
SOOT ELIMINATOR

Filed Sept. 22. 1965

1

3,406,500 SOOT ELIMINATOR Le Roy F. Deming, 1512 17th St. N., Arlington, Va. 22209 Filed Sept. 22, 1965, Ser. No. 489,438 4 Claims. (Cl. 55—241)

ABSTRACT OF THE DISCLOSURE

A soot eliminator which is adapted to remove soot 10 conjunction with the accompanying drawing wherein: particles which are heavier than the gases which entrain such particles. The eliminator utilizes an impeller which rotates in a smoke column within a hollow cylindrical collector. The impeller throws, by centrifugal force, the soot particles against the inner wall of the collector where a wall of water is provided to entrain the particles and carry them to a disposal area.

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

Air pollution is becoming an increasing problem in the various cities throughout the United States. Since a good portion of this pollution is caused by smoke emanating from boilers, incinerators, foundries, and so forth considerable research is still being undertaken to come up with new methods of preventing this smoke from being dissipated into the air. In some areas the pollution concentration becomes so great that it is considered dangerous and an alert is called to require all manufacturing plants to switch their heating means from coal or fuel oil to gas. Therefore, there is a need for an 35 effective soot eliminator which can be easily adapted to a boiler outlet, incinerator, and so forth for removing the soot from the smoke stream emanating therefrom.

The present invention provides a compact simply constructed soot eliminator which will effectively remove the soot from a smoke stream. The present soot eliminator is adapted to be mounted within the normal stream of the smoke column and is self-cleaning so that costly maintenance is not required. The present soot eliminator may include a hollow cylindrical soot collector 45 which has a bottom smoke receiving inlet and a top gas discharge outlet. Mounted within the hollow cylinder collector there may be an impeller means for centrifugally forcing the soot to the inner wall of the cylinder. Also mounted within the collector there may be a means for 50 discharging wash water over the collector's inner wall so that the soot particles located thereat are washed downwardly. Mounted within the collector above the water discharging means there may be a means for trapping water particles and returning them to the water discharg- 55 ing means. In this manner water particles which remain in the upwardly flowing gases after the washing process will be recovered and returned to the water discharging means. An exit duct may be connected to the collector's top outlet for receiving the clean gas and a baffle means 60 the impeller area. may be mounted within this duct for impeding any circular motion of this gas as it continues its upward flow.

An object of the present invention is to provide a soot eliminator which is capable of more efficiently removing soot particles from smoke emanating from a boiler out- 65 let, incinerator and the like;

Another object is to provide a soot eliminator which employs a wash water technique and which is adapted to be connected to a smoke emanating device along the normal upward flow of said smoke;

A further object is to provide a soot eliminator which employs a wash water technique wherein water remain2

ing in the cleaned gases is recoverable and returnable for the washing process:

Still another object is to provide a soot eliminator which forceably mixes soot particles with wash water and yet discharges the cleaned gases with a minimum of turbulence; and

Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in

FIG. 1 is an elevational side view of the soot eliminator with portions cut away to show the details thereof;

FIG. 2 is a cross sectional view taken along plane II—II of FIG. 1;

FIG. 3 is a cross sectional view taken along plane III-III of FIG. 1; and

FIG. 4 is a cross sectional view taken along plane IV— IV of FIG. 1.

Referring now to the drawing wherein like reference 20 numerals designate like or similar parts throughout the several views there is shown in FIG. 1 the soot eliminator 10 which includes a hollow cylindrical soot collector 12. The soot collector 12 includes a bottom smoke receiving inlet 14, which is capable of being connected to an out-25 let 16 of a boiler, incinerator or the like, and further includes a top gas discharge outlet 18 with a gas column extending between the inlet and outlet. Accordingly, as smoke exits the boiler outlet 16 it will pass upwardly through the soot collector 12. Soot, for purposes of this 30 application, shall include all solids and particulate material entrained in the gas or air stream, irrespective of the source, of which the specific gravity is greater than that of the gas entraining the material and which is therefore adaptable to removal by centrifugal force in a device such as is described herein.

Mounted within the collector 12 is a means for forcing the soot to the inner wall 20 of the collector 12. This means may include an elongated multiple vane impeller 22 which is rotatably mounted within the collector 12 with its axis of rotation substantially aligned with the longitudinal axis of the collector 12. The impeller shaft 24 may be journalled within top and bottom bearings 26 and 28 which are mounted within the collector 12 by top and bottom spiders 30 and 32 respectively, the spider 30 being transversely connected to the collector across its outlet 18 and the spider 32 being transversely connected to the collector across the inlet 14.

The blades 34 of the impeller may be radially offset from the impeller shaft 24 by a large diameter tube 36 which is connected to the impeller shaft 24 by end plates 38. The blades 34 may be mounted to the tube 36 by any suitable means such as welding. The tube 36 serves the purpose of filling the central space within the collector where the centrifugal force on the column of soot particles would be at a minimum. A cone 40 may be mounted on top of the large diameter tube 36 for protecting the bearing 26 from soot particles. A similar cone 42 may be mounted at the bottom of the tube 36 for protecting the bearing 28 and baffling the upwardly traveling smoke into

In order to drive the impeller 22 a variable speed motor 44 may be mounted on the exterior of the collector 12 by a welded bracket 46 with the motor shaft 48 extending transverse the collector and into the top cone 40. A right angle gear box 50 may be connected at the upper interior end of the cone 40 by welding so as to receive the ends of the motor shaft 48 and the impeller shaft 24. It is now readily apparent that when smoke travels upwardly within the collector 12 the impeller 22 can be rotated at a desired speed by the motor 44 to centrifugally force soot particles in the column of smoke to the inner wall 20 of the collector.

In order to capture the soot particles which have been centrifugally forced to the inner wall 20 of the collector a means may be mounted within the collector for discharging wash water over this inner wall. The wash water discharging means may include an annular wash water supply header 52 which is mounted integrally with the collector wall and intermediate the inlet and outlet 14 and 18. Connected to the header 52 is a wash water supply conduit 54 which may be connected at an opposite end to a fresh water supply source (not shown). The wash water discharging means may further include an annular perforated tube 56 which is mounted adjacent to and circumferentially along the inner periphery of the inner wall 20 of the collector a short distance below of downwardly facing perforations 58 which are adjacent the inner wall 20, the tube 56 being connected to the header 52 by an annular conduit 60. Accordingly, the wash water is supplied to the annular tube 56 after which the water exits through the many perforations 58 to provide a wall of water about the inner wall 20 around the outer periphery of the gas column of the collector 12. The outwardly thrown soot particles are mixed with this wall of water and are carried downwardly within the collector to an annular scavenging trough 62. The scavenging trough 62 may be integral with the wall of the collector 12 and may be mounted at its inlet end 14. A drain pipe 64 may be connected to the scavenging trough 62 for draining the soot filled water to a sewer system, or to a filter where it can be cleaned and made available for 30 recirculation.

Because of the turbulence of the upwardly rising gaseous products within the collector 12 there may be some water particles entrained in the gas above the annular tube 56. It is desirable that these water particles be removed from the upwardly moving gas and returned to the wash water header 52. In order to accomplish this a means has been mounted within the collector above the wash water tube 56 for trapping the water particles and returning them to the header 52. The water trapping 40 means may include an inner hollow cylinder 66 which is concentrically mounted in a spaced relationship within the collector 12 so as to provide an annular space 68 therebetween. Accordingly, the space 68 will provide a drain area for returning water to the header 52. The bottom end of the hollow cylinder 66 may be integrally connected with the header 52 and a top end of the cylinder 66 may be connected to the spider 30 by welding. Intermediate the top and bottom ends of the cylinder 66 are vertically extending slots 70 which communicate the 50 interior of the collector 12 with the annular space 68. Accordingly, the upwardly rising water particles are centrifugally forced outwardly by the impeller 22 onto the inner surface of the cylinder 66 where the water particles will collect and run into the annular space 68 through the slots 70. The water collected within the annular space 68 will then drain down the interior wall 20 of the collector into the header 52 whereupon it will be fed to the annular tube 56 for further washing purposes.

A slight amount of water may still be entrained within 60 the circular moving gaseous products as they leave the outlet end 18 of the collector. It is desirable that as much of this water as possible be returned to the collector so that it can be forced through the slots 70 into the annular drain area 68. As shown in FIG. 1 an exit duct 72 is 65 connected to the upper outlet end 18 of the collector. This exit duct may be connected at an opposite end to a chimney which will dissipate the gases into the atmosphere. The water particles within the column of gases in the exit duct 72 may be returned to the collector 12 by a 70 baffle means which is mounted within the exit duct for impeding the circular motion of the gases. The baffle means may include a series of baffles 74 which are mounted to the inner wall of the exit duct 72 and which extend inwardly with a slight curve opposite to the cir- 75

cular motion of the upwardly rising gases. These baffles 74 will slow the circular motion of the gases thereby causing entrained water particles to fall or drain into the collector 12 and within the cylinder 66 where they can be recovered for washing purposes.

The soot eliminator may be constructed mainly of sheet metal and metal parts. The various components may be connected together by any suitable means such as welding.

In the operation of the soot eliminator the upwardly 10 rising smoke from the boiler outlet 16 is caused to undertake a high circumferential velocity within the collector 20 due to the action of the impeller 22. The soot particles within the upwardly rising smoke column are forced outwardly onto the inner wall 20 of the collector where a the header 52. The tube 56 may be provided with a series 15 wall of water captures and entrains these particles and washes them downwardly into the scavenging trough 62. The water particles entrained within the upwardly rising cleaned gases are then recovered in the trough 62 after they are forced through the slots 70 by the action of the impeller 22. Water which is still entrained in the gases leaving the outlet 18 is returned by the baffles 74 to the water recovering cylinder 66.

It is now readily apparent that the present invention provides an easily constructed soot eliminator which will efficiently remove soot particles from a smoke column. The soot eliminator uses wash water techniques to provide a maximum cleaning of the gaseous products and yet the soot eliminator can be mounted to a smoke discharging apparatus along the normal upward movement of the smoke column.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

I claim:

1. A soot eliminator comprising:

a hollow cylindrical soot collector having a bottom smoke receiving inlet, a top gas discharge outlet, and a gas column therebetween;

rotatable impeller means mounted within said collector for centrifugally throwing soot particles from the gas column toward the inner wall of the collector; means mounted within said collector substantially adjacent to and circumferentially along the inner periphery of the inner wall for discharging wash water over said inner wall around the outer periphery of the gas column so as to provide a peripheral wall of wash water about the gas column for receiving said soot particles;

motor means connected to the impeller means for rotating said impeller means;

means mounted within said collector above the water discharging means for trapping water particles and returning them to the water discharging means;

means for forcing said water particles to the water trapping means:

the means for forcing the soot to the inner wall and the means for forcing the water particles to the water trapping means is said rotatable impeller; and

said water trapping means including: an inner hollow cylinder concentrically mounted in a spaced relationship within the collector;

the inner cylinder having longitudinal slots for receiving the water particles; and

the water discharging means opening into the space between the inner hollow cylinder and the collector opening for receiving water trapped in said space.

2. A soot eliminator comprising:

a hollow cylindrical soot collector having a bottom smoke receiving inlet, a top gas discharge outlet, and a gas column therebetween;

impeller means mounted within said collector for

4

centrifugally forcing soot particles from the gas column toward the inner wall of the collector; said impeller means including:

a central hub which extends in axial alignment along the collector throughout substantially the full length of said wall of wash water; and

a plurality of vanes mounted on said hub and extending along the hub throughout substantially the full length of said wall of water:

means mounted within said collector substantially adjacent to and circumferentially along the inner periphery of the inner wall for discharging wash water over said inner wall around the outer periphery of the gas column so as to provide a peripheral wall of wash water about the gas column for receiving soot particles:

means mounted within said collector above the water discharging means for trapping water particles and returning them to the water discharging means;

an exit duct connected to the collector's top outlet for 20 receiving the cleaned gas;

baffle means mounted within the exit duct for impeding any circular motion of said gas;

motor means connected to the impeller means for rotating said impeller means;

said water discharge means including:

an annular header mounted about the collector's inner wall:

said annular header being open on a top side for receiving the trapped water particles from the 30 water trapping and returning means; and

an annular perforated tube also mounted about the collector's inner wall below the annular header and connected to the header for receiving wash water therefrom;

a wash water scavenging trough mounted about the collector's inner wall near the bottom inlet for receiving the soot filled wash water; said water trapping means including:

an inner hollow cylinder concentrically mounted in a spaced relationship within the collector;

the inner cylinder having longitudinal slots for receiving the water particles; and

the space between the inner hollow cylinder and the collector opening into the water discharging means.

3. A soot eliminator as claimed in claim 2 wherein: said impeller means extends into said inner hollow cylinder for centrifugally forcing the water particles through the slots of the inner hollow cylinder.

4. A soot eliminator as claimed in claim 3 including: a wash water scavenging trough mounted about the collector's inner wall near the bottom inlet for receiving the soot filled wash water.

References Cited

UNITED STATES PATENTS

•			
	793,110	6/1905	Uehling 55—240
	1,447,554	3/1923	Jones 55—406
	2,453,593	11/1948	Putney 55—408
	3,336,733	8/1967	Wisting 55—228
5	2,213,881	9/1940	Lauer 55—223
	2,256,524	9/1941	McKelvey 55—184
	3,064,411	11/1962	Breslove 55—416
	3,191,364	6/1965	Sylvan 55—257
	3,234,993	2/1966	Belcher 55—406
0			
FOREIGN PATENTS			
	359,739	10/1931	Great Britain.
	704,898	3/1931	France.

HARRY B. THORNTON, Primary Examiner.

B. NOZICK, Assistant Examiner.