser Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys			
145	150	155	160
Asn Asn Ala Tyr Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln			
165	170	175	
Glu Asp Leu Leu Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala			
180	185	190	
Glu Gln Thr Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly			
195	200	205	
Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser			
210	215	220	
Lys Val Asn Gly Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu			
225	230	235	240
Lys Ser Asn Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala			
245	250	255	
Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met			
260	265	270	
Lys Ser Glu Leu Glu Tyr Gly Asp Cys Asn Thr Lys Cys Gln Thr Pro			
275	280	285	
Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu			
290	295	300	
Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu			
305	310	315	320
Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Arg Arg Arg Lys Lys			
325	330	335	
Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln			
340	345	350	
Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly			
355	360	365	
Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly			
370	375	380	
Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe			
385	390	395	400
Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn			
405	410	415	
Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn			
420	425	430	
Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His			
435	440	445	
Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg			
450	455	460	
Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg			
465	470	475	480
Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr			
485	490	495	
Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly			
500	505	510	

-continued

Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser
 515 520 525

Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Val Xaa
 530 535 540

<210> SEQ ID NO 16
 <211> LENGTH: 520
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (159)..(159)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 16

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
 1 5 10 15

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
 20 25 30

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu
 35 40 45

Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
 50 55 60

Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Leu Asn Val Pro Glu Trp
 65 70 75 80

Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro
 85 90 95

Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile
 100 105 110

Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Asp
 115 120 125

His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Ser
 130 135 140

Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys Asn Asn Xaa Tyr
 145 150 155 160

Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu
 165 170 175

Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Lys
 180 185 190

Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu
 195 200 205

Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly
 210 215 220

Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp
 225 230 235 240

Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala
 245 250 255

Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu
 260 265 270

Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile
 275 280 285

-continued

Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu
 290 295 300

Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Ala Thr Gly Leu
 305 310 315 320

Arg Asn Ser Pro Gln Gly Glu Arg Arg Lys Lys Arg Gly Leu Phe
 325 330 335

Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp
 340 345 350

Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala
 355 360 365

Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys
 370 375 380

Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly
 385 390 395 400

Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys
 405 410 415

Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu
 420 425 430

Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val
 435 440 445

Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys
 450 455 460

Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu
 465 470 475 480

Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser
 485 490 495

Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu
 500 505 510

Ser Ile Gly Thr Tyr Gln Ile Leu
 515 520

<210> SEQ ID NO 17
 <211> LENGTH: 537
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (537)..(537)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 17

Xaa Ser Ile Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn
 1 5 10 15

Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val
 20 25 30

Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys
 35 40 45

Asn Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala
 50 55 60

Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Leu Asn Val Pro
 65 70 75 80

-continued

Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys
 85 90 95
 Tyr Pro Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser
 100 105 110
 Arg Ile Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp
 115 120 125
 Ser Asp His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly
 130 135 140
 Arg Ser Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys Asn Asn
 145 150 155 160
 Ala Tyr Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp
 165 170 175
 Leu Leu Val Leu Trp Gly Ile His His Pro Asn Asp Glu Ala Glu Gln
 180 185 190
 Thr Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser
 195 200 205
 Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val
 210 215 220
 Asn Gly Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Ser
 225 230 235 240
 Asn Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu
 245 250 255
 Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser
 260 265 270
 Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly
 275 280 285
 Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile
 290 295 300
 Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr
 305 310 315 320
 Gly Leu Arg Asn Ser Pro Gln Gly Glu Arg Arg Arg Lys Lys Arg Gly
 325 330 335
 Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met
 340 345 350
 Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly
 355 360 365
 Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr
 370 375 380
 Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala
 385 390 395 400
 Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn
 405 410 415
 Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu
 420 425 430
 Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser
 435 440 445
 Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn
 450 455 460
 Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp
 465 470 475 480

-continued

Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln
 485 490 495

Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys
 500 505 510

Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val
 515 520 525

Ala Ser Ser Leu Ala Leu Ala Ile Xaa
 530 535

<210> SEQ ID NO 18
<211> LENGTH: 528
<212> TYPE: PRT
<213> ORGANISM: H5N1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (528)..(528)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 18

Xaa Ile Val Ser Ile Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His
 1 5 10 15

Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val
 20 25 30

Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys
 35 40 45

Leu Cys Asn Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser
 50 55 60

Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Leu Asn
 65 70 75 80

Val Pro Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp
 85 90 95

Leu Cys Tyr Pro Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys His Leu
 100 105 110

Leu Ser Arg Ile Asn His Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn
 115 120 125

Ser Trp Ser Asp His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr
 130 135 140

Gln Gly Arg Ser Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys
 145 150 155 160

Asn Asn Ala Tyr Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln
 165 170 175

Glu Asp Leu Leu Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala
 180 185 190

Glu Gln Thr Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser Val Gly
 195 200 205

Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Asn Arg Ser
 210 215 220

Lys Val Asn Gly Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu
 225 230 235 240

Lys Ser Asn Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala
 245 250 255

-continued

Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met
 260 265 270

Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro
 275 280 285

Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu
 290 295 300

Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu
 305 310 315 320

Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Arg Arg Arg Lys Lys
 325 330 335

Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Trp Gln
 340 345 350

Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly
 355 360 365

Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly
 370 375 380

Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe
 385 390 395 400

Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn
 405 410 415

Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn
 420 425 430

Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His
 435 440 445

Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg
 450 455 460

Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg
 465 470 475 480

Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr
 485 490 495

Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly
 500 505 510

Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Xaa
 515 520 525

<210> SEQ ID NO 19
 <211> LENGTH: 535
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (535)..(535)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 19

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
 1 5 10 15

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
 20 25 30

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu
 35 40 45

-continued

Asp	Gly	Val	Lys	Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Val	Ala	Gly	Trp
50															
Leu	Leu	Gly	Asn	Pro	Met	Cys	Asp	Glu	Phe	Leu	Asn	Val	Pro	Glu	Trp
65															
Ser	Tyr	Ile	Val	Glu	Lys	Ile	Asn	Pro	Ala	Asn	Asp	Leu	Cys	Tyr	Pro
Gly	Asn	Phe	Asn	Asp	Tyr	Glu	Glu	Leu	Lys	His	Leu	Leu	Ser	Arg	Ile
100															
Asn	His	Phe	Glu	Lys	Ile	Gln	Ile	Ile	Pro	Lys	Asn	Ser	Trp	Ser	Asp
115															
His	Glu	Ala	Ser	Gly	Val	Ser	Ser	Ala	Cys	Pro	Tyr	Gln	Gly	Arg	Ser
130															
Ser	Phe	Phe	Arg	Asn	Val	Val	Trp	Leu	Thr	Lys	Lys	Asp	Asn	Ala	Tyr
145															
Pro	Thr	Ile	Lys	Arg	Ser	Tyr	Asn	Asn	Thr	Asn	Gln	Glu	Asp	Leu	Leu
165															
Val	Leu	Trp	Gly	Ile	His	His	Pro	Asn	Asp	Ala	Ala	Glu	Gln	Thr	Arg
180															
Leu	Tyr	Gln	Asn	Pro	Thr	Thr	Tyr	Ile	Ser	Val	Gly	Thr	Ser	Thr	Leu
195															
Asn	Gln	Arg	Leu	Val	Pro	Lys	Ile	Ala	Thr	Arg	Ser	Lys	Val	Asn	Gly
210															
Gln	Ser	Gly	Arg	Met	Glu	Phe	Trp	Thr	Ile	Leu	Lys	Ser	Asn	Asp	
225															
Ala	Ile	Asn	Phe	Glu	Ser	Asn	Gly	Asn	Phe	Ile	Ala	Pro	Glu	Asn	Ala
245															
Tyr	Lys	Ile	Val	Lys	Lys	Gly	Asp	Ser	Thr	Ile	Met	Lys	Ser	Glu	Leu
260															
Glu	Tyr	Gly	Asn	Cys	Asn	Thr	Lys	Cys	Gln	Thr	Pro	Ile	Gly	Ala	Ile
275															
Asn	Ser	Ser	Met	Pro	Phe	His	Asn	Ile	His	Pro	Leu	Thr	Ile	Gly	Glu
290															
Cys	Pro	Lys	Tyr	Val	Lys	Ser	Asn	Arg	Leu	Val	Leu	Ala	Thr	Gly	Leu
305															
Arg	Asn	Ser	Pro	Gln	Gly	Glu	Arg	Arg	Arg	Lys	Lys	Arg	Gly	Leu	Phe
325															
Gly	Ala	Ile	Ala	Gly	Phe	Ile	Glu	Gly	Gly	Trp	Gln	Gly	Met	Val	Asp
340															
Gly	Trp	Tyr	Gly	Tyr	His	His	Ser	Asn	Glu	Gln	Gly	Ser	Gly	Tyr	Ala
355															
Ala	Asp	Lys	Glu	Ser	Thr	Gln	Lys	Ala	Ile	Asp	Gly	Val	Thr	Asn	Lys
370															
Val	Asn	Ser	Ile	Ile	Asp	Lys	Met	Asn	Thr	Gln	Phe	Glu	Ala	Val	Gly
385															
Arg	Glu	Phe	Asn	Asn	Leu	Glu	Arg	Arg	Ile	Glu	Asn	Leu	Asn	Lys	Lys
405															
Met	Glu	Asp	Gly	Phe	Leu	Asp	Val	Trp	Thr	Tyr	Asn	Ala	Glu	Leu	Leu
420															
Val	Leu	Met	Glu	Asn	Glu	Arg	Thr	Leu	Asp	Phe	His	Asp	Ser	Asn	Val
435															
Lys	Asn	Leu	Tyr	Asp	Lys	Val	Arg	Leu	Gln	Leu	Arg	Asp	Asn	Ala	Lys

-continued

450	455	460
Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu		
465	470	475
Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser		
485	490	495
Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu		
500	505	510
Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser		
515	520	525
Ser Leu Ala Leu Ala Ile Xaa		
530	535	
<210> SEQ_ID NO 20		
<211> LENGTH: 568		
<212> TYPE: PRT		
<213> ORGANISM: H5N1		
<400> SEQUENCE: 20		
Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser		
1	5	10
Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val		
20	25	30
Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile		
35	40	45
Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Gly Gly Val Lys		
50	55	60
Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn		
65	70	75
Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val		
85	90	95
Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn		
100	105	110
Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu		
115	120	125
Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser		
130	135	140
Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr		
145	150	155
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp Thr Tyr Pro Thr Ile		
165	170	175
Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp		
180	185	190
Gly Ile His His Pro Asn Asn Glu Glu Gln Lys Arg Ile Tyr Lys		
195	200	205
Asn Pro Thr Thr Tyr Val Ser Val Gly Thr Ser Thr Leu Asn Gln Arg		
210	215	220
Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly		
225	230	235
Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn		
245	250	255
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile		
260	265	270

-continued

Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
275 280 285

Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Thr Ser
290 295 300

Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
305 310 315 320

Tyr Val Lys Ser Asn Arg Leu Val Ala Thr Gly Leu Arg Asn Ser
325 330 335

Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
340 345 350

Ala Gly Phe Ile Glu Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
355 360 365

Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
370 375 380

Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
385 390 395 400

Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
405 410 415

Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
420 425 430

Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
435 440 445

Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu
450 455 460

Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
465 470 475 480

Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu
485 490 495

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
530 535 540

Leu Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly
545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile
565

<210> SEQ ID NO 21
<211> LENGTH: 568
<212> TYPE: PRT
<213> ORGANISM: H5N1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (375)..(375)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 21

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser
1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile

-continued

35	40	45													
Leu	Glu	Lys	Thr	His	Asn	Gly	Lys	Leu	Cys	Asp	Leu	Asp	Gly	Val	Lys
50							55		60						
Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Val	Ala	Gly	Trp	Leu	Leu	Gly	Asn
65							70		75		80				
Pro	Met	Cys	Asp	Glu	Phe	Pro	Asn	Val	Ser	Glu	Trp	Ser	Tyr	Ile	Val
	85						90		95						
Glu	Lys	Thr	Asn	Pro	Ala	Asn	Asp	Leu	Cys	Tyr	Pro	Gly	Asn	Phe	Asn
	100						105		110						
Asn	Tyr	Glu	Glu	Leu	Lys	His	Leu	Leu	Ser	Arg	Ile	Asn	Arg	Phe	Glu
	115						120		125						
Lys	Ile	Lys	Ile	Ile	Pro	Lys	Ser	Ser	Trp	Pro	Asp	His	Glu	Ala	Ser
	130						135		140						
Leu	Gly	Val	Ser	Ser	Ala	Cys	Pro	Tyr	Gln	Gly	Glu	Pro	Ser	Phe	Tyr
	145						150		155		160				
Arg	Asn	Val	Val	Trp	Leu	Ile	Lys	Lys	Asn	Asn	Thr	Tyr	Pro	Thr	Ile
	165						170		175						
Lys	Glu	Ser	Tyr	His	Asn	Thr	Asn	Gln	Glu	Asp	Leu	Leu	Val	Leu	Trp
	180						185		190						
Gly	Ile	His	His	Pro	Asn	Asp	Glu	Glu	Glu	Gln	Thr	Arg	Ile	Tyr	Lys
	195						200		205						
Asn	Pro	Thr	Thr	Tyr	Ile	Ser	Val	Gly	Thr	Ser	Thr	Leu	Asn	Gln	Arg
	210						215		220						
Leu	Val	Pro	Lys	Ile	Ala	Thr	Arg	Ser	Lys	Val	Asn	Gly	Gln	Ser	Gly
	225						230		235		240				
Arg	Val	Glu	Phe	Phe	Trp	Thr	Ile	Leu	Lys	Ser	Asn	Asp	Thr	Ile	Asn
	245						250		255						
Phe	Glu	Ser	Asn	Gly	Asn	Phe	Ile	Ala	Pro	Glu	Asn	Ala	Tyr	Lys	Ile
	260						265		270						
Val	Lys	Lys	Gly	Asp	Ser	Thr	Ile	Met	Lys	Ser	Glu	Leu	Glu	Tyr	Gly
	275						280		285						
Asn	Cys	Ser	Thr	Lys	Cys	Gln	Thr	Pro	Val	Gly	Ala	Ile	Asn	Ser	Ser
	290						295		300						
Met	Pro	Phe	His	Asn	Ile	His	Pro	Leu	Thr	Ile	Gly	Glu	Cys	Pro	Lys
	305						310		315		320				
Tyr	Val	Lys	Ser	Asn	Arg	Leu	Val	Leu	Ala	Thr	Gly	Leu	Arg	Asn	Ser
	325						330		335						
Pro	Gln	Gly	Glu	Gly	Arg	Arg	Lys	Lys	Arg	Gly	Leu	Phe	Gly	Ala	Ile
	340						345		350						
Ala	Gly	Phe	Ile	Glu	Gly	Gly	Trp	Gln	Gly	Met	Val	Asp	Gly	Trp	Tyr
	355						360		365						
Gly	Tyr	His	His	Ser	Asn	Xaa	Gln	Gly	Ser	Gly	Tyr	Ala	Ala	Asp	Arg
	370						375		380						
Glu	Ser	Thr	Gln	Lys	Ala	Ile	Asp	Gly	Val	Thr	Asn	Lys	Val	Asn	Ser
	385						390		395		400				
Ile	Ile	Asp	Lys	Met	Asn	Thr	Gln	Phe	Glu	Ala	Val	Gly	Arg	Glu	Phe
	405						410		415						
Asn	Asn	Leu	Glu	Lys	Arg	Ile	Glu	Asn	Leu	Asn	Lys	Lys	Met	Glu	Asp
	420						425		430						
Gly	Phe	Leu	Asp	Val	Trp	Thr	Tyr	Asn	Ala	Glu	Leu	Leu	Val	Leu	Met
	435						440		445						

-continued

Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
450 455 460

Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
465 470 475 480

Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Ile Glu
485 490 495

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
530 535 540

Leu Ala Ile Ile Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly
545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile
565

<210> SEQ ID NO 22

<211> LENGTH: 568

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 22

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser
1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
65 70 75 80

Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val
85 90 95

Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
100 105 110

Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu
115 120 125

Lys Ile Lys Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser
130 135 140

Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Arg Gly Pro Ser Phe Tyr
145 150 155 160

Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile
165 170 175

Lys Lys Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
180 185 190

Gly Ile His His Pro Asn Asp Glu Glu Gln Thr Arg Ile Tyr Lys
195 200 205

Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
210 215 220

Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly

-continued

225	230	235	240
Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn			
245	250	255	
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile			
260	265	270	
Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly			
275	280	285	
Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser			
290	295	300	
Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys			
305	310	315	320
Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser			
325	330	335	
Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile			
340	345	350	
Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr			
355	360	365	
Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys			
370	375	380	
Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser			
385	390	395	400
Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe			
405	410	415	
Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp			
420	425	430	
Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met			
435	440	445	
Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu			
450	455	460	
Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly			
465	470	475	480
Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu			
485	490	495	
Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala			
500	505	510	
Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly			
515	520	525	
Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala			
530	535	540	
Leu Ala Ile Met Met Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly			
545	550	555	560
Ser Leu Gln Cys Arg Ile Cys Ile			
565			

<210> SEQ ID NO 23

<211> LENGTH: 568

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 23

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser			
1	5	10	15

-continued

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
 50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
 65 70 75 80

Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val
 85 90 95

Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
 100 105 110

Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu
 115 120 125

Lys Ile Lys Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser
 130 135 140

Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr
 145 150 155 160

Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile
 165 170 175

Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
 180 185 190

Gly Ile His His Pro Asn Asp Glu Glu Glu Gln Thr Arg Ile Tyr Lys
 195 200 205

Asn Pro Thr Thr Tyr Ile Ser Ile Gly Thr Ser Thr Leu Asn Gln Arg
 210 215 220

Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Arg Gly
 225 230 235 240

Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn
 245 250 255

Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile
 260 265 270

Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
 275 280 285

Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser
 290 295 300

Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 305 310 315 320

Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 325 330 335

Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
 340 345 350

Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
 355 360 365

Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
 370 375 380

Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400

Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415

Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp

-continued

420	425	430
Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met		
435	440	445
Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu		
450	455	460
Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly		
465	470	475
Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu		
485	490	495
Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala		
500	505	510
Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly		
515	520	525
Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala		
530	535	540
Leu Ala Ile Met Met Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly		
545	550	555
Ser Leu Gln Cys Arg Ile Cys Ile		
565		

<210> SEQ ID NO 24

<211> LENGTH: 568

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 24

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser		
1	5	10
		15
Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val		
20	25	30
Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile		
35	40	45
Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys		
50	55	60
Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn		
65	70	75
		80
Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val		
85	90	95
Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn		
100	105	110
Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu		
115	120	125
Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser		
130	135	140
Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Glu Pro Ser Phe Tyr		
145	150	155
		160
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile		
165	170	175
Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp		
180	185	190
Gly Ile His His Pro Asn Asp Glu Glu Gln Lys Arg Ile Tyr Lys		
195	200	205

-continued

Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg
 210 215 220
 Leu Val Pro Lys Ile Ala Thr Arg Pro Lys Val Asn Gly Gln Ser Gly
 225 230 235 240
 Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn
 245 250 255
 Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Lys Asn Ala Tyr Lys Ile
 260 265 270
 Val Lys Lys Gly Ser Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
 275 280 285
 Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser
 290 295 300
 Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
 305 310 315 320
 Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
 325 330 335
 Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
 340 345 350
 Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
 355 360 365
 Gly Tyr His His Ser Asn Glu Gln Gly Thr Gly Tyr Ala Ala Asp Lys
 370 375 380
 Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400
 Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415
 Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Met Glu Asp
 420 425 430
 Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
 435 440 445
 Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu
 450 455 460
 Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
 465 470 475 480
 Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu
 485 490 495
 Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys Glu Ala
 500 505 510
 Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525
 Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Thr Ser Ser Leu Ala
 530 535 540
 Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
 545 550 555 560
 Ser Leu Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 25
 <211> LENGTH: 556
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature

-continued

<222> LOCATION: (556)..(556)

<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 25

Met Glu Lys Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser
1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
65 70 75 80

Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val
85 90 95

Glu Lys Thr Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn
100 105 110

Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu
115 120 125

Lys Ile Lys Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser
130 135 140

Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Pro Ser Phe Tyr
145 150 155 160

Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile
165 170 175

Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
180 185 190

Gly Ile His His Pro Asn Asp Glu Glu Glu Gln Thr Arg Ile Tyr Lys
195 200 205

Asn Pro Thr Thr Tyr Ile Ser Ile Gly Thr Ser Thr Leu Asn Gln Arg
210 215 220

Leu Ile Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
225 230 235 240

Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn
245 250 255

Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile
260 265 270

Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly
275 280 285

Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser
290 295 300

Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
305 310 315 320

Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
325 330 335

Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
340 345 350

Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
355 360 365

Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
370 375 380

-continued

Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
 385 390 395 400
 Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
 405 410 415
 Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
 420 425 430
 Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
 435 440 445
 Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
 450 455 460
 Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
 465 470 475 480
 Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu
 485 490 495
 Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
 500 505 510
 Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
 515 520 525
 Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
 530 535 540
 Leu Ala Ile Met Met Ala Gly Leu Phe Leu Trp Xaa
 545 550 555

<210> SEQ ID NO 26
 <211> LENGTH: 554
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)...(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (554)...(554)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 26

Xaa Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys Ile
 1 5 10 15

Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu
 20 25 30

Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His
 35 40 45

Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg
 50 55 60

Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu
 65 70 75 80

Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro
 85 90 95

Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu
 100 105 110

Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Gln Ile Ile
 115 120 125

Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser Ser
 130 135 140

-continued

Ala Cys Pro Tyr Gln Gly Glu Pro Ser Phe Tyr Arg Asn Val Val Trp
 145 150 155 160
 Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Asn Tyr His
 165 170 175
 Asn Thr Asn Gln Glu Asp Leu Leu Val Trp Gly Ile His His Pro
 180 185 190
 Asn Asp Glu Glu Glu Gln Lys Arg Ile Tyr Lys Asn Pro Thr Thr Tyr
 195 200 205
 Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile
 210 215 220
 Ala Thr Arg Pro Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe Phe
 225 230 235 240
 Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly
 245 250 255
 Asn Phe Ile Ala Pro Lys Asn Ala Tyr Lys Ile Val Lys Lys Gly Ser
 260 265 270
 Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Ser Thr Lys
 275 280 285
 Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn
 290 295 300
 Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn
 305 310 315 320
 Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly
 325 330 335
 Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu
 340 345 350
 Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser
 355 360 365
 Asn Glu Gln Gly Thr Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys
 370 375 380
 Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met
 385 390 395 400
 Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Lys
 405 410 415
 Arg Ile Glu Asn Leu Asn Lys Met Glu Asp Gly Phe Leu Asp Val
 420 425 430
 Trp Thr Tyr Asn Ala Glu Leu Val Leu Met Glu Asn Glu Arg Thr
 435 440 445
 Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu Tyr Asp Lys Val Arg
 450 455 460
 Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu
 465 470 475 480
 Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly
 485 490 495
 Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys Glu Ala Arg Leu Lys Arg Glu
 500 505 510
 Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu
 515 520 525
 Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Val
 530 535 540

-continued

Ala Gly Leu Ser Leu Trp Met Cys Ser Xaa
545 550

<210> SEQ ID NO 27
<211> LENGTH: 564
<212> TYPE: PRT
<213> ORGANISM: H5N1

<400> SEQUENCE: 27

Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys
1 5 10 15

Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met
20 25 30

Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr
35 40 45

His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu
50 55 60

Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp
65 70 75 80

Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn
85 90 95

Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu
100 105 110

Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Gln Ile
115 120 125

Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser
130 135 140

Ser Ala Cys Pro Tyr Gln Gly Glu Pro Ser Phe Tyr Arg Asn Val Val
145 150 155 160

Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Asn Tyr
165 170 175

His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His His
180 185 190

Pro Asn Asp Glu Glu Glu Gln Lys Arg Ile Tyr Lys Asn Pro Thr Thr
195 200 205

Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys
210 215 220

Ile Ala Thr Arg Pro Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe
225 230 235 240

Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn
245 250 255

Gly Asn Phe Ile Ala Pro Lys Asn Ala Tyr Lys Ile Val Lys Lys Gly
260 265 270

Ser Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Ser Thr
275 280 285

Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His
290 295 300

Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser
305 310 315 320

Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu
325 330 335

Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile
340 345 350

-continued

Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His
 355 360 365
 Ser Asn Glu Gln Gly Thr Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln
 370 375 380
 Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys
 385 390 395 400
 Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu
 405 410 415
 Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp
 420 425 430
 Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg
 435 440 445
 Thr Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu Tyr Asp Lys Val
 450 455 460
 Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe
 465 470 475 480
 Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn
 485 490 495
 Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys Glu Ala Arg Leu Lys Arg
 500 505 510
 Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile
 515 520 525
 Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met
 530 535 540
 Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys
 545 550 555 560
 Arg Ile Cys Ile

<210> SEQ ID NO 28
 <211> LENGTH: 553
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 28

Xaa Val Leu Leu Ala Ile Ile Ser Leu Val Lys Ser Asp Gln Ile
 1 5 10 15

Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile
 20 25 30

Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys
 35 40 45

Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile
 50 55 60

Leu Arg Gly Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys
 65 70 75 80

Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile
 85 90 95

Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu
 100 105 110

Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Gln

-continued

115	120	125	
Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val			
130	135	140	
Ser Ser Ala Cys Pro Tyr Gln Gly Glu Pro Ser Phe Tyr Arg Asn Val			
145	150	155	160
Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Ser			
165	170	175	
Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His			
180	185	190	
His Pro Asn Asp Glu Glu Gln Lys Arg Ile Tyr Lys Asn Pro Thr			
195	200	205	
Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro			
210	215	220	
Lys Ile Ala Thr Arg Pro Lys Val Asn Gly Gln Ser Gly Arg Val Glu			
225	230	235	240
Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser			
245	250	255	
Asn Gly Asn Phe Ile Ala Pro Lys Asn Ala Tyr Lys Ile Val Lys Lys			
260	265	270	
Gly Ser Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Ser			
275	280	285	
Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe			
290	295	300	
His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys			
305	310	315	320
Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly			
325	330	335	
Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe			
340	345	350	
Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His			
355	360	365	
His Ser Asn Glu Gln Gly Thr Gly Tyr Ala Ala Asp Lys Glu Ser Thr			
370	375	380	
Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp			
385	390	395	400
Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu			
405	410	415	
Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu			
420	425	430	
Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu			
435	440	445	
Arg Thr Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu Tyr Asp Lys			
450	455	460	
Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys			
465	470	475	480
Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser Val Arg			
485	490	495	
Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys Glu Ala Arg Leu Lys			
500	505	510	
Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln			
515	520	525	

-continued

Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile
 530 535 540

Met Val Ala Gly Leu Ser Leu Trp Met
 545 550

<210> SEQ ID NO 29
 <211> LENGTH: 558
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (558)..(558)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <400> SEQUENCE: 29

Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile
 1 5 10 15

Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile
 20 25 30

Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys
 35 40 45

Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile
 50 55 60

Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys
 65 70 75 80

Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile
 85 90 95

Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu
 100 105 110

Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys
 115 120 125

Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val
 130 135 140

Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr Arg Asn Val
 145 150 155 160

Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Lys Ser
 165 170 175

Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Trp Gly Ile His
 180 185 190

His Pro Asn Asp Glu Glu Gln Thr Arg Ile Tyr Lys Asn Pro Thr
 195 200 205

Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro
 210 215 220

Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu
 225 230 235 240

Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser
 245 250 255

Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys
 260 265 270

Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu His Gly Asn Cys Asn
 275 280 285

Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe
 290 295 300

-continued

His	Asn	Ile	His	Pro	Leu	Thr	Ile	Gly	Glu	Cys	Pro	Lys	Tyr	Val	Lys	
305															320	
				310				315								
Ser	Asn	Arg	Leu	Val	Leu	Ala	Thr	Gly	Leu	Arg	Asn	Ser	Pro	Gln	Gly	
															335	
				325				330								
Glu	Gly	Arg	Arg	Lys	Lys	Arg	Gly	Leu	Phe	Gly	Ala	Ile	Ala	Gly	Phe	
															350	
				340			345									
Ile	Glu	Gly	Gly	Trp	Gln	Gly	Met	Val	Asp	Gly	Trp	Tyr	Gly	Tyr	His	
															365	
				355			360									
His	Ser	Asn	Gl	Gl	Gln	Gly	Ser	Gly	Tyr	Ala	Ala	Asp	Lys	Glu	Ser	Thr
															380	
				370			375									
Gln	Lys	Ala	Ile	Asp	Gly	Val	Thr	Asn	Lys	Val	Asn	Ser	Ile	Ile	Asp	
															400	
				385			390			395						
Lys	Met	Asn	Thr	Gln	Phe	Glu	Ala	Val	Gly	Arg	Glu	Phe	Asn	Asn	Leu	
															415	
				405			410			415						
Glu	Lys	Arg	Ile	Glu	Asn	Leu	Asn	Lys	Lys	Met	Glu	Asp	Gly	Phe	Leu	
															430	
				420			425									
Asp	Val	Trp	Thr	Tyr	Asn	Ala	Glu	Leu	Leu	Val	Leu	Met	Glu	Asn	Glu	
															445	
				435			440			445						
Arg	Thr	Leu	Asp	Phe	His	Asp	Ser	Asn	Val	Lys	Asn	Leu	Tyr	Asp	Lys	
															460	
				450			455			460						
Val	Arg	Leu	Gln	Leu	Arg	Asp	Asn	Ala	Lys	Glu	Leu	Gly	Asn	Gly	Cys	
															480	
				465			470			475						
Phe	Glu	Phe	Tyr	His	Arg	Cys	Asp	Asn	Glu	Cys	Met	Glu	Ser	Val	Arg	
															495	
				485			490			495						
Asn	Gly	Thr	Tyr	Asp	Tyr	Pro	Gln	Tyr	Ser	Glu	Glu	Ala	Arg	Leu	Asn	
															510	
				500			505			510						
Arg	Glu	Glu	Ile	Ser	Gly	Val	Lys	Leu	Glu	Ser	Ile	Gly	Thr	Tyr	Gln	
															525	
				515			520			525						
Ile	Leu	Ser	Ile	Tyr	Ser	Thr	Val	Ala	Ser	Ser	Leu	Ala	Leu	Ala	Ile	
															540	
				530			535			540						
Met	Met	Ala	Gly	Leu	Phe	Leu	Trp	Met	Cys	Ser	Asn	Gly	Xaa			
				545			550			555						

```

<210> SEQ_ID NO 30
<211> LENGTH: 557
<212> TYPE: PRT
<213> ORGANISM: H5N1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (130)..(130)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 30

Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys Ile Gly
1 5 10 15

Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys
20 25 30

Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn
35 40 45

Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp
50 55 60

Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe
65 70 75 80

Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala

```

-continued

85	90	95	
Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys			
100	105	110	
His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys Ile Ile Pro			
115	120	125	
Lys Xaa Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser Ser Ala			
130	135	140	
Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr Arg Asn Val Val Trp Leu			
145	150	155	160
Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Ser Tyr His Asn			
165	170	175	
Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His His Pro Asn			
180	185	190	
Asp Glu Glu Glu Gln Thr Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Ile			
195	200	205	
Ser Ile Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala			
210	215	220	
Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp			
225	230	235	240
Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn			
245	250	255	
Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser			
260	265	270	
Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys			
275	280	285	
Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile			
290	295	300	
His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg			
305	310	315	320
Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg			
325	330	335	
Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly			
340	345	350	
Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn			
355	360	365	
Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala			
370	375	380	
Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn			
385	390	395	400
Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg			
405	410	415	
Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp			
420	425	430	
Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu			
435	440	445	
Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu			
450	455	460	
Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe			
465	470	475	480
Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr			
485	490	495	

-continued

Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu
 500 505 510

Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser
 515 520 525

Ile Tyr Ser Thr Val Ala Gly Ser Leu Ala Leu Ala Ile Met Met Ala
 530 535 540

Gly Leu Phe Leu Trp Met Cys Ser Asn Gly Ser Leu Gln
 545 550 555

<210> SEQ ID NO 31

<211> LENGTH: 547

<212> TYPE: PRT

<213> ORGANISM: H5N1

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (547) .. (547)

<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 31

Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile
 1 5 10 15

Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile
 20 25 30

Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys
 35 40 45

Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile
 50 55 60

Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys
 65 70 75 80

Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile
 85 90 95

Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu
 100 105 110

Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys
 115 120 125

Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val
 130 135 140

Ser Ser Ala Cys Pro Tyr Gln Glu Gly Pro Ser Phe Tyr Arg Asn Val
 145 150 155 160

Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Lys Ser
 165 170 175

Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His
 180 185 190

His Pro Asn Asp Glu Glu Gln Thr Arg Ile Tyr Lys Asn Pro Thr
 195 200 205

Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro
 210 215 220

Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu
 225 230 235 240

Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser
 245 250 255

Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys
 260 265 270

-continued

Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn
 275 280 285

Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe
 290 295 300

His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys
 305 310 315 320

Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly
 325 330 335

Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe
 340 345 350

Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His
 355 360 365

His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr
 370 375 380

Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp
 385 390 395 400

Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu
 405 410 415

Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu
 420 425 430

Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu
 435 440 445

Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys
 450 455 460

Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys
 465 470 475 480

Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg
 485 490 495

Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys
 500 505 510

Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln
 515 520 525

Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile
 530 535 540

Met Val Xaa
 545

<210> SEQ ID NO 32
 <211> LENGTH: 547
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (154)..(154)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (329)..(329)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (547)..(547)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 32

Ile Val Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile
 1 5 10 15

-continued

Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile
 20 25 30

Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys
 35 40 45

Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile
 50 55 60

Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys
 65 70 75 80

Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile
 85 90 95

Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu
 100 105 110

Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys
 115 120 125

Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val
 130 135 140

Ser Ser Ala Cys Pro Tyr Gln Gly Gly Xaa Ser Phe Tyr Arg Asn Val
 145 150 155 160

Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Ser
 165 170 175

Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His
 180 185 190

His Pro Asn Asp Glu Glu Gln Thr Arg Ile Tyr Lys Asn Pro Thr
 195 200 205

Thr Tyr Ile Ser Ile Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro
 210 215 220

Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu
 225 230 235 240

Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser
 245 250 255

Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys
 260 265 270

Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn
 275 280 285

Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe
 290 295 300

His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys
 305 310 315 320

Ser Asn Arg Leu Val Leu Ala Thr Xaa Leu Arg Asn Ser Pro Gln Gly
 325 330 335

Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe
 340 345 350

Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His
 355 360 365

His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr
 370 375 380

Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp
 385 390 395 400

Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu
 405 410 415

-continued

Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu
 420 425 430
 Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu
 435 440 445
 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys
 450 455 460
 Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys
 465 470 475 480
 Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg
 485 490 495
 Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys
 500 505 510
 Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln
 515 520 525
 Ile Leu Ser Ile Tyr Ser Thr Val Ala Gly Ser Leu Ala Leu Ala Ile
 530 535 540
 Met Val Xaa
 545

<210> SEQ ID NO 33
 <211> LENGTH: 559
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 33

Xaa Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys
 1 5 10 15
 Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met
 20 25 30
 Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr
 35 40 45
 His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu
 50 55 60
 Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp
 65 70 75 80
 Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn
 85 90 95
 Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu
 100 105 110
 Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Gln Ile
 115 120 125
 Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser
 130 135 140
 Ser Ala Cys Pro Tyr Gln Gly Glu Pro Ser Phe Tyr Arg Asn Val Val
 145 150 155 160
 Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Glu Asn Tyr
 165 170 175
 His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His His
 180 185 190
 Pro Asn Asp Glu Glu Glu Gln Lys Arg Ile Tyr Lys Asn Pro Thr Thr

-continued

195	200	205
Tyr Ile Ser Val Gly Thr Ser Thr Leu Thr Gln Arg Leu Val Pro Lys		
210	215	220
Ile Ala Thr Arg Pro Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe		
225	230	235
Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn		
245	250	255
Gly Asn Phe Ile Ala Pro Lys Asn Ala Tyr Lys Ile Val Lys Lys Gly		
260	265	270
Ser Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Ser Thr		
275	280	285
Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His		
290	295	300
Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser		
305	310	315
Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu		
325	330	335
Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile		
340	345	350
Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His		
355	360	365
Ser Asn Glu Gln Gly Thr Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln		
370	375	380
Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys		
385	390	395
Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu		
405	410	415
Lys Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp		
420	425	430
Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg		
435	440	445
Thr Leu Asp Phe His Asp Ser Asn Val Arg Asn Leu Tyr Asp Lys Val		
450	455	460
Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe		
465	470	475
Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn		
485	490	495
Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys Glu Ala Arg Leu Lys Arg		
500	505	510
Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile		
515	520	525
Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met		
530	535	540
Val Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln		
545	550	555

<210> SEQ ID NO 34
 <211> LENGTH: 554
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)

-continued

<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (554) .. (554)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

 <400> SEQUENCE: 34

Xaa	Val	Lys	Ser	Asp	Gln	Ile	Cys	Ile	Gly	Tyr	His	Ala	Asn	Asn	Ser
1								5	10			15			
Thr	Glu	Gln	Val	Asp	Thr	Ile	Met	Glu	Lys	Asn	Val	Thr	Val	Thr	His
								20	25			30			
Ala	Gln	Asp	Ile	Leu	Glu	Lys	Thr	His	Asn	Gly	Lys	Leu	Cys	Asp	Leu
								35	40		45				
Asp	Gly	Val	Lys	Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Val	Ala	Gly	Trp
								50	55		60				
Leu	Leu	Gly	Asn	Pro	Met	Cys	Asp	Glu	Phe	Pro	Asn	Val	Ser	Glu	Trp
								65	70		75			80	
Ser	Tyr	Ile	Val	Glu	Lys	Ile	Asn	Pro	Ala	Asn	Asp	Leu	Cys	Tyr	Pro
								85	90		95				
Gly	Asn	Phe	Asn	Asn	Tyr	Glu	Glu	Leu	Lys	His	Leu	Leu	Ser	Arg	Ile
								100	105		110				
Asn	Arg	Phe	Glu	Lys	Ile	Gln	Ile	Ile	Pro	Lys	Ser	Ser	Trp	Pro	Asp
								115	120		125				
His	Glu	Ala	Ser	Leu	Gly	Val	Ser	Ser	Ala	Cys	Pro	Tyr	Gln	Gly	Glu
								130	135		140				
Pro	Ser	Phe	Tyr	Arg	Asn	Val	Val	Trp	Leu	Ile	Lys	Lys	Asn	Asn	Thr
								145	150		155		160		
Tyr	Pro	Thr	Ile	Lys	Glu	Ser	Tyr	His	Asn	Thr	Asn	Gln	Glu	Asp	Leu
								165	170		175				
Leu	Val	Leu	Trp	Gly	Ile	His	His	Pro	Asn	Asp	Glu	Glu	Gln	Lys	
								180	185		190				
Arg	Ile	Tyr	Lys	Asn	Pro	Thr	Thr	Tyr	Ile	Ser	Val	Gly	Thr	Ser	Thr
								195	200		205				
Leu	Asn	Gln	Arg	Leu	Val	Pro	Lys	Ile	Ala	Thr	Arg	Pro	Lys	Val	Asn
								210	215		220				
Gly	Gln	Ser	Gly	Arg	Val	Glu	Phe	Phe	Trp	Thr	Ile	Leu	Lys	Ser	Asn
								225	230		235		240		
Asp	Thr	Ile	Asn	Phe	Glu	Ser	Asn	Gly	Asn	Phe	Ile	Ala	Pro	Lys	Asn
								245	250		255				
Ala	Tyr	Lys	Ile	Val	Lys	Lys	Gly	Ser	Ser	Thr	Ile	Met	Lys	Ser	Glu
								260	265		270				
Leu	Glu	Tyr	Gly	Asn	Cys	Ser	Thr	Lys	Cys	Gln	Thr	Pro	Ile	Gly	Ala
								275	280		285				
Ile	Asn	Ser	Ser	Met	Pro	Phe	His	Asn	Ile	His	Pro	Leu	Thr	Ile	Gly
								290	295		300				
Glu	Cys	Pro	Lys	Tyr	Val	Lys	Ser	Asn	Arg	Leu	Val	Leu	Ala	Thr	Gly
								305	310		315		320		
Leu	Arg	Asn	Ser	Pro	Gln	Gly	Glu	Gly	Arg	Arg	Lys	Lys	Arg	Gly	Leu
								325	330		335				
Phe	Gly	Ala	Ile	Ala	Gly	Phe	Ile	Glu	Gly	Gly	Trp	Gln	Gly	Met	Val
								340	345		350				
Asp	Gly	Trp	Tyr	Gly	Tyr	His	His	Ser	Asn	Glu	Gln	Gly	Thr	Gly	Tyr
								355	360		365				

-continued

Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn
 370 375 380

 Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val
 385 390 395 400

 Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys
 405 410 415

 Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu
 420 425 430

 Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn
 435 440 445

 Val Arg Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala
 450 455 460

 Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn
 465 470 475 480

 Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr
 485 490 495

 Ser Lys Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu
 500 505 510

 Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala
 515 520 525

 Ser Ser Leu Ala Leu Ala Ile Met Val Ala Gly Leu Ser Leu Trp Met
 530 535 540

 Cys Ser Asn Gly Ser Leu Gln Cys Arg Xaa
 545 550

<210> SEQ ID NO 35
 <211> LENGTH: 537
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (537)..(537)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 35

Xaa	Ser	Asp	Gln	Ile	Cys	Ile	Gly	Tyr	His	Ala	Asn	Asn	Ser	Thr	Glu
1				5			10			15					

Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln
 20 25 30

Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly
 35 40 45

Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu
 50 55 60

Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr
 65 70 75 80

Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn
 85 90 95

Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg
 100 105 110

Phe Glu Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu
 115 120 125

-continued

Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Glu Pro Ser
 130 135 140
 Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro
 145 150 155 160
 Thr Ile Lys Glu Asn Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val
 165 170 175
 Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Glu Gln Lys Arg Ile
 180 185 190
 Tyr Lys Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn
 195 200 205
 Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Pro Lys Val Asn Gly Gln
 210 215 220
 Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr
 225 230 235 240
 Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Lys Asn Ala Tyr
 245 250 255
 Lys Ile Val Lys Lys Gly Ser Ser Thr Ile Met Lys Ser Glu Leu Glu
 260 265 270
 Tyr Gly Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn
 275 280 285
 Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys
 290 295 300
 Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg
 305 310 315 320
 Asn Ser Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly
 325 330 335
 Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly
 340 345 350
 Trp Tyr Gly Tyr His Ser Asn Glu Gln Gly Thr Gly Tyr Ala Ala
 355 360 365
 Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val
 370 375 380
 Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg
 385 390 395 400
 Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met
 405 410 415
 Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val
 420 425 430
 Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Arg
 435 440 445
 Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu
 450 455 460
 Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys
 465 470 475 480
 Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys
 485 490 495
 Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser
 500 505 510
 Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser
 515 520 525

-continued

Leu Ala Leu Ala Ile Met Val Ala Xaa
530 535

<210> SEQ ID NO 36
<211> LENGTH: 554
<212> TYPE: PRT
<213> ORGANISM: H5N1

<400> SEQUENCE: 36

Lys Gly Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu
1 5 10 15

Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln
20 25 30

Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly
35 40 45

Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu
50 55 60

Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr
65 70 75 80

Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn
85 90 95

Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg
100 105 110

Phe Glu Lys Ile Lys Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu
115 120 125

Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser
130 135 140

Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro
145 150 155 160

Thr Ile Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val
165 170 175

Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Glu Gln Thr Arg Ile
180 185 190

Tyr Lys Asn Pro Asn Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn
195 200 205

Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln
210 215 220

Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr
225 230 235 240

Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr
245 250 255

Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu
260 265 270

Tyr Gly Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn
275 280 285

Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys
290 295 300

Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg
305 310 315 320

Asn Ser Pro Gln Glu Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly
325 330 335

Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly
340 345 350

-continued

Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala
 355 360 365

Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val
 370 375 380

Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg
 385 390 395 400

Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met
 405 410 415

Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val
 420 425 430

Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys
 435 440 445

Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu
 450 455 460

Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys
 465 470 475 480

Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu
 485 490 495

Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser
 500 505 510

Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser
 515 520 525

Leu Ala Leu Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser
 530 535 540

Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
 545 550

<210> SEQ ID NO 37
 <211> LENGTH: 511
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (182)..(182)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (200)..(200)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (511)..(511)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 37

Xaa His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys
 1 5 10 15

Asn Ile Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn
 20 25 30

Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp
 35 40 45

Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe
 50 55 60

-continued

Leu Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala
 65 70 75 80
 Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys
 85 90 95
 His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Gln Ile Ile Ser
 100 105 110
 Lys Asn Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser Ala Ala
 115 120 125
 Cys Pro Tyr Gln Gly Gly Leu Ser Phe Tyr Arg Asn Val Val Trp Leu
 130 135 140
 Ile Glu Lys Asn Asn Thr Tyr Pro Leu Ile Lys Lys Asn Tyr His Asn
 145 150 155 160
 Thr Asn Gln Glu Asp Leu Leu Val Leu Trp Gly Ile His His Pro Asn
 165 170 175
 Asp Glu Ala Glu Gln Xaa Arg Leu Tyr Lys Asn Ser Thr Thr Tyr Ile
 180 185 190
 Ser Val Gly Thr Ser Thr Leu Xaa Gln Arg Leu Val Pro Lys Ile Ala
 195 200 205
 Thr Arg Pro Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp
 210 215 220
 Thr Ile Leu Lys Ser Asn Asp Val Ile Asn Phe Glu Ser Asn Gly Asn
 225 230 235 240
 Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser
 245 250 255
 Thr Ile Met Lys Ser Asp Leu Glu Tyr Gly Asn Cys Ser Thr Lys Cys
 260 265 270
 Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile
 275 280 285
 His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg
 290 295 300
 Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Arg Arg
 305 310 315 320
 Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly
 325 330 335
 Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn
 340 345 350
 Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala
 355 360 365
 Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn
 370 375 380
 Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg
 385 390 395 400
 Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp
 405 410 415
 Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu
 420 425 430
 Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu
 435 440 445
 Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe
 450 455 460
 Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr

-continued

465	470	475	480
-----	-----	-----	-----

Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu			
485	490	495	

Ile Ser Gly Ala Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Xaa			
500	505	510	

<210> SEQ ID NO 38

<211> LENGTH: 537

<212> TYPE: PRT

<213> ORGANISM: H5N1

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(1)

<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 38

Xaa Leu Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn			
1	5	10	15

Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr			
20	25	30	

His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp			
35	40	45	

Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly			
50	55	60	

Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu			
65	70	75	80

Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr			
85	90	95	

Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg			
100	105	110	

Ile Asn Arg Phe Glu Lys Ile Lys Ile Ile Pro Lys Ser Ser Trp Pro			
115	120	125	

Asp His Glu Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Arg			
130	135	140	

Gly Pro Ser Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn			
145	150	155	160

Thr Tyr Pro Thr Ile Lys Lys Ser Tyr His Asn Thr Asn Gln Glu Asp			
165	170	175	

Leu Leu Val Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Gln			
180	185	190	

Thr Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser			
195	200	205	

Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val			
210	215	220	

Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser			
225	230	235	240

Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu			
245	250	255	

Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser			
260	265	270	

Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly			
275	280	285	

Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile			
290	295	300	

-continued

Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr
 305 310 315 320
 Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly
 325 330 335
 Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met
 340 345 350
 Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly
 355 360 365
 Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr
 370 375 380
 Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala
 385 390 395 400
 Val Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn
 405 410 415
 Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu
 420 425 430
 Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser
 435 440 445
 Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn
 450 455 460
 Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp
 465 470 475 480
 Asn Glu Cys Met Glu Ser Val Lys Asn Gly Thr Tyr Asp Tyr Pro Gln
 485 490 495
 Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys
 500 505 510
 Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val
 515 520 525
 Ala Ser Ser Leu Ala Leu Ala Ile Met
 530 535

<210> SEQ ID NO 39
 <211> LENGTH: 534
 <212> TYPE: PRT
 <213> ORGANISM: H5N1

<400> SEQUENCE: 39

Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu
 1 5 10 15
 Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln
 20 25 30
 Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly
 35 40 45
 Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu
 50 55 60
 Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp Ser Tyr
 65 70 75 80
 Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn
 85 90 95
 Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg
 100 105 110
 Phe Glu Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu

-continued

115	120	125	
Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser			
130	135	140	
Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp Thr Tyr Pro			
145	150	155	160
Thr Ile Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val			
165	170	175	
Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Glu Gln Lys Arg Ile			
180	185	190	
Tyr Lys Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn			
195	200	205	
Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln			
210	215	220	
Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr			
225	230	235	240
Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr			
245	250	255	
Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu			
260	265	270	
Tyr Gly Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn			
275	280	285	
Thr Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys			
290	295	300	
Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg			
305	310	315	320
Asn Ser Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly			
325	330	335	
Ala Ile Ala Gly Phe Ile Glu Gly Trp Gln Gly Met Val Asp Gly			
340	345	350	
Trp Tyr Gly Tyr His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala			
355	360	365	
Asp Lys Glu Ser Thr Gln Lys Ala Ile Asn Gly Val Thr Asn Lys Val			
370	375	380	
Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg			
385	390	395	400
Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Met			
405	410	415	
Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val			
420	425	430	
Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Arg			
435	440	445	
Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu			
450	455	460	
Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys			
465	470	475	480
Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Lys			
485	490	495	
Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser			
500	505	510	
Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser			
515	520	525	

-continued

Leu Ala Leu Ala Ile Met
530

<210> SEQ_ID NO 40
<211> LENGTH: 536
<212> TYPE: PRT
<213> ORGANISM: H5N1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (311)..(311)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 40

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
1 5 10 15

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
20 25 30

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu
35 40 45

Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
50 55 60

Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu Trp
65 70 75 80

Ser Tyr Ile Val Glu Lys Thr Asn Pro Ala Asn Asp Leu Cys Tyr Pro
85 90 95

Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile
100 105 110

Asn Arg Phe Glu Lys Ile Ile Pro Lys Ser Ser Trp Pro Asp
115 120 125

His Glu Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Glu
130 135 140

Pro Ser Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr
145 150 155 160

Tyr Pro Thr Ile Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu
165 170 175

Leu Val Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Gln Thr
180 185 190

Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr
195 200 205

Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn
210 215 220

Gly Gln Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn
225 230 235 240

Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn
245 250 255

Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu
260 265 270

Leu Glu Tyr Gly Asn Cys Ser Thr Lys Cys Gln Thr Pro Val Gly Ala
275 280 285

Ile Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly
290 295 300

-continued

Glu Cys Pro Lys Tyr Val Xaa Ser Asn Arg Leu Val Leu Ala Thr Gly
 305 310 315 320
 Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu
 325 330 335
 Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val
 340 345 350
 Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr
 355 360 365
 Ala Ala Asp Arg Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn
 370 375 380
 Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val
 385 390 395 400
 Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys
 405 410 415
 Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu
 420 425 430
 Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn
 435 440 445
 Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala
 450 455 460
 Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn
 465 470 475 480
 Glu Cys Ile Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr
 485 490 495
 Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu
 500 505 510
 Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala
 515 520 525
 Ser Ser Leu Ala Leu Ala Ile Met
 530 535

<210> SEQ ID NO 41
 <211> LENGTH: 515
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (515)..(515)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <400> SEQUENCE: 41

 Xaa Leu Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn
 1 5 10 15

 Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr
 20 25 30

 His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp
 35 40 45

 Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly
 50 55 60

 Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Pro Asn Val Ser Glu
 65 70 75 80

-continued

Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr
 85 90 95

Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg
 100 105 110

Ile Asn Arg Phe Glu Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro
 115 120 125

Asp His Glu Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly
 130 135 140

Gly Pro Ser Phe Tyr Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asp
 145 150 155 160

Thr Tyr Pro Thr Ile Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp
 165 170 175

Leu Leu Val Leu Trp Gly Ile His His Pro Asn Asp Glu Glu Gln
 180 185 190

Lys Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Val Ser Val Gly Thr Ser
 195 200 205

Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val
 210 215 220

Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser
 225 230 235 240

Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu
 245 250 255

Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser
 260 265 270

Glu Leu Glu Tyr Gly Asn Cys Ser Thr Lys Cys Gln Thr Pro Ile Gly
 275 280 285

Ala Ile Asn Thr Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile
 290 295 300

Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr
 305 310 315 320

Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly
 325 330 335

Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met
 340 345 350

Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly
 355 360 365

Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr
 370 375 380

Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala
 385 390 395 400

Val Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn
 405 410 415

Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu
 420 425 430

Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser
 435 440 445

Asn Val Arg Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn
 450 455 460

Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp
 465 470 475 480

-continued

Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln
 485 490 495
 Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys
 500 505 510
 Leu Glu Xaa
 515

<210> SEQ_ID NO 42
 <211> LENGTH: 519
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (517)..(517)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 42

Xaa Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser
 1 5 10 15

Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His
 20 25 30

Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asn Leu
 35 40 45

Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp
 50 55 60

Leu Leu Gly Asn Pro Met Cys Asp Lys Phe Leu Asn Val Pro Glu Trp
 65 70 75 80

Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro
 85 90 95

Gly Asp Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile
 100 105 110

Asn His Phe Glu Lys Ile Gln Ile Pro Lys Asn Ser Trp Ser Asp
 115 120 125

His Glu Ala Ser Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Arg Ser
 130 135 140

Ser Phe Phe Arg Asn Val Val Trp Leu Thr Lys Lys Asn Asn Ala Tyr
 145 150 155 160

Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu
 165 170 175

Val Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Met
 180 185 190

Leu Tyr Gln Asn Pro Thr Thr Tyr Val Ser Val Gly Thr Ser Thr Leu
 195 200 205

Asn Gln Arg Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly
 210 215 220

Gln Ser Gly Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp
 225 230 235 240

Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala
 245 250 255

Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu
 260 265 270

-continued

Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile
 275 280 285
 Asn Ser Ser Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu
 290 295 300
 Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu Val Ala Thr Gly Leu
 305 310 315 320
 Arg Asn Ser Pro Gln Gly Glu Arg Arg Lys Lys Arg Gly Leu Phe
 325 330 335
 Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp
 340 345 350
 Gly Trp Tyr Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala
 355 360 365
 Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys
 370 375 380
 Val Asn Ser Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly
 385 390 395 400
 Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys
 405 410 415
 Met Glu Asp Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu
 420 425 430
 Val Leu Met Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val
 435 440 445
 Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys
 450 455 460
 Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu
 465 470 475 480
 Cys Met Glu Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser
 485 490 495
 Glu Glu Ala Arg Leu Lys Arg Glu Ile Ser Gly Val Lys Leu Glu
 500 505 510
 Ser Ile Gly Thr Xaa Gln Ile
 515

<210> SEQ_ID NO 43
 <211> LENGTH: 510
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (507)..(507)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (510)..(510)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 43
 Xaa His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys
 1 5 10 15
 Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn
 20 25 30
 Gly Lys Leu Cys Asn Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp
 35 40 45

-continued

Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe
 50 55 60

Pro Asn Val Leu Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala
 65 70 75 80

Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asp Tyr Glu Glu Leu Lys
 85 90 95

His Leu Leu Ser Arg Ile Asn His Phe Glu Lys Ile Gln Ile Ile Pro
 100 105 110

Lys Asn Ser Trp Ser Asp His Glu Ala Ser Gly Val Ser Ser Ala Cys
 115 120 125

Pro Tyr Gln Arg Arg Ser Ser Phe Phe Arg Asn Val Val Trp Leu Thr
 130 135 140

Lys Lys Asn Asn Ala Tyr Pro Thr Ile Lys Lys Ser Tyr Asn Asn Thr
 145 150 155 160

Asn Gln Glu Asp Leu Leu Val Trp Gly Ile His His Pro Asn Asp
 165 170 175

Ala Ala Glu Gln Thr Arg Leu Tyr Gln Asn Pro Thr Thr Tyr Ile Ser
 180 185 190

Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr
 195 200 205

Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Met Glu Phe Phe Trp Thr
 210 215 220

Ile Leu Lys Ser Asn Asp Ala Ile Asn Phe Glu Ser Asn Gly Asn Phe
 225 230 235 240

Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr
 245 250 255

Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln
 260 265 270

Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His
 275 280 285

Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu
 290 295 300

Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Arg Arg Arg
 305 310 315 320

Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly
 325 330 335

Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu
 340 345 350

Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile
 355 360 365

Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr
 370 375 380

Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Arg Arg Ile
 385 390 395 400

Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr
 405 410 415

Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp
 420 425 430

Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln
 435 440 445

-continued

Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr
 450 455 460

His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr
 465 470 475 480

Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile
 485 490 495

Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Xaa Gln Ile Xaa
 500 505 510

<210> SEQ ID NO 44
 <211> LENGTH: 523
 <212> TYPE: PRT
 <213> ORGANISM: H5N1
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (523) .. (523)
 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
 <400> SEQUENCE: 44

His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys Asn
 1 5 10 15

Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn Gly
 20 25 30

Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys
 35 40 45

Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe Pro
 50 55 60

Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala Asn
 65 70 75 80

Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys His
 85 90 95

Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys Ile Ile Pro Lys
 100 105 110

Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser Ser Ala Cys
 115 120 125

Pro Tyr Gln Gly Pro Ser Phe Tyr Arg Asn Val Val Trp Leu Ile
 130 135 140

Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Lys Ser Tyr His Asn Thr
 145 150 155 160

Asn Gln Glu Asp Leu Val Leu Trp Gly Ile His His Pro Asn Asp
 165 170 175

Glu Glu Glu Gln Thr Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Ile Ser
 180 185 190

Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala Thr
 195 200 205

Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp Thr
 210 215 220

Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn Phe
 225 230 235 240

Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser Thr
 245 250 255

Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys Gln
 260 265 270

Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile His

-continued

275	280	285	
Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg Leu			
290	295	300	
Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg Arg			
305	310	315	320
Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly			
325	330	335	
Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn Glu			
340	345	350	
Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala Ile			
355	360	365	
Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn Thr			
370	375	380	
Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg Ile			
385	390	395	400
Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp Thr			
405	410	415	
Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu Asp			
420	425	430	
Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu Gln			
435	440	445	
Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe Tyr			
450	455	460	
His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr Tyr			
465	470	475	480
Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu Ile			
485	490	495	
Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ile Tyr			
500	505	510	
Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Xaa			
515	520		

<210> SEQ ID NO 45

<211> LENGTH: 541

<212> TYPE: PRT

<213> ORGANISM: H5N1

<400> SEQUENCE: 45

Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys Ile Gly			
1	5	10	15
Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys			
20	25	30	
Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn			
35	40	45	
Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp			
50	55	60	
Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe			
65	70	75	80
Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala			
85	90	95	
Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys			
100	105	110	

-continued

His	Leu	Leu	Ser	Arg	Ile	Asn	Arg	Phe	Glu	Lys	Ile	Lys	Ile	Ile	Pro	
115																
															125	
Lys	Ser	Ser	Trp	Pro	Asp	His	Glu	Ala	Ser	Leu	Gly	Val	Ser	Ser	Ala	
130															140	
Cys	Pro	Tyr	Gln	Gly	Gly	Pro	Ser	Phe	Tyr	Arg	Asn	Val	Val	Trp	Leu	
145															160	
Ile	Lys	Lys	Asn	Asn	Thr	Tyr	Pro	Thr	Ile	Lys	Glu	Ser	Tyr	His	Asn	
															175	
Ile	Asn	Lys	Glu	Asp	Leu	Leu	Val	Leu	Trp	Gly	Ile	His	His	Pro	Asn	
															190	
Asp	Glu	Glu	Gln	Ile	Arg	Ile	Tyr	Lys	Asn	Pro	Thr	Thr	Tyr	Ile		
195															205	
Ser	Val	Gly	Thr	Ser	Thr	Leu	Asn	Gln	Arg	Leu	Val	Pro	Lys	Ile	Ala	
210															220	
Thr	Arg	Ser	Lys	Val	Asn	Gly	Gln	Ser	Gly	Arg	Val	Glu	Phe	Phe	Trp	
225															240	
Thr	Ile	Leu	Lys	Ser	Asn	Asp	Thr	Ile	Asn	Phe	Glu	Ser	Asn	Gly	Asn	
															255	
Phe	Ile	Ala	Pro	Glu	Asn	Ala	Tyr	Lys	Ile	Val	Lys	Gly	Asp	Ser		
															270	
Thr	Ile	Met	Lys	Ser	Glu	Leu	Glu	Tyr	Gly	Asn	Cys	Asn	Thr	Lys	Cys	
275															285	
Gln	Thr	Pro	Ile	Gly	Ala	Ile	Asn	Ser	Ser	Met	Pro	Phe	His	Asn	Ile	
290															300	
His	Pro	Leu	Thr	Ile	Gly	Glu	Cys	Pro	Lys	Tyr	Val	Lys	Ser	Asn	Arg	
305															320	
Leu	Val	Leu	Ala	Thr	Gly	Leu	Arg	Asn	Ser	Pro	Gln	Gly	Glu	Gly	Arg	
															335	
Arg	Lys	Lys	Arg	Gly	Leu	Phe	Gly	Ala	Ile	Ala	Gly	Phe	Ile	Glu	Gly	
															350	
Gly	Trp	Gln	Gly	Met	Val	Asp	Gly	Trp	Tyr	Gly	Tyr	His	His	Ser	Asn	
															365	
Glu	Gln	Gly	Ser	Gly	Tyr	Ala	Ala	Asp	Lys	Glu	Ser	Thr	Gln	Lys	Ala	
370															380	
Ile	Asp	Gly	Val	Thr	Asn	Lys	Val	Asn	Ser	Ile	Ile	Asp	Lys	Met	Asn	
385															400	
Thr	Gln	Phe	Glu	Ala	Val	Gly	Arg	Glu	Phe	Asn	Asn	Leu	Glu	Lys	Arg	
															415	
Ile	Glu	Asn	Leu	Asn	Lys	Lys	Met	Glu	Asp	Gly	Phe	Leu	Asp	Val	Trp	
															430	
Thr	Tyr	Asn	Ala	Glu	Leu	Leu	Val	Leu	Met	Glu	Asn	Glu	Arg	Thr	Leu	
															445	
Asp	Phe	His	Asp	Ser	Asn	Val	Lys	Asn	Leu	Tyr	Asp	Lys	Val	Arg	Leu	
															460	
Gln	Leu	Arg	Asp	Asn	Ala	Lys	Glu	Leu	Gly	Asn	Gly	Cys	Phe	Glu	Phe	
465															480	
Tyr	His	Arg	Cys	Asp	Asn	Glu	Cys	Met	Glu	Ser	Val	Arg	Asn	Gly	Thr	
															495	
Tyr	Asp	Tyr	Pro	Gln	Tyr	Ser	Glu	Glu	Ala	Arg	Leu	Lys	Arg	Glu	Glu	
															510	
Ile	Ser	Gly	Val	Lys	Leu	Glu	Ser	Ile	Gly	Thr	Tyr	Gln	Ile	Leu	Ser	

-continued

515	520	525
Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile		
530	535	540
<210> SEQ ID NO 46		
<211> LENGTH: 555		
<212> TYPE: PRT		
<213> ORGANISM: H5N1		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (1)..(1)		
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (555)..(555)		
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid		
<400> SEQUENCE: 46		
Xaa Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys Ile Gly		
1	5	10
15		
Tyr His Ala Asn Asn Ser Thr Glu Gln Val Asp Thr Ile Met Glu Lys		
20	25	30
Asn Val Thr Val Thr His Ala Gln Asp Ile Leu Glu Lys Thr His Asn		
35	40	45
Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp		
50	55	60
Cys Ser Val Ala Gly Trp Leu Leu Gly Asn Pro Met Cys Asp Glu Phe		
65	70	75
80		
Pro Asn Val Ser Glu Trp Ser Tyr Ile Val Glu Lys Ile Asn Pro Ala		
85	90	95
Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn Asn Tyr Glu Glu Leu Lys		
100	105	110
His Leu Leu Ser Arg Ile Asn Arg Phe Glu Lys Ile Lys Ile Ile Pro		
115	120	125
Lys Ser Ser Trp Pro Asp His Glu Ala Ser Leu Gly Val Ser Ser Ala		
130	135	140
Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr Arg Asn Val Val Trp Leu		
145	150	155
160		
Thr Lys Lys Asn Asn Thr Tyr Pro Thr Ile Lys Lys Ser Tyr His Asn		
165	170	175
Ile Asn Lys Glu Asp Leu Leu Val Leu Trp Gly Ile His His Pro Asn		
180	185	190
Asp Glu Glu Glu Gln Ile Arg Ile Tyr Lys Asn Pro Thr Thr Tyr Ile		
195	200	205
Ser Val Gly Thr Ser Thr Leu Asn Gln Arg Leu Val Pro Lys Ile Ala		
210	215	220
Thr Arg Ser Lys Val Asn Gly Gln Ser Gly Arg Val Glu Phe Phe Trp		
225	230	235
240		
Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn Phe Glu Ser Asn Gly Asn		
245	250	255
Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile Val Lys Lys Gly Asp Ser		
260	265	270
Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly Asn Cys Asn Thr Lys Cys		
275	280	285
Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser Met Pro Phe His Asn Ile		

-continued

290	295	300
His Pro Leu Thr Ile Gly Glu Cys Pro Lys Tyr Val Lys Ser Asn Arg		
305	310	315
320		
Leu Val Leu Ala Thr Gly Leu Arg Asn Ser Pro Gln Gly Glu Gly Arg		
325	330	335
Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly		
340	345	350
Gly Trp Gln Gly Met Val Asp Gly Trp Tyr Gly Tyr His His Ser Asn		
355	360	365
Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys Glu Ser Thr Gln Lys Ala		
370	375	380
Ile Asp Gly Val Thr Asn Lys Val Asn Ser Ile Ile Asp Lys Met Asn		
385	390	395
400		
Thr Gln Phe Glu Ala Val Gly Arg Glu Phe Asn Asn Leu Glu Lys Arg		
405	410	415
Ile Glu Asn Leu Asn Lys Lys Met Glu Asp Gly Phe Leu Asp Val Trp		
420	425	430
Thr Tyr Asn Ala Glu Leu Leu Val Leu Met Glu Asn Glu Arg Thr Leu		
435	440	445
Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Asp Lys Val Arg Leu		
450	455	460
Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly Asn Gly Cys Phe Glu Phe		
465	470	475
480		
Tyr His Arg Cys Asp Asn Glu Cys Met Glu Ser Val Arg Asn Gly Thr		
485	490	495
Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala Arg Leu Lys Arg Glu Glu		
500	505	510
Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser		
515	520	525
Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala		
530	535	540
Gly Leu Phe Leu Trp Met Cys Ser Asn Gly Xaa		
545	550	555

<210> SEQ ID NO 47
 <211> LENGTH: 568
 <212> TYPE: PRT
 <213> ORGANISM: Artificial
 <220> FEATURE:
 <223> OTHER INFORMATION: consensus sequence translated into protein

<400> SEQUENCE: 47

Met	Glu	Lys	Ile	Val	Leu	Leu	Leu	Ala	Ile	Val	Ser	Leu	Val	Lys	Ser
1				5			10			15					
Asp	Gln	Ile	Cys	Ile	Gly	Tyr	His	Ala	Asn	Asn	Ser	Thr	Glu	Gln	Val
				20			25			30					
Asp	Thr	Ile	Met	Glu	Lys	Asn	Val	Thr	Val	Thr	His	Ala	Gln	Asp	Ile
			35			40			45						
Leu	Glu	Lys	Thr	His	Asn	Gly	Lys	Leu	Cys	Asp	Leu	Asp	Gly	Val	Lys
				50			55			60					
Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Val	Ala	Gly	Trp	Leu	Leu	Gly	Asn
				65			70			75			80		
Pro	Met	Cys	Asp	Glu	Phe	Pro	Asn	Val	Ser	Glu	Trp	Ser	Tyr	Ile	Val

-continued

85	90	95	
Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn			
100	105	110	
Asn Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn Arg Phe Glu			
115	120	125	
Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Pro Asp His Glu Ala Ser			
130	135	140	
Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Gly Pro Ser Phe Tyr			
145	150	155	160
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Thr Tyr Pro Thr Ile			
165	170	175	
Lys Glu Ser Tyr His Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp			
180	185	190	
Gly Ile His His Pro Asn Asp Glu Glu Gln Thr Arg Ile Tyr Lys			
195	200	205	
Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg			
210	215	220	
Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly			
225	230	235	240
Arg Val Glu Phe Phe Trp Thr Ile Leu Lys Ser Asn Asp Thr Ile Asn			
245	250	255	
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Asn Ala Tyr Lys Ile			
260	265	270	
Val Lys Lys Gly Asp Ser Thr Ile Met Lys Ser Glu Leu Glu Tyr Gly			
275	280	285	
Asn Cys Asn Thr Lys Cys Gln Thr Pro Ile Gly Ala Ile Asn Ser Ser			
290	295	300	
Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys			
305	310	315	320
Tyr Val Lys Ser Asn Arg Leu Val Ala Thr Gly Leu Arg Asn Ser			
325	330	335	
Pro Gln Gly Glu Gly Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile			
340	345	350	
Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr			
355	360	365	
Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys			
370	375	380	
Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser			
385	390	395	400
Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe			
405	410	415	
Asn Asn Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Met Glu Asp			
420	425	430	
Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met			
435	440	445	
Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu			
450	455	460	
Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly			
465	470	475	480
Asn Gly Cys Phe Glu Phe Tyr His Arg Cys Asp Asn Glu Cys Met Glu			
485	490	495	

-continued

```

Ser Val Arg Asn Gly Thr Tyr Asp Tyr Pro Gln Tyr Ser Glu Glu Ala
      500           505           510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
      515           520           525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
      530           535           540

Leu Ala Ile Met Val Ala Gly Leu Phe Leu Trp Met Cys Ser Asn Gly
      545           550           555           560

Ser Leu Gln Cys Arg Ile Cys Ile
      565

```

<210> SEQ ID NO 48
<211> LENGTH: 1620
<212> TYPE: DNA
<213> ORGANISM: H5N1

<400> SEQUENCE: 48

caatagtca tattgttaaa agtgatcaga tttgcattgg ttaccatgca aacaactcga 60
cagacgagg t gacacaata atggaaaaga acgtcactgt tacacacgccc aagacatac 120
tggaaaagac acacaacggg aaactctgca atctagatgg agtgaaggct ctaattttaa 180
gagattgttag t gtagctgga tggctcttag ggaacccaaat gtgcgacgaa ttcctcaatg 240
tgccggaaatg gtcttacata tggagaaga tcaatccaaac caatgaccc tttatccag 300
ggaatttcaa c gactatgaa gaactgaaac acctattgtg cagaataaaac cattttgaga 360
aaattcagat cattcccaa aattcttggt cagatcatga agcctcagga gtgagctcag 420
catgtccata ccagggaaaga tcctcctttt ttagaaatgt ggtatggctt accaaaaaga 480
acaatgcata cccaaacaata aagaaaagtt acaataatac caaccaagaa gatctttgg 540
tattatgggg gattcaccat ccaaattgtg cggcagagca gacaaggctt tatcaaacc 600
caactaccta tatttccgtt gggacatcaa cactaaacca gagattggta cccaaaatag 660
ctactagatc taaggtaaac gggcaaagt ggaaggatgga gttctttgg acaattttaa 720
aatcgaatg t gcaataaac tttgagatgta atggaaattt cattgtccca gaaaatgcat 780
acaaaattgtt caagaaaagg gactcaacaa ttatgaaaag ttagttggaa tatggtact 840
gcaacaccaa gtgtcagact ccaatagggg cgataaaactc cagatgcca ttccacaaca 900
tccaccctct caccatcgaa gaatgccccca aatatgtgaa atcaaacaga ttagtccctt 960
ctactgggctt cagaataatgc cctcaaggag agagaagaag aaaaaagaga ggactatttg 1020
gagctatagc aggtttata gagggaggat ggcaggaaat ggtatgtgt tggtatgggt 1080
accaccatacg caacgagcag gggagtgggt acgctgcaga caaagaatcc actcaaaagg 1140
caatagatgg agtcaccaat aaggtcaact cgatcattga caaaatgaac actcagttt 1200
aggctgtgg gaggaaat t aataacttag aaaggagaat agaaaattta aacaagaaga 1260
tggaaagacgg attccttagat gtctggactt ataatgctga acttctgggtt ctcatggaaa 1320
atgagagaac tctagacttt catgactcaa atgtcaagaa ctttatgac aaggccgcac 1380
tacagcttag ggataatgca aaggagctt gtaacgggtt tttcgagttc tatcagat 1440
gtgataatg aatgtatggaa agtgtaaagaa acggtaacgta tgactacccg cagtattcag 1500
aagaagcaag attaaaaaaga gaggaaataa gtggagtaaa attggagtca ataggaaattt 1560

-continued

accaaataact gtcaatttat tcaacagtgg cgagctccct agcactggca atcatggtag 1620

<210> SEQ ID NO 49
<211> LENGTH: 1707
<212> TYPE: DNA
<213> ORGANISM: H5N1

<400> SEQUENCE: 49

atggagaaaa tagtgcttct tcttgcataa gtcagtcgtt ttaaaagtga tcagattgc
atgggttacc atgcaaaca ctcaacagag caggttgaca caataatgga aaagaacgtc
actgtttcac acgcgtcaaga catactggaa aagacacaca atggggaaact ctgcgtatcta
ggtggagtga agcctctaattttaagagat ttagtgcgtatggatggct cctcgaaac
ccaatgtgtg acgaattccc caatgtgtcg gaatggcctt acatagtgga gaagatcaat
ccagccaatg acctctgtt cccaggaaat ttcaacaact atgaagaact gaaacatcta
ttgagcagaa taaaccgggtt tgagaaaatt cagatcatcc ccaaaagttc ttggccagat
catgaagcct cattaggagt gagctcagca tgcgtatcc agggaggacc ctcctttat
agaaatgtgg tatggcttat caaaaagaac gatacatacc caacaataaa ggaaagttac
cataataccatca atcaagaaga tctttgggtt ctgtggggaa tccaccatcc aaataatgag
gaagaadaga aaaggatcta taaaaaccca actacatcg tttccgttgg gacatcaaca
ctaaaccaga gattggtacc gaagatagcc actagatcta aggtaaacgg gcaaagtgg
agagtggagt tctttggac aattttaaaa tcaaattgata caataaactt tgagagtaat
ggaaatttca ttgtccaga aatgcatac aaaattgtca agaaaggggaa ctcaacaatt
atgaaaagtgcgttggaaata tggtaactgc agcacaagt gtcacttcc aatagggcg
ataaacacca gtatggcatt ccacaacatc caccctctca ccatcgaaaatgc
tatgtgaaat caaacagatt agtccttgc actgggttca gaaatagccc tcaaggag
ggaagaagaa aaaagagagg actatggatca gctatagcg gttttataga gggaggatgg
cagggatgg tagatgggttgcgttggatggcacttgcataa gacggcgggatgg
gctgcagaca aagaatccac tcaaaaggca atagatggatca tcaaccataa ggtcaactcg
atcattgaca aatgaatatac tcagtttgcacttgcataa gttttataga gggaggatgg
aagagaatag aaaattttaaa caagaagatg gaagacgggt tccttagatgt ctggacttat
aatgctgaac ttctgggttctt catggaaaat gagagaactc tagacttca tgactcaat
gtcagggatgg tttacgacaa ggtgcgacta cagcttaggg acaatgcgg
aacgggttgcgttgcacttgcataa gataatgaat gttttataga gggaggatgg
ggaaacgtatg actacccgcataa gttttataga gggaggatgg
ggagttttaaaat tggaaatcaat aggaacttac caataactat caatttattt aacagtggca
agttcccttag cactggcaat catgggtggctt ggtctatggatgtt ctccaaatgg
tccttataat gcaaaatggatggatggcaat

<210> SEQ_ID NO 50
<211> LENGTH: 1707
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER_INFORMATION: consensus of 38 H5 gene sequences

-continued

<400> SEQUENCE: 50

atggagaaaa tagtgcttct tcttgcataa gtcagtctg taaaagtga tcagattgc	60
attggttacc atgcaaaca ctcaacagag cagggtgaca caataatgga aaagaacgtc	120
actgttacac acgctcaaga catactggaa aagacacaca acgggaaact ctgcgatcta	180
gatggagtga agectctaat tttaagagat ttagtgttag ctggatggct cctcgggaac	240
ccaatgtgtg aegaattccc caatgtgtcg gaatggtcct acatagtgga gaagatcaat	300
ccagccatg acctctgtta cccagggaaat ttcaacaact atgaagaact gaaacaccta	360
ttgagcagaa taaaccgggtt tgagaaaatt cagatcatcc cccaaagtcc ttggccagat	420
catgaaggcct cattaggagt gagctcagca tgcataacc agggaggacc ctccctttat	480
agaaaatgtgg tatggcttat caaaaagaac aatacatacc caacaataaa ggaaagttac	540
cataatacca atcaagaaga tcttttgggt ctgtggggga ttccaccatcc aatgtatgag	600
gaagagcaga caaggatcta taaaacccca actacctata ttccgttgg gacatcaaca	660
ctaaaccaga gattggtacc aaagatgcc actagatcta aggtaaacgg gcaaagtgg	720
agagtggagt tcttttggac aattttaaa tcaaattgata caataaaactt tgagagtaat	780
ggaaatttca ttgctccaga aaatgcatac aaaattgtca agaaaggggg ctcaacaatt	840
atgaaaagtg agttggataa tggtaactgc aacaccaagt gtcaaactcc aataggggcg	900
ataaaactcca gtatgccatt ccacaacatc caccctctca ccattggggg atgccccaaa	960
tatgtgaaat caaacagatt agtccttgct actgggctca gaaatagccc tcaaggagag	1020
ggaagaagaa aaaagagagg actatttggc gctatagcag gttttataga gggaggatgg	1080
cagggaatgg tagatgggtt gtaggggtac caccatagca acgagcaggg gtaggggtac	1140
gctgcagaca aagaatccac tcaaaaggca atagatggag tcaccaataa ggtcaactcg	1200
atcattgaca aaatgaatac tcagtttgag gctgtttggg gggattaa taacttggaa	1260
aagagaatag aaaattttaaa caagaagatg gaagacgggt tccttagatgt ctggacttat	1320
aatgctgaac ttctgggtt catggaaaat gagagaactc tagacttca tgactcaat	1380
gtcaagaacc ttacgacaa ggtgcgacta cagcttaggg acaatgcaaa ggagcttgg	1440
aacgggttgc ttctgggttca tcacagatgc gataatgaat gtatggaaag tgtaagaaac	1500
ggaacgtatg actaccgcg gtattcgaa gaagcaagat taaaagaga ggaaataagt	1560
ggagtaaaat tggaaatcaat aggaacttac caaatactat caatttattc aacagtggca	1620
agttccctag cactggcaat catggggct ggtctatttt tatggatgtg ctccaaatgga	1680
tcgttacaat gcagaatttg cattaa	1707

<210> SEQ ID NO 51

<211> LENGTH: 15186

<212> TYPE: DNA

<213> ORGANISM: Newcastle disease virus

<400> SEQUENCE: 51

accaaacaga gaatccgtga gttacgataa aaggcgaagg agcaatggaa gtcgcacggg	60
tagaagggtgt gaatctcgag tgcgagcccg aagcacaaac tcggaaaagc cttctgccaa	120
catgtcttcc gtatttgcgt agtacgaaca gtcctcgcg gtcagactc gccccatgg	180
agctcatgga gggggagaaa aagggagttac cttaaaagta gacgtcccg tattcactct	240

-continued

taacagtat gaccagaag atagatggag ctttggta ttctgcctcc ggattgtgt	300
tagcgaagat gccaacaaac cactcaggca aggtgctctc atatctctt tatgctccca	360
ctcacaggta atgaggaacc atgttgcctc tgcaggaaa cagaatgaag ccacattggc	420
cgtgctttag attgatggct ttgccaacgg cacgccccag ttcaacaata ggagtggagt	480
gtctgaagag agagcacaga gatttgcgtat gatagcagga tctctccctc gggcatgcag	540
caacggaaacc cgggtcgta cagccggggc cgaagatgtat gcaccagaag acatcaccga	600
taccctggag aggatccctct ctatccaggc tcaagtatgg gtcacagtagt caaaaggccat	660
gactgcgtat gagactgcag atgagtcgga aacaaggcga atcaataagt atatgcagca	720
aggcagggtc caaaagaaat acatccctcta ccccgatgc aggagcaca tccaaactcac	780
gatcagacag tctcttgcag tccgcattt tttgggttagc gagctcaaga gaggccgcaa	840
cacggcagggt ggtacctcta cttattataa cttggtaggg gacgttagact catacatcag	900
gaataccggg cttactgcat tcttcttgcactcaatgatc ggaatcaaca ccaagacatc	960
agcccttgca ctttagtagcc tctcaggcga catccagaag atgaaggcgc tcatggttt	1020
gtatcgatg aaaggagata atgcgcgtt catgacat tttgggtata gtgaccagat	1080
gagctttgcg cctgcccgtt atgcacaact ttactcctt gccatgggtt tggcatcgt	1140
cctagataaa ggtactgggaa aataccaatt tgccaggac tttatgagca catcattctg	1200
gagacttggaa gttagatgc ctcaggctca gggaaatgcg attaactggggg atatggctgc	1260
cggactaaat ctaacccctcg cagcaaggag gggcctggca gctgctgccc aacgggtctc	1320
cgaggagacc agcagccatag acatccctac tcaacaatgc gggtcctca ctgggttag	1380
cgagggggggg tcccaagctc tacaaggcgg atcgaataga tcgcaaggc aaccagaagc	1440
cgggggatggg gagaccaat tcttggatct gatgagagcg gtagcaaata gcatgaggaa	1500
ggcgccaaac tctgcacagg gcaactccca atcggggctt ccccaactc ctgggcattc	1560
ccaagataac gacaccgact gggggatattt ataaacaaaa cccagccgtc ttccacaaaa	1620
acatcccaat gcccctaccc gtagtcgacc cctcgattt cggctctata tgaccacacc	1680
ctcaaaacaaa catccccctc tttccctccct cccctgtcg tacaactccg caccgttag	1740
ataccacagg cacaatgcgg ctcactaaca atcaaaacag agccgaggaa attaaaaaaa	1800
agtacgggtttaa gaaatgggat attcagatgat caggcgtt cttccgttgc tctgtctct	1860
cctctacctg atagaccagg acaaacatgg ccaccttac ggtgcagag atcgacgagc	1920
tatttggacat aagtggact gtcattgaca acataattac agcccaggaa aaaccacag	1980
agactgttgg aaggagatgc atccccacaag gcaagccaa ggtgcgttgc gcatgggg	2040
agaagcatgg gggcatcccg ccacccggca gtcaagacaa ccccgatcga caggacagat	2100
ctgacaaaca accatccaca cccgagcaaa cgaccccgca tgacagcccg cccggccat	2160
ccggccacca gccccccacc caggccacag acgaagccgt cgacacacag ctcaggaccg	2220
gagcaagccaa ctctctgtcg ttgtatgtttt acaagtcgtt caataatcg tccaaatgtca	2280
aaaaggccccc atggtcgagc ccccaagagg ggaatcacca acgtccgtt caacacggg	2340
ggagtcaacc cagtcgcggaa aacagtcagg aaagaccgca gaaccaatgc aaggccccc	2400
ctggaaacca gggcacagac gtgaacacag catacatgg acaatggggg gagtcaacaa	2460
tatcagctgg tgcaacccct catgtctcc gatcaaggca gagccaagac aataacccttgc	2520

-continued

tatctgcgga	tcatgtccag	ccacctgttag	acttttgca	agcgatgtg	tctatgtgg	2580
aggcgatatac	acagagagta	agtaagggtt	actatcagct	agatcttgc	ttgaaacaga	2640
catcctccat	cccttatgtg	cggccgaaa	tccaacagct	gaaaacatct	gttgcagtca	2700
tggaagccaa	cttggaaatg	atgaagattc	tggatcccg	ttgtgccaac	atttcatctc	2760
tgagtgtatct	acgggcagtt	gcccgcatac	acccggttt	agtttcaggc	cctggagacc	2820
cctctcccta	tgtgacacaa	ggaggcgaaa	tggcaactaa	taaacttgc	caaccagtgc	2880
cacatccatc	tgaatttgatt	aaaccgcaca	ctgcacatgc	gcctgtatata	ggagtgaaaa	2940
aggacactgt	ccgtgcattt	atcatgtcac	gccaatgc	cccgagttct	tcageccaagc	3000
tcctaagccaa	gttagatgc	gcggggcga	tcgaggaaat	caggaaaatc	aagcgcttgc	3060
ctctaaatgg	ctaattacta	ctgcccacac	cagcgggtcc	ctgtccactc	ggcatcacac	3120
ggaatctgca	ccgagttccc	cccccgcacag	ccaaagggtca	actctccaa	cgcaatcct	3180
ctctcgcttc	ctcagcccc	ctgaatggac	gcgttaaccgt	aattaatcta	gctacattta	3240
agattaagaa	aaaatacggg	tagaattgg	gtgccccaa	tgtgccaaga	tggactcatc	3300
taggacaatt	gggtgtact	ttgattctgc	ccattttct	agcaacctgt	tagcattcc	3360
gatcgtctca	caaggcacag	gagatggaa	gaagcaatc	gccccgcaat	ataggatcca	3420
gcgccttgac	ttgtggactg	atagtaagga	ggactcagta	ttcatcacca	cctatggatt	3480
catcttcaa	gttggaaatg	aagaagccac	tgtcgccatg	atcgatata	aacccaagcg	3540
cgagttactt	tccgctgega	tgtctgcct	aggaagegtc	ccaaataccg	gagaccttat	3600
tgagctggca	aggccctgtc	tcactatgt	agtcacatgc	aagaagagt	caactaatac	3660
tgagagaatg	gttttcttag	tagtgcaggg	accccaagt	ctgcaaagct	gtagggttgt	3720
ggcaaaacaaa	tactcatcg	tgaatgcagt	caagcacgt	aaagcgcac	agaagattcc	3780
cgggagtgg	accctagaat	ataaggtgaa	ctttgtctt	ttgactgtgg	taccgaagaa	3840
ggatgtctac	aagatcccag	ctgcagttt	gaaggtttct	ggctcgagtc	tgtacaatct	3900
tgcgctcaat	gtcactatta	atgtggaggt	tgacccgagg	agtcccttgg	ttaaatctct	3960
gtctaagtct	gacagcggat	actatgtaa	cctcttcttgc	catattggac	ttatgaccac	4020
cgtagatagg	aaggggaaaga	aagtgcatt	tgacaagct	gaaaagaaaa	taaggagcct	4080
tgatctatct	gtcgggctca	gtatgtgt	cggcccttcc	gtgttggtaa	aagcaagagg	4140
tgcacggact	aagcttttgg	caccttctt	ctcttagcagt	gggacagcct	gctatccat	4200
agcaaatgt	tctcctcagg	tggccaagat	actctggagt	caaaccgcgt	gcctgcggag	4260
cgttaaaatc	attatccaag	caggtaacca	acgcgcgtc	gcagtgcac	ccgaccacga	4320
ggttacctct	actaagctgg	agaagggca	cacccttgcc	aaatacaatc	cttttaagaa	4380
ataagctgcg	tctctgagat	tgcgctccgc	ccactcaccc	agatcatcat	gacacaaaaaa	4440
actaatctgt	cttgattatt	tacagttgt	ttacctgcct	atcaagttag	aaaaaaacacg	4500
ggtagaagat	tctggatccc	ggttggcgcc	ctccaggtgc	agatgggct	ccagaccttc	4560
taccaagaac	ccagcaccta	tgtatgtgc	tatccgggtt	gcgctggac	tgagttgcac	4620
ctgtccggca	aactccattt	atggcaggcc	tcttgcagct	gcaggaaattg	tggttacagg	4680
agacaaagcc	gtcaacatata	acacccatc	ccagacagga	tcaatcatag	ttaagctcct	4740
cccgaaatctg	cccaaggata	aggaggcatg	tgcgaaagcc	cccttggatg	catacaacag	4800

-continued

gacattgacc	actttgctca	cccccttgg	tgactctatac	cgtaggatac	aagagtctgt	4860
gactacatct	ggagggggga	gacagggggcg	ccttataggc	gccattattg	gcgggtgtgc	4920
tcttggggtt	gcaactgcgg	cacaataaac	agcggccgca	gctctgatac	aagccaaaca	4980
aaatgctgcc	aacatcctcc	gacttaaaga	gagcattgcc	gcaaccaatg	aggctgtgca	5040
tgaggtcact	gacggattat	cgcaactagc	agtggcagtt	gggaagatgc	agcagtttgt	5100
taatgaccaa	cttaataaaa	cagctcagga	attagactgc	atcaaatttgc	cacagaagtt	5160
tgggttagag	ctcaacctgt	acctaaccga	attgactaca	gtattcggac	cacaatcac	5220
ttcacctgct	ttaaacaaggc	tgactattca	ggcactttac	aatctagctg	gtggaaatat	5280
ggattactta	ttgactaagt	taggtgttagg	gaacaatcaa	ctcagctcat	taatcggtag	5340
cggcttaatc	accggtaacc	ctattctata	cgactcacag	actcaactct	tgggtatacg	5400
ggtaactcta	ccttcagtcg	ggaacctaataa	taatatgcgt	gccacctact	tggaaacctt	5460
atccgtaagc	acaaccaggg	gatttgcttc	ggcacttgtc	cccaaagtgg	tgacacaagg	5520
cggttctgtg	atagaagaac	ttgacacctc	atactgtata	gaaactgact	tagattata	5580
ttgtacaaga	atagtaacgt	tccctatgtc	ccctggatt	tattcctgct	tgagcggcaa	5640
tacgtcgcc	tgtatgtact	caaagaccga	aggcgcactt	actacaccat	acatgactat	5700
caaaggttca	gtcatcgcca	actgcaagat	gacaacatgt	agatgtgtaa	accccccggg	5760
tatcatatcg	caaaaactatg	gagaagccgt	gtctctaata	gataaaacaat	catgcaatgt	5820
tttattccta	ggcgggataa	ctttaaggct	cagtggggaa	ttcgatgtaa	cttatoagaa	5880
gaatatctca	atacaagatt	ctcaagtaat	aataacaggc	aatcttgata	tctcaactga	5940
gcttgggaat	gtcaacaact	cgatcagtaa	tgctttgaat	aagtttagagg	aaagcaacag	6000
aaaactagac	aaagtcaatg	tcaaactgac	tagcacatct	gctctcatta	cctatatcg	6060
tttgactatc	atatctcttg	tttttggtat	acttagccgt	attctagcat	gctacctaatt	6120
gtacaagcaa	aaggcgcaac	aaaagacctt	attatggctt	ggaaataata	ctctagatca	6180
gatgagagcc	actacaaaaaa	tgtgaacaca	gatgaggaac	gaaggttcc	ctaataagtaa	6240
tttgcgtgaa	agttctggta	gtctgtcagt	tcagagggtt	aagaaaaaac	taccgggtgt	6300
agatgaccaa	aggacgatata	acgggtagaa	cggtaagaga	ggccgcctt	caattgcgag	6360
ccaggcttca	caacccctcg	tctaccgctt	caccgacaaac	ggtcctcaat	catggaccgc	6420
gccgttagcc	aagttgcgtt	agagaatgt	gaaagagagg	caaaaaatac	atggcgcttgc	6480
atattccgga	ttgcaatctt	attcttaaca	gtatgtaccc	tggctatatac	tgtagcctcc	6540
cttttatata	gcatgggggc	tagcacacct	agcgatctg	taggcatacc	gactaggaaat	6600
tccaggcag	aagaaaagat	tacatctaca	cttggttcca	atcaagatgt	agtagatagg	6660
atatataagc	aagtggccct	tgagtctccg	ttggcattgt	taaaaactga	gaccacaatt	6720
atgaacgcaa	taacatctct	ctcttatacg	attaatggag	ctgcaaacaa	cagtgggtgg	6780
ggggcactta	tccatgaccc	agattatata	ggggggatag	gcaaagaact	cattgtagat	6840
gatgctagtg	atgtcacatc	attctatccc	tctgcatttc	aagaacatct	gaattttatc	6900
ccggcgccta	ctacaggatc	aggttgcact	cgaataccct	catttgacat	gagtgttacc	6960
cattactgct	acacccataaa	tgtaatatttgc	tctggatgca	gagatcactc	acattcatat	7020
cagtatattag	cacttgggtgt	gctccggaca	tctgcaacag	ggagggattt	cttttctact	7080

-continued

ctgcgttcca tcaacctgga cgacacccaa aatcggaaat cttgcagtgt gagtgcact	7140
ccctgggtt gtgatatgt gtgctgaaa gtcacggaga cagaggaaga agattataac	7200
tcagctgtcc ctacgcggat ggtacatggg aggttagggt tcgacggcca gtaccacgaa	7260
aaggacctag atgtcacaac attattcggg gactgggtgg ccaactaccc aggagtaggg	7320
ggtgatctt ttattgacag ccgcgtatgg ttctcagttt acggagggtt aaaacccat	7380
tcacccagtg acactgtaca ggaaggaaa tatgtgatata acaaggata caatgacaca	7440
tgcccgatg agcaagacta ccagattcga atggccaggt ctgcgtataa gcctggacgg	7500
tttggtggga aacgcataca gcaggctatc ttatctatca aggtgtcaac atccttaggc	7560
gaagacccgg tactgactgt acggccaaac acagtcacac tcatggggc cgaaggcaga	7620
attctcacag tagggacatc tcatttttg tatcaacgag ggtcatcata cttctctccc	7680
gcgttattat atccatgac agtcagcaaa aacacagcca ctcttcata tccttataca	7740
ttcaatgcct tcactcgcc aggttagtac cttgcagg ctgcagcaag atgcccacac	7800
ccgtgtgtta ctggagttca tacagatcca catccctaa tcttctatag aaaccacacc	7860
ttgcggggg tattcgggac aatgcttgc ggtgtacaag caagactaa ccctgogtct	7920
gcagtattcg atagcacatc ccgcgtcgc attactcgag tgagttcaag cagttacaaa	7980
gcagcataca caacatcaac ttgtttaaa gtggtaaga ctaataagac ctattgtctc	8040
agcattgctg aaatatctaa tactcttc ggagaattca gaatcgcccc gttactagtt	8100
gagatcctca aagatgacgg ggttagagaa gccaggctcg gctagtttag tcaattataa	8160
aggagttgaa aagatggcat tttatccatc atcttcgtcg acatcaagaa tcaaaccgaa	8220
tgccggcggcg tgctcgaatt ccatgttgc agttgaccac aatcagccag tgctcatcgc	8280
atcagattaa gccttgcata tagtctttt attaagaaaa aatgtaaatg gcaatgagat	8340
acaaggcaaa acagctcatg gtaaataata cgggttagaac atggcgagct ccggctctga	8400
aagggcagag catcagatta tcttaccaga gtcacacccg tcttcaccat tggtaagca	8460
caaactactc tattactgga aattaaactgg gtcacccgtt cctgatgaat gtgacttcga	8520
ccacccatt ctcagccgac aatggaaaaa aatactgaa tcggccctctc ctgatactga	8580
gagaatgata aaactcgaa gggcgtaca ccaaactctt aaccacaatt ccagaataac	8640
cgaggctgc caccggatgt gtttagaaga actggctaat attggaggcc cagattcaac	8700
caacaaattt cggaagattt agaagaagat ccaaattcac aacacgagat atggagaact	8760
gttcacaagg ctgtgtacgc atatagagaa gaaactgctg gggcatctt ggtctaacaa	8820
tgtccccgg tcagaggatg tcagcagcat ccgtacggac ccggcatctt ggtttactc	8880
aaaatggcc acagccaaatg ttgcattggc ccatataaaa cagatccaga ggcattgtat	8940
ggtggcagct aggacaaggat ctgcggccaa caaattgggt atgctaaatccc ataaggtagg	9000
ccaaatgtttt gtcactcctg aacttgcgtg tgcacgcata acgaatgaga acaaggatcac	9060
atgtcttacc caggaacttg tattgatgt tgcagatgt atggaggcc gagatatgg	9120
caacataata tcaaccacgg cgggtgcata cagaagctt tcagagaaaa ttgtatgacat	9180
tttgcggta atagacgctc tggcaaaaga cttgggtat caagtctacg atgttgc	9240
actaatggag ggatttgcata acggagctgt ccagctactc gagccgtcag gtacatttgc	9300
aggagatttcc ttgcattca acctgcaggaa gcttaagac attctaatttgc ctccctccc	9360

-continued

caatgatata	gcagaatccg	tgactcatgc	aatcgctact	gtattctctg	gtttagaaca	9420
gaatcaagca	gctgagatgt	tgtgtctgtt	gcgtctgtgg	ggtcacccac	tgcttgagtc	9480
ccgtattgcc	gcaaaaggcag	tcaggagccca	aatgtgcgca	ccgaaaatgg	tagactttga	9540
tatgatcctt	caggtactgt	ctttcttcaa	gggaacaatc	atcaacgggt	acagaaaagaa	9600
gaatgcaggt	gtgtggccgc	gagtcaaagt	ggatacaata	tatggaaagg	tcattggca	9660
actacatgca	gattcagcag	agatttcaaca	cgatatacatg	ttgagagagt	ataagagttt	9720
atctgcactt	gaatttgagc	catgtataga	atatgcacct	gtcaccaacc	tgagcatgtt	9780
cctaaaagac	aaggcaatcg	cacaccccaa	cgataattgg	cttgccctcg	ttagggcgaa	9840
ccttctctcc	gaagaccaga	agaaacatgt	aaaagaagca	acttcgacta	atcgccctt	9900
gatagagttt	ttagagtcaa	atgatttga	tccatataaa	gagatggaat	atctgacgac	9960
ccttgagtagc	cttagagatg	acaatgtggc	agtatcatac	tcgctcaagg	agaaggaaagt	10020
gaaagttaat	ggacggatct	tcgctaagct	gacaaagaag	ttaaggaact	gtcaggtgat	10080
ggcggaaaggg	atccctagecg	atcagattgc	acctttcttt	cagggaaatg	gagtattca	10140
ggatagcata	tccttgacca	agagtagatgc	agcgatgagt	caactgtctt	ttaacagcaa	10200
taagaaacgt	atcaactgact	gtaaagaaag	agtatcttca	aaccgcaatc	atgatccgaa	10260
aagcaagaac	cgtcgagag	ttgcaacctt	cataacaact	gacctgcaaa	agtactgtct	10320
taattggaga	tatcagacaa	tcaaattgtt	cgctcatgcc	atcaatcagt	tgatgggcct	10380
acctcacttc	ttcgaatgga	ttcacctaag	actgatggac	actacgatgt	tcgttaggaga	10440
cccttcaat	cctccaaatgt	accctactga	ctgtgaccc	tcaagagtcc	ctaattatgt	10500
catatatatt	gtcagtgc	gaggggtat	cgaaggatta	tgccagaagc	tatggacaat	10560
gatctcaatt	gctgaatcc	aacttgc	acttagatcg	cattgtcg	ttgcctgtat	10620
ggtagacgggt	gataatcaag	taatagcagt	aacgagagag	gtaagatcg	acgactctcc	10680
ggagatgggt	ttgacacagt	tgcatacgc	cagtgataat	ttcttcaagg	aattaattca	10740
tgtcaatcat	ttgattggcc	ataatttga	ggatcgtgaa	accatcaggt	cagacacatt	10800
cttcatatac	agcaaacgaa	tcttcaaaga	tggagcaatc	ctcagtc	tcctcaaaaa	10860
ttcatctaaa	ttagtgc	tgtcagg	tctcagtgaa	aacaccgtaa	tgtcctgtc	10920
caacattgcc	tctactgtat	cacggctatg	cgagaacggg	cttccaaag	acttctgtt	10980
ctat	ttaaac	tatataatga	gttgtgtgc	gacatactt	gactctgat	11040
caacaattcg	caccccgatc	ttaatcagtc	gtggatttgag	gacatctt	ttgtgcactc	11100
atatgttctg	actcctgccc	aattaggggg	actgagtaac	cttcaatact	caaggctcta	11160
cactagaaat	atcggtgacc	cggggactac	tgctttgca	gagatccagc	gactagaagc	11220
agtgggatta	ctgagtc	acattatgac	taatatctt	actaggccgc	ctggaaatgg	11280
agattggcc	agtctgtc	acgacccata	ctctttcaat	tttgagactg	ttgcaagccc	11340
aaatattgtt	cttaagaaac	atacgcga	agtccat	gaaacttgtt	caaatccctt	11400
attgtctgga	gtgcacacag	aggataatga	ggcagaagag	aaggcatgg	ctgaattt	11460
gcttaatcaa	gaggtgattc	atccccgcgt	tgcgcatgc	atcatggagg	caagctctgt	11520
aggttaggaga	aagcaattc	aaggc	tgtacacaaca	aacaccgtaa	ttaagattgc	11580
gcttactagg	aggccattag	gcataaagag	gctgatgcgg	atagtcaatt	attctagcat	11640

-continued

gcatcaatg	ctgttttagag	acgatgttt	ttcctccagt	agatccaacc	accccttagt	11700
ctttctaat	atgtgttctc	tgacactggc	agactatgca	cggaatagaa	gctggtcacc	11760
tttgacggga	ggcaggaaaa	tactgggtgt	atctaattcct	gatacgatag	aactcgtaga	11820
gggtgagatt	cttagtgtaa	gcccggggtg	tacaagatgt	gacagcggag	atgaacaatt	11880
taacttggttc	catcttccaa	gcaatataga	attgaccgat	gacaccagca	agaatctcc	11940
gatgagggtt	ccatatctcg	ggtcgaagac	acaggagagg	agagctgcct	cacttgcaaa	12000
aatacgctat	atgtcgccac	atgtaaaggc	tgcccttaagg	gcatcatccg	tgttgcatt	12060
ggcttatggg	gataatgacg	taaattggac	tgctgcattt	acgattgcaa	aatctcggt	12120
taatgtaaac	tttagtgtatc	ttcggttact	gtccccctta	cccacggctg	ggaatottca	12180
acatagacta	gatgatggta	taactcagat	gacattcacc	cctgcacatctc	tctacaggtg	12240
tcaccttaca	ttcacatata	caatgattct	caaaggctgt	tcactgaaga	aggagtcaaa	12300
gaggggaatg	tggtttacca	acagagtcat	gtcttgggt	ttatctctaa	tcgaatcgat	12360
atttccaaatg	acagcaacca	ggacatatga	ttagatcaca	ctgcacccat	atagtaatt	12420
tagttgcgt	atcagagaag	cacctgttgc	ggttcccttc	gagctacttg	gggtggtacc	12480
ggaactgagg	acagtgcact	caaataagg	tatgtatgt	cctageccctg	gatcggaggg	12540
agactttgcg	agacttgact	tagctatctt	caagagttat	gagcttaatc	tggagtctata	12600
tcccacgata	gagctaatga	acatttttc	aatatccagc	gggaagtgtg	ttggccagtc	12660
tgtggtttct	tatgtgaag	atacctccat	aaagaatgac	gccataatag	tgtacgacaa	12720
tacccgaaat	tggatcgtt	aagctcagaa	ttcagatgt	gtccgcctat	ttgaatatgc	12780
agcacttgaa	gtgctcctca	actgttctta	ccaaactctat	tacctgagag	taagaggcct	12840
agacaatatt	gtcttatata	tgggtgattt	atacaagaat	atgccaggaa	ttctactttc	12900
caacattgca	gctacaatat	ctcatcccg	cattcattca	agttacatg	cagtggccct	12960
ggtcaaccat	gacggatcac	accaacttgc	agatacggat	tttacgaaa	tgtctgcata	13020
actattatgt	tcttgacacc	gacgtgttat	ctccggctta	tattcaggaa	ataagtatga	13080
tctgctgttc	ccatctgtct	tagatgataa	cctgaatgag	aagatgttc	agctgtatc	13140
ccggttatgc	tgtctgtaca	cggtactctt	tgctacaaca	agagaaatcc	cgaaaataag	13200
aggcttaact	acaaaagaga	aatgttcaat	acccactgag	tatattactgt	cgatgtctgt	13260
gaaaccatta	cttagccccg	atcaagttag	ctctatcatg	tctcctaaca	taattacatt	13320
cccagctaat	ccgtactaca	tgtctcgaa	gagcctcaat	ttgatcagg	aaagggagga	13380
cagggtact	atcctgggt	tgttgttccc	ccaagagcc	ttattagat	tcccttctgt	13440
gcaagatatt	ggtgctcgag	tgaaagatcc	attcacccga	caacctgcgg	cattttgca	13500
agagttagat	ttgagtgctc	cagcaaggta	tgacgcattc	acacttagtc	agattcatcc	13560
tgaactcaca	tctccaaatc	cgaggaaaga	ctacttagta	cgatacttgt	tcagaggat	13620
agggactgca	tcttcccttt	ggtataaggc	atctcatctc	ctttctgtac	ccgaggatag	13680
atgtgcaaga	cacggaaact	ccttataactt	agctgaaggg	agcggagcc	tcatgagtct	13740
tctcgaactg	catgttaccac	atgaaactat	ctattacaat	acgctctttt	caaatgagat	13800
gaacccccc	caacgcacatt	tcgggcccac	cccaactcag	tttttgaatt	cggttgcatt	13860
taggaatcta	caggcggagg	taacatgcaa	agatggattt	gtccaagagt	tccgtccatt	13920

-continued

1. An H5 protein of a clade 1 H5N1 virus for use in a method of treating or preventing infections with a H5N1 virus of a different clade, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1.
2. The H5 protein according to claim 1, wherein said H5 protein comprises a polypeptide sequence having at least 98.1%, preferably at least 98.2%, more preferably at least 98.3%, and most preferably at least 98.4% sequence identity with the polypeptide sequence of SEQ ID NO: 1.
3. The H5 protein according to claim 1, wherein said H5 protein has the amino acid 223N and the modification 328K+, wherein numbering of the amino acid positions of the H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:2, and wherein the modification 328K+ means that at amino acid position 328 of H5 protein a second Lysine (K+) is inserted.
4. The H5 protein according to claim 1, wherein such H5 protein has the amino acid 94N.
5. The H5 protein according to claim 1, wherein such H5 protein has the amino acid 120N.
6. The H5 protein according to claim 1, wherein such H5 protein has the amino acid 155N.

7. The H5 protein according to claim 1, wherein such H5 protein has one or more of the following amino acid clusters selected from the group consisting of:

- a. aa 93-95: GNF
- b. aa 123-125: SDH
- c. aa 128-130: SSG
- d. aa 138-140: GSS
- e. aa 226-228: MDF
- f. aa 270-272: EVE
- g. aa 309-311: NKL.

8. The H5 protein according to claim 1, wherein such H5 protein comprises a peptide comprising:

- i. the amino acid sequences of SEQ ID NO:5; SEQ ID NO:6 or SEQ ID NO:7; or
- ii. any peptide that has at least 85% sequence homology to the polypeptide of i) and that comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay; or
- iii. any part of the polypeptides of i) or ii) comprising at least 8 contiguous amino acids of any of such peptides of i) or ii) and wherein any of such peptide comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay; or

- iv. any peptide of i), ii) or iii) having one of the amino acids 36T, 36K, 83A, 83T, 83D, 86A, 86V, 120S, 155S, 156A, 156T, 189R, 189K, 212K, 212R, 212E, 263A or 263T; or
- v. any peptide of i), ii), iii) or iv) having one or more of the following amino acid clusters selected from the group consisting of:
 - a. aa 93-95: GNF
 - b. aa 123-125: SDH
 - c. aa 128-130: SSG
 - d. aa 138-140: GSS
 - e. aa 226-228: MDF
 - f. aa 270-272: EVE
 - g. aa309-311: NKL.

9. The H5 protein according to claim **1**, wherein such H5 protein comprises the amino acid sequence of SEQ ID NO:5.

10. The H5 protein according to claim **1**, wherein such H5 protein is recombinantly expressed and/or produced by a baculovirus expression system, preferably in cultured insect cells.

11. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade is selected from the group consisting of clade 0 H5N1 virus, clade 2 H5N1 virus, clade 3 H5N1 virus, clade 4 H5N1 virus, clade 5 H5N1 virus, clade 6 H5N1 virus, clade 7 H5N1 virus, clade 8 H5N1 virus and clade 9 H5N1 virus.

12. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade is clade 2.2 H5N1 virus or a clade 2.3 H5N1 virus.

13. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade is a clade 2.2.1 H5N1 virus or a clade 2.3.2 H5N1 virus.

14. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade is a H5N1 virus of North African or of Vietnamese origin.

15. The H5 protein according to claim **14**, wherein said H5N1 virus of North African origin is a H5N1 virus comprising a second H5 protein of influenza virus, wherein said second H5 protein encodes an amino acid sequence including at least one member of a group consisting of:

- (a) the amino acids 113D, 126H, 145(-), 156R, 160F, 167T, and 181N, wherein the modification 145(-) means that amino acid position 145 of H5 is deleted, or
- (b) the amino acids 87P, 145L, 172T, 201E, 206I, 208K, 254T, 341G and 421K, or
- (c) the amino acids 145L, 172T, and 254V,

and wherein the numbering of the amino acid positions of said second H5 protein refers to the amino acid position as exemplarily given in SEQ ID NO:8;

or wherein said second H5 protein consists of an amino acid sequence which is at least 95%, preferably at least 96%, more preferably at least 97%, still more preferably at least 98%, yet more preferably at least 99%, or in particular preferred 100% homolog with any one of the sequences as set forth in SEQ ID NOs: 9 to 46.

16. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade comprising a second H5 protein encodes an amino acid sequence including at least one member of the group consisting of:

- (a) the amino acids 87L, 113D, 126H, 145(-), 156R, 160F, 167T, and 181N, or
- (b) the amino acids 87P, 113N, 126R, 145L, 160Y, 172T, 181H, 201E, 206I, 208K, 254T, 341G and 421K, or
- (c) the amino acids 87L, 113N, 126R, 145L, 156G, 160Y, 172T, 181H, and 254V,

and/or wherein such second H5 protein comprises a peptide comprising:

- i. any one of the amino acid sequences of SEQ ID NOs: 9 to 46;
- ii. any peptide that has at least 85%, preferably at least 95%, even more preferably at least 96%, even more preferably at least 97%, even more preferably at least 98%, even more preferably at least 99%, most preferably 100% sequence homology to the polypeptide of i) and that comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay; or
- iii. any part of the polypeptides of i) or ii) comprising at least 334 contiguous amino acids of any of such peptides of i) or ii) and wherein any of such peptide comprises hemagglutinin inhibition in a standard hemagglutinin inhibition assay,

and/or wherein such second H5 protein comprises a contiguous amino acid sequence which has at least 95%, even more preferably at least 96%, even more preferably at least 97%, even more preferably at least 98%, even more preferably at least 99%, most preferably 100% sequence identity with any one of the sequences as set forth in SEQ ID NOs: 9 to 46.

17. The H5 protein according to claim **1**, wherein said H5N1 virus of a different clade comprising a second H5 protein consists of an amino acid sequence which is at least 95%, preferably at least 96%, more preferably at least 97%, still more preferably at least 98%, yet more preferably at least 99%, or in particular preferred 100% homolog with any one of the sequences as set forth in SEQ ID NOs: 15 or 20, and wherein such second H5 protein consisting of the amino acid sequence set forth in SEQ ID NO:20 is more preferred.

18. The H5 protein according to claim **1**, for use in a method of treating or preventing viral infection, wherein said viral infection includes a virus from at least one member of a group selected from:

(A) Subclade A H5N1 virus of North African origin, namely an infection with a H5N1 virus comprising a second H5 protein encoded by the amino acid sequence according to at least one of the sequences as set forth in SEQ ID NOs: 9 to 19, or 42 or 43,

or

(B) with Subclade B H5N1 virus of North African origin, namely an infection with a H5N1 virus comprising a H5 protein encoded by the amino acid sequence according to at least one of the sequences as set forth in SEQ ID NOs: 20 to 41, or 44 to 46.

19. A combination of an H5 protein of a clade 1 H5N1 virus for use in a method of treating or preventing infections with a H5N1 virus of a different clade, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1 and an inactivated Newcastle disease virus.

20. The combination of claim **19**, wherein the inactivated Newcastle disease virus is an inactivated whole Newcastle disease virion.

21. The combination of claim **19**, wherein the inactivated Newcastle disease virus is an inactivated Newcastle disease virus obtained by inactivation of a Newcastle disease virus comprising a RNA polynucleotide having at least 70%, preferably at least 80%, more preferably at least 90%, still more preferably at least 95% or in particular 100% sequence identity with a RNA copy of the polynucleotide set forth in SEQ ID NO: 51, which has been inactivated.

22. The combination of claim **19**, wherein the Newcastle disease virus is a Newcastle disease LaSota strain virus.

23. The combination of claim **19**, wherein the Newcastle Disease Virus is inactivated with a reagent selected from the group consisting of Formaldehyde, BEI, Beta-Propio-Lactone (BPL), and combinations thereof.

24. A vaccine for use in a method of treating or preventing infections with a H5N1 virus, comprising:

a. the H5 protein of a different clade, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1 of, and

b. a pharmaceutical acceptable carrier and/or excipient.

25. The vaccine according to claim **24**, wherein the excipient is one or more adjuvants.

26. The vaccine according to claim **25**, wherein the adjuvant is an Emulsigen-based adjuvant.

27. The vaccine according to claim **24**, wherein the vaccine comprises one or more further antigens.

28. The vaccine according to claim **27**, wherein the one or more further antigen is an antigen of a poultry pathogen.

29. The vaccine according to claim **28**, wherein the one or more further antigen is H5, H7, or H9 of influenza virus.

30. The vaccine according to claim **29**, wherein the H5 of influenza virus is H5 protein of a H5N1 virus of a clade different than clade 1.

31. Use of the H5 protein wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1, for the preparation of a pharmaceutical composition, preferably of a single-shot vaccine or a one dose vaccine, for the prophylaxis or treatment of infections caused by H5N1 virus of a clade other than clade 1.

32. A method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein the method comprises administration of a therapeutically effective amount of the H5 protein, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1, to a subject in need of such a treatment.

33. A method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein the method comprises administration of a therapeutically effective amount of a vaccine comprising:

a. the H5 protein of a different clade, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1 of, and

b. a pharmaceutical acceptable carrier and/or excipient to a subject in need of such a treatment.

34. The method of claim **32** wherein said administration is a single-shot administration or a one dose administration.

35. A kit of parts, comprising:

a. the H5 protein according to claim **1**; and

b. a package leaflet indicating the use of such H5 protein, combination or vaccine of a) for the treatment or prophylaxis of infections caused by H5N1 virus of a clade other than clade 1.

36. The kit according to claims **35**, wherein such kit comprises at least one or more further antigens of poultry or mammalian pathogen.

37. (canceled)

38. A method of reducing the incidence of or severity of influenza infection comprising the step of administering a composition selected from the group consisting of:

a. an H5 protein of a clade 1 H5N1 virus, wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1, and

b. a combination of the H5 protein of group a) and an inactivated Newcastle disease virus.

39. (canceled)

40. Use of the H5 protein wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1, for the preparation of a medicament for reducing viral shedding in a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1.

41. A vaccine for use in a method of treating or preventing infections with a H5N1 virus, comprising:

a. the combination of the H5 protein of a different clade and an inactivated Newcastle disease virus, and

b. a pharmaceutical acceptable carrier and/or excipient.

42. The vaccine according to claim **41**, wherein the excipient is one or more adjuvants.

43. The vaccine according to claim **41**, wherein the adjuvant is an Emulsigen-based adjuvant.

44. The vaccine according to claim **41**, wherein the vaccine comprises one or more further antigens.

45. The vaccine according to claim **44**, wherein the one or more further antigen is an antigen of a poultry pathogen.

46. The vaccine according to claim **45**, wherein the one or more further antigen is H5, H7, or H9 of influenza virus.

47. The vaccine according to claim **46**, wherein the H5 of influenza virus is H5 protein of a H5N1 virus of a clade different than clade 1.

48. Use of the combination of the H5 protein wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1 and an inactivated Newcastle disease virus, for the preparation of a pharmaceutical composition, preferably of a single-shot vaccine or a one dose vaccine, for the prophylaxis or treatment of infections caused by H5N1 virus of a clade other than clade 1.

49. A method for the treatment or prophylaxis of influenza virus infections caused by H5N1 virus of a clade other than clade 1, wherein the method comprises administration of a therapeutically effective amount of the combination of the H5 protein wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1 and an inactivated Newcastle disease virus combination to a subject in need of such a treatment.

50. The method of claim **41**, wherein said administration is a single-shot administration or a one dose administration.

51. A method of reducing the incidence of or severity of influenza infection comprising the step of administering a composition selected from the group consisting of:

a. an H5 protein of clade 1 H5N1 virus, wherein said H5 protein comprises or consists of a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO: 1, and

b. a combination of the H5 protein of group a) and an inactivated Newcastle disease virus.

52. The H5 protein of claim **1**, for use in a method for reducing viral shedding in a subject, wherein said H5 protein

is to be administered to a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1.

53. The method of claim **52**, further comprising use of an inactivated Newcastle disease virus in combination with the H5 protein.

54. Use of a H5 protein wherein said H5 protein comprises a polypeptide sequence having at least 98% sequence identity with the polypeptide sequence of SEQ ID NO:1, for the preparation of a medicament for reducing viral shedding in a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1.

55. The medicament of claim **54**, further comprising use and an inactivated Newcastle disease virus in combination with the H5 protein, wherein the combination reduces viral shedding in a subject infected with or at risk of a viral infection with H5N1 virus of a clade other than clade 1.

* * * * *