wo 2016/029935 A1 |1 I NPF V0 0RO 0 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 March 2016 (03.03.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/029935 Al

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 3/0482 (2013.01) G09B 7/08 (2006.01)
GO6F 3/0486 (2013.01)

International Application Number:
PCT/EP2014/068062

International Filing Date:
26 August 2014 (26.08.2014)

English
Publication Language: English

Applicant: QUIZISTA GMBH [DE/DE]; Nimrodstr. 49,
82110 Germering (DE).

Inventor: MULLER, Florian; Nimrodstr. 49, 82110 Ger-
mering (DE).

Agent: HESS, Peter K., BARDEHLE PAGENBERG
Partnerschaft mbB Patentanwiilte, Rechtsanwiélte, Prinzre-
gentenplatz 7, 81675 Miinchen (DE).

Filing Language:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: OVERLAP-FREE POSITIONING OF GRAPHICAL OBIJECTS, IN PARTICULAR FOR KNOWLEDGE QUANTIFIC-
ATION

Fig. 23-1
51: net disposable

space in target line - >
itern to insert ——- MO _insertion position
M1 et ra » M2 j« » M3 - >
82: disposable L R 33 disb/csable
space between ~ Smin: minimum space at right
iterns M1 and M2 space between margin

any two items

(57) Abstract: The present invention relates to a computer-implemented method for processing drag-and-drop gestures on a user in -
terface, the method comprising the steps of displaying a plurality of graphical objects (Mo-M8) on the user interface, at least two of
said graphical objects (Mo-M8) each being associated with a data structure, at least two of said data structures being associated with
a model answer of an automated knowledge quantitfication system, detecting a drag-and-drop gesture on the user interface indicating
that a first one of the plurality of graphical objects (Mo-M8) is moved to a line (L1-L2) comprising at least a second one of the plur -
ality of graphical objects (Mo-MS8), determining that the horizontal position of the first graphical object is in conflict with the at least
one second graphical object, and moving the at least one second graphical object to the left to create sufficient space for the first
graphical object.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

Overlap-free positioning of graphical objects,

in particular for knowledge quantification

1. Technical field

The present invention generally relates to methods and systems for pro-
cessing drag-and-drop gestures on a user interface. More specifically,
aspects of the present invention provide techniques for an overlap-free
positioning of graphical objects, which is particularly suitable for use in

automated knowledge quantification systems.

2. The prior art

Programmable electronic devices are capable of, and frequently used for,
automated knowledge assessment, where typically a set of objectively

validatable answers to a question can be predefined.

Computer-implemented knowledge assessment is in many aspects supe-
rior over knowledge assessment based on human interaction, since it
provides among others the advantages described in the following. Com-
puting devices are available to a user 24 hours a day, seven days a week,
which leads to an improved availability of correspondingly implemented
knowledge assessment techniques. Questions and potentially also ac-
companying information may be enriched with multimedia, leading to
an improved usage. Programmable devices using a hardware and/or
software timer are capable of a more precise and objective measurement
and limitation of the time which passes between outputting a question
and submission of an answer for validation, and of calculating instantly
upon receipt of an answer a (multifactorial) score, e.g. taking into con-
sideration a diversity of factors (such as, without limitation, response
times, the number of failed attempts, and the difficulty level of a ques-
tion). Computing devices can select questions based on entirely objective

criteria.

In the prior art, various techniques for computer-aided knowledge as-

sessment are known. For example, EP 2 228 780 A1 and US

10

15

20

25

30

WO 2016/029935

2010/227305 A1 relate to a knowledge assessment tool for processing
and managing test data, randomly selecting test questions, and storing
test results in a database. US 8,465,288 B1 relates to an individual char-
acterization involving an age appropriate ability score, an aptitude score,
and an innate and cognizant ability score. US 8,356,997 B1 relates to a
competency record comprising a set of data indicating a given student’s
knowledge in a plurality of competencies. US 6,318,722 B1 relates to a
word puzzle game in which clues and answers are hidden and exposed.
US 2012/0178073 A1 relates to game systems with interoperating or
both interoperating and interrelated quizzes and/or puzzles, whereby the
solution to one question represents a clue helping the user in solving
part of a subsequent word puzzle. WO 2007/007201 A2 and WO
2006/000632 A2 provide further technical background information

about computer-implemented knowledge assessment techniques.

However, one particular disadvantage of many of the known techniques
is that the assessment of whether a user knows a given set of facts con-
cerning item relationships is conducted sequentially, i.e., the user is re-
quired to answer a series of questions about item relationships one ques-
tion at a time. For example, the user would be required to separately
state the country in which each of a plurality of mountains is located, or
to separately answer questions concerning particular predecessors and
successors of a political office-holder. Sufficient screen space provided, it
is, however, preferable to enable users to modify, by means of reposi-
tioning graphical objects on a display, the assignment to a group or rank-
ing of any item (of a plurality of items) at any time prior to collective

submission for evaluation of a plurality of choices made.

To the extent that any known techniques, including drag-and-drop tech-
nologies from outside the field of knowledge quantification, enable the
collective submission of a plurality of choices concerning item relation-
ships, their user interfaces have disadvantages, in connection with
knowledge quantification and certain other fields of use, with respect to
either flexibility (in terms of the user’s freedom to place items in differ-
ent positions) or efficiency (in terms of the use of screen resources and

processing time), as will be described in the following:

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

One common technique for assigning an item to a group with a drag-
and-drop interface is to drag an item over to a container (such as a win-
dow) of another group and to drop it within the boundaries of that con-
tainer. For example, a movable graphical object representing a file can be
moved from one folder on a storage medium to another by dragging it
from the window displaying the content of one container to the window
displaying the content of another container. Similarly, items can also be

dropped on target icons such as folder icons.

Drag-and-drop interfaces of the above-mentioned kind are, however, not
optimized for the specific needs of such fields as knowledge quantifica-
tion. For example, a file dropped into a directory folder will disappear
from the window on which the operation is performed, requiring a more
space-consuming multi-window display to keep track of the content of
all containers. This has the further effect that items accidentally dropped
in the wrong container can usually not be immediately moved from the
wrong container to a different one without previously opening the origi-
nal target container. However, in certain fields such as knowledge quan-
tification, it is desirable to ensure the simultaneous display of all mova-
ble graphical objects and to minimize the number of user interface ac-

tions a user must perform to reassign an item to a different group.

Furthermore, known drag-and-drop interfaces of the above-mentioned
kind typically require each item to be contained by a container, such as a
window, at any given point in time (except, possibly, during drag-and-
drop operations). However, in certain fields such as knowledge quantifi-
cation, it is desirable in certain ways to have a containerless space in
which items are kept so as to indicate that they are not presently a mem-

ber of any particular group.

Other known drag-and-drop interfaces enable the user to order items.
For example, the layout section of the user interface of Google’s Blogger
website (www.blogger.com) enables, through a drag-and-drop interface,
the modification of the vertical order in which certain components ap-
pear on a web page. Using this interface, the user can pick up an object
and place it in a different slot. A further example is LinkedIn

(www.linkedin.com), which provides a similar drag-and-drop interface

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

with a two-dimensional (multiple rows, two columns) list of items. A
Blogger/LinkedIn-style drag-and-drop interface as described above ena-
bles the user to indicate an order of a plurality of items (in this case, a
desired order; in connection with knowledge quantification, the order

would be a presumed order to be subsequently evaluated for accuracy).

However, such an interface has flexibility and efficiency shortcomings.
Each item in such an interface fills the same amount of screen space re-
gardless of the actually-required space. The number of slots in which an
item can be placed is identical to the number of items without allowing a
more free-form placement of items in different positions. For example, a
user of such an interface cannot elect to open a separate line of items

because the number of lines is predetermined and static.

It is therefore one technical problem underlying aspects of the present
invention to provide methods and systems which enable users to indi-
cate, by means of repositioning graphical objects on a display, the as-
signment to a group and/or ranking of each of a plurality of items and to
modify such choices at any time prior to collective submission for eval-
uation of a plurality of choices made, while striking a balance between
the user’s flexibility (in terms of the user’s freedom to place items in dif-
ferent positions) and efficiency (in terms of the use of screen resources
and processing time), thereby at least partly overcoming the above-
mentioned disadvantages of the prior art. It is another technical problem
underlying aspects of the present invention to provide methods and sys-
tems capable of interpreting and evaluating the user’s positioning of
graphical objects in ways that result in an automated yet precise and

differentiated quantification of a user’s knowledge.

3. Summary of the invention

This problem is according to one aspect of the invention solved by a
computer-implemented method for processing drag-and-drop gestures
on a user interface. In the embodiment of claim 1, the method comprises

the following steps:

a. displaying a plurality of graphical objects on the user interface, at

least two of said graphical objects each being associated with a da-

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

ta structure, at least two of said data structures being associated
with a model answer of an automated knowledge quantification

system;

b. detecting a drag-and-drop gesture on the user interface indicating
that a first one of the plurality of graphical objects is moved to a
line comprising at least a second one of the plurality of graphical

objects;

c. determining that the horizontal position of the first graphical ob-

ject is in conflict with the at least one second graphical object; and

d. moving the at least one second graphical object to the left to create

sufficient space for the first graphical object.

Accordingly, the invention incorporates some of the elements found in
known drag-and-drop interfaces, including, by way of example and
without limitation, movable graphical objects associated with data struc-
tures and displayed on a screen or part thereof as well as the detection of
gestures representing the actions of picking up, moving, and/or drop-
ping the movable graphical objects, and the repositioning of movable

graphical items in response to drag-and-drop gestures.

Certain drag-and-drop gestures have emerged as a de-facto user inter-
face standard. Movable graphical objects are commonly picked up by
keeping a (typically the left) mouse button down or a finger on the
touchscreen, in each case at least in part within the boundaries of the
movable graphical object to be dragged, while moving around; and they
are commonly dropped by releasing the mouse button or removing the
finger from the touchscreen. The invention is, however, not tied to any

particular gesture or set of gestures.

Examples of associated data structures include, by way of example and
without limitation, text strings, numbers, images, audio segments, video
clips, files, databases, data sets of databases, data sets such as postal ad-

dresses and user records, URLs, HTML pages, and XML objects.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

The invention builds on such elements of known drag-and-drop inter-
faces and provides optimizations and functional enhancements, some of

which are specific to the field of use of knowledge quantification.

In particular, the invention detects when a user has moved a first graph-
ical object onto a line on which already one or more second graphical
objects are located. If it is determined that the horizontal position of the
first (moved) graphical object is in conflict with the one or more second
(existing) objects on the target line, e.g. because the first graphical object
is moved so that it overlaps one or more of the existing graphical objects,
or because a minimal horizontal gap between the graphical objects can-
not be maintained, the method moves at least one of the existing (sec-
ond) graphical objects to the left in order to create sufficient space for

the moved (first) graphical object.

This way, the invention optimizes, in response to user gestures, the sim-
ultaneous display of a plurality of graphical objects (also referred to as
“items” hereinafter) on a screen or part thereof. The invention ensures
that the graphical objects do not overlap even if a user places them in
otherwise-overlapping positions, yet minimizes the use of limited screen
resources and processing time. In particular, moving one or more of the
existing graphical objects to the left is especially advantageous, since this
oftentimes creates sufficient space without the need to move an existing
graphical object to another line (hereinafter also referred to as “wrap-
ping”), i.e. with a minimal amount of user interface actions and corre-
sponding processing steps. At the same time, the available screen space
is used as efficiently as possible, which is particularly advantageous in
the context of devices with limited screen space, such as mobile phones

or tablets.

The determination of the direction in which one or more of the graphical
objects in the target line are moved can be made based on the current
layout direction (left to right or right to left). Depending on different
criteria, it may be desirable to preferably move objects in or against the

current layout direction. By way of example and without limitation, op-

10

15

20

25

30

WO 2016/029935

erating systems provide applications with information on the current
layout direction. The Microsoft Windows operating system provides this

information under the LayoutDirection qualifier value:

Windows.ApplicationModel.Resources.Core.ResourceManager.Current

.DefaultContext.QualifierValues[“LayoutDirection™]

Google’s Android mobile operating system provides a getLayoutDirec-
tion method for the object containing all device configuration infor-
mation. Applications can acquire the current configuration by invoking
the getConfiguration method of the object returned by the
getResources() function and invoking getLayoutDirection() on the cur-

rent configuration object.

In one aspect of the invention, the above-explained step of moving the at
least one second graphical object further comprises moving at least a
third one of the plurality of graphical objects to the right to create suffi-
cient space for the first graphical object. Accordingly, such a bidirection-
al repositioning of existing graphical objects may create even larger
space for the moved graphical object, while still avoiding wrapping ac-
tions in various situations, thereby also minimizing the amount of neces-

sary user interface actions and corresponding processing steps.

The present invention also provides a computer-implemented method
for processing drag-and-drop gestures on a user interface, which com-
prises in accordance with the embodiment of claim 3 the step of moving
at least the left-most graphical object on the line to an overlying line to
create sufficient space for the first graphical object. Such a left-bound
wrapping creates even more space for the moved graphical object on the
target line (since one or more existing graphical objects on that line are
moved, i.e. wrapped, to the overlying line), while still causing as few user
interface actions as possible, preferably if the above-described non-
wrapping repositioning techniques still do not result in sufficient space

for the moved graphical object.

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

In addition, the method may comprise the further step of moving at least
the right-most graphical object on the line to an underlying line to create
sufficient space for the first graphical object. Accordingly, such a bidirec-
tional wrapping creates a maximum of available space for the moved

graphical object.

The above described wrapping techniques, i.e. the moving of at least the
left-most and/or right-most graphical object may be performed iterative-
ly for the respective object on the overlying and/or underlying line. Such
an iterative processing may be implemented by way of example and

without limitation by means of recursive function calls, loops, or the like.

It will be appreciated that the present invention also encompasses em-
bodiments in which all or only part of the above-explained repositioning
techniques are combined (in particular the intra-line repositioning and

the wrapping).

In another aspect of the present invention, any of the above-described
methods may comprise the steps of simulating a plurality of alternative
graphical object repositioning strategies prior to the repositioning of a
graphical object and of determining a most efficient graphical object re-
positioning strategy. This way the impact (in terms of necessary user
interface actions and corresponding processing steps) of possible candi-
date repositioning techniques can be evaluated beforehand, and the most
efficient candidate can be selected for execution. The criteria for efficien-
cy may include, by way of example and without limitation, a determina-
tion of whether a new line must be created, the number of rows affected
by a repositioning, the total number of rows used, the number of graph-
ical objects that must be wrapped from one line to another, the total dis-
tance of all needed graphical object repositionings, or any combination

thereof.

Preferably, the user interface used in embodiments of the present inven-
tion is displayed on a touch-sensitive display of a portable electronic de-

vice. Accordingly, touch-sensitive screens are the preferred input device

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

for the invention. This is also the input technology in connection with
which the invention delivers the greatest relative benefit over known
user interfaces. However, the invention is not tied to any particular input
technology. Different input technologies enable alternative interfaces
that serve similar purposes. For example, user interfaces relying on a
mouse as well as a keyboard provide an efficient way to select multiple
graphical objects by holding a key (commonly the Shift key) pressed
while clicking on each object. The user can then move, assign or manipu-
late the entire set of selected objects at the same time, in a single opera-
tion, which may provide efficiency gains in certain contexts. Multiple-
object selection is less efficient on a touchscreen. Therefore, certain al-
ternative user interfaces relying on a mouse and a keyboard may enable
users to perform certain operations, in general or in a specific context
such as knowledge quantification, with a smaller number of input ac-
tions than with the preferred embodiment of the invention, especially if
combined with keyboard shortcuts and/or context-sensitive menus.
Such alternative user interfaces are, however, structurally different from
the invention. All other things being equal, the invention consistently

delivers all of its technical benefits.

The present invention is also directed to a computer program comprising

instructions for implementing any of the above-described methods.

Furthermore, a portable electronic device is provided comprising a dis-
play, preferably a touch-sensitive display, configured for displaying a
plurality of graphical objects on a user interface, at least two of said
graphical objects each being associated with a data structure, at least two
of said data structures being associated with a model answer of an auto-
mated knowledge quantification system, and a processor, configured for
detecting a drag-and-drop gesture on the user interface indicating that a
first one of the plurality of graphical objects is moved to a line compris-
ing at least a second one of the plurality of graphical objects, for deter-
mining that the horizontal position of the first graphical object is in con-

flict with the at least one second graphical object, and for moving the at

10

15

20

25

WO 2016/029935

10

least one second graphical object to the left to create sufficient space for

the first graphical object.

Lastly, the invention is directed to a portable electronic device, compris-
ing a display, preferably a touch-sensitive display, configured for dis-
playing a plurality of graphical objects on a user interface, at least two of
said graphical objects each being associated with a data structure, at
least two of said data structures being associated with a model answer of
an automated knowledge quantification system, and a processor, config-
ured for detecting a drag-and-drop gesture on the user interface indicat-
ing that a first one of the plurality of graphical objects is moved to a line
comprising at least a second one of the plurality of graphical objects, for
determining that the horizontal position of the first graphical object is in
conflict with the at least one second graphical object, and for moving at
least the left-most graphical object on the line to an overlying line to cre-

ate sufficient space for the first graphical object.

Further advantageous modifications of the systems and methods accord-
ing to embodiments of the present invention are defined in the appended

claims.
4. Short description of the drawings

In the following detailed description, presently preferred embodiments

of the invention are further described with reference to the following

figures:

Fig. 1: Exemplary screen layouts for grouping with labeled contain-
ers before and after user interaction in accordance with em-
bodiments of the invention;

Fig. 2: Exemplary screen layouts for grouping with unlabeled con-

tainers before and after user interaction in accordance with

embodiments of the invention;

PCT/EP2014/068062

10

15

20

25

WO 2016/029935

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3:

4:

5:

6:

10:

11:

12:

13:

14:

PCT/EP2014/068062
11

Exemplary screen layouts for one-dimensional sorting before
and after user interaction in accordance with embodiments

of the invention;

Exemplary screen layouts for two-dimensional sorting before
and after user interaction in accordance with embodiments

of the invention;

Exemplary screen layouts for combined grouping and sorting
with containers before and after user interaction in accord-

ance with embodiments of the invention;

An exemplary line snap diagram in accordance with embod-

iments of the invention;
An exemplary grid snap diagram according to the prior art;

An exemplary comparison of grouping input against correct

grouping in accordance with embodiments of the invention;

An exemplary differentiated scoring of grouping input in

accordance with embodiments of the invention;

An exemplary assignment of item to container in accordance

with embodiments of the invention;

An example of the six possible permutations of three groups

in accordance with embodiments of the invention;

A flowchart for generating permutations of item groups if
user-formed number of groups matches correct number in

accordance with embodiments of the invention;

An exemplary comparison of sorting input against correct
order with Kendall tau distance in accordance with embodi-

ments of the invention;

An exemplary comparison of sorting input against correct
order with item-by-item distance in accordance with embod-

iments of the invention;

10

15

20

25

30

WO 2016/029935

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

PCT/EP2014/068062

12

An exemplary identification of user-determined one-
dimensional (in this example, vertical) order of items (arbi-
trary item locations) in accordance with embodiments of the

invention;

An exemplary identification of user-determined two-
dimensional order of items (arbitrary item locations; identi-
fying rows) in accordance with embodiments of the inven-

tion;

An exemplary visualization of identified user-determined
two-dimensional order of items (arbitrary item locations;

row lines) in accordance with embodiments of the invention;

An exemplary snap grid cell with internal margins in accord-

ance with embodiments of the invention;

An exemplary snap line with external and internal margins
and item-to-item spacing in accordance with embodiments

of the invention;

An example of identification of available space for insertion
of new item in snap line in accordance with embodiments of

the invention;

A flowchart for determination of minimum and maximum X
coordinates of item inserted in snap line without reposition-
ing any other item (if item in target position, insert on right

side) in accordance with embodiments of the invention;

A flowchart for sum-based identification of available space
for insertion of new item in snap line in accordance with em-

bodiments of the invention;

An example of item insertion (line snap) without wrapping in

accordance with embodiments of the invention;

An example of right-bound wrapping (line snap) in accord-

ance with embodiments of the invention;

10

15

20

25

WO 2016/029935

Fig. 25:

Fig. 26:

Fig. 27:

Fig. 28:

Fig. 29:

Fig. 30:

Fig. 31:

Fig. 32:

PCT/EP2014/068062
13

A flowchart for moving items to the right after inserting new
item at left end of snap line (which was not empty) in ac-

cordance with embodiments of the invention;

An example of calculating leftmost and rightmost options for
items when moving items to the left (line snap) in accord-

ance with embodiments of the invention;

A flowchart for recursive wrapping of items (out at left mar-
gin of snap line, in at right margin) in accordance with em-

bodiments of the invention;

A flowchart for determining number of items to be wrapped
out on left of snap line to gain given amount of space in ac-

cordance with embodiments of the invention;

A flowchart for determining number of right wraps needed in
addition to given number of left wraps (snap line) in accord-

ance with embodiments of the invention;

A flowchart for building wrap options (combinations of pos-
sible left wraps and right wraps; snap line) in accordance

with embodiments of the invention;

An exemplary screen layout for automatic space-saving
snapping of items subsequently to their assignment to a con-

tainer in accordance with embodiments of the invention; and

An exemplary hardware layout in accordance with embodi-

ments of the invention.

5. Detailed description

Overview

Preferred embodiments of the present invention receive, respond to, and

evaluate gestures performed by one or more users with or on an input

device 10, such as a touch-sensitive screen (cf. Fig. 32), in order to quan-

tify the user’s or users’ knowledge of certain item relationships, the items

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

14

being represented as graphical objects. The item relationships include
the membership of an item in a particular item group (for example, the
fact that a given mountain is located in a particular country), the order of
a plurality of items by a given criterion (for example, the order of presi-
dents by first term in office), and combinations thereof. While it would
be possible to quantify the user’s knowledge by means of a series of re-
lated questions (for example, requiring a user to enter or choose the
country in which each of a series of given mountains is located, or re-
quiring a user to choose the correct one of several alternative orders of
presidents by first term in office), the invention enables users to modify,
by means of repositioning graphical objects on a display, the assignment
or ranking of any item (of a plurality of items) at any time prior to collec-

tive submission for evaluation of the entirety of choices made.

The invention optimizes, in response to user gestures, the simultaneous
display of a plurality of items on a screen or part thereof. Embodiments
of the invention ensure that items do not overlap even if a user places
them in otherwise-overlapping positions, yet minimizes the use of lim-
ited screen resources and processing time by means of an optimizing
snapping mechanism capable of identifying, within parameters dictated
by usability and other design considerations, the most efficient strategy
for repositioning items in order to prevent overlaps. The criteria for effi-
ciency include, by way of example and without limitation, the number of
rows affected by a repositioning, the total number of rows used, and the

number of items that must be wrapped from one row to another row.

Embodiments of the invention depart from traditional wrapping mecha-
nisms in that they analyze and, if found efficient, perform not only unidi-
rectional but preferably also bidirectional wrapping operations, further-
more including the possibility of wrapping one or more items in one di-
rection while simultaneously wrapping one or more other items in the

opposite direction.

Embodiments of the invention are furthermore capable of determining a
differentiated score for a set of choices submitted for evaluation, as will

be explained in greater detail further below.

10

15

20

25

30

WO 2016/029935

15

In the following, various user interface elements and repositioning tech-
niques employed in embodiments of the invention will be described. It
will be appreciated that the present invention concerns various embodi-

ments comprising at least part or all of the below-described concepts.

Waiting spaces and containers

Labeled and unlabeled containers

Embodiments of the invention which enable the user to group items in-
volve the placement of movable graphical items in containers. Fig. 1-1
shows an exemplary screen layout before user interaction with three con-
tainers labeled as “Virginia”, “Ohio”, and “New York”. Fig. 1-2 shows a
related exemplary screen layout after user interaction in a scenario in
which the snapping aspect of the invention was not activated for the con-
tainer areas. While containers have a uniform size in the depicted exem-
plary screen layouts, they may differ in size. They may, but need not, be

placed next to each other.

Furthermore, containers need not be labeled. Fig. 2-1 shows an exempla-
ry screen layout (before user interaction) with three unlabeled contain-
ers (see the rounded rectangles in the bottom half of Fig. 2-1). If contain-
ers are not labeled, a user may choose arbitrarily in which container to
place the movable graphical objects representing items deemed to be-
long to a particular group. This degree of freedom requires the
knowledge quantification system to analyze which correct group of items
the content of a given container was presumably intended by the user to

relate to.

Waiting space(s)

In Fig. 1-1 and 2-1, all movable graphical objects are initially presented in
a waiting space outside the containers, where they are waiting for each
object to be placed in a container. It would also be possible to initially
place all items in containers, as is the case in certain known techniques
such as file managers. In a knowledge quantification system, the assign-
ment of items to containers would be predefined or randomized. Howev-

er, the existence of a distinct waiting space affords users the possibility

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

16

to deliberately decline to assign an item to any particular container. In a
knowledge quantification system, there may be a time limit for the as-
signment of items to containers, and any items unassigned after expira-
tion of a timer would have to be evaluated explicitly (by processing the
list of unassigned items) or implicitly (by ignoring unassigned items

when evaluating the content of the containers).

In each of the above-mentioned exemplary screen layouts, there is a sin-
gle, contiguous waiting space (above the containers). It would also be
possible to provide a plurality of waiting spaces (for example, one wait-

ing space above and one below the containers).

It is not a requirement that all items to be assigned to containers be ini-
tially displayed in the waiting space. Alternatively, a first number of
items (possibly only one item at a time) could be displayed, and the next
one would be displayed later (for example, after expiration of a timer or
after the user has assigned or begun to assign a previously-displayed

item to a container).

Single-container setup

Preferred embodiments of the invention comprise a plurality of contain-
ers. However, the invention can also serve a practical purpose in a setup
comprising one or more work spaces and a single container. In that case,
the user would decide which items to assign to the one container. For
example, in a knowledge quantification system the user may be asked to
place the names of reptiles in a container, and the work space would con-
tain animal names from a variety of groups besides reptiles, between
which the user does not have to make a further distinction other than

determining that they do not belong in the one container.

Containerless work space(s)

In some embodiments of the invention, the only item relationship of
interest is the order of a plurality of items, without a need to assign any
item to any particular group. In that case, no containers are provided.
Items would be ordered on a work space, which could also be divided up

into multiple work spaces as opposed to constituting a single contiguous

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

17

area. In technical terms, such a work space could be managed in ways

entirely or substantially identical to the management of a waiting space.

Fig. 3-1 shows an exemplary single work space for the one-dimensional
(in this example, vertical) ordering of 10 items. Fig. 4-1 shows an exem-
plary single work space for the two-dimensional (in this example, left to

right and top to bottom) ordering of 18 items.

It will be appreciated that certain embodiments of the invention also
provide a combined grouping and ordering of items, as exemplarily illus-

trated in Fig. 5.

Snap modes

Grid snap

Input technologies (such as, without limitation, touchscreens, touch-
pads, mice and keyboards) allow a user to drag a movable graphical ob-
ject to an arbitrary location on a screen (at least within a designated
screen region for drag-and-drop operations). However, the resolution of
a display is typically much higher than the precision of manual move-
ment of or on an input device. As a result, users will often place objects
in positions where they overlap, or are overlapped by, other objects, and
will likely, due to objective or self-imposed time constraints, arrange
objects in ways that are perceived as scattered and may confuse users.
The latter is particularly problematic if the objective is to indicate an
order of a plurality of items, which order should be unambiguous to both
the programmable electronic device and all users. Furthermore, if users
manually attempt to avoid overlaps of items, they will likely (if they
achieve this objective at all) leave more space between items than neces-

sary, resulting in an inefficient use of screen space.

In the prior art, the snapping of items to (often, but not always, invisible)
grids such as the example shown in Fig. 7 is known. Drawing programs
generally offer a “Snap to Grid” feature. Icons representing files in a file
manager can commonly be displayed in a grid format, as are the icons

representing applications of mobile devices on start screens.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

18

A two-dimensional grid generally comprises rows and columns. Each
intersection of a row with a column is a grid cell. Grids can also be one-
dimensional. For example, the drag-and-drop user interface of Google’s

Blogger website already described above is one-dimensional.

While it is not technically necessary for all cells to be of the same size,
this is most commonly the case because each cell would in any event
need to have the capacity to harbor the largest item that the user might
place in it, making it an obvious choice to determine a uniform cell size

(for example, the cell size dictated by the size of the largest item).

The assignment of a dropped item to a cell can be based on the size of
the area of an overlap between an object being moved and a potential
target cell, assigning the item to the cell with which it has the greatest
overlap, or on a single point, such as the position of a mouse pointer, or
on other criteria relating to the process of moving the object. This de-
termination is potentially simplified if a grid is one-dimensional, in

which case it may be possible to evaluate only one coordinate (X or Y).

An organized, uniform appearance of the movable graphical objects can
be achieved by ensuring that the relative positioning of each movable
graphical object within its grid cell is consistent. By way of example and
without limitation, each movable graphical object can be vertically and
horizontally centered within its cell (as shown in Fig. 7), or it could be

aligned with any of the four corners of the cell.

It is not a technical requirement for the movable graphical objects to be
of a uniform size. However, a uniform object size typically results in the
most organized appearance, and no screen space would be gained by

arranging variable-width items in a grid format.

If a movable graphical object is placed in a cell that already contains an-
other object, the operation must either be blocked (which is technically
possible, but not desirable) or result in a repositioning of one or more
items in order to make room in the target cell (as described further be-

low).

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

19

Line snap

While capable of delivering a highly-organized visual arrangement of
items despite the lack of precision of manual movements of or on input
devices, the grid snap technique has a shortcoming that is particularly
significant in connection with small displays. And on displays of any size,
it is inefficient if there is a significant discrepancy in the width required
for different objects. For example, if a knowledge quantification system
contains the names of certain European countries, the width required to
display “France”, “Italy” or “Greece” is very significantly below that re-
quired to display “Czech Republic”, “Luxembourg” or “United Kingdom”,
and only represents a fraction of the width required for a country that is
officially a candidate for accession to the European Union under the
name of "The former Yugoslav Republic of Macedonia” with no shorter
correct alternative for the time being due to political controversy. A snap
grid would have to provide room in each cell for the broadest item, alt-
hough some, most or even all other items but one would fit in a cell of a
fraction of that width, limiting the total number of items that can be dis-

played on a screen at the same time.

The line-snap aspect of embodiments of the present invention solves this
problem by striking a balance between an organized, non-overlapping
layout of items on the one hand and the objective of efficient use of
screen space on the other hand. Fig. 6 shows an exemplary arrangement
of items in snap lines (which, like grid lines, need not be invisible). Cer-
tain items such as “John Adams” (top line) and “John Tyler” (bottom
line) are very small compared to certain other items such as “Franklin D.
Roosevelt” (top line) and “Rutherford B. Hayes” (second line from the
bottom). Therefore, the number of items that fit in a given snap line de-
pends on the collective width, including spacings and margins, of the
specific items placed in that line. For example, the top line in the exam-
ple may have (depending on minimum spacings and margins) room for

“John Tyler”, but not for “George Washington”.

Snap lines with variable-width items are in some, limited, ways akin to
word processing documents. If room must be made in a given line for

insertion of one or more items, a wrapping operation (moving one or

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

20

more items from one line to another line), comparable in some respects
to the wrapping of one or more words from one line to another in a text

document, is required.

Whenever an item cannot be placed precisely in the target position de-
termined by the user because it would result in overlaps with other items
or insufficient spacings between items (i.e. generally speaking, if the
item’s target position is in conflict with other existing items), different
options exist for determining the location of the inserted item and/or
items being moved as a result of the insertion. For example, in certain
embodiments of the invention the snapping technique may ensure that
the items in a given line are aligned with the left margin, or that the
spacings between a set of items, such as all items in a given line, are con-

sistent.

While the present disclosure refers to snap “lines” with variable-“width”
items because this would be the most common approach in the Western
hemisphere, the invention could also be applied to snap “columns” with
variable-“height” items, which may be appropriate in some fields of use

or some cultural contexts.

Different snap modes for different screen regions

Even if one or more waiting spaces and one or more containers are dis-
played simultaneously, it is possible to operate each screen region in a
different snap mode in accordance with embodiments of the invention.
For example, the exemplary screen layout shown in Fig. 1-2 does not
show any snapping as far as the containers are concerned, but snapping

could be activated for the waiting space above the containers.

Embodiments of the invention will often involve combinations of differ-
ent snap modes. By way of example and without limitation, one particu-
larly advantageous combination is that one or more waiting spaces have
snap lines while one or more containers have a snap grid (for example, a
one-dimensional, merely vertical, grid; in technical terms, a set of snap
lines allowing only one item to be placed in each line is equivalent to a
one-dimensional grid, both from the user’s perspective and in terms of

the internal operations to be performed). If a container is not broad

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

21

enough to have room for more than one item per line (or if only a minor-
ity of lines could contain more than one item), it is often preferable to

impose a limit by means of a one-dimensional snap grid.

Overflow from one screen region to another

In certain scenarios such as, by way of example and without limitation, a
setup comprising a waiting space and a container with a snap grid, the
user may exceed the capacity limit of the snap grid of a container by in-
serting an additional item. While it would also be possible to block the
operation, the preferred handling of this situation is an “overflow”: an
item (typically the item at the bottom of the container) is pushed out of
the container and into the waiting space (for example, and without limi-
tation, next to the container). If the waiting space has some snapping
technique (as the preferred embodiments of the invention do), it may
then be necessary to make room by means of wrapping operations in the
waiting space. In technical terms, an object dropped on the waiting space
programmatically as a result of an overflow operation can be inserted
(including any wrapping of other items that it may entail) in the same

way as an item manually dropped on the waiting space by a user.

Visualization of snap grids and snap lines

Snap grids and snap lines can be, and in many embodiments are, invisi-
ble. However, a person skilled in the art knows different ways to visually
represent snap lines and cells. For example, snap lines could be under-
lined, and snap grids could be displayed as grids consisting of vertical
and horizontal lines (comparable to a table). Alternatively, the back-
ground of each snap line (or each row in a two-dimensional grid) could
be colored. For example, one line may have a dark background, while the
next line has a light background (or simply the background color of the
environment). Such visualizations could also occur only if the user
moves an object over a given line. As opposed to displaying entire grids
or lines, a context-sensitive display could also be limited to a target grid

cell or to a particular insertion space on a snap line.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

22

Automatic space-saving shrinking of items subsequently to their as-

signment to a container

While the size of each movable graphical object remains unchanged in
most embodiments of the invention, some other embodiments may save
screen space by shrinking items during or after their assignment to a
container. Fig. 31 shows an exemplary screen layout in which the mova-
ble graphical objects in the waiting space (such as “James A. Garfield”)
are larger than the movable graphical items placed in the three contain-
ers (“Virginia”, “Ohio”, “New York”). That exemplary screen layout addi-
tionally does not display a frame around the objects in the container but

connects objects with vertical lines.

The shrinking of items can be implemented as follows. There are either
two different graphical objects (a larger one and a smaller one) relating
to the same item, or there are two layouts and the properties of the
graphical objects are changed on the fly. The larger object, or the larger
layout of an object, is displayed and can be moved around in the waiting
space. Once the larger object or larger layout enters a container area or is
dropped while touching the container area, it is replaced with the small-
er object or the layout of the one object is replaced with the smaller lay-
out. The item is then integrated into the container by means of snapping.
If the user decides to move the smaller item or smaller layout again, the
original size may be activated in response to picking up the item, in re-
sponse to a movement across a certain distance, in response to leaving or
entering a particular screen region, or in response to expiration of a tim-

er.

Item placement and wrapping

Placement of item in empty grid cell

As explained further above, items to be placed in grid cells need not be of
a uniform size, but in any event each cell must have capacity for even the
largest item. As also explained further above, there are different options

for the positioning of an item within a grid cell because an organized

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

23

screen layout is achieved as long as the relative position of each item

within its grid cell is consistent.

Fig. 18 shows an exemplary structure of a grid cell with internal margins
(which are not a requirement) and an item space between those margins.
If each item had the size of the item space, its top left corner would be
aligned with the top left corner of the item space of the cell; otherwise,
the item would be centered within the item space or be placed consist-
ently in a particular corner of the item space or have a consistent dis-

tance from a particular side or corner of the item space.

Grid cells can also have fewer than four internal margins. By way of ex-
ample and without limitation, there could be only a vertical margin, or

two horizontal margins without a vertical margin.

Placement of item in sufficiently broad gap in snap line

Like grid cells, snap lines can (but need not) have internal margins, and
if they have internal margins at all, the number of margins can range
from 1 to 4. In order to avoid item overlaps, snap lines must maintain a

minimum horizontal item-to-item distance.

Fig. 19 shows an exemplary snap line structure with not only external but
also internal vertical margins. There are two internal vertical margins in
the example and an internal horizontal margin at the right side. Items
M1 and M2 have an item-to-item distance that is greater than or equal to
the minimum horizontal item-to-item distance required. Therefore, if
M2 were not already in that row (as it is in Fig. 19) but were dropped in
that position, it could be inserted without a need to reposition any other
items. The X coordinate of the target position would have to be, at a min-
imum, the right X coordinate of M1 plus the minimum item-to-distance
minus 1. Fig. 21 is an exemplary flowchart for the determination of min-
imum and maximum X coordinates of an item inserted in a snap line
without having to reposition any other item or after having made room
by performing repositionings as needed. The assumption is that if there
is an item in the target position, the new item should be inserted to the
right of the item already in the target position. The leftmost option for

the left X coordinate of the new item is calculated in accordance with the

10

15

20

25

30

WO 2016/029935

24

previously-explained formula. In the event that there already is an item
to the right of the item to be inserted, the post-insertion right X coordi-
nate of the new item must not be greater than the left X coordinate of the
item on the right minus the minimum horizontal item-to-item spacing

plus 1.

Identification of available space for insertion of new item in snap line

If an item is inserted in a snap line, the first determination to be per-
formed is whether there is sufficient space for the item in the target posi-
tion, i.e., in the place where the user has dropped it. If there is no item in
the target line, then there must be enough space (no item can be larger
than the target line). Target lines are typically of a uniform width, alt-
hough target lines could also differ in width, provided that even the nar-

rowest target line has sufficient room for the largest item.

If there are one or more items in the target line but the place where the
user has dropped the item being moved does not result in an overlap of
the item being moved with any of the items already in the line, or with
the minimum space required between items, then the item can be insert-

ed in the particular position in which the user has dropped it.

If the item should be inserted between two items (by way of example and
without limitation, the criterion could be that the point at which the user
has touched the item when picking it up is right of the horizontal middle
of a first item already in the line), but there would be an overlap or less
than the minimum required horizontal space between items if it was
placed precisely where dropped, the X coordinate of the target position
would have to be the right X coordinate of the left ones of the two items
plus the minimum item-to-item distance plus 1. This also applies to the
insertion of an item between the left margin of a line and the first (left-
most) item. In case an item is meant to be inserted between the last
(rightmost) item in the line and the right margin, then there is sufficient
space for direct insertion (i.e., without repositioning of other items) if
the X coordinate of the right margin of the line minus the width of the
item to be inserted minus the minimum item-to-item spacing is greater

than the right coordinate of the rightmost item already in the line.

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935

25

Fig. 20 shows an exemplary snap line with three items (M1, M2 and M3)
and the identification of disposable space between items. There is no
space (So) between item M1 and the left margin. Between M1 and M2,
there is a total space of S1. The disposable space between M1 and M2
(space that could be made available for the insertion of new items in-
cluding the insertion of additional item-to-item spacings) is S2 (S1 mi-
nus the minimum item-to-item distance, Smin). Between M2 and M3,
there is only the minimum spacing between two items (Smin) and, there-
fore, no disposable space. All of the space S3 between item M3 and the
right margin is disposable: the rightmost item in a given line does not
need an item-to-item spacing to its right. In total, S2 and S3 could be
made available for the insertion of new items and their spacings. The
aggregate of S2 and S3 could be made available in a single position by
repositioning some items within the line (i.e., without a need to wrap

them into other lines if the total space required does not exceed S2+S3).

The aggregate disposable space in a given snap line could be identified
by evaluating each item-to-item or margin-to-item distance and building
the sum of all disposable spacings. However, this determination can be
reached more efficiently by identifying the available space for insertion
of a new item on the basis of sums as shown in Fig. 22. In that exemplary
flowchart, the first part is the determination of the net width of the most
efficient placement of all items (i.e., between any two neighbor items
there is precisely the minimum horizontal item-to-item spacing). If there
are no items in the target snap line, then the net width of the most effi-
cient placement is 0. Otherwise, the number of spacings is 1 less than the
number of items; the aggregate spacing is the number of spacings multi-
plied by the width of the minimum spacing, which must be added to the
total width of all items (which can be calculated with a simple loop). Af-
ter determining the net width of the most efficient placement of items in
the line, the space available for insertion of a new item (and for insertion
of one more minimum horizontal item-to-item spacing unless the insert-
ed item will be the first item in the line) is the total space available in the
line (total net width) minus the net width of the most efficient place-

ment.

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

26

Placement of item in snap line with sufficient aggregate space but in-

sufficient space in target position

While embodiments of the invention are capable of wrapping items from
one line to another line (including simultaneous bidirectional wrapping),
it is recommended for both performance and usability reasons to avoid
wrapping operations if an item can be inserted into a snap line by mak-
ing room for the item only within the target line. Fig. 23-1 shows an ex-
emplary situation in which this is possible and advisable. Even though
item Mo does not fit (in view of the requirements for a minimum space
Smin between any two items) in between items M1 and M2, much less
between M2 and M3 or between M3 and the right margin (and there is
no space at all between the left margin and M1), the total net disposable
space in the target line would be sufficient for item Mo and an additional
minimum space Smin. However, the net disposable space S1 is com-
posed of the disposable space between M1 and M2 (S2), which is the
space between those items minus one spacing, and the disposable space

between M3 and the right margin of the line.

Fig. 23-2 compares the disposable and required quantities of horizontal
space. The net disposable space available in the target line Sn (corre-
sponding to S1 in Fig. 23-1) equals W1, which is the sum of Wo (the
width of the item to be inserted, i.e., item Mo) and one minimum space
Smin. W1 is also the sum of the disposable space S3 at the right margin

and the disposable S2 between items M1 and M2.

Fig. 23-3 shows an exemplary first step in which space is made on the
right by moving M3 to the right so as to align it with the right margin
and to free up the space previously available between M3 and the right

margin. It would also be possible to start on the other (left) side.

Moving item M3 to the right end increases the space between M2 and
M3 from one minimum spacing Smin to twice Smin (since another min-
imum distance is needed once item Mo is inserted in between M2 and
M3) and a small quantity of additional space between the two minimum
spacings. Disposable space S2 to the left of M2 remains unchanged at

this point but is freed up in the next step.

10

15

20

25

30

WO 2016/029935

27

Fig. 23-4 shows an exemplary second step in which item M2 is moved to
the leftmost position, i.e., it is pushed so far to the left that the space
between M1 and M2 is reduced to the minimum space Smin. As a result,
the space between M2 and M3 increases to the extent that item Mo can

now be inserted.

In the aggregate, Figures 23-1 to 23-4 demonstrate a bidirectional repo-
sitioning of items within the same snap line. In some situations, it will be
sufficient to reposition items unidirectionally, while in other directions
the ability to make room by means of bidirectional repositioning will
obviate the need to wrap one or more items into one or more other lines.
Avoiding line wraps is not only desirable from a usability point of view
because users will find it easier to follow position changes in a single
target line (which can be animated so as to show the one or more reposi-
tionings needed to free up the required space) but also makes more effi-
cient use of computing resources (even more so, but not only, if the re-
positionings are shown in the form of animations), given that it is more
efficient for a programmable electronic device to perform computations
based on the coordinates of items than to move objects consisting of

hundreds, more likely thousands of pixels each.

Right-bound wrapping of items

If the insertion of an item (and an additional minimum item-to-item
spacing) into a snap line requires more space than the aggregate amount
of disposable space in that line, repositioning items within the line is not
sufficient and one or more items must be wrapped over to other lines.
Unlike conventional wrapping techniques, embodiments of the invention
are capable of wrapping items bidirectionally and of determining an op-
timal (in terms of the use of screen space and other computing re-

sources) wrapping strategy.

Fig. 24-1 shows an exemplary original situation in which the total width
W1 of the item to be inserted (Mo) and the additionally-required mini-
mum space Smin exceeds the net disposable space S1 in the target line by
the amount of lacking space S2, but the width W2 of the rightmost item

M3 exceeds the lacking space S2 on its own (and to an even greater ex-

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

28

tent if item M3 is wrapped into another line, thereby rendering one min-
imum space Smin unnecessary in the target line L1 for the insertion op-
eration). Therefore, wrapping W2 into another line is sufficient to free
up the required space. Since M3 is at the right end of the line, the direc-
tion in which to wrap this time is to the right, i.e., to the line below (L2),

where there are already items M4 and M5.

Fig. 24-2 shows the effect of wrapping item M3 from the upper line L1
into the lower line L2 and of positioning it at the left end of L2, where it
overlaps a large part of item M4. The invention avoids overlaps. Overlaps
may occur temporarily in the internal data structures, but must be rem-
edies. Overlaps may also occur temporarily in certain embodiments of
the invention that indicate the repositioning of items by means of ani-
mated graphics, with minimum spaces between items ensured and over-

laps prevented at the end of an animation.

Fig. 24-3 shows a possible first step of resolving the overlap between
items M3 and M4 by moving M4 to the right so as to ensure a minimum
space Smin between M3 and M4. However, this repositioning results in

an overlap between items M4 and Ms5.

In Fig. 24-4, item M5 is moved to the right so as to ensure a minimum
space Smin between M4 and M5. Item M5 does not overlap any other
item because there is no item right of M5 in line L2. For the purposes of
this example, line L2 is complete. Furthermore, Fig. 24-4 also shows that
item Mo is inserted at the right end of line L1, where it overlaps part of

item M2.

Fig. 24-5 shows the final step relating to line L1: item M2 is moved to the
left so as to ensure a minimum space Smin between items M2 and Mo.
The spacing between items M1 and M2 is reduced, but it still exceeds the

minimum space Smin.

Fig. 25 is an exemplary flowchart for moving items to the right after in-
serting a new item at the left end of a non-empty snap line, such as the
repositionings shown in Figs. 24-3 and 24-4 in the lower line L2. The
loop for moving items to the right starts at 0, the index of the (new)

leftmost item. If items are moved to the right within a line after insertion

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

29

of a new item in a different position, the start index may be higher than
in this exemplary flowchart. The loop processes all indices from the start
index up to the second-highest index as the index of the left item of each
loop run, and the index of the right item of each loop run is the left index
plus 1. The loop determines the leftmost (lowest) X coordinate possible
for the right item without a resulting overlap between the left item and
the right item. That coordinate is the leftmost coordinate of the left item
plus the minimum spacing required plus 1. If the left coordinate of the
left item is left of (i.e., lower than) the just-determined leftmost option, it
is adjusted accordingly. Otherwise no coordinate must be changed dur-
ing this loop run. Depending on the details of a particular embodiment,
identification of the first pair of items requiring no coordinate adjust-

ment may be an opportunity to exit the entire loop.

Any wrapping operation can trigger a chain reaction: items wrapped out
of a first line and into a second line may require items to be wrapped out
of the second line into a third line, and so forth. Multi-line wrapping will

be explained further below.

Left-bound wrapping of items

If an item is wrapped out at the left end of a line and placed at the right
end of the line above, some or all of the items previously in the upper
line may have to be moved to the left so as to avoid overlaps and ensure a
minimum item-to-item space. The related loop has to start at the right. It
can process items pair by pair as in the example or it can store the X co-
ordinate of each previous item (starting with the X coordinate of the
right margin of the snap line) in a variable for the subsequent loop run.
Fig. 26 shows an exemplary set of three items (M1, M2, M3) in a line,
whereby the pair of the current loop run consists of M1 (left item of cur-
rent loop run) and M2 (right item of current loop run) and the pair of the
previous loop run consisted of M2 (left item of previous loop run) and
M3 (right item of previous loop run). The rightmost (highest) permissi-
ble left X coordinate of item M2 so as to ensure a minimum space be-
tween M2 and M3 can be determined by firstly calculating the rightmost
(highest) permissible right X coordinate of M2, which is the left coordi-
nate of M3 (M3_left) or, if the rightmost item is processed, the X coordi-

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

30

nate of the right margin of the snap line, minus the width of the right
item (M3) plus 1. By subtracting the width of a minimum item-to-item
spacing and the number 1 from that rightmost (highest) permissible left
X coordinate of item M2, the rightmost (highest) permissible left X co-
ordinate of item M2 is identified. If necessary, that left coordinate must
be adjusted.

Iterative multi-line wrapping

As mentioned further above, items wrapped out of a first line and into a
second line may require items to be wrapped out of the second line into a
third line, and so forth. Fig. 27 is an exemplary flowchart for the recur-
sive wrapping of one or more items out at the left end of each snap line
and into the line above, where the one or more items are inserted at the
right end. The recursive function receives three parameters: the index of
the line in which to insert the one or more items, a collection containing
the one or more items to wrap into the new line, and (with a view to the
determination of an optimal wrapping strategy as discussed further be-
low) an evaluation results object in which the technical impact of a
wrapping operation is stored if the function is called in evaluation mode
(whether the operation takes place in evaluation mode could be commu-
nicated via an additional parameter, through a data field in an object, or
by passing a null value for the evaluation results object in non-evaluation
mode). The return value of the recursive function is a collection of the
items wrapped out of the line last processed. Recursion will end once the
return value collection is empty, i.e., once an insertion has been made
into a line where there was enough space so as not to require further
wrapping. If the return value collection is not empty but there are no
more lines to process, and if there is furthermore a technical restriction
(because of the design goal to keep all movable objects visible at the
same time without scrolling or other space-extending operations) not to
create additional lines, the operation cannot be performed, a fact that
should preferably be identified in evaluation mode (in which case a value
would be communicated, typically by setting a flag in the evaluation re-

sults object, that indicates the infeasibility of the operation evaluated).

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

31

A person skilled in the art knows how to apply the same recursive struc-
ture to a right-bound wrapping operation, in which items are wrapped
out at the right end (instead of the left end), wrapped in at the left end
(instead of the right end), and the line index increases. A person skilled
in the art furthermore knows how to perform multi-line wrapping by
means of other iterative program structures than a literally-recursive
structure, such as (by way of example and without limitation) a loop with

or without a stack.

The determination of whether items must be wrapped out of a line (and
if so, how many) is shown by the exemplary flowchart in Fig. 28. The
initialization occurring before that exemplary loop sets a variable for the
space still needed to the required space gain, which is usually the differ-
ence between the disposable space in a given line and the space required
for insertion of one or more items and the related item-to-item spac-
ing(s). The initialization part also sets the item count and the loop index
to zero. The loop index cannot exceed the highest index. If the highest
index would be exceeded, a negative value is returned to the calling code
so as to indicate that no number of left wraps would be sufficient to free
up the required space; otherwise the loop would have been terminated
before by returning an item count after finding that the amount of space

still needed has reached or gone below zero.

A person skilled in the art knows how to apply the same logic to a deter-
mination of the number of items to be wrapped out on the right end of a
snap line by means of a loop starting at the opposite end and working its

way in the opposite direction (decreasing item index).

Determination of optimal bidirectional wrapping strategy

It is a key aspect of embodiments of the invention that, unlike a conven-
tional unidirectional wrapping technique that has no choice of direction,
it is capable of choosing an optimal wrapping strategy. It has been dis-
cussed further above that embodiments of the invention are capable of
avoiding wrapping operations entirely by repositioning items within a
line, which can also be a bidirectional operation (moving items left and

right of the insertion position so as to make room for a new item). A

10

15

20

25

30

WO 2016/029935

32

more efficient use of screen space and of other computing resources
(such as processing time) is made by minimizing the number of lines
that contain items, by minimizing the number of lines affected by a
wrapping operation, and by minimizing the number of items to be
wrapped from one line to another. The efficiency gain is even greater in
scenarios in which the repositioning of items is visualized by means of

animated graphics.

Program code can be written that is capable of operating in two modes,
an evaluation-only mode (in which the technical impact of a wrapping
operation is stored in an evaluation results object but no actual reposi-
tionings occur) and an actual-repositioning mode. Alternatively, differ-
ent sets of program code can be written. This choice of structure is mere-
ly a question of code design without further technical implications. The
relevant technical aspect is the ability of the invention to perform an
impact assessment of alternative wrapping strategies prior to actually

repositioning items.

When identifying the need to wrap one or more items out of a target line,
the invention can evaluate some or all of the wrapping options available
to it: by wrapping unidirectionally on the right end (if the insertion posi-
tion is right of the rightmost item in the target line, the item to be insert-
ed would be the item to be wrapped), by wrapping unidirectionally on
the left end (if the insertion position is left of the leftmost item in the
target, the item to be inserted would be the item to be wrapped), or by
one or more combinations of A number of left wraps and B number of

right wraps.

It has been explained further above how to determine the number of
items to be wrapped out on one end of a snap line so as to free up a re-
quired quantity of space (Fig. 28). Fig. 29 is an exemplary flowchart for
determining the number of right wraps needed in addition to a given
number of left wraps. The parameters for that sample function include
the required space gain as well as the space already freed up on the left
side. Prior to the loop, the item count is initialized by setting it to zero,
and an item count of zero is returned if the space freed up by left wraps

is sufficient all by itself. If there is a need to free up more space on the

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

33

right side but the target position (another parameter of the function) is
already the rightmost position in the line, then there is no number of
right wraps capable of complementing a given number of left wraps in

order to free up the required space.

If the loop index exceeds the target index for the insertion but the loop
has not been aborted before, it is clear that no number of right wraps
would be sufficient, which must be reported back to the calling code (in
the example, and without limitation, by means of returning a negative

value).

Each loop run determines the widthLoop value, which is the width of the
item at the loop index (i.e., the next item that can be wrapped out) as
well as a minimum item-to-item spacing unless this is the final run of a
wrapping operation involving all items. The item count is increased dur-
ing each loop run while the space still needed is reduced by widthLoop.
If the space still needed hits or goes below zero, the required number of
items has been identified and the item count is returned; otherwise the
item index is decreased (so as to advance further left) and the loop con-

tinues with that new index.

A person skilled in the art knows how to apply the same approach to the
determination of the number of left wraps needed in addition to a given

number of right wraps.

This determination of a complementary number of wraps is a prerequi-
site for building a collection of all wrap options. Each wrap option indi-
cates how many items to wrap out on the left side (if any) and how many
on the right side (if any). Zero items on both sides at the same time
would not be a valid option. At least one of the two values must be great-
er than zero, and it is possible for both to be greater than zero, in which
latter case a simultaneous bidirectional wrapping operation will occur.
In technical terms, a bidirectional wrapping operation will be sequential,
and there is freedom of choice with respect to the visualization of the
repositioning of items. However, it is simultaneous in the sense that a
single user action (dropping an item in a target position for insertion)

triggers both one or more left wraps and one or more right wraps.

10

15

20

25

30

35

WO 2016/029935

34

Fig. 30 shows an exemplary flowchart for building a collection of wrap
options, whereby Fig. 30-1 contains the first part of the flowchart and
Fig. 30-2 contains the second part. At the outset, a return value collec-
tion is initialized. Also, the numbers of items presently found to the left
and to the right of the target position must be identified. If the item is
inserted at the right end of the target line, the items that can be wrapped
out of the target line to free up space are found only on the left side. Ac-
cordingly, the number of left wraps capable of freeing up the required
space is determined. A wrap option is built by setting the number of left
wraps to the just-determined number and by setting the number of right
wraps to zero. That wrap option is added to the results collection. Pro-
vided that there is a line below (i.e., the line index is not the highest in-
dex), a second wrap option consisting of zero left wraps and one right
wrap (i.e., the item to be inserted) is built and is added to the results col-
lection. With one or two wrap options in the results collection, the pro-

cess of building all options is complete.

If the new item is inserted at the left end, a first wrap option is built and
added to the results collection. That first wrap option consists of one left
wrap (i.e., the item to be inserted) and zero right wraps. In any event,
the operation continues by initializing the values for totalFreedUpOnLeft
(aggregate space gain left of insertion position), previousNumRight
(number of right wraps identified during last loop run), and (at the start
of Part IT of the second part of the flowchart, Fig. 30-2) setting the loop
variable (which represents the number of items to be wrapped out on the
left side) to zero. If the loop variable exceeds the number of items left of
the insertion position, the process is complete and the results collection
is returned. Otherwise the process continues. If the loop variable is
greater than o, the totalFreedUpOnLeft value is increased by the width
of the item at an index that is one less than the loop index and, unless
this is the last item processed on the relevant side, one item-to-item
spacing. The number of right wraps needed in addition to the number of
left wraps contained in the loop variable is calculated in accordance with
the previously-described process (Fig. 29) and stored in numRightNeed-
ed. If the determination of complementary wraps communicates (in the
example, and without limitation, by means of a particular negative value

other than, in the example, -100, which should be the initial but also a

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

35

non-reoccurring value of previousNumRight) that no number of right
wraps would be sufficient or if the number of right wraps needed is iden-
tical to the one identified in the previous loop run (in which case it would
be a waste of resources to wrap out more items on the left side if this
does not reduce the number of wraps needed on the right side), the loop
continues immediately with the next item (without building and adding
another wrap option). Otherwise, the new wrap option is built by using
the value of the loop variable as the number of left wraps and the value
of numRightNeeded as the number of right wraps. The value of num-
RightNeeded is furthermore stored in previousNumRightNeeded to al-
low the next loop run to identify a scenario in which a greater number of
left wraps does not result in a lower number of right wraps (i.e., the op-
tion is less efficient than a previous one). If the number of right wraps
needed is zero, the results collection can be returned and the process is

complete as well.

A person skilled in the art knows how to optionally restructure the order
in which the wrap options are determined by identifying the number of
left wraps needed in addition to a given number of right wraps, in which
case the process can be cut short if the item is inserted at the left end. All
other things being equal, the resulting list of wrap options would be the

same.

After the collection of wrap options has been built, an evaluation of the
technical impact of each wrap option is performed. The determination of
the most efficient option is reached by comparing the values in the eval-
uation results objects to each other. Different embodiments of the inven-
tion may set different priorities or place different weight on different

impact indicators (if values are multiplied with a weighting factor).

One suitable indicator is the total number of lines used. If a line was pre-
viously empty but would contain at least one item as a result of the
wrapping operation, and if that line represents a new outermost line
among the lines containing items, less efficient use of screen space is
made than if that line remains empty. If the previously-empty line has an
index of X and no line with an index below X contains any item, there

would be a new outermost line in the event of a left-wrap (i.e., items are

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

36

wrapped from a lower line into an upper line). If the previously-empty
line has an index of X and no line with an index above X contains any
item, there would be a new outermost line in the event of a right-wrap
(i.e., items are wrapped from an upper line into a lower line). In addition
to other considerations, it is also a recommended design goal for usabil-
ity reasons to minimize the distance between the topmost and the bot-
tommost snap lines unless the user deliberately chooses to insert items

into previously-empty, new outermost lines.

Another suitable indicator is the total number of lines affected by wrap-
ping operations. This number can be counted during the evaluation pro-
cess, or a flag can be set for each line affected or the number of each line
affected can be added to a collection (so as to avoid duplicate counting of

a given line).

A further suitable indicator is the total number of items wrapped from
one line to another. This is a particularly important criterion if the repo-
sitioning of items is visualized by means of animated graphics, and it is
also a usability criterion since users will be less confused when seeing
(with or without animated graphics) repositionings within a line than
wrapping operations that move an item from one end of a first line to the

opposite end of another line.

Yet another suitable indicator is the total distance of all repositionings of
items, whereby there are different choices for how to account for wrap-
ping operations (by way of example, and without limitation, wrapping
operations could be given additional weight by treating them as a sub-
stantially greater distance than any repositioning of an item within the

same line).

It is only a matter of internal program code organization whether the
evaluation of wrapping operations also returns all or some of the data
(besides the numbers of left and right wraps, which identify a wrap op-
tion at the highest level) needed for the graphical operations to be per-

formed if a particular wrap option is chosen.

The comparison of the different results of an evaluation could be based

on strict priorities, in which case a first criterion would be evaluated and

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

37

the result of the comparison of the values of two options relating to that
first criterion would be the result of the overall comparison, unless there
is no difference, in which case a second criterion would be evaluated
(and so forth). It could also be based on a weighted indicator. For exam-
ple, if a new outermost line results from a wrapping operation, it could
be assigned a value of three times the maximum value of repositionings
of items within a given line, while repositionings of items within lines
may increase the impact indicator by only half the distance of the related

item movements.

Repositioning and wrapping of items in a snap grid

The repositioning and wrapping operations, including the determination
of the optimal wrapping strategy, disclosed with respect to snap lines
containing variable-width items are simplified in connection with a snap

grid.

While a two-dimensional snap grid has lines and columns in graphical
terms, the grid cells can be internally indexed without the index in and of
itself reflecting the two-dimensional appearance of the grid (for which it
is sufficient to calculate the coordinates of each grid cell in accordance

with techniques known to a person skilled in the art).

If an item is inserted into a grid cell X that contains an item, the item
previously in grid cell X can be moved to the right by inserting it into
grid cell X+1 (and if grid cell X+1 contains an item, it is placed into grid
cell X+2, and so forth), or it can be moved to the left by inserting it into
cell X-1 (and if grid cell X-1 contains an item, it is placed into grid cell X-
2, and so forth).

For determination of the optimal wrapping strategy, it is possible to find,
by means of a loop decreasing or increasing a loop index starting with a
cell adjacent to the target position, the closest index of an empty cell. The
lesser the difference between the index of the target cell and the index of
the closest empty cell, the fewer items have to be repositioned if the re-
lated direction (left or right) is chosen. For a one-dimensional snap grid,

this is the only suitable criterion.

10

15

20

25

30

WO 2016/029935

38

For a two-dimensional snap grid, it is additionally or alternatively possi-
ble to count the number of lines affected by a wrapping operation, or the
number of new outermost lines used, by adapting the optimization tech-
nique described further above in connection with snap lines. Certain
shortcuts are enabled by the specific nature of a snap grid. For example,
the number of lines affected (or a correlating value that would also be a
suitable indicator) can be derived from the difference in Y coordinates
between the target cell for the insertion and the furthest cell affected by
the operation (i.e., the cell that is both adjacent to the closest empty cell
and closer to the target cell than the closest empty cell is). The determi-
nation of whether a line of a snap grid is empty or not can be made more
efficient by maintaining a collection in which each object represents a
line and contains the range of indices of all cells in that line. Additionally

or alternatively, each object representing a cell can contain a line index.

Quantifying knowledge of item relationships

The item relationships the present invention is primarily concerned with

include

- the membership of an item in a particular item group (for exam-
ple, the fact that certain mountains are located in one country

while certain other mountains are located in another country),

- the order of a plurality of items by a given criterion (for example,
the order of multiple political office-holders by the date of their

initial appointment), and

- combinations thereof (for example, the grouping of mountains by
country combined with an ordering of the mountains in each

country by elevation).

In most cases, item memberships in groups are single data points. For
example, most rivers are located in only one country, and politicians can
be members of only one political party at a given point in time. However,
certain rivers (such as the Nile and the Rhine) are shared by a plurality
of countries, and throughout an entire career, a politician may be a

member of a plurality of parties (for example, Ronald Reagan was a

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935

39

member of the Democratic Party before joining the Republican Party in
1962). Similarly, one of the first 44 presidents of the United States,
Grover Cleveland, served two non-consecutive terms and therefore con-
stitutes the 22nd as well as the 24th president of the United States, while
the other 43 presidents appear only once on a numbered list of presi-

dents.

A person skilled in the art knows how to internally represent such rela-
tionships in different data formats. An item can be a member of a plural-
ity of groups if each group constitutes a collection of items as long as
there is no requirement that a data point of the item itself define one
(and only one) group the item belongs to. Additionally or alternatively,
each item may contain a collection of groups or group IDs in order to
have room for multiple group memberships (or multiple ranks on an

ordered list) per item.

On the display, items are represented by movable graphical objects. At
least in scenarios in which no item is a member of more than one group
or occurs more than once on an ordered list, it is a valid option that data
structures may be associated with movable graphical objects by simply
storing all of the data relating to the item itself (such as the name of a
politician or mountain, with or without additional data) in the same ob-
ject as the movable graphical object representing the item vis-a-vis the
user. However, such arrangement of data would be inconsistent with the
widely-adopted Model-View-Controller architectural pattern and would
result in certain inefficiencies. For example, the lifecycles of data items
and their corresponding graphical objects typically differ, suggesting that
usually small data items should be kept separate from potentially

memory-consuming graphical objects.

In certain preferred embodiments, each movable graphical object con-
tains one data point linking a data item to the movable graphical object,
typically (by way of example and without limitation) an item ID or a

pointer to the location in which the item data is stored in memory.

A person skilled in the art implementing the invention can choose
whether to implement movable graphical objects from scratch with

known techniques or to make use of widely-available operating system

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

40

functionality. Operating systems with graphical user interface layers typ-
ically provide controls (user interface elements) that detect some or all
drag-and-drop actions by the user and can be repositioned by merely

changing their coordinates before refreshing the display.

While embodiments of the invention can achieve the relatively highest
level of performance if the movable and any non-movable graphical ob-
jects have a rectangular shape, the invention is not limited to any partic-
ular shape. For example, by using a transparent color, items may have a
rectangular shape for internal purposes while appearing to the user to be
arbitrarily-shaped. In this case, the invention delivers the same level of
performance as in the case of visibly-rectangular shapes and is capable of
performing the same optimization of any repositionings of items. Alter-
natively, arbitrary shapes can be supported by defining graphical objects
as polygons. Algorithms for identifying intersections of items with poly-
gons (including elliptic shapes, which are effectively polygons with large
numbers of vertices) and locations of points relative to a polygon are
known. Certain algorithms triangulate polygons, i.e., break polygons up
into groups of triangles. Polygons can also be represented as groups of

rectangles.

Relationships between items as well as between items and groups can be
visually represented in different forms. It is common to place all (actual
or presumed) members of an item group in a framed area, for example, a
rectangular box, and to represent the order of items through the one-
dimensional or two-dimensional positioning of such items relative to

each other.

Scoring techniques

Comparison of grouping input against correct grouping

In order to quantify the user’s knowledge of the group membership of
items, it is necessary to compare the user’s presumed composition of
groups against a predefined correct grouping. Fig. 8 shows an example in
which it is known that the user meant the first group (“GroBglockner”,

“Kitzsteinhorn”, “Rosengarten”) to contain mountains located in Austria,

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

41

the second group (“Zugspitze”, “Hochwanner”) to contain mountains
located in Germany, and the third group (“Gran Paradiso”, “Hoher
Dachstein”, “GroBvenediger”, “Ortler”) to contain mountains located in
Italy.

This is undoubtedly the case if the user placed the items in containers
with the respective labeling (as depicted in Fig. 8), or if the user was in-
structed to place items in containers defined by location and/or size (for
example, if the user was asked to place all Austrian mountains in the
leftmost container). Otherwise some further analysis of the user’s intent,

as explained below, may be required.

In Fig. 8, the comparison of the groups formed by the user against the
correct groups shows that the user correctly identified both German
mountains and correctly identified two Austrian as well as two Italian
mountains, but erroneously deemed an Italian mountain
(“Rosengarten”) to be an Austrian mountain and assigned two Austrian

mountains (“Hoher Dachstein”, “GroBvenediger”) to Italy.

A strictly binary and coarse determination would result in a zero score

because the user failed to correctly group all items.

Some alternative evaluations according to embodiments of the invention
would count all correct assignments and award points for them; count all
incorrect assignments and deduct points from a maximum achievable
score; or award points based on the number by which the number of

correct assignments exceeds the number of incorrect assignments.

Differentiated scoring of grouping input

Fig. 9 shows an example of a more differentiated scoring of the same
grouping input as in Fig. 8. The more differentiated scoring has an item-
specific difficulty level. The difficulty level could also be the same for all
items in a group. That difficulty level determines the number of points in
which a correct assignment results (in the example, the number of points
is identical to the difficulty level, but it could also be proportional to it or
be read from a table of difficulty levels and points). In the example it also

determines the number of points deducted for an incorrect assignment.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

42

In the example, the number of points deducted is greater if the difficulty
level is higher: the incorrect assignment of “Hoher Dachstein” to Italy,
instead of Austria, results in a deduction of only two points because the
difficulty level was high (6), while the incorrect assignment of
“GroBvenediger”, which has a lower difficulty level attached to it, is pe-
nalized with a deduction of five points. Again, the relationship could be
numerical (for example, 8 minus the difficulty level) or the number of
points to be deducted could be read from a table.) As stated above, scor-
ing can be based on only correct assignments, on only incorrect assign-

ments, or on a combination as in Fig. 9.

Assignment of object to container in non-snapping setup

If a container has a snap grid or snap lines, the content of the container
(in terms of which movable graphical objects, each of which his associat-
ed with a data item relevant to knowledge quantification) is updated af-
ter each dropping of an object on the container. In the event of a non-
snapping container, such determination can wait until the user submits a
grouping for evaluation. Fig. 10 shows an exemplary assignment of an
item to a container (Container #1). The item is placed in an arbitrary
(non-snapping) location where it has overlaps with a waiting space and
with two containers. Since the area of the overlap with Container #1 is
greater than with that of Container #2 or that of the waiting space, the

item would be deemed to have been placed in Container #1.

It is also possible in embodiments of the invention to allow intentionally-
ambiguous placements. For example, the user might actually want to
position an item corresponding to Mont Blanc in a place where it touches
both the container for Switzerland and the container for Italy (the moun-
tain belongs to both countries, and ownership of its highest elevation is
disputed). There can, but need not, be a threshold for a percentage of the
area covered by the movable graphical object that must overlap with
each of a plurality of containers in order for the item to be deemed to be
placed in both containers simultaneously. Also, there could also be two
movable graphical objects relating to Mont Blanc, and the user could
place one in the Italy container and the other in the Switzerland contain-

er.

10

15

20

25

30

WO 2016/029935

43

Categorization of item groups from unlabeled containers

If containers (such as the exemplary ones in Fig. 2-1) are not labeled and
if the correct group of items relating to a container is not defined by the
location and/or size and/or color and/or other visual characteristic of
the container, the knowledge quantification system needs to perform an
intermediate step (between submission of an answer for evaluation and
the actual scoring) of determining, i.e. “understanding”, the user’s in-
tended grouping by comparing the user-formed groups to the correct

groups.

It is recommended to view the user’s intended grouping in the light most
favorable to the user. For example, if the user formed a first group con-
sisting of three Austrian mountains and one Italian mountain and a sec-
ond group consisting of two Italian mountains and one Austrian moun-
tain, the user likely intended the first group to correspond to Austria and

the second one to correspond to Italy.

Depending on the details of the scoring algorithm and on design deci-
sions, an effort to view the user’s input in the most favorable light may
either involve a complete scoring of all permutations or a simpler evalua-
tion, such as a count of correct assignments. Once a collection of permu-
tations has been built, algorithms known to a person skilled in the art
can evaluate each permutation and determine the permutation most
favorable to the user. The most favorable permutation will then be the

(sole) basis for scoring.

Fig. 11 shows the six possible permutations of three groups. If the user
formed three groups, and there are three correct groups (in the example,
“Mammals”, “Reptiles”, and “Insects”), any permutation could be the

user’s intended grouping.

Fig. 12 is an exemplary flowchart of a recursive algorithm for generating
a collection of all permutations in accordance with embodiments of the
invention. The recursive function is called with four parameters: a collec-
tion of results (initially empty), a permutation builder (i.e., an object to
which group IDs (alternatively, pointers to the groups) are added succes-

sively until a complete permutation has been built), an index within the

PCT/EP2014/068062

10

15

20

25

30

WO 2016/029935

44

builder (i.e., the zero-based index of where the next addition of an item
to the permutation builder will occur), and a collection of available ele-
ments (i.e., group IDs available at this level of the recursive process for
addition to the current permutation builder). Recursion ends when the
final permutation builder index is reached, which is checked at the out-
set of the recursive function. In that event, there will be only one more
available element (group ID) remaining, which is added to the current
permutation builder, which in turn is added to the collection of results.
No further recursive call is made at this juncture. If the final index has
not been reached yet, a recursive call must be made for each of the avail-
able elements (group IDs). Inside the loop performing these calls, the
current state of the permutation builder must be copied because further
down the recursion path different additions will be made. For each re-
cursive call, a copy of the list of available elements is provided after re-

moving from that copy the element that was just added inside the loop.

Comparison of ordering input against correct order of items

If the items to be ordered by the user are placed in a container or work
space with snapping functionality, the order determined by the user is

unambiguously identifiable and available for further evaluation at sub-
mission time. Otherwise the intended order must be identified (as dis-

cussed further below).

Fig. 13 shows an exemplary comparison of a user-determined order of
items against the predefined correct order by means of computing the
Kendall tau distance. In the example, the names of the first five presi-
dents of the United States are ordered by the beginning of their first
term. The Kendall tau distance is the number of discordant pairs, i.e.,
pairs of items that appear in the opposite order on one list as they do in
the other. In the example, there are ten pairs in total. The total number
of pairs of X number of items is always X(X-1)/2. In the example, seven
of the pairs are concordant (the relative ranking of those items is identi-
cal on both lists) and three (John Adams-Thomas Jefferson; John Ad-
ams-James Monroe; and James Madison-James Monroe) are discord-
ant. In absolute numbers, the Kendall tau distance in the example is 3.

This absolute number can be normalized by dividing it by the total num-

PCT/EP2014/068062

10

15

20

25

30

35

40

45

WO 2016/029935 PCT/EP2014/068062
45

ber of pairs, in which case 1 (or 100%) means that all pairs are discord-
ant and 0 means that all pairs are concordant. In the example, the nor-
malized Kendall tau distance amounts to 3/10 = 0.3 (or 30%). The
knowledge quantification system can, for example, award a number of
points that decreases with each discordant pair. It can also award points

based on the difference between concordant and discordant pairs.

The following sample code written in the C# programming language for
Microsoft Windows demonstrates (at the highest level) how to determine
the Kendall tau distance:

private int GetKendallTauDistance()
{
int returnValue = 0;
int highestCorrItemIndex = correctlyGroupedItems.Count - 1;
for(int i = @; i <= highestCorrItemIndex - 1; i++)
{
ItemWithIndexAndGroupId itemOuterLoop =
correctlyGroupedItems[i];
for (int j = i + 1; j <= highestCorrItemIndex; j++)
{
ItemWithIndexAndGroupIld itemInnerLoop =
correctlyGroupedItems[j];
if (CheckIfDiscordantPair(itemOuterLoop,
itemInnerLoop))
{
returnValue++;
}
}
}
return returnValue;
}

private Boolean CheckIfDiscordantPair(
ItemWithIndexAndGroupId iteml, ItemWithIndexAndGroupId item2)
{
int userPosIteml
int userPosItem2

GetUserPositionOfItem(iteml);
GetUserPositionOfItem(item2);

int corrPosIteml
int corrPosItem2

GetCorrPositionOfItem(iteml);
GetCorrPositionOfItem(item2);

if (userPosIteml < userPosItem2)

{
}

return (corrPosIteml < corrPosItem2);

return (corrPosIteml > corrPosItem2);

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

46

The GetKendallTauDistance function creates all pairs: every time the
inner part of the inner loop is executed, the values of itemOuterLoop and
itemInnerLoop represent one pair. The CheckIfDiscordantPair subrou-
tine then retrieves the ranks (i.e., indices) of both items on the user-
determined list (GetUserPositionOfltem) as well as on the predefined
correct list (GetCorrPositionOfItem). If the first item appears on the us-
er-determined list before the second item, the pair is found concordant if
the opposite is the case on the correct model-answer list; otherwise it is a
concordant pair and the result is “false”. Since two items on a list cannot
have an identical rank, it is certain that if the first “if” condition in
CheckIfDiscordantPair is not met, the first item appears after the second
item on the user-determined list, in which case the pair is discordant if

the first item appears before the second one on the model-answer list.

While the Kendall tau distance is the preferred measure for knowledge
quantification relating to the order of a set of items, alternative algo-
rithms are possible in embodiments of the invention. For example, a
knowledge quantification system could focus its analysis on the ranks of
one item at a time as opposed to pairs of items. Fig. 14 shows that, in the
example, the first item (George Washington) has the correct rank, while
the other four items have a false rank, with the difference between the
correct and the user-determined rank being 1 each for Thomas Jefferson

and James Madison, and 2 each for James Monroe and John Adams.

Identification of user-determined order of items in non-snapping setup

If the items to be ordered by the user are placed in a container or work
space with snapping functionality, the order determined by the user is
unambiguously identifiable and available for further evaluation at sub-
mission time. Otherwise the intended order must be identified as dis-

cussed in this section.

If a user is requested to order items one-dimensionally (i.e., vertically or
horizontally), the user’s intended order can be discerned based on the
order of the relevant coordinate. Fig. 15 shows an exemplary identifica-
tion of a vertical order of items based on the topmost Y coordinates of

the items. In the example, each item has a unique top Y coordinate. If

10

15

20

25

30

35

WO 2016/029935 PCT/EP2014/068062

47

two or more items had the same topmost Y coordinate, their order rela-
tive to each other could either be determined based on a second criterion
(for example, the X coordinate) or the user could be requested to provide
clarity by repositioning items or otherwise indicating their intended or-
der (for example, by touching or clicking on buttons representing answer

to questions concerning ambiguities in the order of items).

On many displays, a two-dimensional ordering of items makes more
efficient use of the available screen space. However, identification of a
user-determined two-dimensional order of items based on arbitrarily-
determined item positions requires, as a first step, the identification of
rows. Thereafter, the relative position of items in a row can be deter-
mined in accordance with the above-described method of identifying a
user-determined one-dimensional order by evaluating only the relevant

coordinate (which for multiple items in a given row is the X coordinate).

Fig. 16 shows an exemplary arrangement of items (M1 to M8) whereby
the dashed lines are the extended top and bottom lines of certain items.
It is clear that the user intended items M1, M2, M3 and M4 to form the
first row; items M5, M6 and M7 to form the second row; and M8 to be
the only item in the third row. A programmable electronic device can
discern these intended rows by beginning with the topmost item, which
is M2 in the example and which is by definition a member of the first
(topmost) row. The question is then which other items are in the same
row as M2. M1 and M4 are particularly clear cases because their Y coor-
dinate ranges (top to bottom) overlap for the largest part with that of
M2. The Y coordinate range of M3 overlaps with that of M2 to a lesser
degree, but still more than 50% of the Y coordinate range of M3 falls
within that of M2, while the only item that has a Y coordinate range
overlap with M3 besides those that are unambiguously in the first row
(M1, M2, M4) is M6, which has only a marginal overlap of its Y coordi-
nate range with that of M3 and no overlap whatsoever with any of the
three items that are undoubtedly in the first row (M1, M2, M4). Itis a
recommended requirement that all items deemed to be in the same row
have a significant Y range overlap with each other, as do M1, M2, M3 and
M4 in the example. There is no single threshold value that must inevita-

bly be applied, but the shared part of the Y coordinate ranges of all items

10

15

20

WO 2016/029935 PCT/EP2014/068062

48

in a row should typically amount to at least 40%, possibly 50% or more,
of the Y coordinate range of each item in that row. In the example, that is
also the case for M5, M6 and M7 (second row). M8 is clearly isolated and

represents a row of its own.

It would be possible at submission time to request the user to disambig-
uate the arrangement of items by repositioning them or by answering
questions (such as by touching or clicking on buttons representing an-

Swers).

However, the preferred way to avoid ambiguities is to provide visual
feedback to the user’s arrangement of items so as to indicate the order of
items as identified by the programmable electronic device at a given
point in time. Fig. 17 shows an exemplary visualization (by means of
dashed lines) of identified rows. In the example, the row to indicate the
first (topmost) line (M1, M2, M3, and M4) is the (horizontally-extended)
bottom line of M4, which has the lowest bottom line of those four items
that does not touch any item from a lower line (in this case, M6). The
(horizontally-extended) bottom line of M7 is the lowest bottom line of all
items in the second row and at the same time the lowest one that does

not touch any item from a lower line (in this case, M8).

Alternatively or additionally to lines drawn to indicate the rows identi-
fied by the programmable electronic device based on the user’s arrange-
ment of items, the items could also be numbered in the order identified.
The identified rank of each item could be displayed on that item, next to
that item, or partly overlap it.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062
49

Claims

1. A computer-implemented method for processing drag-and-drop
gestures on a user interface, the method comprising the following

steps:

a. displaying a plurality of graphical objects (M0-M8) on the
user interface, at least two of said graphical objects (Mo-M8)
each being associated with a data structure, at least two of said
data structures being associated with a model answer of an

automated knowledge quantification system;

b. detecting a drag-and-drop gesture on the user interface
indicating that a first one of the plurality of graphical objects
(Mo-M8) is moved to a line (L1-L2) comprising at least a

second one of the plurality of graphical objects (M0-M8);

c. determining that the horizontal position of the first graphical
object is in conflict with the at least one second graphical

object; and

d. moving the at least one second graphical object to the left to

create sufficient space for the first graphical object.

2. The method of claim 1, wherein step d. further comprises moving
at least a third one of the plurality of graphical objects (Mo-M8) to

the right to create sufficient space for the first graphical object.

3. A computer-implemented method for processing drag-and-drop
gestures on a user interface, the method comprising the following

steps:

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

50

a. displaying a plurality of graphical objects (M0-M8) on the
user interface, at least two of said graphical objects (M0o-M8)
each being associated with a data structure, at least two of said
data structures being associated with a model answer of an

automated knowledge quantification system;

b. detecting a drag-and-drop gesture on the user interface
indicating that a first one of the plurality of graphical objects
(Mo-MS8) is moved to a line (L1-L2) comprising at least a

second one of the plurality of graphical objects (M0-M8);

c. determining that the horizontal position of the first graphical
object is in conflict with the at least one second graphical

object; and

d. moving at least the left-most graphical object on the line to an
overlying line to create sufficient space for the first graphical

object.

The method of claim 3, further comprising the step of moving at
least the right-most graphical object on the line to an underlying

line to create sufficient space for the first graphical object.

The method of claim 3 or 4, wherein the moving of at least the left-
most and/or right-most graphical object is performed iteratively

for the respective object on the overlying and/or underlying line.

The method of any of the preceding claims, comprising the step of
simulating a plurality of alternative graphical object repositioning
strategies prior to the repositioning of a graphical object (M0o-M8);
and

determining a most efficient graphical object repositioning

strategy.

10

15

20

25

30

WO 2016/029935 PCT/EP2014/068062

10.

11.

12,

13.

51

The method of the preceding claim 6, wherein the step of
determining a most efficient graphical object repositioning
strategy comprises determining whether a new line has to be

created.

The method of the preceding claims 6 or 7, wherein the step of
determining a most efficient graphical object repositioning

strategy comprises determining the total number of affected lines.

The method of any of the preceding claims 6-8, wherein the step of
determining a most efficient graphical object repositioning
strategy comprises determining the total number of graphical

objects that have to be moved from one line to another.

The method of any of the preceding claims 6-9, wherein the step of
determining a most efficient graphical object repositioning
strategy comprises determining the total distance of all needed

graphical object repositionings.

The method of any of the preceding claims, wherein the user
interface is displayed on a touch-sensitive display (10) of a portable

electronic device.

A computer program comprising instructions for implementing a

method in accordance with any of the preceding claims 1-11.

A portable electronic device, comprising;:

a. adisplay (10), preferably a touch-sensitive display, configured
for displaying a plurality of graphical objects (M0o-M8) on a
user interface, at least two of said graphical objects (Mo-M8)
each being associated with a data structure, at least two of said
data structures being associated with a model answer of an

automated knowledge quantification system; and

WO 2016/029935 PCT/EP2014/068062
52

b. aprocessor (20), configured for:

detecting a drag-and-drop gesture on the user interface
5 indicating that a first one of the plurality of graphical objects

(Mo-MS8) is moved to a line (L1-L2) comprising at least a
second one of the plurality of graphical objects (M0-M8);

determining that the horizontal position of the first
graphical object is in conflict with the at least one second

10 graphical object; and
moving the at least one second graphical object to the left

to create sufficient space for the first graphical object.

14. A portable electronic device, comprising;:
15
a. adisplay (10), preferably a touch-sensitive display, configured
for displaying a plurality of graphical objects (M0o-M8) on a
user interface, at least two of said graphical objects (Mo-M8)
each being associated with a data structure, at least two of said
20 data structures being associated with a model answer of an

automated knowledge quantification system; and

b. aprocessor (20), configured for:

25 detecting a drag-and-drop gesture on the user interface
indicating that a first one of the plurality of graphical objects
(Mo-MS8) is moved to a line (L1-L2) comprising at least a
second one of the plurality of graphical objects (M0-M8);
determining that the horizontal position of the first
30 graphical object is in conflict with the at least one second
graphical object; and
moving at least the left-most graphical object on the line
to an overlying line to create sufficient space for the first

graphical object.

WO 2016/029935 PCT/EP2014/068062

15.

53

The portable electronic device of claim 13 or 14, wherein the
processor (20) is further configured for simulating a plurality of
alternative graphical object repositioning strategies prior to the
repositioning of a graphical object (M0-M8); and

determining a most efficient graphical object repositioning

strategy.

WO 2016/029935 PCT/EP2014/068062

1/28
Fig. 1
Fig. 1-1

Group these presidents by state of birth. Time left: 55 s

Millard Fillmore James A. Garfield § Ulysses 8. Grant Warren G. Harding

Benjamin Harrison | | Wiliam H. Harrison ~ James Madison William McKinley

Franklin D. Rcoseve]ﬁ Theodore Roosevelt George Washington Woodrow Wilson
Virginia Ohio "/ NewYork -

| Submit |
Fig. 1-2
Group these presidents by state of birth. Time left: 12 s
~ \Virginia Ohio /7 NewYork
Warren G. Harding |
- . James A Garfield ! Millard Fillmore
William H. Harrison .2~ Ulysses S. Grant ,
James Madison ‘ !
: William McKinley - Theodore Roosavelt |
George Washington

Woodrow Wilson | Benjamin Harrison) ;

S —— e ST ‘Franklin D. Roosevelt

Submit |

WO 2016/029935 PCT/EP2014/068062

2/28
Fig. 2
Fig. 21
Group these presidents by state of birth. §Time left: 55 s
Millard Fillmore James A. Garfield . Ulysses S. Grant Warren G. Harding
Benjamin Harrison | | William H. Harrison . James Madison William McKinley
Franklin D. Roosevelt% Theodore Roosevelt | George Washington Woodrow Wilson
i "/s
| Submit |
Fig. 2-2
Group these presidents by state of birth. - Time left: 12 s
Willam H. Harrison .~ | James A. Garfield Millard Fillmore
‘ Theodore Roosevelt
James Madison Ulysses S. Grant {
i — . Franiin D. Roosevelt
WGegrQE‘:IVvishmgto Warren G. Harding
oodrow YViison William McKinley

Benjamin Harrison

_ Submit

WO 2016/029935

3/28

Fig. 3

Fig. 3-1

PCT/EP2014/068062

Sort these 10 presidents vertically by term.

Time left: 55 s

Millard Fillmore

~ James A. Garfield

Ulysses S. Grant

Warren G. Harding |

Benjamin Harrison

William H. Harrison

James Madison

William McKinley

Franklin D. Roosevelt,

Theodare Roosevelt |

Fig. 3-2

Sort these 10 presidents vertically by term.

Time left: 12s |

James Madison

William H. Harrison

Millard Fillmore

. Benjamin Harrison

William McKinley

Theodore BRoosevelt
. Warren G. Harding
[Franklin D. Roosevelt

Ulysses 3. Grant
James A. Garfield

WO 2016/029935 PCT/EP2014/068062
4/28
Fig. 4
Fig. 4-1
Sort these presidents by term. -
. | ! .
Line by line, left to right in each line. | Time left: 55 S,
John Adams John Quincy Adams w . Millard Fillmore
JamesA. Garfield Ulysses S. Grant 5‘ Warren G. Harding
Benjamin Harrison William H. Harrison . Herbert C. Hoover
Andrew Jackson Thomas Jefferson James Madison
William McKinley James Monrce ffFranklin D. Roosevelt
Theodore Roosevelt ‘Martin van Buren George Washington '
| Submit
Fig. 4-2
| Sort these presidents by term) i
. . L : Time left: 12 s
Line by line, left to right in each line.
George Washington John Adams Thomas Jefferson

James Madison
James Monroe

Martin van Buren

John Quincy Adams

Andrew Jackson

| William H. Harrison

Millard Fillmore Ulysses S, Grant

. Benjamin Harrison

| James A. Garfield

Herbert C. Hoover

William McKinley

Theodore Roosevelt Warren G. Harding

Franklin D. Roosev‘elt%

Submit

WO 2016/029935 PCT/EP2014/068062

5/28
Fig. 5
Fig. 5-1
Group these presidents by state of birth, | .
then sort each group vertically by term. | Time left: 55 s
Millard Fillmore James A. Garfield Ulysses S. Grant Warren G. Harding
‘ Benjamin Harrison William H. Harrison James Madison J William McKinley {
Franklin D. Roosevelt | Theodore Roosevelt George Washington | Woodrow Wilson
(
|
|
|
w
|
|
l
Submit
Fig. 5-2
Group these presidents by state of birth, Time left: 12 s

then sort each group vertically by term.

George Washington Ulysses S. Grant

Millard Filimore

- Theodore Roosevelt

James Madison James A. Garfield

|
% Franklin D. Rocsevelﬂ
| ;
|
|
|
|

~ Benjamin Harrison |
William H. Harrison William McKinley

. Warren G. Harding

 Submit

WO 2016/029935 PCT/EP2014/068062

6/28
Fig. 6
John Adams John Quincy Adams George H. W. Bush éFranklin D. Roosevelt
James A. Garfield Ulysses S. Granté Theodore Roosevelt
Warren G. Harding %William H. Harrison George Washington%
Rutherford B. Hayes Thomas Jefferson John F. Kennedy
‘James Madison James Monroe John Tyler William H. Taft Zachary Taylor
snap lines
Fig. 7
John Adams John Quincy Adams George H. W. Bush
___l I James A Garfield _L Ulysses S. Grant
_] Warren G. Harding ' _l_ William H. Harrison l
I Rutherford B. Hayes Thomas Jefferson l John F. Kennedy I
l James Madison [William McKinley I l

grid snap lines

WO 2016/029935

Austria

Grofglockner
Kitzsteinhorn ‘

Rosengarten

Austria (Container)
#1| GroRglockner

7/28

Fig. 8

Ve

7 Germany

Zugspitze
Hochwanner

~ Submit

1.

Germany (Container)
#1 Zugspitze

PCT/EP2014/068062

ltaly

Gran Paradiso

Hoher Dachstein
Groldvenediger

Ortler

Italy (Container)
#1| Gran Paradiso

#2| Kitzsteinhorn
#3| Rosengarten

#2 Hochwanner

#2| Hoher Dachstein
#3| Groflivenediger

#4| Ortler
Austria (Correct) Germany (Correct) Italy (Correct)
#1| GroBglockner #1 Zugspitze #1 Gran Paradiso
#2| GrolRvenediger #2 Hochwanner #2| Ortler

#3| Kitzsteinhorn

#4| Hoher Dachstein

Austria (Evaluation)

Germany (Evaluation)|

#3| Rosengarten

Italy (Evaluation)

& | Grolglockner
& | Kitzsteinhorn
Rosengarten

« Zugspitze
& Hochwanner

Gran Paradiso
Hoher Dachstein
GrolRvenediger
Ortler

WO 2016/029935 PCT/EP2014/068062
8/28
Fig. 9
Austria (Contamer) kkkkk +1 . Austria (Correct) Difficulty Level
#1 GroRglockner = #1 GroRglockner 1
#2 Kitzsteinhorn #2 GroRvenediger 3 -5«
#3 Rosengarten 6 " #3 Kitzsteinhorn : 6
 #4 Hoher Dachstein | 8 > -2
A
ltaly (Container) ___haly (Correct) Difficulty Level
#1 Gran Paradiso - #1 Gran Paradiso 1 v
oher Dachstei v 2 Ortler 3
#3 Groltvenediger ' #3 Rosengarten 6 > -2
#4 Ortler +3
Fig. 10
r——— - - — — — 7 71
l I Waiting
1 | Space
l | I
— Warren G. Harging — =~ —"‘
|
Container #1 Container #2
Fig. 11
Mammals Reptiles Insects ‘Mammals Insects Reptiles
 Reptiles Mammals Insects Reptiles Insects Mammals

_ Insects

Reptiles Mammals

_ Insects Mammals Reptiles |

WO 2016/029935

add sole remaining

available element to

permutation builder
(at final index)

v

add permutation
builder to collection
of results

\/

End recursion

Return after
all recursions

loop element =
at element index

Parameters for
each recursive call
- collection of results
- copy of (incomplete)
permutation builder
- increased index (in
permutation builder)
- copy of available
elements (without
loop element)

-
L yes A:@

9/28

Fig. 12

Entry Point

yes ~_reached

final builder

wex?

no

\J
increase index for
next recursion by 1

\/

start at 0 index for
loop processing all
available elements

final element
\index? g
N
no
copy current state of

permutation builder,
add loop element to it

\/

add loop element to
copy of perm builder

|

copy list of elements
without loop element

\/

recursive
call

PCT/EP2014/068062

Parameters
- collection of results
- permutation builder
- index (in builder)
- available elements

increase
loop index

WO 2016/029935 PCT/EP2014/068062
10/28
Fig. 13
Order of User Input Correct Order
#1 George Washington #1 George Washingion
#2 Thomas Jefferson #2 John Adams
#3 James Monroe #3 Thomas Jefferson
#4 John Adams #4 James Madison
#5 James Madison #5 James Monroe
5
concordant ™. ® < g
;) O @0
pair g ;5 % LC..
- G O . ;
Sw== discordant
<E88 par
E2EE
: CDPESS
__George Washington . C [~ >
. John Adams -
- Thomas Jefferson
. James Madison
Fig. 14
Order of User Input Difference Correct Order
#1 George Washington 0 #1 George Washington |
#2 Thomas Jefferson 1 -~ #2 John Adams
#3 James Monroe 2 - #3 Thomas Jefferson
#4 John Adams 2 - #4 James Madison
#5 James Madison 1 - #5 James Monroe

WO 2016/029935 PCT/EP2014/068062

11/28

Fig. 15

| 1 .

o |
M3 Mo
o
M4
M1 M2 g3 M4
M5 M8 M7

B e s W wesees e e B e e deeen e e Redeem wesesd B e e o e

WO 2016/029935 PCT/EP2014/068062

12/28

Fig. 17

M1 M2 M3 M4

M5 M6 M7

- w— G R G e s e s RS e

Fig. 18
l |
- rr-———-====- q -
| :
internal l |
horizontal :
MAGN b -
SR TN S P N
I N
,-;d internal vertical margin
’ item space

WO 2016/029935 PCT/EP2014/068062

13/28
Fig. 19
internal
external margin vertical
margin

item-to- inte\mal

external margin
item horizontal
distance margin
Fig. 20

Smin: minimum

S0: no space S1: total space
between item M1 between items space between
and left margin M1 and M2 any two items
- >
M1 - » M2 |=e» M3
S2: disposable Smin: minimum 33: disposable
space between space between space at right
margin

items M1 and M2 any two items

WO 2016/029935 PCT/EP2014/068062

14/28

Fig. 21

Start

Prerequisites:
- item left of or in target X
coordinate (null if there is none)
- item right of target X coordinate
. (null if there is none) ‘

Y

Ay
~item left .
<_of or below >
- target

yes

. leftmost option for
- leftmost option for left X of new item

left X of new item L
= = right edge of left
= leftmost X coord item + horizontal

in snap line ~ spacing - 1

no

Y

any

" item
_ rightof
o target

yes
v v

[. rightmost option for
|rightmost option for right X of new item
right X of new item = left edge of right
= rightmost X coord ~ item - horizontal

in snap line . spacing + 1

no

\J
End

WO 2016/029935

15/28

Fig. 22

Start

any
no ~ items
“_intarget

/yes
\J
number of spacings
between items =
number of items - 1

Y
aggregate spacing =
Y number of spacings

* spacing width

net width of most
efficient placement

=;0 calculate total width
of items (sum of
widths of all items)

Y

net width of most
efficient placement
= total width of items
+ aggregate spacing

\/
available space for insertion of
new item (and of one more
spacing if not first item in line)

= total space in line - net width of

most efficient placement

\J
End

PCT/EP2014/068062

WO 2016/029935

Fig. 23-1

$1: net disposable
space in target line

item to insert

$2: disposable
space between
items M1 and M2

Fig. 23-2

Sn: net disposable
space in target line

WO: width of item

16/28

Fig. 23

PCT/EP2014/068062

MO

_insertion position

. Smin: minimum
space between
any two items

to be inserted (MO)

W1: total width

(including spacing) 5

required for insertion
of item MO

34 space still

required after using

disposable space at
right margin

S2: disposable space
between items M1 and M2

S3: disposable
space at right
margin

Smin; minimum
space between
any two items

83: disposable
space at
right margin

WO 2016/029935 PCT/EP2014/068062

17/28

Fig. 23-3
item to insert —— MO
- insertion position
.

S2: disposable o /
space between - Smin: minimum

items M1 and M2 space between
any two items

Fig. 234
item to insert MO insertion position
- (now: sufficient
’ space)
i
M1 < » M2 |« » - > M3
\ ! 3
Smin: minimum | Smin: minimum:
space between space between

any two items any two items

WO 2016/029935

Fig. 24-1

18/28

Fig. 24

MO

W1 total width
(including spacing)

required for insertion -

of item MO

-

81: net disposable

space in target line .

-

L1:

upper line

M1

L2:

lower line

PCT/EP2014/068062

item fo insert
Smin: minimum

. space between
any two items

S2: space lacking
in target line

W2: width of
-~ right item (M3)
+

insertion position

M3

WO 2016/029935 PCT/EP2014/068062

19/28

M3 M5
left side right side
of item M4 of item M4
Fig. 24-3
M1 M?2
M3 < » M4 M5

Smin: ﬁinimum Ieft\éide right side
space between of item M5 of iterm M5
any two items

WO 2016/029935 PCT/EP2014/068062

20/28
Fig. 24-4
right side
_of item M2
M1 MO
M3 |« > M4 fe» M5
Smin: minimum
space between
any two items
Fig. 24-5
Smin: minimum
space between
. any two items
-
M1 < » M2 |« » MO
M3 fe > M4 |« » M5

Smin: minimum
space between
any two items

WO 2016/029935 PCT/EP2014/068062

21/28

Fig. 25

Start

\j

index of leftitem =0

Index
no ~ofleftitem".
End < <highest
’ “index -1
Y
index of right item =
index of left item + 1

\J
get left and right
item at indices

v s
leftmost X option for right item =
left X of left item + spacing + 1

Y

7 left
" coord of ™.
rightitem
left of (<)
leftmost

option -

yes
A4
left X of right item =
leftmost X option for right item

Y

increase index of
left item

WO 2016/029935

22/28

Fig. 26

left item of current
loop run

M1

M1_width >

M1_left M1_right

PCT/EP2014/068062

right item of current right item of
loop run; left item previous loop run

of previous loop run

M2

M3

M2_left

M2_width

M2_right M3_left

WO 2016/029935

Y

create return value
collection and fill it
with items to be
wrapped out at left
end to make room

decrease index of
line for inserting items

make recursive call:
items wrapped out
must be wrapped in

Y

Return after
all recursions

-

23/28

Fig. 27

Entry Point |

must
7 wrap out -
items at
left end

\?
no

\j
create return value
collection and leave it
empty

|
y

wrap items in at right

end, move other items
to the left as needed;
in evaluation mode,
just simulate wraps

4
in evaluation mode,
update results object;
in execution mode,
clean up current line

/
return

value ~
collection -

\em?pty

yes

yes
\J

End recursion

PCT/EP2014/068062

\ Parameters
- index of line for
inserting items
- collection of items to
wrap in
- evaluation results
object

Return Value
- collection of items
just wrapped out

WO 2016/029935 PCT/EP2014/068062

24/28

Fig. 28

Start
Y

space still needed = required
space gain (parameter value);
item count = O; loop index = 0

En(;i loop
return negative value no . index
to indicate thatno =t <= highest
~ number of left wraps . index
. would be sufficient N4
“yes
Y

widthLoop = width of item at loop
index + (unless last run) spacing

\/
increase item count;
reduce space still
needed by widthLoop

_“space. .
sttt v ves increase
_ needed » loop index

\j
End

return item count

PCT/EP2014/068062

WO 2016/029935
25/28
Fig. 29
Start
space still needed = required
space gain - space freed up by left
wraps (parameters); item count = 0
3 ~space
End Hyes <still needed\
return O) <=0 /
?
<
E”‘?' | k\ target -
return negative value < Ve position

to indicate that no is rightmost
number of right wraps in line

._can solve the problem o
*no

‘ loop index = highest (rightmost) ‘

| return neI‘Egr;Sve value loop
to indicate that no &/ t:rgg[(i:- >
number of right wraps dex?

. would be sufficient

*no
widthLoop = width of item at
loop index + (unless this is final

run of all-item wrap-out) spacing

increase item count; reduce
space still needed by widthLoop

End g Ves space no decrease
n <« Y= till needed | dex
return item count <=0 00p Index

5

WO 2016/029935 PCT/EP2014/068062

26/28
Fig. 30 — Part 1

Start
\J

initialize return value collection;
determine number of items left and
right of target position

Y

item

yes inserted

: \j

~ calculate number of
left wraps needed to
- gain required space

\J
build & add wrap
option: just-calculated
number of left wraps,
O right wraps

v

if there is a line below,
build & add second
wrap option: 0O left

. atright
end?

" no

Y

item
inserted . yes
S atleft

wraps, 1 right wrap

Y

End

return collection

totalFreedUpOnLeft |

previousNumRight
= -100 (non- 1
reoccurring negative
value)

Part Il

\ J

ifthereis aline
above, build & add
wrap option: 1 left

wrap, 0 right wraps

WO 2016/029935 PCT/EP2014/068062

27/28

Fig. 30 — PartI1

Start of Part |l

v

loop variable (number
of left items wrapped out) =0

y loop
End \4 yes vanabble >]c
return collection \num. ero
A left items
S?
ino
increase
totalFreedUpOnLeft loop
by width of item at <Y€ variable
index of loop variable >0 '
- 1 and (unless last ?
item) spacing no

A

numRightNeeded = number of right
wraps needed in addition to loop
variable number of left wraps

A

/ orsame Jyes increase
\as in preVlOUS |00p Index
loop run
2 A
no

store value of numRightNeeded
in previousNumRightNeeded;
build & add wrap option:
loop variable left wraps,
numRightNeeded right wraps

~num
yes Right no
“. Needed
\:: O/
N r)//

A%
NV

WO 2016/029935 PCT/EP2014/068062

28/28
Fig. 31
Group these presidents by state of birth. Time left: 12
James
M Millard JamesA.
Filimore . Garfield
Virginia Ohio New York
William H Harrison Ulysses S Grant Theodore Roosevelt
George Washington Warren G Harding Franklin D. Roosevelt
Woodrow Wilson William McKinley

Benjamin Harrison

Submit
Fig. 32
10
Touchscreen

- display of movable
graphical objects
- detection of touches

Processor 20
- generate and update display data /
- detect and process drag-and-drop
gestures on movable graphical objects
- after object is dropped, perform
further computations and/or operations
relating to movable graphical objects

Memory 30
- coordinates of movable /
graphical objects
- associated data structures
- data relating to grouping
and/or order of items

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/068062

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/0482 GO6F3/0486
ADD.

GO9B7/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO9B

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

29 January 2013 (2013-01-29)

figures 1-4

AL) 23 June 2005 (2005-06-23)
paragraph [0039]; figure 8

column 1, line 65 - column 15, line 401;

X US 8 365 084 Bl (LIN ANDREW [US] ET AL) 1-15

A US 2005/138572 Al (GOOD LANCE E [US] ET 1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 January 2015

Date of mailing of the international search report

27/01/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Arranz, José

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2014/068062
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 8365084 Bl 29-01-2013 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - wo-search-report
	Page 84 - wo-search-report

