Office de la Proprieté Canadian CA 2359880 C 2006/07/04

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 359 880
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2000/02/17 (51) CLInt./Int.Cl. GO6F 17/30(2006.01),
(87) Date publication PCT/PCT Publication Date: 2000/08/24 GO6F 12/00(2006.01), GO6F 7/00(2006.01)
- . (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2006/0/7/04 SEDLAR. ERIC. US
(85) Entréee phase nationale/National Entry: 2001/08/02 L
) o (73) Proprietaire/Owner:
(86) N demande PCT/PCT Application No.: US 2000/003967 ORACLE INTERNATIONAL CORPORATION. US

(87) N® publication PCT/PCT Publication No.: 2000/049533 (74) Agent: SMITH, PAUL RAYMOND
(30) Priorité/Priority: 1999/02/18 (US09/251,757)

(54) Titre : INDEXATION HIERARCHISEE PERMETTANT UN ACCES DE TYPE HIERARCHISE A L'INFORMATION
D'UN SYSTEME RELATIONNEL

(54) Title: HIERARCHICAL INDEXING FOR ACCESSING HIERARCHICALLY ORGANIZED INFORMATION IN A
RELATIONAL SYSTEM

110

A
114 .
A
' UNIX
Windows e
i
116 120 12
e M Y — A A
Access App1 App2 App3 App4
122
TN 118 | .
Example.doc -/ Examp!e.docj

(57) Abréegée/Abstract:

A method and mechanism are provided for creating. maintaining, and using a hierarchical index to efficiently access information In
a relational system based on pathnames, thus emulating a hierarchically organized system. Each item that has any children In the
emulated hierarchical system has an index entry in the index. The index entries In the Index are linked together in a way that reflects
the hierarchical relationship between the items associated with the index entries. Pathname resolution Is performed by following
direct links between the index entries associated with the items In a pathname, according to the sequence of the filenames within
the pathname. By using an index whose index entries are linked in this manner, the process of accessing the items based on their
pathnames Is significantly accelerated, and the number of disk accesses performed during that process Is significantly reduced.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

G 0 A O A

9533 A3

-

S

—

00

CA 02359880 2001-07-25

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Burean

(43) International Publication Date
24 August 2000 (24.08.2000)

(51) Intermational Patent Classification’;
(21) Intermational Application Number: PCT/US00/03967

(22) Intermational Filing Date: 17 February 2000 (17.02.2000)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

09/251,757 18 February 1999 (18.02.1999) US

(71) Applicant: ORACLE CORPORATION [US/US}; 500
Oracle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventor: SEDLAR, Eric; 841 Timlott Lane, Palo Alto,
CA 94036 (US).

PCT

GOG6F 17/30

A 0 O N

(10) International Publication Number

WO 00/49533 A3

(74) Agents: HICKMAN, Brian, D, et al.; Hickmann Palermo
Truong & Becker, 1600 Willow Street, San Jose, CA
95125-5106 (US).

(81) Designated States (national): AU, CA, JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU, MC,
NL, PT, SE).

Published:
With international search report.

—

(83) Date of publication of the intermational search report:
5 July 2001

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: HIERARCHICAL INDEXING FOR ACCESSING HIERARCHICALLY ORGANIZED INFORMATION IN A RELA-

"'

TIONAL SYSTEM

14
=)
16

20
F A
v | [
\ 118
Example.doc

126

24

122

1 3

Example.doc

(57) Abstract: A method and mechanism are provided for creating, maintaining, and using a hierarchical index to efficiently access
information in a relational system based on pathnames, thus emulating a hierarchically organized system. Each item that has any
children in the emulated hierarchical system has an index entry in the index. The index entries in the index are linked together in a way
that reflects the hierarchical relationship between the items associated with the index entries. Pathname resolution is performed by
following direct links between the index entries associated with the items in a pathname, according to the sequence of the filenames
within the pathname. By using an index whose index entries are linked in this manner, the process of accessing the items based on
their pathnames is significantly accelerated, and the number of disk accesses performed during that process is significantly reduced.

10.

15

20

25

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

HIERARCHICAL INDEXING FOR ACCESSING HIERARCHICALLY
ORGANIZED INFORMATION IN A RELATIONAL SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to database systems, and in particular to
using a hierarchical index to access hierarchically organized information in a relational

database system.

BACKGROUND OF THE INVENTION

Humans tend to organize information in categories. The categories in which
information is organized are themselves typically organized relative to each other in
some form of hierarchy. For example, an individual animal belongs to a species, the
species belongs to a genus, the genus belongs to a family, the family belongs to an order,
and the order belongs to a class.

With the advent of computer systems, techniques for storing electronic
information have been developed that largely reflected this human desire for hierarchical
orgamization. Conventional computer file systems, for example, are typically
implemented using hierarchy-based organization principles. Specifically, a typical file
system has directories arranged in a hierarchy, and documents stored in the directorics.
Ideally, the hierarchical relationships between the directories reflect some intuitive
relationship between the meanings that have been assigned to the directories. Similarly,
it is ideal for cach document to be stored in a directory based on some intuitive
relationship between the contents of the document and the meaning assigned to the
directory in which the document is stored.

Fig. 1 shows an example of a typical file system. The illustrated file system
includes numerous directories arranged in a hierarchy. Two documents 118 and 122 are
stored 1n the directories. Specifically, documents 118 and 122, both of which are entitled
“Example.doc”, are respectively stored in directories 116 and 124, which are
respectively entitled “ Word” and “ App4”.

In the directory hierarchy, directory 116 is a child of directory 114 entitled
“Windows”, and directory 114 is a child of directory 110. Similarly, directory 124 is a

-1-

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

child of directory 126 entitled “VMS” | and directory 126 is a child of directory 110.
Directory 110 1s referred to as the *“root” directory because it is the directory from which
all other directories descend. In many systems, the symbol “/” is used to refer to the root
directory.

When electronic information is organized in a hicrarchy, cach item of information
may be located by following a *“path” through the hierarchy to the entity that contains
the item. Within a hierarchical file system, the path to an item begins at the root directory
and proceeds down the hierarchy of directories to eventually arrive at the directory that

contains the item of interest. For example, the path to file 118 consists of directories

110, 114 and 116, 1n that order.

Hierarchical storage systems often allow different items to have the same name.
For example, 1n the file system shown in Figure 1, both of the documents 118 and 122
are entitled “ Example.doc”. Consequently, to unambiguously identify a given
document, more than just the name of the document is required.

A conventent way to 1dentify and locate a specific item of information stored in a
hierarchical storage system is through the use of a “pathname”. A pathname is a concise
way of uniquely identifying an item based on the path through the hierarchy to the item.
A pathname 1s composed of a sequence of names. In the context of a file system, each
name 1n the sequence of names is a *“ filename”. The term “ filename™ refers to both the
names of directories and the names of documents, since both directories and documents
are considered to be “files”.

Within a file system, the sequence of filenames in a given pathname begins with
the name of the root directory, includes the names of all directories along the path from
the root directory to the item of interest, and terminates in the name of the item of
interest. Typically, the list of directories to traverse is concatenated together, with some
Kind of separator punctuation (e.g., /', V', or ;') to make a pathname. Thus, the pathname
for document 118 is /Windows/Word/Example.doc, while the pathname for document
122 1s /VMS/App4/Example.doc.

The relationship between directories (files) and their contained content varies

significantly between different types of hierarchically organized systems. One model,

.

LN

10

15

20

25

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

employed by various implementations, such as Windows and DOS file systems, requires
each file to have exactly one parent, forming a tree. In a more complicated model, the
hierarchy takes the form of a directed graph, where files can have multiple parents, as in
the UNIX file system in which hard links are used.

In contrast to hierarchical approaches to organizing electronic information, a
relational database stores information in tables comprised of rows and columns. Each
row 1s identified by a unique RowID. Each column represents an attribute of a record,
and each row represents a particular record. Data is retrieved from the database by
submitting queries to a database management system (DBMS) that manages the
database.

Each type of storage system has advantages and limitations. A hierarchically
organized storage system is simple, intuitive, and easy to implement, and is a standard
model used by most application programs. Unfortunately, the simplicity of the
hierarchical organization does not provide the support required for complex data retrieval
operations. For example, the contents of every directory may have to be inspected to
retrieve all documents created on a particular day that have a particular filename. Since
all directories must be searched, the hierarchical organization does nothing to facilitate
the retrieval process.

A relational database system is well suited for storing large amounts of
information and for accessing data in a very flexible manncr. Reclative to hicrarchically
organized systems, data that matches even complex search criteria may be easily and
efiiciently retrieved from a relational database system. However, the process of
formulating and submitting queries to a database server is less intuitive than merely
traversing a hierarchy of dircctories, and is beyond the technical comfort level of many

computer users.

In the past, hierarchically organized systems and relationally organized systems
have been implemented in different ways that were not compatible. With some
additional processing, however, a relationally organized system can emulate a

hierarchically organized system. This type of emulation is especially desirable when the

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

storage capability and flexibility of a relational system is nceded, but the intuitivencss
and ubiquity of the hierarchical system is desired.

Such emulation may be implemented through the use of two relational tables: a
“File” table and a “Directory_links” table. The File table stores information relating to

5 each filc in the emulated hierarchical system. For files that are documents, the File table

[urther stores etther the body of the file (in the form of a large binary object (BLOB)), or
a pointcr to the body of the document. The Directory links table stores all of the link
information that indicates the parent-child relationships between files.

To illustrate how these two tables may be used to emulate a hierarchical storage

10 system, suppose that a file system having the hierarchical structure of Fig. 1 is

implemented in a database. The file system of Fig. 1 can be illustrated as [ollows (a

unique ID, shown in parentheses, is assigned by the system to uniquely identify each
file):

15 -/ (X1)
-Windows (X2)
-Word (X3)
-Example.doc (X4)
-Access (X35)
20 -Unix (X6)
-Appl (X7)
-App2 (X8)
-VMS (X9)
-App3 (X10)
25 -App4 (X11)
-Example.doc (X12)

Fig. 2 shows a files table 210, and Fig. 3 shows a directory links table 310, which
may be used by a computer system to emulate the file system of Fig. 1 in a relational

30 database system. Files table 210 contains an entry for each file in the system. Each entry

_4-

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

includes a RowlD, a file ID, 4 name, a body column, and a modification datc column
(plus other system-maintained information such as creation date, access permission
information, etc.).

' The FilelD 1s a unique ID assigned to each file by the system, the name is the
name assigned to the file, which does not need to be unique, and the body is the field in
which the contents of a file are stored. The body field may store the actual contents of a
file in the form of a binary large object (BLOB), or a pointer to the contents of the file.
Where the entry 1s for a file having no content (e.g. a directory), the body field is null. In
the above example, only the two documents entitled Example.doc have content; thus, the
body ficld for all of the other entries is null.

In directory links table 310, an entry is stored for each link between files in the
file system of Fig. 1. Each entry includes a parent 1D, a child ID, and a child name field.
For each link, the parent ID field specifies the file which is the parent file for the link, the
child ID field specifies the file which is the child file for the link, and the child name
ficld specifies the name of the child file in the link. Thus, for example, in the entry for
the link between root directory 110 and Windows directory 114, dircctory links table 310
specifies that X1 (the FileID of the root directory) is the Parent 1D, X2 (the FileID of the
Windows directory) 1s the child ID, and “ Windows” is the child name.

To 1llustrate how the information in these two tables may be used to implement
the file system of Fig. 1, suppose that it is necessary to access document 118. As
explained above, document 118 has the path: /Windows/Word/Example.doc. To access
this file, the DBMS makes an initial scan of directory links table 310 to find the entry
where root directory 110 is the parent file and Windows directory 114 is the child file.
To do this, the DBMS executes something like the following SQL statement:

Select ChildID
from directory links

Where ParentID="X1"

child name="Window".

10

15

20

25

30

CA 02359880 2002-08-30

This query returns the ID of the child file, which in this case 1s X2 (for
Windows directory 114). After obtaining the ID of the child file, the DBMS makes a
second scan of the directory links table 310, this time looking for the entry where the
parent file 1s Windows directory 114, and the child tile 1s Word directory 116. This

1s achieved by executing the following Select statement:

Select ChildID
from directory links
Where ParentiD="X2" and
Child name="Word".

This query returns the ID ot Word directory 116, which in this example 1s X3.
With this information, the DBMS makes a third scan of directory links table 310, this
time searching for the entry where the parent file is Word directory 116 and the child
file 1s Example.doc document 118. This 1s achieved with the following Select

statement:

Select ChildID
from directory links
Where ParentlD="X3" and

Child name="Example.doc”

At the end of this process, the ID of document 118 will have been determined.
Using this ID as the primary key, the proper entry in tiles table 210 1s located, and the
contents of document 118 are accessed from the body field. Thus, using this
technique, files that are actually stored in a relational structure, such as table 210,
may be located and accessed using pathnames just as it they were stored in a
hierarchically organized structure. The user submitting the pathname to locate a file
need not understand the complexity of a relational system. Conversely, because the
files are stored in a relational system, the files may be efficiently accessed 1in more

sophisticated ways by users that are famihar with relational systems.

6y

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

The process outhined above i1s the process of pathiname resolution, wherein the
pathname of the file is resolved into the location on disk where the file data is stored.
The method described 1s effective for implementing a file system using a relational
database, and 1s the method appropnate for relational theory. Unfortunatcly, however,
the process requires the execution of multiple quernies, and hence, multiple scans of
directory links table 310. Specifically, it takes an "1" number of scans to resolve the path
of a file, where 1 1s the number of levels in the path (each intermediate directory adds a
tevel). This can be a performance problem.

For purposes of simplifying the performance evaluation, assume that the
performance of thc pathname resolution is directly proportional to the number of disk
blocks that must be accessed. (This is because disk access 1s an order of 100 slower than
memory access, and for large file systems, we can assume that most of the data will be
on disk.) Assuming that a conventional BTREE index has been built on the
directory links table 310, the number of disk block accesses that a DBMS has to perform
in one scan of a table is log(n)/m where n 1s the number of entries in the table and m is
the number of entries per block. Thus, using the pathname resolution technique described
above, the average number of accesses that the DBMS will have to perform to access a
file 1s 1*log(n)/m.

For complex file systems having a large number of links and a large number of
link levels, the number of disk accesses can become quite large. Since /O operations are
very slow relative to other typces of operations, having a large number of disk accesses
can significantly degrade system performance. In general, the pathname resolution
method described 1s quite slow when applied to large, complex file systems.

While the data structure of the table 1s appropriate for easy access to the file
system data from relational applications, the standard types of indexes used by databases
are too slow for efficient pathname-based access to data organized in this manner. What
1s needed, then, 1s an apparatus, system or method that emulates a hierarchically
organized system using a relationally organized system, but which reduces the number of

disk accesses necessary to locate the items in the system when they are accessed based

on their pathnames.

R TITTrTCE T BRI SNpRE vt TR O S TR PRI

10

15

20

235

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

SUMMARY OF THE INVENTION

A method and mechanism are provided for creating, maintaining, and using a
hierarchical index to efficiently access information in a relational system based on a
pathnames, thus emulating a hierarchically organized system.

According to one aspect of the invention, each item that has any children in the
emulated hierarchical system has an index entry in the index. The index entries in the
mdex are linked together in a way that reflects the hierarchical relationship between the
items associated with the index entries. Specifically, if a parent-child relationship exists
between the items associated with two index entries, then the index entry associated with
the parent item has a direct link to the index entry associated with the child item.

According to another aspect of the invention, pathname resolution is performed
by tollowing direct links between the index entries associated with the items in a
pathname, according to the scquence of the filenames within the pathname. By using an
index whose index entries are linked in this manner, the process of accessing the items
based on their pathnames is significantly accelerated, and the number of disk accesses

performed during that process is significantly reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which;

Fig. 1 1s a block diagram illustrating a hierarchically organized file system:

Fig. 2 shows a files table 210 that may be used to emulate a hierarchically
orgamized system in a relationally organized system;

Fig. 3 shows a directory links table 310 that may be used in conjunction with files
table 210 of Fig. 2 to emulate a hierarchically organized system:;

Fig. 4 1s a block diagram illustrating a database system that may be used to

implement a hierarchical index in accordance with one embodiment of the invention:

st RN S T M e TR P bR M s L e -

10

15

20

25

30

CA 02359880 2001-07-25

WO (00/49533 PCT/US00/03967

F1g. 5 shows a hierarchical index that may be used to enhance performance of an
emulated hierarchical system within a rclational system;

Fig. 6A 1s a flowchart illustrating how hierarchical index 510 is maintained
during the creation of an item;

Fig. 6B 1s a tlowchart 1llustrating how hierarchical index 510 is maintained
during the deletion of an item:;

Fig. 71s a flowchart showing the process for resolving a pathname uvsing
hierarchical index 510 in accordance with an embodiment of the invention:

Fig. 8 1s a block diagram illustrating an example of a hardware system that may

be used to implement the apparatus, systems and methods consistent with the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for providing c¢fficient pathname-based access to data
stored 1n a relational system is described. In the following description, for the purposes
of explanation, numerous specific details are sct forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the
art that the present mmvention may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order

to avoid unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW

Techniques are described herein for creating, maintaining, and using a
hierarchical index to efficiently access information in a relational system based on a
pathnames, thus emulating a hierarchically organized system. Each item that has any
children in the emulated hierarchical system has an index entry in the index. The index
entries in the index are linked together in a way that reflects the hierarchical relationship
between the 1tems associated with the index entries. Specifically, if a parent-child
relationship exists between the items associated with two index entries, then the index

entry associated with the parent item has a direct link to the index entry associated with

the child item.

10

15

20

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

Consequently, pathname resolution 1s performed by following direct links
between the index entries associated with the items in a pathname, according to the
sequence of the filenames within the pathname. By using an index whose index entries
are linked in this manner, the process of accessing the items based on their pathnames is
significantly accelerated, and the number of disk accesses performed during that process

1s significantly reduced.

DATABASE ARCHITECTURE

Fig. 4 1s a block diagram showing a database architecture that may be used to
create, use, and maintain 4 hierarchical index consistent with the principles of the present
invention. The architecture comprises a user interface 410, a DBMS 412, and a database
414. DBMS 412 interacts with the user via user interface 410, and accesses and
maintains database 414 in accordance with the user input. DBMS 412 may also interact
with other systems (not shown).

DBMS 412 creates, uses, and maintains a hierarchical index in database 414 in
accordance with the principles of the present invention. Hierarchical index creation, use
and maintenance will be described hereafter in greater detail.

In general, DBMS 412 creates a database by organizing information in one or
more tables. The organization of the table 1s referred to as a definition. An index is a
structure that 1s used for accessing particular information in the table more quickly.
Theretore, a table definition supports any access mechanism to the data (search by name,
by ID, by date, etc.), whereas an index is designed for a specific access method. The
index 1tself 1s generally not the authoritative source of the data, but rather contains

pointers to the disk addresses of the tables storing the authoritative data.

_10-

10

15

20)

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

HIERARCHICAL INDEX

Hierarchical indexes consistent with the invention support the pathname-based
access method of a hierarchical system, moving from parent items to their children, as
specified by the pathname. According to one embodiment, a hierarchical index
consistent with the principles of the invention employs index entries that include the

kF1g. 5 shows a hierarchical index 510 consistent with the invention, which may
be used to emulate a hicrarchical storage system in a database. Hierarchical index 510 is
a table. The RowID column contains system generated Ids, specifying a disk address
that enables DBMS 412 to locate the row on the disk. Depending on the relational
database system, RowID may be an implicitly defined field that the DBMS uses for
locating data stored on the disk drive. The FilelD field of an index entry stores the FileID
of the file that 1s associated with the index entry.

According to one embodiment of the invention, hierarchical index 510 only stores
index eninies for items that have children. In the context of an emulated hierarchical file
system, therefore, the items that have index entries in the hierarchical index 510 are only
those directories that are parents to other directories and/or that are currently storing
documents. Those items that do not have children (Example.doc, Access, Appl, App2,
App3) are preferably not included. The Dir entry list ficld of the index entry for a given
file stores, in an array, an **array entry” for each of the child files of the given file.

For example, index entry 512 is for the Windows directory 114. The Word
directory 116 and the Access directory 120 are children of the Windows directory 114.
Hence, the Dir_entry list field of index entry 512 for the Windows directory 114
includes an array entry for the Word directory 116 and an array entry for the Access
directory 120.

According to one embodiment, the specific information that the Dir entry list
field stores for each child includes the filename of the child and the FileID of the child.
For children that have their own entries in the hierarchical indcx 510, the Dir cntry list

field also stores the RowID of the child’s index entry. For example, the Word directory

_11-

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

116 has its own entry 1n hierarchical index 510 (entry 514). Hence, the Dir entry list
field of index entry 512 mcludes the name of directory 116 (“ Word”), the RowID of the
index entry for directory 116 in hierarchical index 510 (““Y3”), and the FilelD of
directory 116 (*“X3”"). As shall be described in greater detail, the information contained
> inthe Dir_entry list field makes accessing information based on pathnames much faster

and easier.

Several key principles of the hierarchical index arc as follows:

. The Dir_entry_list information in the index entry for a given directory is
kept together 1n as few disk blocks as possible, since the most

10 irequently used filesystem operations (pathname resolution,
dircctory listing) will need to look at many of the entries in a
particular directory whenever that directory is referenced. In other
words, directory entries should have a high locality of reference
because when a particular directory entry is referenced, it is likely

15 that other entries in the same directory will also be referenced.

. The information stored in the index entries of the hierarchical index must
be kept to a minimum, so as to fit the maximum number of entries
in a particular disk block. Grouping directory entries together in
an array means that there 1s no need to replicate a key identifying

20 the directory they arc in; all of the entries in a directory sharc the
same key. This 1s 1n contrast to the typical relational table model
shown 1n the directory links table (table 310).

¢ The time needed to resolve a pathname should be proportional to the
number of directories in the path, not the total number of files in

25 the filesystem. This allows the user to keep frequently-accessed
files toward the top of the filesystem tree, where access time is
lower.

These elements are all present in typical file system directory structures, such as

the UNIX system of inodes and directories. The use of a hierarchical index, as described

30 heremn, reconciles those goals with the structures that a relational database understands

-12-

s

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

and can query, to allow the database server to do ad-hoc searches of files in a manner
other than that used in pathname resolution. To do this, the database concept of an index
must be used: a duplicate of parts of the underlying information (in this case, the file
data) arranged 1n a separate data structure in a different manner designed to optimize

access via a particular method (in this case, resolution of a pathname in a hierarchical

tree).

USING THE HIERARCHICAL INDEX

How hierarchical index 510 may be used to access a file based on the pathname
of the file shall now be described with reference to the flowchart in Fig. 7. It shall be
assumed for the purpose of explanation that document 118 is to be accessed through its
pathname. The pathname for this file is /Windows/Word/Example.doc, which shall be
reterred to'hereafter as the “input pathname” . Given this pathname, the pathname
resolution process starts by locating within hierarchical index 510 the index entry for the
first name in the input pathname. In the case of a file system, the first name in a
pathname 1s the root directory. Therefore, the pathname resolution process for locating a
file within an emulated file system begins by locating the index entry 508 of the root
directory 110 (step 700). Because all pathname resolution operations begin by accessing
the root directory’s index entry 508, data that indicates the location of the index entry for
the root directory 110 (index entry 508) may be maintained at a convenient location
outside of the hierarchical index 510 in order to quickly locate the index entry 508 of the
root directory at the start of cvery search.

Once the index entry 508 for the root directory 110 has been located, the DBMS
determines whether there are any more filenames in the input pathname (step 702). If
there are no more filenames in the input pathname, then control proceeds to step 720 and
the FileID stored in index entry 508 is used to look up the root directory entry in the files
table 210.

In the present example, the filename “ Windows” follows the root directory
symbol “/” 1n the input pathname. Therefore, control proceeds to step 704. At step 704

)

the next filename (e.g. “ Windows™) is selected from the input pathname. At step 706,

13-

cit e IV Lt i 54 0 RACMEN PN MO ALK 4 1 dbe k¢ | 0SB ettt e .

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

the DBMS looks 1n the Dir_entry list column of the index entry 508 to locate an array
entry pertaining to the selected filename.

In the present example, the filename that follows the root directory in the input
pathname 1s “ Windows” . Therefore, step 706 involves searching the Dir_entry list of
index entry 508 for an array entry for the filename *“ Windows™. If the Dir entry list
does not contain an array entry for the selected filename, then control would proceed
from step 708 to step 710, where an error is generated to indicate that the input pathname
1s not valid. In the present example, the Dir_entry list of index entry 508 does include
an array entry for “ Windows”. Thereforc, control passes from step 708 to step 722.

The information 1n the Dir_entry list of index entry 508 indicates that one of the
children of the root directory 110 is indeed a file named “ Windows”. Further, the
Dir_entry list array entry contains the following information about this child: 1t has an
index entry located at RowID Y2, and its FileID is X2.

At step 722, 1t 1s determined whether there are any more filenames in the input
pathname. If there are no more filenames, then control passes from step 722 to step 720.
In the present example, “ Windows™ is not the last filename, so control passes insiead to
step 724.

Because “ Windows” 1s not the last filename in the input path, the FileID
information contained in the Dir_entry list is not used during this path resolution
operation. Rather, because Windows directory 114 is just part of the specified path and
not the target, files table 210 1s not consulted at this point. Instead, at step 724 the
RowlID (Y2) for “ Windows™, which is found in the Dir entry list of index entry 508, is
used to locate the index entry for the Windows directory 114 (index entry 512).

Consulting the Dir_entry list of index entry 512, the system searches for the next
filename 1n the input pathname (steps 704 and 706). In the present example, the filename
“Word” follows the filename “ Windows” in the input pathname. Therefore, the system
searches the Dir entry list of index entry 512 for an array entry for “Word”. Such an
entry exists in the Dir_entry hist of index entry 512, indicating that “ Windows” actually
does have a child named “Word” (step 708). At step 722, it is determined that there are

more fllenames 1n the input path, so controi proceeds to step 724.

-14-

Hh e L e U DR RAMRR R M e foiss

10

15

20

235

30

CA 02359880 2002-08-30

Upon finding the array entry tor “Word™, the system reads the information 1n
the array entry to determine that an index entry for the Word directory 116 can be
found 1n hierarchical index 510 at RowlD Y3, and that specific information
pertaining to Word directory 116 can be found in files table 210 at row X3. Since
Word directory 116 1s just part of the specified path and not the target, files table 210
is not consulted. Instead, the system uses the RowlD (Y3) to locate the index entry
514 for Word directory 116 (step 724).

At RowlD Y3 of hierarchical index 510, the system finds index entry 514. At
step 704, the next filename “Example.doc” 1s selected trom the input pathname. At
step 706, the Dir entry list of index entry 514 s searched to tind (step 708) that
there is an array entry for “Example.doc”, indicating that “Example.doc” 1s a child ot
Word directory 116. The system also finds that Example.doc has no indexing
information in hierarchical index 510. and that specific information pertaining to
Example.doc can be found in files table 210 using the FileID X4. Since Example.doc
is the target file to be accessed (i.¢. the last filename 1n the input path), control passes
to step 720 where the system uses the FileID X4 to access the appropriate row in the
files table 210, and to extract the file body (the BLOB) stored in the body column of
that row. Thus, the Example.doc tile 1s accessed.

In accessing this file, only hierarchical index 510 was used. No table scans
were necessary. With typical sizes ot blocks and typical filename lengths, at least
100 directory entries will fit in a disk block, and a typical directory has less than 100
entries. This means that the list of directory entries in a given directory will typically
fit in a single block. In other words, any single index entry ot hierarchical index 510,
including the entire Dir entry list array ot the index entry, will typically fit entirely
in a single block, and therefore can be read 1n a single 1/0 operation.

In moving from index entry to index entry in the hierarchical index 510, 1t 1s
possible that some disk accesses will need to be pertormed 1t the various index
entries in the index reside in ditferent disk blocks. It each index entry entirely fits 1n a
single block, then the number of disk accesses, however, will at most be 1. In other
words, one disk access is used for each directory in the path. Even if the size of an

average index entry does not

10

15

20

25

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

fit 1n a single disk block, but requires 2 or 3 blocks, this will be a constant term, and wil]
not mcrease with the total number of files 1n the file system. Unlike the prior

methodology, the number of disk I/Os will not be 1*log(n)/m. Thus, file access using the

present invention will be much faster.

CREATION OF HIERARCHICAL INDEX

As explained above, a filename 1s the name used to reference any file stored in a
directory, and 1s a component of the pathname. For example, in the pathname
"/Windows/Word/Example.doc”, "Windows" is the filename of a directory, *“ Word” is
the filename of a directory within *“ Windows™, and "Example.doc" is the filename of a
document stored 1n the "Word" directory. Note that a scparator character divides the
filenames within a pathname. The separator character may differ in individual file
systcm implementations. Microsoft file systems, for example, have generally uscd a
backslash ("\") character, UNIX file systems use a forward slash, and Apple Macintosh
file systems use a colon (":") to separate filenames.

According to one embodiment, the FileID 1s the primary key in the files table
210, where the actual file data is stored. However, any primary key that references the
data stored for each file could be used in the hierarchical index in place of the FilelD.
The FilelD 1n this case is what 1s usually referred to as a "foreign key" in the hierarchical
mdex 510.

Imitially there are no files 1n the file system other than the root directory (/).
Therefore, the hierarchical index 1s created by inserting one row into the index 510 (Fig.
5) for the root directory. Because there are no files in the root directory at this point, the
Dir_entry list field of the root directory’s index entry should be left empty. The uscr of
the hierarchical index should keep the RowlD of the root entry in a separate location (for
example, iIn dynamic memory or in a separate table in the database with only one entry).
The root entry 1s the staring point for every use of the hierarchical index 510, so 1t is
important to have the location of that entry readily available. As new files are added to
the file system, the hierarchical index 510 1s updated as described in the section below

entitled "Maintenance of Hierarchical Index."

-16-

d

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49333 PCT/US00/03967

[f the hierarchical index 510 is to be created alter the file system has been
populated, it may be crcated by traversing the cntire file system and adding hicrarchical
index entries for each file present in the file system in the same manner as if the file had

just been added to the system, according to the method described in "Maintenance of

Hierarchical Index.”

MAINTENANCE OF HIERARCHICAL INDEX

The maintenance of one embodiment of a hierarchical index shall now be
described with reference to Figs. 6A and 6B. Referring to Fig. 6A, 1t 1s a flowchart
illustrating steps performed in response to a file being created in a file system that 1s
being emulated in a rclational system that uses a hierarchical index. At step 600, the new
file is created. At step 602, it is determined whether the new file is the first child of the
file that has been designated as its parent. For example, assume that a document
Docl.doc is being created in the Appl directory. Currently, Appl does not have any
children, so Docl.doc would be its first child and control would pass to step 604.

At step 604, an index entry is created for the parent. In the present example, an
index entry would be created for “ Appl”. At step 610, the array entry for the parent,
which resides in the index entry for the parent’s parent, is updated to include a link to the
newly created index entry. In the present example, the array entry 518 for “ Appl™ that
resides in the index entry 516 for “Unix” 1s updated to include the RowlD, within
hierarchical index 510, of the newly created index entry for “ App1”. At step 606, an
array entry for the new file Docl.doc is inserted into the Dir_entry_list of the newly
created index entry for “Appl”.

If the file being created is not the first child of the designated parent, then control
passes to step 608. At step 608, the index entry for the designated parent is located, and
at step 606 an array entry for the new file is inserted into the Dir_entry_list of the
parent’s index entry.

Figure 6B is a flowchart illustrating the steps for updating a hierarchical index n
response to a file being deleted. At step 650, the file is deleted. At step 652, 1t 1s
determined whether the file was the only child of a parent. If the delcted file was the

only child of a parent, then the index entry for the parent 1s removed from the index (step

-17-

10

15

20

23

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

654) and the array entry for the parent that resides 1n the index entry of the parent’s

parent 1s updated (step 660) to reflect that the parent no longer has an index entry n the

index. If the child was not the only index entry for the parent, then the array entry for the

deleted file 1s removed from the Dir entry list of the parent.

Whether or not the deleted file was the only child of its parent, any indcx entry
for the deleted file and index entries for the deleted file’s descendants are also deleted
(Step 658).

When files are moved from one location in the hierarchy to another, the
hierarchical index 1s updated by removing the array entry for the file from the

Dir_entry list of its old parent, and adding an array entry for the item to the

Dir_entry list of its new parent.

SEARCHING THE DIR ENTRY LIST ARRAY

As explained above, one step of the pathname resolution process involves
searching through the Dir cntry list array for an array entry of a particular child (Fig. 7,
step 706). According to one embodiment, this search process is facilitated by storing the
array entries in each Dir entry list array in alphabetical order. By storing the array
entries in order, more efficient searching techniques, such as a binary search, may be
used to find the entry for a given child. However, maintaining the array entries in sorted
order 1ncurs additional maintenance overhead. Consequently, in one embodiment, only

arrays that have more than a threshold number of array entries are ordered.

VARIATIONS
Specific embodiments have been used to 1llustrate the use of a hierarchical index
to access hierarchical data in a relational system. However, the present invention is not
hmited to the embodiments described. For example, hierarchical index 510 only
includes index entries for those items that have at least one child. However, a

hierarchical index may optionally include index entnes for all items, whether or not they

have children.

18-

22377 TR AE TOHET RN SRR TV ST DR T ST B SR VN [FIN EHRSETT

10

15

20

25

CA 02359880 2002-08-30

As illustrated, the Dir entry list array entnes of an index entry in hierarchical index
510 include the FileID, which may be used to locate the child in the files table. However, the
actual fields stored in each Dir entry list array entry may vary from implementation to
implementation. For example, the Dir entry list may additionally or alternatively include
the RowlD of the corresponding row in the files table, or any other unique, non-null key that
can be used to locate the corresponding entry 1in the files table.

According to one embodiment, the FileID is gencrated sequentially, in contrast to
rowids that are typically based on disk block addresses. The FilelD values are useful in
importing/exporting the directories in and out of the database (e.g. for backup/restore
purposes), since the RowlIDs used by the exporting database may be different than the
RowlIDs used for the same rows by the importing database if the importing database finds a
difterent place on disk to load the directory.

According to one embodiment, the hierarchical index does not have a separate FileID
column, as shown 1n Figure 5. Instead, the FileID of the target item is extracted from the
array entry for the target item, which is located in the Dir_entry list of the parent of the target
item. The FilelD of the root directory, which has no parent, may be stored separate from the
hierarchical index.

In addition, the Dir entry list entries may be used to “cache” useful information
about the items to which they correspond. Such additional information may include, for
example, information about the security privileges associated with the item. In some cases,
the additional information stored in the array entry for an item may include all of the
information required to satisfy a query that references the item, thus completely avoiding the
need to access the item’s files table information. However, the desire to cache useful
information in the Dir entry list must be weighed against the need to limit the size of the
Dir_entry list to reduce the number of [/Os required to read each index entry.

Embodiments of the invention have been described in the context of a file system.
However, the techniques described herein are applicable to the storage, within a relationally
organized system, of any hierarchically organmized information. For example, a relational

system may be used to store records about animals, where the animal records

19

10

15

20

25

30

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

are 10 be accessed based on a hierarchical “path” consisting of the class, order, family

and species to which the animals belong.

HARDWARE OVERVIEW

Figure 8 is a block diagram that illustratcs a computer system 800 upon which an
embodiment of the invention may be implemented. Computer system 800 includes a bus
802 or other communication mechanism for communicating information, and a processor
804 coupled with bus 802 for processing information. Computer system 800 also
includes a main memory 806, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 802 for storing information and 1nstructions to be
executed by processor 804. Main memory 806 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 804. Computer system 800 further includes a read only memory
(ROM) 808 or other static storage device coupled to bus 802 for storing static
information and instructions for processor 804. A storage device 810, such as a magnetic
disk or optical disk, is provided and coupled to bus 802 for storing information and
instructions.

Computer system 800 may be coupled via bus 802 to a display 812, such as a
cathode ray tube (CRT), for displaying information to a computer user. An mnput device
814, including alphanumeric and other keys, is coupled to bus 802 for communicating
information and command selections to processor 804. Another type of user mput device
is cursor control 816, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 804 and for
controlling cursor movement on display 812. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The invention is related to the use of computer system 800 for accessing
hierarchically organized information stored in a relational system. According to one
embodiment of the invention, computer systcm 800 creates, maintains and uses a
hierarchical index in response to processor 804 executing one or more sequences of one

or more instructions contained in main memory 806. Such instructions may be read into

220-

[EPPERFRR S TP RSORVIN BT SR-o~ S qR TIT S TR oo L B 2 A U B P - I S

10

15

20

25

30

CA 02359880 2001-07-25

WQO 00/49533 | PCT/US00/03967

main memory 800 from another computer-readable medium, such as storage device 810.
Execution of the scquences of instructions contained in main memory 806 causes
processor 804 1o perform the process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combination with software instructions
to implement the invention. Thus, embodiments of the invention are not limited to any
specific combination of hardware circuitry and software.

The term *“ computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 804 for execution. Such a medium
may take many forms, including but not limited to, non-volatile media, volatile media,
and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 810. Volatile media includes dynamic memory, such as
main memory 806. Transmission media includes coaxial cables, copper wire and hiber
optics, including the wires that comprise bus 802. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

Common forms of computer-readable media include, for example, a floppy disk,
a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns
of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 804 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
800 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried 1n the
infra-red signal and appropriate circuitry can place the data on bus 802. Bus 802 carnes

the data to main memory 806, from which processor 804 retrieves and executes the

21-

S SR P = T L IO O s B T e e L

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

instructions. The instructions received by main memory 800 may optionally be stored on
storage device 810 either before or after execution by proccssor §04.

Computer system 800 also includes a communication interface 818 coupled to bus
802. Communication interface 818 provides a two-way data communication coupling to a
nctwork link 820 that is connected to a local network 822. For example, communication
interface 818 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 818 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also
be implemented. In any such implementation, communication interface 818 sends and
receives electrical, electromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 820 typically provides data communication through one or more
networks to other data devices. For example, network link 820 may provide a
connection through local network 822 to a host computer 824 or to data equipment
operated by an Internet Service Provider (1SP) 826. ISP 826 in tum provides data
communication services through the world wide packet data communication network
now commonly referred to as the “Internet™ 828. Local network 822 and Internet 828
both use electrical, electromagnetic or optical signals that carry digttal data streams. The
signals through the various networks and the signals on network link 820 and through
communication interface 818, which carry the digital data to and from computer system
800, are exemplary forms of carrier waves transporting the information.

Computer system 800 can send messages and receive data, including program code,
through the network(s), network link 820 and communication interface 818. In the Internet
example, a server 830 might transmit a requested code for an application program through
Internet 828, ISP 826, local network 822 and communication interface 818.

The received code may be executed by processor 804 as it is received, and/or
stored 1n storage device 810, or other non-volatile storage for later execution. In this

manner, computer system 800 may obtain application code in the form of a carrier wave.

29

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, howcver, be evident that various modifications
and changes may be made thereto without departing from the broader spirit and scope of

the invention. The specification and drawings are, accordingly, to be regarded in an

i1llustrative rather than a restrictive sense.

23-

URDAPR TS TF T MRT R TP0 T PP Tt 1T SRR R

-

CA 02359880 2002-08-30

CLAIMS

What 1s claimed 1s:

S W b

Puinsnand

O o0 3 O w» b W N

A method for indexing, in a relational system, a plurality of items that belong

to a hierarchy, the method comprising the steps of:

creating an index;

storing in the index a first index entry for a first item of the plurality of items,
said first item being a child ot a second item in said hierarchy; and

storing in the index a second index entry for the second item of the plurality of
items, said second index entry containing a link to said first index

entry for locating said first index entry in said index.

The method of Claim 1 wherein said second item has a plurality of children 1n
the hierarchy, the method turther including the step of storing within said
second index entry an array of array entries, said array of array entries

including an array entry for each child item of said second item.

The method of Claim 2 further comprising the step of storing, in each array
entry of said array that corresponds to a child item that has its own index entry

in said index, a link to the index entry for the child item.

The method of Claim 2 further comprising the steps of:

receiving a sequence of names, including a first name associated with the first
item and a second name associated with the second 1tem;

using said second name to locate said second index entry;

using said first name to locate, within said array in said second index entry, an
array entry for said first item;

reading said link to said first index entry from said array entry for said first
item; and

following said link to said first index entry.

S L N

o

v 0 3 O un b W N

10.

CA 02359880 2002-08-30

The method of Claim 1 wherein the plurality of items includes a third item
that is a child of said second item, the method including the steps of:
storing 1n said index a third index entry for said third item; and

storing in said second index entry a link to said third item.

The method of Claim 1 wherein:
the first index entry includes information for locating said first item; and

the second index entry includes information for locating said second item.

The method of Claim 1 wherein:
the first 1item 1s stored outside said index; and
the second index entry includes intormation for locating said first item outside

ot said index.

The method of Claim 2 further comprising the step of maintaining said array
of array entries in sorted order based on the child items with which they are

associated.

A computer readable medium having stored thereon:

an index for accessing a plurality of items that are related to each other
according to a hierarchy, where each item of said plurality of items has
zero or more child items;

said index including a plurality of index entries;

wherein each index entry of said plurality of index entries
corresponds to an item of said plurality of items, and
1s linked to all index entries within the index that correspond to child

items of said item.

The computer readable medium of Claim 9 wherein:

w»n H W N wbhnh b W N S~ W DN

S~ W BN

11.

13.

14.

CA 02359880 2002-08-30

the plurality of items are stored electronically outside said index; and
each index entry of said plurality of index entries stores data for locating,

outside said index, the item that corresponds to the index entry.

The computer readable medium of Claim 10 wherein:
the plurality of items are stored in rows of a table; and
each index entry ot said plurality of index entries stores data tor locating 1n

said table the row tor the item that corresponds to the index entry.

The computer readable medium of Claim 9 wherein:

the plurality of items are stored electronically outside said index; and

each index entry of said plurality of index entries stores data for locating,
outside said index, the child items of the item that corresponds to the

index entry.

The computer readable medium ot Claim 12 wherein:

the plurality of items are stored in rows of a table; and

each index entry of said plurality of index entries stores data for locating 1n
said table the rows tor the child items of the item that corresponds to

the index entry.

The computer readable medium of Claim 9 wherein each index entry that
corresponds to an item that has child items includes an array of array entres,
where each array entry in the array stores information about a child item of the

1tem.

The computer readable medium of Claim 14 wherein the array entry for each

child item stores a name tor the child item.

26

1

O N SN VS B N

O 00 1] &\ Wwn ;.- W DN e

e N T -
wh DS W N = D

S W N

10.

17.

18.

19.

CA 02359880 2002-08-30

The computer readable medium of Claim 15 wherein the array entries within

the array are maintained in sorted order based on the names of the child items.

The computer readable medium of Claim 14 wherein the array entry for each
child item stores:

data for locating the child item outside the index, and

for each child item that has its own index entry, a link to the index entry of the

child item.

A method for locating items that belong to a hierarchy that establishes parent-
child relationships between the items, the method comprising the steps of:
receiving a sequence of identifiers that identifies a path through the hierarchy
to a target item;
using a hierarchical index to locate information about said target item by
performing the steps of:
locating, within said hierarchical index, an index entry for a first item,
wherein said first item 1s the 1item identitied by the first
identifier in said sequence of identitiers;
beginning with said index entry for said first item, following links
between index entries, in a sequence dictated by said sequence
of identifiers, to arrive at a particular index entry that indicates
where said information about the target item is located; and
using information in said particular index entry to locate and access said

information about said target item.

The method of Claim 18 wherein the step ot tollowing links includes:
within an index entry for a parent item, searching an array to locate an array
entry for a particular child item, wherein the array includes array

entries for each child item of the parent item.

O 3 O Wn S\ N W S~ W o

N
-

11
12

14
15
16
17

20.

21.

CA 02359880 2002-08-30

The method of Claim 19 wherein:

the parent item corresponds to an identifier 1n said sequence of identifiers;

the particular child item corresponds to an identifier in said sequence of
identitiers; and

the 1dentifier for said parent item immediately precedes the identifier for said

particular child item 1n said sequence ot identitiers.

A computer readable medium having stored thereon sequences of instructions
for locating items that belong to a hierarchy that establishes parent-child
relationships between the items, the sequences ot instructions including
instructions for pertorming the steps of:
receiving a sequence of identifiers that identities a path through the hierarchy
to a target item;
using a hierarchical index to locate intormation about said target item by
pertorming the steps of:
locating, within said hierarchical index, an index entry for a first item,
wherein said first item 1s the item 1dentified by the first
identifier 1n said sequence of identifiers;
beginning with said index entry tor said first item, following links
between index entries, 1n a sequence dictated by said sequence
of 1dentifiers, to arrtve at a particular index entry that indicates
where said information about the target item 1s located; and
using information in said particular index entry to locate and access said

information about said target item.

The computer readable medium of Claim 21 wherein the step of tollowing
links includes:
within an index entry for a parent item, searching an array to locate an array

entry for a particular child item, wherein the array includes array

IR

A W B W NI

CA 02359880 2002-08-30

entries for each child item ot the parent item.

The computer readable medium of Claim 22 wherein:

the parent item corresponds to an 1dentifier in said sequence of identifiers;

the particular child item corresponds to an identifier in said sequence of
identifiers; and

the identifier for said parent item immediately precedes the identifier for said

particular child item 1n said sequence of identifiers.

PCT/US00/03967

CA 02359880 2001-07-25

WO 00/49533

IE

| _ oop ajdwexy|
\ o0p ajdwex3 \. -
AN | bk N\
pddy ~ eddy gddy | ddy $S300Y DIOM
A — v’ e - oy
74 0Cl . ol
o XINN SMOPUIM
T
S
9¢1 "

N
I

Ot}

/9

1

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967
210
FILES TABLE
Row ID ~ile 1D Name Body Modification Date...
R1 X1 / (NULL)
RZ X2 Windows (NULL)
R3 X3 Word (NULL)
R4 X4 Example.doc BLOB
RS X5 Access (NULL)
R6 X6 Unix (NULL)
R7 X7 App1 (NULL)
R8 X8 App2 (NULL)
RS X9 VMS (NULL)
R10 X10 App3 (NULL)
R11 X11 App4 (NULL)
R12 X12 Example.doc BLOB
Fig. 2
2 /9

D I AN P RN e '~"'51'*§-'4.'«ﬁ@wﬁf(%_b".ii&:'ﬂiﬁh’?“" T s oy e s teade et

WO 00/49533

Parent 1D

X1
X2
X3
X2
X1
X6
X6
X1
X9
X9
X11

DIRECTORY_LINKS TABLE
Child 1D

X2
X3
X4
XS
X6
X7
X8
X9

CA 02359880 2001-07-25

X10

X1

1

X12

3

1g. 3

/9

310

Child Name

Windows
Word
Example.doc
Access

Unix

App1

App2

VMS

App3

App4
Example.doc

PCT/US00/03967

' : bt A A RN R RS E A T A R .. L L

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967

410

USER INTERFACE

412
DBMS

DATABASE

Fig.

4 / 9

CA 02359880 2001-07-25

WO 00/49533 PCT/US00/03967
510
HIERARCHICAL INDEX ~ /
508 Row D File 1D Dir Entry list
Y1 X1 {(Windows, Y2, X2)
(Unix, Y4, X6)
(VMS, Y5, X9)}
512 -
Y2 X2 {(Word, Y3, X3)
(Access, null, X5)}
514
Y3 X3 {(Example.doc, null, X4))
516 18
Y4 X6 {(App1, nult, X7)
(App2, null, X8)}
Y5 X9 {(Anp3, null, X10)
(App4, Y6, X11)}
Y6 X11 {{(Example.doc, null, X12))

5709

YoenrVRL e L e M DR L AR B A, Se i ST LT T e ey T e SR R e A T L e s et T et e ekt B e I AT A A S I v 2 AT AT RS e S LSS W - e I

WO 00/49533

CA 02359880 2001-07-25

000

New file created

802
New file

first child in
parent?

No

Yes

604
Create index entry for parent

010
Update array entry of parent in

Index entry of parent of parent

606

Insert array entry for new child

6 /0

PCT/US00/03967

608

Locate index
entry for parent

. - VD e w'\q?mucwwmv’&;‘. Cm e .

CA 02359880 2001-07-25

WO 00/49833 PCT/US00/03967

020
FILE DELETED

022
WAS FILE

THE ONLY CHILD OF
PARENT?

NO

YES

654
REMOVE INDEX

ENTRY FOR PARENT

026
REMOVE ARRAY ENTRY FOR CHILD

FROM DIR_ENTRY_LIST OF INDEX
ENTRY OF PARENT

060
UPDATE ARRAY ENTRY

IN PARENT'S PARENT

| 628
REMOVE ANY INDEX ENTRIES

FOR DELETED FILE AND
CHILDREN OF DELETED FILE

FIG. 6B

7/ 9

CA 02359880 2001-07-25

WO 00/49533 | PCT/US00/03967

FIG. 7

00
LOCATE INDEX ENTRY FOR ROOT DIRECTORY

02
ANY MORE

FILENAMES IN INPUT
PATHNAME?

NO

YES 70
704 USE FILE ID TO LOCATE
SELECT NExT FILENAVE | LINFORMATION IN FILES TABLE

IN INPUT PATHNAME

706
SEARCH INDIR_ENTRY_LIST FOR AN ARRAY ENTRY FOR

SELECTED FILENAME

NO £08

WAS AN ARRAY ENTRY

710 YES
ERROR: PATHNAME

NOT VALID

NO

MORE FILENAMES IN INPUT
PATHNAME?

YES

124
USE ROWID TO FIND INDEX ENTRY FOR SELECTED FILENAME

8 /9

CA 02359880 2001-07-25

e — — prp— p—

PCT/US00/03967

WO 00/49533

124°
1SOH

08 |
_
44 SINIT
HIOMLIN TaomIaN
w207

98

8(8
0t8
H3ALIS

818
JOVAHILNG 708
NOILLYOINNWINOD ¥0SS300dd
SNg
808 908
AHOW3N
NOY NIV

— P — - - —
* — & &= e— —_— — —— s Ap— —y—

125:
J0IA3A LNdNI

g ‘Ol

9 /9

.. A om:%n@’_(wmmmw‘“ PR VTN E P o B T S S O N L Lh BEERL e weae

114
m

116

e

A

Example.doc

P oW cm————— AT vw—————— -b-n-o-c-]

120

118

110

JdAD»
126
)
UNIX
VMS
124
A A
122

Example.doc

%

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - abstract drawing

