(12) 特許協力条約に基づいて公開された国際出願
国際公開番号
WO 2011/122619 A1

(51) 国際特許分類:
C07D 239/96 (2006.01)
A61P 25/00 (2008.01)
A61K 31/51 7 (2006.01)
A61P 1/04 (2006.01)
A61P 3/10 (2006.01)
A61P 9/00 (2006.01)
A61P 9/10 (2006.01)
A61P 10/06 (2006.01)
A61P 11/06 (2006.01)
A61P 17/00 (2006.01)

(21) 国際出願番号:
PCT/JP2011/057798

(22) 国際出願日:
2011年3月29日 (2011.03.29)

(57) アナログ化合物：(I) で示される化合物に関する、特にその塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、p-トルエンスルホン酸塩、又はメタンスルホン酸塩の結晶を提供する。
明 細 書

発明の名称：フエニルアラニン誘導体の塩の結晶

技術分野

[0001] 本発明は、特定の構造を有するフエニルアラニン誘導体の塩の結晶並びにその製造方法及び医薬用途に関する。

背景技術

[0002] 後述の式 (i) で示される化合物 (以下、「化合物 (i)」ともいう) またはその医薬的に許容しうる塩は、生体内で h4 インテグリン阻害作用を有し、炎症性腸疾患等の治療薬として有用な化合物であり、特許文献 1 や 2 の記載に従って製造することができる。又、特許文献 3 には、化合物 (i) の保存安定性または耐湿性に優れる形態として、α型結晶などが報告されている。更に、特許文献 4 には、難溶性薬物である化合物 (i) を非晶質状態で固体分散体とすることにより、その溶解性を改善したことが報告されている。

一方、化合物が塩を形成することによる、溶解性の向上、原料特性的変更、生物学的利用能の改善等の可能性が知られている（非特許文献 1）。しかし、化合物 (i) の医薬的許容しうる塩の結晶については報告がなく、医薬製剤の製造に許容しうる安定性を保ちつつ、優れた溶解性を有する化合物 (i) の塩の結晶が望まれている。

先行技術文献

特許文献

[0003] 特許文献 1：国際公開第 0 2 / 1 6 3 2 9 号パンフレット
特許文献 2：国際公開第 2 0 0 4 / 0 7 4 2 6 4 号パンフレット
特許文献 3：国際公開第 2 0 0 5 / 0 5 1 9 2 5 号パンフレット
特許文献 4：国際公開第 2 0 0 5 / 0 4 6 9 6 号パンフレット

非特許文献

[0004] 非特許文献 1：P. Heirich Stah し Camille G. Wermuth（Eds.）、“Handbook
潜発明の概要
発明が解決しようとする課題

[0005] 本発明は、化合物 (I) の塩の溶解性に優れる結晶を提供することを目的とする。

課題を解決するための手段

[0006] 本発明者らは、上記課題を解決しようと鋭意検討した結果、化合物 (I) の酸との塩が、特定の条件で処理することにより、種々の形態の結晶を生じ、この結晶を用いると上記課題を解決できるとの知見に基づいて、本発明を完成するに至った。

すなわち、本発明は、下記の通りである。

[0007] (1) 下記式 (I) で示される化合物の医薬的に許容される酸塩の結晶。

\[
\text{[化 1]}
\]

(2) 式 (I) で示される化合物の塩酸塩である上記 (1) 記載の結晶。

(3) 粉末X線回折パターンにおいて、20.8、23.6、25.3、及び26.9の回折角 (2\theta) にピークを示すことを特徴とする、C11型結晶である上記 (2) 記載の結晶。

(4) 粉末X線回折パターンにおいて、5.24、10.39、21.04、及び21.41の回折角 (2\theta) にピークを示すことを特徴とする、C1
2型結晶である上記 (2) 記載の結晶。
(5) 粉末X線回折パターンにおいて、4.21.10.13.10.30
及び16.17の回折角（20）にピークを示すことを特徴とする、C1
3型結晶である上記 (2) 記載の結晶。
(6) 粉末X線回折パターンにおいて、4.07.17.84.23.83
及び24.87の回折角（20）にピークを示すことを特徴とする、C1
4型結晶である上記 (2) 記載の結晶。
(7) 粉末X線回折パターンにおいて、4.09.22.12.23.17
及び27.76の回折角（20）にピークを示すことを特徴とする、C1
5型結晶である上記 (2) 記載の結晶。
(8) 粉末X線回折パターンにおいて、22.32.22.90.26.4
及び26.77の回折角（20）にピークを示すことを特徴とする、C1
6型結晶である上記 (2) 記載の結晶。
(9) 粉末X線回折パターンにおいて、16.65.20.99.22.6
及び24.70の回折角（20）にピークを示すことを特徴とする、C1
7型結晶である上記 (2) 記載の結晶。
(10) 式 (1) で示される化合物の臭化水素酸塩である上記 (1) 記載の
結晶。
(11) 粉末X線回折パターンにおいて、14.3.17.4.20.5.
及び24.9の回折角（20）にピークを示すことを特徴とする、Br1型
結晶である上記 (10) 記載の結晶。
(12) 粉末X線回折パターンにおいて、18.9.20.6.23.3.
25.0、及び26.7の回折角（20）にピークを示すことを特徴とする、
Br2型結晶である上記 (10) 記載の結晶。
(13) 粉末X線回折パターンにおいて、21.53.22.12.23.
69、及び25.39の回折角（20）にピークを示すことを特徴とする、
Br3型結晶である上記 (10) 記載の結晶。
(14) 粉末X線回折パターンにおいて、4.07.17.78.23.6
2. 及び24.65の回折角(20)にピークを示すことを特徴とする、Br4型結晶である上記(10)記載の結晶。
(15) 粉末X線回折パターンにおいて、21.20, 21.98, 23.21, 及び23.93の回折角(20)にピークを示すことを特徴とする、
Br5型結晶である上記(10)記載の結晶。

[0009] (16) 粉末X線回折パターンにおいて、17.25, 23.38, 24.55, 及び26.73の回折角(20)にピークを示すことを特徴とする、
Br6型結晶である上記(10)記載の結晶。
(17) 式(I)で示される化合物の硫酸塩である上記(1)記載の結晶。
(18) 粉末X線回折パターンにおいて、18.2, 22.7, 24.8, 及び25.5の回折角(20)にピークを示すことを特徴とする、S1型結晶である上記(17)記載の結晶。
(19) 粉末X線回折パターンにおいて、15.6, 16.2, 18.0, 及び19.2の回折角(20)にピークを示すことを特徴とする、S2型結晶である上記(17)記載の結晶。
(20) 粉末X線回折パターンにおいて、13.0, 18.7, 22.1, 及び22.5の回折角(20)にピークを示すことを特徴とする、S3型結晶である上記(17)記載の結晶。
(21) 粉末X線回折パターンにおいて、12.58, 21.08, 23.02, 及び23.93の回折角(20)にピークを示すことを特徴とする、
S4型結晶である上記(17)記載の結晶。
(22) 粉末X線回折パターンにおいて、4.04, 21.06, 21.46, 及び25.75の回折角(20)にピークを示すことを特徴とする、S5型結晶である上記(17)記載の結晶。
(23) 式(I)で示される化合物の硝酸塩である上記(1)記載の結晶。
(24) 粉末X線回折パターンにおいて、12.8, 22.5, 23.3, 及び24.6の回折角(20)にピークを示すことを特徴とする、N1型結晶である上記(23)記載の結晶。
（25）粉末X線回折パターンにおいて、18.9、20.7、23.5、及び26.5の回折角（2θ）にピークを示すことを特徴とする、N2型結晶である上記（23）記載の結晶。

[0010]（26）式（1）で示される化合物のp_トルエンスルホン酸塩である上記（1）記載の結晶。

（27）粉末X線回折パターンにおいて、12.9、21.5、及び23.1の回折角（2θ）にピークを示すことを特徴とする、Ts1型結晶である上記（26）記載の結晶。

（28）式（1）で示される化合物のメタンスルホン酸塩である上記（1）記載の結晶。

（29）粉末X線回折パターンにおいて、10.1、11.5、21.2、及び21.9の回折角（2θ）にピークを示すことを特徴とする、Ms1型結晶である上記（28）記載の結晶。

（30）粉末X線回折パターンにおいて、12.9、15.9、18.8、及び23.0の回折角（2θ）にピークを示すことを特徴とする、Ms2型結晶である上記（28）記載の結晶。

（31）粉末X線回折パターンにおいて、11.2、12.6、22.9、及び25.5の回折角（2θ）にピークを示すことを特徴とする、Ms3型結晶である上記（28）記載の結晶。

（32）粉末X線回折パターンにおいて、17.99、19.22、19.75、及び25.64の回折角（2θ）にピークを示すことを特徴とする、Ms4型結晶である上記（28）記載の結晶。

（33）前記記載のいずれかの結晶を含有する医薬成分物。

（34）前記記載のいずれかの結晶を含有するα4インテグリン阻害剤。

（35）前記記載のいずれかの結晶を含有するα4インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤または予防剤。

（36）前記記載のいずれかの結晶を有効成分とするリウマチ様関節炎、炎症性腸疾患、全身性エリテマトーデス、多発性硬化症、シューグレン症候群
発明の効果

[001] 本発明の結晶は、結晶の形態であるため医薬品の原薬として取り扱い安くて、かつ溶解性に特に優れている。更に、好ましくは医薬製剤の原薬として許容しうる安定性も備えている。したがって、本発明の結晶は、医薬品の吸収性もしくはバイオアベイラビリティ、又は製剤化のしやすさに優れた医薬品製剤の原薬であると考えられる。

図面の簡単な説明

[0012] [図1] 本発明のC11型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図2] 本発明のC12型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図3] 本発明のC13型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図4] 本発明のC14型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図5] 本発明のC15型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図6] 本発明のC16型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図7] 本発明のC17型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図8] 本発明のB11型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図9] 本発明のB12型結晶に関する粉末X線回折パタークを示す（横軸に回折角2θ（度）；縦軸に強度[Counts]を表す）。

[図10] 本発明のB13型結晶に関する粉末X線回折パタークを示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す。
[図11] 本発明のB r 4 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図12] 本発明のB r 5 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図13] 本発明のB r 6 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図14] 本発明のS 1 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図15] 本発明のS 2 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図16] 本発明のS 3 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図17] 本発明のS 4 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図18] 本発明のS 5 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図19] 本発明のN 1 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図20] 本発明のN 2 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図21] 本発明のT s 1 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図22] 本発明のM s 1 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図23] 本発明のM s 2 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ（度）；縦軸に強度（Gounts）を表す）。
[図24] 本発明のM s 3 型結晶に関する粉末X線回折パターン図を示す（横軸
に回折角 2θ 度）；縦軸に強度 （Gounts）を表す。
[図25] 本発明の Ms 4 型結晶に関する粉末 X 線回折パターン図を示す（横軸に回折角 2θ 度）；縦軸に強度 （Gounts）を表す。

[図26] 本発明の Cl 1 型結晶の水蒸気吸着等温線を示す。
[図27] 本発明の Br 2 型結晶の水蒸気吸着等温線を示す。
[図28] 本発明の Ms 1 型結晶の水蒸気吸着等温線を示す。

発明を実施するための形態

[0013] 上記式 (1) で示される化合物は、特許文献 1 の実施例 196 や、特許文献 2 の実施例 1 に記載されており、同文献の記載に従って製造することができる。

上記式 (1) で示される化合物の医薬的に許容される塩基における、医薬的に許容される酸とは、化合物 (1) と塩を形成することができるものであればよく、好ましくは、塩酸、臭化水素酸、硫酸、硝酸、p-トルエンスルホン酸、メタンスルホン酸が挙げられ、特に好ましくは、塩酸又は臭化水素酸である。

化合物 (1) の塩酸塩の結晶は、その水和物、溶解和物の結晶であってもよく、より具体的には Cl 1 型結晶、Cl 2 型結晶、Cl 3 型結晶、Cl 4 型結晶、Cl 5 型結晶、Cl 6 型結晶、又は、Cl 7 型結晶である。

[0014] Cl 1 型結晶は、化合物 (1) の塩酸塩の結晶であり、粉末 X 線回折パターンにおいて 0. 8、2. 3、6、2. 5、3、及び 2. 6、9 の回折角 (2θ) にピークを示し、より好ましくは、6. 1、11. 6、12. 2、15. 7、19. 1、20. 8、2. 3、6、2. 5、3、2. 6、9、2. 7、8、3. 1、7 にピークを示す。Cl 1 型結晶は、好ましくはメタノール、化合物 (1)、及び塩化水素の混合物を、好ましくはエタノール、イソプロピルアルコール、またはこれらの混合物と混合し、生成した結晶を回収することにより得ることが出来る。又、先に化合物 (1) の塩酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことにより Cl 1 型結晶を得ることもできる。Cl 1 型は 1 水和物である為、Cl 2 型を減圧乾燥後、調湿
することで得ることもできる。

[C I 2 型結晶] C I 2 型結晶は、化合物 (I) の塩酸塩の結晶であり、粉末 X 線回折バターンにおいて 5.24, 10.39, 21.04, 及び 21.41 の回折角 (2θ) にピークを示し、より好ましくは、5.24, 10.39, 11.10, 15.56, 21.04, 21.41, 24.82, 25.36, 25.97, 28.82 にピークを示す。C I 2 型結晶は、好ましくはメタノール、化合物 (I)、及び塩化水素の混合物を、好ましくはエタノールと混合し、生じた結晶を回収することにより得ることが出来る。又、先に化合物 (I) の塩酸塩を調製した上でエタノールと混合して混合物を得て、同様の操作を行うことにより C I 2 型結晶を得ることもできる。

[C I 3 型結晶] C I 3 型結晶は、化合物 (I) の塩酸塩の結晶であり、粉末 X 線回折バターンにおいて 4.21, 10.13, 10.30, 及び 16.17 の回折角 (2θ) にピークを示し、より好ましくは、4.21, 10.13, 10.30, 13.15, 15.61, 16.17, 16.62, 19.49, 22.65, 23.90, 25.80 にピークを示す。C I 3 型結晶は、好ましくはメタノール、化合物 (I)、及び塩化水素の混合物を、好ましくはアセトンと混合し、生じた結晶を回収することにより得ることが出来る。又、先に化合物 (I) の塩酸塩を調製した上でアセトンと混合して混合物を得て、同様の操作を行うことにより C I 3 型結晶を得ることもできる。

[C I 4 型結晶] C I 4 型結晶は、化合物 (I) の塩酸塩の結晶であり、粉末 X 線回折バターンにおいて 4.07, 17.84, 23.83, 及び 24.87 の回折角 (2θ) にピークを示し、より好ましくは、4.07, 10.99, 17.84, 20.94, 21.27, 22.14, 22.80, 23.83, 24.87, 27.39, 29.86 のピークを示す。C I 4 型結晶は、先に化合物 (I) の塩酸塩を調製した上でアセトニトリルと混合し、より好ましくはジクロロメタン及びアセトニトリルと混合して混合物を得て、同様の操作を行うことにより C I 4 型結晶を得ることができる。

[C I 5 型結晶] C I 5 型結晶は、化合物 (I) の塩酸塩の結晶であり、粉末 X 線回折バターンにおいて 4.07, 17.84, 23.83, 及び 24.87 の回折角 (2θ) にピークを示し、より好ましくは、4.07, 10.99, 17.84, 20.94, 21.27, 22.14, 22.80, 23.83, 24.87, 27.39, 29.86 のピークを示す。C I 5 型結晶は、先に化合物 (I) の塩酸塩を調製した上でアセトニトリルと混合し、より好ましくはジクロロメタン及びアセトニトリルと混合して混合物を得て、同様の操作を行うことにより C I 5 型結晶を得ることができる。
－ンにおいて4.09、22.12、23.17、及び27.76の回折角(2θ)にピークを示し、より好ましくは、4.09、9.03、12.43、14.66、20.86、22.12、23.17、26.06、26.45、27.76、31.98にピークを示す。Cl5型結晶は、好ましくはメタノール、化合物(I)、及び塩化水素の混合物を、好ましくは酢酸メチルと混合し、生じた結晶を回収することにより得ることができする。又、先に化合物(I)の塩酸塩を調製した上にジクロロメタン、より好ましくは酢酸メチルと混合して混合物を得て、同様の操作を行うことによりCl5型結晶を得ることもできる。

Cl6型結晶は、化合物(I)の塩酸塩の結晶であり、粉末×綫回折パターンにおいて22.32、22.90、26.43、及び26.77の回折角(2θ)にピークを示し、より好ましくは、12.64、17.69、20.21、22.32、22.90、23.82、25.44、26.43、26.77、29.74にピークを示す。Cl6型結晶は、先に化合物(I)の塩酸塩を調製した上に酢酸メチルとアセトニトリルの混合溶媒を混合して混合物を得て、同様の操作を行うことによりCl6型結晶を得ることができる。

Cl7型結晶は、化合物(I)の塩酸塩の結晶であり、粉末×綫回折パターンにおいて、16.65、20.99、22.61、及び24.70の回折角(2θ)にピークを示し、より好ましくは、12.34、13.23、15.42、16.65、17.48、20.99、22.61、24.70、27.27、27.99にピークを示す。Cl7型結晶は、先に化合物(I)の塩酸塩を調製した上でイソプロピルアルコールと酢酸メチル及びテトラヒドロフランの混合溶媒に混合して混合物を得て、同様の操作を行うことによりCl7型結晶を得ることができる。

化合物(I)の臭化水素酸塩の結晶は、その水和物、溶媒和物の結晶であってもよく、より具体的にはBr1型結晶、Br2型結晶、Br3型結晶、Br4型結晶、Br5型結晶、又はBr6型結晶である。
B r 1 型結晶は、化合物 (I) の臭化水素酸塩の結晶であり、粉末 X 線回折パターンにおいて 14.3、17.4、20.5、及び 24.9 の回折角 (2θ) にピークを示し、より好ましくは、14.3、15.4、17.4、20.5、22.7、23.6、24.9、25.9 にピークを示す。B r 1 型結晶は、好ましくはメタノール、化合物 (I)、及び好ましくは臭化アセチルとの混合物を、好ましくは室温下に、静置し生じた結晶を回収することにより得ることができる。又、先に化合物 (I) の臭化水素酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことにより B r 1 型結晶を得ることもできる。

B r 2 型結晶は、化合物 (I) の臭化水素酸塩の結晶であり、粉末 X 線回折パターンにおいて 18.9、20.6、23.3、25.0、及び 26.7 の回折角 (2θ) にピークを示し、より好ましくは、15.6、16.1、18.0、18.9、20.6、23.3、25.0、26.7、27.7、28.3、31.5、32.8 にピークを示す。

B r 2 型結晶は、好ましくはメタノール、化合物 (I)、及び好ましくは臭化アセチルとの混合物を、好ましくはエタノールと混合し、該混合液を好ましくは 5℃に冷却し、生じた結晶を回収することにより得ることができる。又、先に化合物 (I) の臭化水素酸塩を調製した上でメタノール及びイソプロパノールと混合して混合物を得て、エタノール、イソプロパノール、2−ブタノン、テトラヒドロフラン、酢酸メチル、トルエン、アセトン、及びジクロロメタンと同様の操作を行うことにより B r 2 型結晶を得ることもできる。

B r 3 型結晶は、化合物 (I) の臭化水素酸塩の結晶であり、粉末 X 線回折パターンにおいて 21.53、22.12、23.69、及び 25.39 の回折角 (2θ) にピークを示し、より好ましくは、12.65、16.8、19.74、21.53、22.12、22.87、23.69、25.39、26.53、29.09、30.66 にピークを示す。B r 3 型結晶は、先に化合物 (I) の臭化水素酸塩を調製した上でアセトンと混合して
混合物を得て、同様の操作を行うことによりBr3型結晶を得ることができる。

[0025] Br4型結晶は、化合物（I）の臭化水素酸塩の結晶であり、粉末X線回折パターンにおいて4.07、17.78、23.62、及び24.65の回折角（2θ）にピークを示し、より好ましくは、4.07、15.57、17.78、21.17、21.87、22.63、23.62、24.65、27.04、28.04にピークを示す。Br4型結晶は、先に化合物（I）の臭化水素酸塩を調製した上でアセトニトリルと混合して混合物を得て、同様の操作を行うことによりBr4型結晶を得ることができる。

[0026] Br5型結晶は、化合物（I）の臭化水素酸塩の結晶であり、粉末X線回折パターンにおいて21.20、21.98、23.21、及び23.93の回折角（2θ）にピークを示し、より好ましくは、14.72、17.76、21.20、21.98、22.90、23.21、23.41、23.93、25.13、28.32、28.81にピークを示す。Br5型結晶は、先に化合物（I）の臭化水素酸塩を調製した上でジメチルホルムアミドと混合して混合物を得て、同様の操作を行うことによりBr5型結晶を得ることができる。

[0027] Br6型結晶は、化合物（I）の臭化水素酸塩の結晶であり、粉末X線回折パターンにおいて17.25、23.38、24.55、及び26.73の回折角（2θ）にピークを示し、より好ましくは、7.50、17.25、18.67、18.96、19.77、20.72、22.22、23.38、24.55、26.73、28.32にピークを示す。Br6型結晶は、先に化合物（I）の臭化水素酸塩を調製した上でジクロロメタンと混合して混合物を得て、同様の操作を行うことによりBr6型結晶を得ることができる。

[0028] 化合物（I）の硫酸塩の結晶は、その水和物、溶媒和物の結晶であってもよく、より具体的にはS1型結晶、S2型結晶、S3型結晶、S4型結晶、又はS5型結晶である。
S1型結晶は、化合物(I)の硫酸塩の結晶であり、粉末X線回折パターンにおいて18.2、22.7、24.8及び25.5の回折角(2θ)にピークを示し、より好ましくは、11.6、15.3、18.2、19.9、20.4、22.7、24.3、24.8、25.5にピークを示す。S1型結晶は、好ましくは、メタノール、化合物(I)及び硫酸の混合物と、好ましくはイソプロパノールとを混合し、生じた結晶を回収することにより得ることができる。又、先に化合物(I)の硫酸塩を調製した上でメタノールと混合して、同様の操作を行うことによりS1型結晶を得ることもできる。

S2型結晶は、化合物(I)の硫酸塩の結晶であり、粉末X線回折パターンにおいて15.6、16.2、18.0及び19.2の回折角(2θ)にピークを示し、より好ましくは、15.6、16.2、18.0、19.2、20.1、22.5、23.5、25.4にピークを示す。S2型結晶は、好ましくは、メタノール、化合物(I)及び硫酸との混合物を、好ましくは酢酸メチルと混合し、生じた結晶を回収することにより得ることがで る。又、先に化合物(I)の硫酸塩を調製した上でメタノールと混合して、同様の操作を行うことによりS2型結晶を得ることもできる。

S3型結晶は、化合物(I)の硫酸塩の結晶であり、粉末X線回折パターンにおいて13.0、18.7、22.1及び22.5の回折角(2θ)にピークを示し、より好ましくは、12.7、13.0、16.0、18.7、21.6、22.1、22.5、22.9にピークを示す。S3型結晶は、好ましくは、メタノール、化合物(I)及び硫酸との混合物を、好ましくは酢酸メチルと混合し、生じた結晶を回収することにより得ることができる。又、先に化合物(I)の硫酸塩を調製した上でメタノールと混合して、同様の操作を行うことによりS3型結晶を得ることもできる。
[0032] S 4 型結晶は、化合物 (I) の硫酸塩の結晶であり、粉末 X 線回折パターンにおいて 12.58、21.08、23.02、及び 23.93 の回折角 (2θ) にピークを示し、より好ましくは、12.58、16.87、18.28、21.08、21.27、22.79、23.02、23.93、24.79, 28.87 にピークを示す。S 4 型結晶は、先に化合物 (I) の硫酸塩を調製した上でアセトン、アセトニトリル、及びテトラヒドロフランと混合して混合物を得て、同様の操作を行うことにより S 4 型結晶を得ることができる。

[0033] S 5 型結晶は、化合物 (I) の硫酸塩の結晶であり、粉末 X 線回折パターンにおいて 4.04、21.06、21.46、及び 25.75 の回折角 (2θ) にピークを示し、より好ましくは、4.04、12.31、18.12、21.06、21.46、22.33、23.26、24.38、24.99、25.75 にピークを示す。S 5 型結晶は、先に化合物 (I) の硫酸塩を調製した上でエタノールと混合して混合物を得て、同様の操作を行うことにより S 5 型結晶を得ることができる。

[0034] 化合物 (I) の硝酸塩の結晶は、その水和物、溶媒和物の結晶であってもよく、より具体的には N 1 型結晶又は N 2 型結晶である。

N 1 型結晶は、化合物 (I) の硝酸塩の結晶であり、粉末 X 線回折パターンにおいて 12.8、22.5、23.3、及び 24.6 の回折角 (2θ) にピークを示し、より好ましくは、11.3、11.8、12.8、14.7、21.3、22.5、23.3、24.6、25.6 にピークを示す。N 1 型結晶は、好ましくは、メタノール、化合物 (I)、及び硝酸の混合物と、好ましくはエタノールとを混合し、生じた結晶を回収することにより得ることができる。又、先に化合物 (I) の硝酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことにより N 1 型結晶を得ることもできる。

[0035] N 2 型結晶は、化合物 (I) の硝酸塩の結晶であり、粉末 X 線回折パターンにおいて 18.9、20.7、23.5、及び 26.5 の回折角 (2θ)
このピークを示し、より好ましくは、11.3、15.7、18.9、20.7、22.1、23.5、25.0、25.4、26.5、27.7に示される回折角（2θ）にピークを示す。N2型結晶は、好ましくはメタノール、化合物（I）、及び硝酸の混合物と、好ましくはイソプロピルアルコールとを混合し、生じた結晶を回収することにより得ることができる。又、先に化合物（I）の硝酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことによりN2型結晶を得ることもできる。

化合物（I）のp-トルエンスルホン酸塩の結晶は、その水和物、溶媒和物の結晶であってもよく、より具体的にはTs1型結晶である。

Ts1型結晶は、化合物（I）のp-トルエンスルホン酸塩の結晶であり、粉末X線回折パターンにおいて12.9、21.5、及び23.1の回折角（2θ）にピークを示し、より好ましくは、12.9、15.4、17.3、18.0、18.2、18.4、20.1、20.8、21.0、21.5、21.8、23.1、27.3にピークを示す。Ts1型結晶は、好ましくはメタノール、化合物（I）、及びp-トルエンスルホン酸（p-GH₃Ph-SO₃H）の混合物と、酢酸メチル、エタノール、イソプロピルアルコールと混合することにより生じた結晶を回収することにより得ることができる。又、先に化合物（I）のp-トルエンスルホン酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことによりTs1型結晶を得ることもできる。

化合物（I）のメタノールホン酸塩の結晶は、その水和物、溶媒和物の結晶であってもよく、より具体的にはMs1型結晶、Ms2型結晶、Ms3型結晶、又はMs4型結晶である。

Ms1型結晶は、化合物（I）のメタノールホン酸塩の結晶であり、粉末X線回折パターンにおいて10.1、11.5、21.2、及び21.9の回折角（2θ）にピークを示し、より好ましくは、10.1、11.5、13.1、18.6、19.8、21.2、21.9、22.8、23.2、24.9、25.3、31.5に示される回折角（2θ）にピークを示す。
M s 1 型結晶は、好ましくはメタノール、化合物 (I)、及びメタンスルホン酸 (GH₃SO₃H) の混合物と、エチルアルコール、アセトニトリル、及び n -ヘプタンとを混合し、約 5 ℃に静置することにより生じた結晶を回収することにより得ることができる。又、先に化合物 (I) のメタンスルホン酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことにより M s 1 型結晶を得ることもできる。

M s 2 型結晶は、化合物 (I) のメタンスルホン酸塩の結晶であり、粉末 X 線回折パターンにおいて 12.9、15.9、18.8、及び 23.0 の回折角 (2θ) にピークを示し、より好ましくは 10.6、12.4、12.9、15.9、18.8、19.2、19.8、22.2、22.8、23.0、23.8、24.3 に示される回折角 (2θ) にピークを示す。M s 2 型結晶は、好ましくはメタノール、化合物 (I)、及びメタンスルホン酸 (GH₃SO₃H) の混合物と、イソプロピルアルコールとを混合して生じた結晶を、好ましくは約 5 ℃に静置熟成し、回収することにより得ることができる。又、先に化合物 (I) のメタンスルホン酸塩を調製した上でメタノールと酢酸エチル、酢酸メチル、トルエン、及びイソプロパノールと混合して混合物を得て、同様の操作を行うことにより M s 2 型結晶を得ることもできる。

M s 3 型結晶は、化合物 (I) のメタンスルホン酸塩の結晶であり、粉末 X 線回折パターンにおいて 11.2、12.6、22.9、及び 25.5 の回折角 (2θ) にピークを示し、より好ましくは 11.2、12.6、13.2、15.8、17.9、20.9、22.2、22.9、23.8、25.5、に示される回折角 (2θ) にピークを示す。M s 3 型結晶は、好ましくはメタノール、化合物 (I)、及びメタンスルホン酸 (GH₃SO₃H) の混合物と、エタノールとを混合して、室温 (約 25 ℃) で生じた結晶を回収することにより得ることができる。又、先に化合物 (I) のメタンスルホン酸塩を調製した上でメタノールと混合して混合物を得て、同様の操作を行うことにより M s 3 型結晶を得ることもできる。

M s 4 型結晶は、化合物 (I) のメタンスルホン酸塩の結晶であり、粉末
X線回折パターンにおいて17.99、19.22、19.75、及び25.64の回折角(2θ)にピークを示し、より好ましくは、11.79、12.35、17.04、17.99、19.22、19.75、20.66、22.64、23.88、25.14、25.64に示される回折角(2θ)にピークを示す。Ms4型結晶は、好ましくはメタノール、化合物(1)、及びメタンスルホン酸(3H₃SO₃H)の混合物と、アセトンとを混合して、室温(約25℃)で生じた結晶を回収することにより得ることができる。又、先に化合物(1)のメタンスルホン酸塩を調製した上でジクロロメタン及びアセトンと混合して混合物を得て、同様の操作を行うことによりMs4型結晶を得ることもできる。

なお、粉末X線回折パターンの回折角(2θ)のピーク値は測定条件等の微妙な違い等により若干変化しうる。本明細書記載の回折角は当然、そういった誤差を許容しうる。

上記製造方法において、化合物(1)と酸とを混合する際は、化合物(1)(フリーボ)に対して、塩化水素や臭化水素などの酸が1:1モル比以上、好ましくは1:1.05〜1:2.00モル比程度、特に好ましくは1:1.1モル比となるように塩酸などを添加するのがよい。

又、結晶析出溶媒の量は任意とすることができるが、式(1)で示される化合物(フリーボ)やその塩を1質量部とした場合、2〜1000質量部とするのが好ましく、特に5〜40質量部とするのがよい。

又、結晶の析出や熟成のために好ましくは30分〜5時間、化合物(1)の塩を含有する混合液を静置あるいは摂拌することができる場合がある。

本発明の製造方法において、原料として用いる化合物(1)として、非晶質(アモルフォス)や非結晶性固体を用いることのみならず、ひ型等の公知の結晶を用いてもよい。

本発明の結晶は、使用しやすい上、原薬の溶解性に優れる結晶であり、特に吸収性やバイオアベイラビリティに優れた医薬品の製造に有用である。更に好ましくは医薬製剤に使用され得る安定性を有している。これらの観点か
ら、上記結晶型のうち、CI1、Br2及びMs1型結晶が特に好ましく、なかでもCI1及びBr2型結晶が特に好ましく、特にCI1型結晶が好ましい。
式（I）で表される化合物またはその薬学的に許容される塩は、優れたβ4インテグリン阻害作用を有するので、本発明の結晶は優れたβ4インテグリン阻害剤として使用でき、さらには、β4インテグリン依存性の白血球の接着過程が病態に関与する炎症性疾患、リウマチ様関節炎、炎症性腸疾患（クローン病、潰瘍性大腸炎を含む）、全身性エリテマトーデス、多発性硬化症、シエーグレン症候群、喘息、乾せん、アレルギー、糖尿病、心臓血管性疾患、動脈硬化症、再狭窄、腫瘍増殖、腫瘍転移、移植拒絶いずれかの治療剤または予防剤の有効成分として効果的に入用することができる。
式（I）で表される化合物またはその薬学的に許容しうる塩は、又、上記疾病に対する治療又は予防効果を有する他の薬剤と併用して用いることもできる。例えば炎症性腸疾患であるクローン病や潰瘍性大腸炎の場合、そのような他の薬剤としては例えば、成分栄養剤（アレンタル、味の素社）など、5—ASA製剤（メサラジン、サラソスルファピリジン（スルファサラジン）など）、副腎皮質ホルモン製剤（プレドニゾロン、ベタメタゾン、プデソナイドなど）、抗菌剤（メトロニダゾールなど）が特に挙げられる。又、免疫抑制剤（アザチオブリン、6—メルカプトブリン、シクロスポリン、タクロリムスなど）も併用する薬剤として挙げられる。又、抗サイトカイン薬も併用する薬剤として挙げられる。具体的には、抗TNFα抗体（インフリキシマブ、アダリムマブ、セルトリズマブ、ベゴル、ゴリムマブなど）、抗IL6受容体抗体（トシリズマブなど）、抗IL—12／23抗体（ウステキシマブ、プリアキシマブなど）、抗IL—17受容体抗体（AMG827、AIN457など）や、低分子薬であるIL—12／23産生阻害剤（STA—5326など）やPDE—4阻害剤（テトミラストなど）も挙げられる。さらに、細胞浸潤阻害剤であるCCR9阻害剤（GSK1605786、CCX025など）や抗β4β7インテグリン抗体（ベドリズマブなど
も挙げられる。又、薬剤に限らず上記疾患に対する治療又は予防効果を有する他の治療法と併用して用いることもできる。例えば炎症性腸疾患であるクローン病や潰瘍性大腸炎の場合、白血球除去療法（G C A P、L C A Pなど）が挙げられる。

よって、本発明の結晶を含有する上記疾患に対する治療剤又は予防剤は、上記疾患に対する治療又は予防効果を有する他の薬剤と併用して用いることもできる。また、本発明の結晶を含有する上記疾患に対する治療剤又は予防剤は、上記疾患に対する他の治療方法と併用して用いることもできる。

本発明の結晶を含有する医薬組成物として、実質的に治療効果を発揮できる割合以上に本発明の結晶を含有するものが好ましい。実質的に治療効果を発揮できる割合は該医薬組成物の投与量、目的とする治療効果などにより决定されるが、経口もしくは非経口（例えば、静脈内、動脈内、皮下、筋肉内、坐薬、注腸、軟膏、贴布、舌下、点眼、吸入等）のルートにより、通常成人一日あたりの投与量として経口投与の場合で1・5g、好ましくは1・1 mg〜1・5g、また一方で、1μg〜50μg、又、1mg〜10μg、さらには1g〜2gであっても好ましい。一方、非経口投与の場合で0.01μg〜1 gを用いる。

本発明の結晶を医薬として使用する場合には、それ自体または医薬組成物として、例えば、経口、非経口、静脈、口内、直腸、膣、経皮、鼻腔経由または吸入経由でそのものが発揮できるが、経口的に投与することが好ましい。経口投与のための医薬組成物としては、錠剤（錠衣錠、コーティング錠、有核錠、舌下錠を含む）、丸剤、カプセル剤（ハードカプセル、ソフトカプセル、マイクロカプセルを含む）、散剤、顆粒剤、細粒剤、トローチ剤、液剤（シロップ剤、乳剤、懸濁剤を含む）などが挙げられる。

このような医薬組成物は、例えば製薬学的に許容される賦形剤、担体などと混合し、常法に従って製造することができる。

製薬学的に許容される賦形剤、担体などとしては、例えば、固体製剤における賦形剤、結合剤、崩壊剤、滑沢剤、液状製剤における溶剤、溶解補助剤

\[\text{WO 2011/122619} \]
懸濁化剤、緩衝剤、増粘剤、乳化剤などが挙げられる。また、必要に応じて、着色剤、抗酸化剤、甘味剤などの製剤添加剤を用いることができる。

錠剤、顆粒剤、細粒剤などに関しては、味のマスキング、光安定性の向上、外観の向上あるいは腸溶性などの目的のため、コーティング基材を用いて公知の方法でコーティングしてもよい。そのコーティング基材としては、衣材基材、水溶性フィルムコーティング基材、腸溶性フィルムコーティング基材などが挙げられる。

実施例

実施例 1 C I I 型はの難

化合物 (I) のフリーガ 500mg をメタノール 2mL に懸濁させ、そこに 2M 塩酸水素を含有するメタノール 79 1 とを加えて室温下で摂拌して溶解させた。このメタノール溶液をイソプロピルアルコール 2mL に滴下し、析出した結晶を分離後、50°C で減圧乾燥を行い、化合物 (I) の塩酸塩の結晶 (C I I 型結晶) を淡緑色固体として 373mg 得た。

実施例 2 C I I 型結晶の製造

化合物 (I) のフリーガ 50.0g に 2M 塩酸水素を含有するメタノール 808ml を加えて室温下で摂拌して溶解させた。このメタノール溶液をメタノール 625ml に滴下し、室温で 2 時間摂拌後、冷蔵庫で一晩静置した。析出した結晶を分離後、50°C で減圧乾燥を行い、50°C で調湿することで化合物 (I) の塩酸塩の結晶 (C I I 型結晶) を淡緑色固体として 31.97g 得た。

粉末 X 線回折パターン : 図 1

H-NMR (DMSO-d6)	62. 99-3. 27 (dd, 2H), 3. 08 (s, 6H), 3. 53 (s, 3H), 3. 69 (s, 3H), 4. 79-4. 79-4. 85 (m, 1H), 7. 20 (d, 2H), 7. 38-7. 47 (m, 5H), 7. 56 (d, 1H), 7. 74 (b, 2H), 9. 28 (d, 1H)
Mass (ES 、実測値)	[M+H]+ 568. 9
1C (C I アニオンとして測定、実測値)	5. 1 w/w% (H C I として)
実施例 2 C I 2 型結晶の製造

化合物（I）の塩酸塩の結晶10gをエタノール700mlに懸濁させ、65℃で攪拌して溶解させた。このエタノール溶液を攪拌しながら5℃まで冷却し、析出した結晶を分離後、40℃で減圧乾燥を行い、化合物（I）の塩酸塩の結晶（C I 2 型結晶）を白色固体として9.72g得た。

粉末X線回折パターン：図2

'H-NMR（DMSO-d6）: δ 1.03 (t, 3H), 2.99-3.25 (dd, 2H), 3.10 (s, 6H), 3.41-3.47 (dd, 2H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.82 (m, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.58 (d, 1H), 8.02 (b, 2H), 9.28 (d, 1H) Mass [ES + 実測値] : [M+H]+ 568.9

1C (C I アニオンとして測定、実測値) : 5.5 w/w% (H C I として)

実施例 3 C I 3 型結晶の製造

化合物（I）の塩酸塩の結晶10gをメタノール40mlとアセトン140mlの混合溶液に室温で攪拌して溶解させた。この混合溶液をアセトン40mlに攪拌しながら滴下し、析出した結晶を分離後、40℃で減圧乾燥を行い、化合物（I）の塩酸塩の結晶（C I 3 型結晶）を淡緑色固体として2.81g得た。

粉末X線回折パターン：図3

'H-NMR（DMSO-d6）: δ 2.89-3.22 (dd, 2H), 3.08 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.82 (m, 1H), 7.20 (d, 2H), 7.39-7.47 (m, 5H), 7.57 (d, 1H), 7.87 (b, 2H), 9.28 (d, 1H) Mass [ES + 実測値] : [M+H]+ 568.9

1C (C I アニオンとして測定、実測値) : 5.5 w/w% (H C I として)

実施例 4 C I 4 型結晶の製造

化合物（I）の塩酸塩の結晶500mgをアセトントリル5mLを添加し、室温で攪拌して懸濁化させた。懸濁液を分離後、40℃で減圧乾燥を行い、化合物（I）の塩酸塩の結晶（C I 4 型結晶）を淡緑色固体として501.1mg得た。

粉末X線回折パターン：図4

'H-NMR（DMSO-d6）: δ 2.074 (s, 4.4H), 2.99-3.25 (dd, 2H), 3.09 (s, 6H), 3.
実施例5 C15型結晶の製造

化合物（1）のフリーフ体10gを酢酸メチル50mlに溶解し、そこに1M塩酸を含む酢酸エチル35mlを加えて50℃で発生させ、そこに1M塩酸水素を含む酢酸エチル35mlを加えて50℃で摂拌して溶解させた。この混合溶液を10℃まで冷却し、析出した結晶を分離後、40℃で減圧乾燥を行い、化合物（1）の塩酸塩の結晶（C15型結晶）を白色固体として10.63g得た。

微粉末X線回折パターン：図5

1H-NMR (DMSO-d6): δ: 2.99-3. 99 (m, 2H), 3.08 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.82 (m, 1H), 7.20 (d, 2H), 7.39-7.42 (m, 5H), 7.57 (d, 1H), 7.85 (b, 2H), 9.28 (d, 1H)

Mass (ESI,実測値) : [M+H]+ 568.9

IC（C1アニオンとして測定, 実測値）: 5.2 w/w% (HClとして)

実施例6 C16型結晶の製造

化合物（1）の塩酸塩の結晶500mgをアセトニトリル3mlと酢酸メチル3mLを加えて18.9mgを得た。

微粉末X線回折パターン：図6

1H-NMR (DMSO-d6): δ: 2.00 (s, 0.08H), 2.07 (s, 0.3H), 2.99-3. 99 (m, 2H), 3.09 (s, 6H), 3.53 (s, 3H), 3.70 (s, 3H), 4.79-4.82 (m, 1H), 7.20 (d, 2H), 7.38-7.42 (m, 5H), 7.58 (d, 1H), 7.88 (b, 2H), 9.28 (d, 1H)

Mass (ESI,実測値) : [M+H]+ 568.9

IC（C1アニオンとして測定, 実測値）: 5.7 w/w% (HClとして)

実施例7 C17型結晶の製造
化合物 (I) の塩酸塩の結晶500mgをイソプロパノール5mlとテトラヒドロフラン5mlに添加し、室温で攪拌して懸濁化させた。懸濁液を分離後、40℃で減圧乾燥を行い、化合物 (I) の塩酸塩の結晶 (C17型結晶) を淡緑色固体として420.3mg得た。

粉末X線回折パターン：図7

H-NMR (DMSO-d6) : δ 1.04 (d, 2.7H), 2.99-3.25 (dd, 2H), 3.10 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 3.77 (m, 0.4H), 4.79-4.85 (m, 1H), 7.20 (d, 2H),

Mass (ESI, 実測値) : [M+H]+ 568.9

IC (C1 アミオンとして測定, 実測値) : 5.8 w/w% (HC1として)

[0055] 実施例8 B r 1型結晶の製造

化合物 (I) のフリーフ体5.1gをメタノール35ml に懸濁し水浴下で冷却した。これに臭化アセチル955リットルを加えて攪拌して溶解させた。得られたメタノール溶液を室温で放置したところ、結晶が析出した。析出した結晶を分離し、結晶をメタノールで洗浄した後、60℃で減圧乾燥を行い、化合物 (I) の臭化水素酸塩の結晶 (B r 1型結晶) を白色固体として0.89g得た。

粉末X線回折パターン：図8

H-NMR (DMSO-d6) : δ 2.99-3.25 (dd, 2H), 3.10 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.85 (m, 1H), 7.19 (d, 2H), 7.39-7.47 (m, 5H), 7.55 (d, 1H), 7.74 (b, 2H), 9.27 (d, 1H),

Mass (ESI, 実測値) : [M+H]+ 569.1

IC (B r アミオンとして測定, 実測値) : 11.6 w/w% (HB r として)

[0056] 実施例9 B r 2型結晶の製造

化合物 (I) のフリーフ体1.0gをメタノール7mlに懸濁させ、臭化アセチル19リットルを加えて室温下で攪拌して溶解させた。その後、該溶液をエチアルコール20mlに滴下し、冷蔵庫内（約4℃）に静置した。析出した結晶を分離し、結晶を10mlのエタノールで洗浄した後、50℃で減圧乾燥を行い、化合物 (I) の臭化水素酸塩の結晶 (B r 2型結晶) を淡緑色固体として1.04g得た。

粉末X線回折パターン：図9
'H-NMR (DMSO-d₆) : δ 3.03-3.22 (dd, 2H), 3.13 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.85 (m, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.59 (d, 1H), 7.87 (b, 2H), 9.28 (d, 1H)

Mass (ESI, 実測値) : [M+H]+ 569.0

IG (B r アニオンとして測定, 実測値) : 12.3 wW% (H B r として)

実施例10 B r 3型結晶の製造

化合物 (I) の臭化水素酸塩の結晶500mgをアセトニトリル5mlに添加し、室温で攪拌して懸濁化させた。懸濁液を分離後、40℃で減圧乾燥を行い、化合物 (I) の臭化水素酸塩の結晶 (B r 3型結晶) を淡緑色固体として459.2mg得た。

粉末X線回折パターン : 図10

'NMR (DMSO-d₆) : δ :2.09 (s, 1.5H), 3.00-3.26 (dd, 2H), 3.13 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.85 (m, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.59 (d, 1H), 7.85 (b, 2H), 9.28 (d, 1H)

Mass (ESI, 実測値) : [M+H]+ 568.9

IG (B r アニオンとして測定, 実測値) : 11.5 wW% (H B r として)

実施例11 B r 4型結晶の製造

化合物 (I) の臭化水素酸塩の結晶500mgをアセトニトリル5mlに添加し、室温で攪拌して懸濁化させた。懸濁液を分離後、40℃で減圧乾燥を行い、化合物 (I) の臭化水素酸塩の結晶 (B r 4型結晶) を淡緑色固体として528.6mg得た。

粉末X線回折パターン : 図11

'NMR (DMSO-d₆) : δ :2.08 (s, 3.9H), 3.00-3.25 (dd, 2H), 3.14 (s, 6H), 3.53 (s, 3H), 3.70 (s, 3H), 4.79-4.85 (m, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.59 (d, 1H), 7.88 (b, 2H), 9.28 (d, 1H)

Mass (ESI, 実測値) : [M+H]+ 568.9

IG (B r アニオンとして測定, 実測値) : 10.9 wW% (H B r として)

実施例12 B r 5型結晶の製造
化合物（I）の臭化水素酸塩の結晶2gをジメチルホルムアミド1mLに添加し、室温で攪拌して懸濁させた。懸濁液を分離後、40°Cで減圧乾燥を行い、化合物（I）の臭化水素酸塩の結晶（B r 5型結晶）を淡緑色固体として2.23g得た。

粉末X線回折パターン：図12

'H-NMR (DMSO-d6) : δ : 2.73 (s, 3H), 2.89 (s, 3H), 3.03-3.25 (dd, 2H), 3.12 (s, 6H), 3.53 (s, 3H), 3.70 (s, 3H), 4.79-4.85 (m, 1H), 7.19 (d, 2H), 7.38-7.47 (m, 5H), 7.57 (d, 1H), 7.84 (b, 2H), 7.96 (s, 1H), 9.28 (d, 1H)

Mass (ESI, 実測値) : [M+H]+ 568.9

1C (B r アニオンとして測定, 実測値) : 9.9 w%(H B r として)

[0060] 実施例13 B r 6型結晶の製造

化合物（I）のフリーエ体10gをメタノール1mLに懸濁させ、臭化アセチル1.95mLを加えて室温下で攪拌して溶解させた。その後、溶液をジクロロメタン90mLに滴下し、10°Cで攪拌した。析出した結晶を分離し、結晶を60mLのジクロロメタンで洗浄した後、40°Cで減圧乾燥を行い、化合物（I）の臭化水素酸塩の結晶（B r 6型結晶）を白色固体として10.5g得た。

粉末X線回折パターン：図13

'H-NMR (DMSO-d6) : δ : 2.99-3.25 (dd, 2H), 3.09 (s, 6H), 3.52 (s, 3H), 3.70 (s, 3H), 4.79-4.85 (m, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.59 (d, 1H), 7.87 (b, 2H), 9.28 (d, 1H)

Mass (ESI, 実測値) : [M+H]+ 568.9

1G (B r アニオンとして測定, 実測値) : 11.3 w%(H B r として)

[0061] 実施例14 S 1型結晶の製造

化合物（I）のフリーエ体500mgをメタノール1mLに懸濁させ、硫酸50B Lを加えて室温下で攪拌して溶解させた。その後、該溶液をイソプロピルアルコール3mLに滴下した。析出した結晶を分離して60°Cで減圧乾燥を行った後、化合物（I）の硫酸塩の結晶（S 1型結晶）を固体として408mg得た。

粉末X線回折パターン：図14
実施例 1.5 S 2型結晶の製造

化合物（I）のフリーフィー体 5.0g をメタノール 10m l に懸濁させ、硫酸 500パーセントを加えて室温下で摂拌して溶解させた。その後、该溶液を酢酸メチル 100ml に滴下し、さらに酢酸メチル 50ml を加えた。析出した結晶を分離して 60℃ で減圧乾燥を行った。化合物（1）の硫酸塩の結晶（S 2型結晶）を 5.0g 得た。

粉末X線回折パターン：図15

1H-NMR（DMSO- d6）：δ 2.99-3.25 (dd, 2H) , 3.09 (s, 6H) , 3.52 (s, 3H) , 3.69 (s, 3H) , 4.79-4.85 (m, 1H) , 7.49 (d, 2H) , 7.38-7.47 (m, 5H) , 7.53 (d, 1H) , 7.69 (b, 2H) , 7.70-8.50 (b, 2H) , 9.27 (d, 1H)

Mass（ESI、実測値）：[M+H]+ 568.9

実施例1.6 S 3型結晶の製造

化合物（1）のフリーフィー体 500mg をメタノール 1m l に懸濁させ、硫酸 500パーセントを加えて室温下で摂拌して溶解させた。その後、該溶液を酢酸メチル 100ml に滴下し、析出した結晶を分離して 60℃ で減圧乾燥を行った後、化合物（1）の硫酸塩の結晶（S 3型結晶）を得た。

粉末X線回折パターン：図16

1H-NMR（DMSO-d6）：δ 2.99-3.25 (dd, 2H) , 3.10 (s, 6H) , 3.52 (s, 3H) , 3.69 (s, 3H) , 4.79-4.85 (m, 1H) , 7.19 (d, 2H) , 7.38-7.47 (m, 5H) , 7.58 (d, 1H) , 7.80 (b, 2H) , 9.27 (d, 1H) , 9.40-1.0 (b, 2H)

Mass（ESI、実測値）：[M+H]+ 569.3

実施例1.7 S 4型結晶の製造

化合物（1）の硫酸塩の結晶 500mg をテトラヒドロフラン 8m l に添加し、室温で摂拌して懸濁化させた。懸濁液を分離後、40℃ で減圧乾燥を行い、化合物
物（I）の硫酸塩の結晶（S4型結晶）を白色固体として439.6mg得た。

粉末X線回折パターン：図1 7

1H-NMR (DMSO—d_6) : δ : 2.99-3.25 (dd, 2H), 3.06 (s, 6H), 3.52 (s, 3H), 3.69 (s, 3H), 4.78-4.84 (m, 1H), 7.19 (d, 2H), 7.39-7.46 (m, 5H), 7.48 (d, 1H), 7.55 (b, 2H), 9.27 (d, 1H)

Mass (ES実測値) : [M+H]+ 568.9

1G（S0_4アニオンとして測定、実測値） : 23.5 w/w% (H_2S0_4として)

実施例1 8 S5型結晶の製造

化合物（I）の硫酸塩の結晶500mgをテトラヒドロフラン8mLに添加し、室温で攪拌して懸濁液させた。懸濁液を分離後に、40°Cで減圧乾燥を行い、化合物（I）の硫酸塩の結晶（S 5型結晶）を白色固体として439.6mg得た。

粉末X線回折パターン：図1 8

1H- NMR (DMSO—d_6) : δ : 1.06 (t, 1.6H), 2.99-3.25 (dd, 2H), 3.06 (s, 6H), 3.44 (dd, 1H), 3.52 (s, 3H), 3.69 (s, 3H), 4.78-4.84 (m, 1H), 5.86 (b, 5H), 7.19 (d, 2H), 7.38-7.47 (m, 5H), 7.51 (d, 1H), 7.60 (b, 2H), 9.27 (d, 1H)

Mass (ES実測値) : [M+H]+ 568.9

1G（S0_4アニオンとして測定、実測値） : 21.0 w/w% (H_2S0_4として)

実施例1 9 N1型結晶の製造

化合物（I）のフリーフ体500mgをメタノール1mLに懸濁させ、硝酸80mlを加えて室温下で攪拌した。その後、該混合液をエチルアルコール5mLに滴下して生じた結晶を分離した。減圧乾燥後、化合物（I）の硝酸塩の結晶（N1型結晶）を白色固体として442mg得た。

粉末X線回折パターン：図1 9

1H-NMR (DMSO-d6) : δ : 2.99-3.25 (dd, 2H), 3.11 (s, 6H), 3.52 (s, 3H), 3.69 (s, 3H), 4.79-4.84 (m, 1H), 5.90-6.00 (b, 1H), 7.20 (d, 2H), 7.38-7.47 (m, 5H), 7.54 (d, 1H), 7.72 (b, 2H), 9.28 (d, 1H)

Mass (ES実測値) : [M+H]+ 569.1

1G（N0_3アニオンとして測定、実測値） : 9.2 w/w% (H N0_3として)
実施例 2.0 N 2 型結晶の製造

化合物 (I) のフリーア体 500mg をメタノール 1mL に懸濁させ、硝酸 86g を加えて室温下で摂拌した。その後、該混合液をイソプロピルアルコール 5mL に懸濁し、メタンスルホン酸 60g を加えて室温で摂拌し溶解させた。この溶液をエチルアルコール 5mL に滴下し室温で摂拌した。溶液を冷蔵庫内にて静置し、析出した結晶を濾出。塩素と分離した、N 2 型結晶 (淡桃色固体) として 498mg 得た。

粉末X線回折パターン：図 2.0

1H-NMR (DMSO-d6)：δ 2.99-3.28 (dd, 2H)，3.11 (s, 6H)，3.52 (s, 3H)，3.69 (s, 3H)，4.79-4.87 (m, 1H)，7.20 (d, 2H)，7.38-7.47 (m, 5H)，7.55 (d, 1H)，7.72 (b, 2H)，7.80-8.80 (b, 1H)，9.28 (d, 1H)

Mass (ESI、実測値)：[M+H]+ 568.9

1G (N O3 アニオンとして測定、実測値)：8.6 w/w% (H N O3 として)

実施例 2.1 τ 1 型結晶の難

化合物 (I) のフリーア体 500mg をメタノール 0.5mL に懸濁させ、p-トルエンスルホン酸-水和物 182mg を加えて室温下で摂拌した。その後、該混合液をエチルアルコール 5mL に滴下し、析出した結晶を分離し、減圧乾燥して化合物 (I) の p-トルエンスルホン酸塩の結晶 (T s 1 型結晶) を白色固体として 471mg 得た。

粉末X線回折パターン：図 2.1

1H-NMR (DMSO-d6)：δ 2.91 (s, 3H)，2.99-3.28 (dd, 2H)，3.11 (s, 6H)，3.52 (s, 3H)，3.69 (s, 3H)，4.79-4.87 (m, 1H)，7.12 (d, 2H)，7.20 (2H)，7.34 (d, 2H)，7.38-7.47 (m, 5H)，7.54 (d, 1H)，7.72 (b, 2H)，9.27 (d, 1H)

Mass (ESI、実測値)：[M+H]+ 569.1

1G (Tosil 酸アニオンとして測定、実測値)：21.9 w/w% (T s O H として)

実施例 2.2 M s 1 型結晶の製造

化合物 (I) のフリーア体 500mg をメタノール 1mL に懸濁させ、メタンスルホン酸 60g を加えて室温で摂拌し溶解させた。この溶液をエチルアルコール 5mL に滴下し室温で摂拌した。溶液を冷蔵庫内にて静置し、析出した結晶を濾出。
別した。50℃で減圧乾燥した後、化合物（I）のメタノールホン酸塩の結晶（M s 1型結晶）を466mg得た。

粉末X線回折パターン：図2 2

H-NMR (DMSO-d6) : δ 2.42 (s, 3H)，2.99-3.28 (dd, 2H)，3.10 (s, 6H)，3.52 (s, 3H)，3.69 (s, 3H)，4.79-4.87 (m, 1H)，7.19 (d, 2H)，7.38-7.47 (m, 5H)，7.54 (d, 1H)，7.72 (b, 2H)，9.28 (d, 1H)

Mass (ESI、実測値) : [M+H]+ 569.1

IC（メシル酸アニオンとして測定、実測値）: 13.3 w/w%（M s O Hとして）

実施例2 3 M s 2型結晶の難

化合物（I）のフリーテ体5.0gをメタノール10mLに懸濁させ、メタノールホン酸600μLを加えて室温で摂拌し溶解させた。この溶液をイソプロピルアルコール（IPA、2-プロパノール）50mLに滴下し、しばらく室温で摂拌して析出した後、冷蔵庫に紹夜静置した。析出した結晶を分離して酢酸メチル20mLで洗浄して得たエーット結晶を60℃で減圧乾燥し、化合物（I）のメタノールホン酸塩の結晶（M s 2型結晶）を白色固体として4.38g得た。

粉末X線回折パターン：図2 3

H-NMR (DMSO-d6) : δ 2.40 (s, 3H)，2.99-3.25 (dd, 2H)，3.09 (s, 6H)，3.52 (s, 3H)，3.69 (s, 3H)，4.79-4.85 (m, 1H)，7.19 (d, 2H)，7.38-7.47 (m, 5H)，7.53 (d, 1H)，7.68 (b, 2H)，9.27 (d, 1H)

Mass (ESI、実測値) : [M+H]+ 569.1

IC（メシル酸アニオンとして測定、実測値）: 14.2 w/w%（M s O Hとして）

実施例2 4 M s 3型結晶の製造

化合物（I）のフリーテ体5gをメタノール10mLに懸濁し、メタノールホン酸600μLを加えて室温下で摂拌し溶解させた。この溶液をエチルアルコール50mLに滴下した後、析出した結晶を分離してエチルアルコールで洗浄した。得られたエーット結晶を50℃で減圧乾燥し、化合物（I）のメタノールホン酸塩
の結晶（M s 3 型結晶）を5.70g得た。

粉末X線回折パターン：図2-4

1H-NMR（DMSO-d6）：δ 2.42 (s, 3H), 2.99-3.25 (dd, 2H), 3.11 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.87 (m, 1H), 7.19 (d, 2H), 7.38-7.47 (m, 5H), 7.55 (d, 1H), 7.78 (b, 2H), 9.28 (d, 1H)

Mass（ESI、実測値）：[M+H]+ 568.9

1C（メシル酸アニオンとして測定、実測値）：14.3 w/w%（M s O H として）

【実施例2-5】M s 4 型結晶の製造

化合物（1）のフリーエ体10gをメタノール3mlに懸濁し、メタンスルホン酸1.2mlを加えて室温下で攪拌し懸濁化させた。この懸濁液をアセトン40mlに滴下した後、50℃で攪拌して溶解させ、10℃まで冷却後、析出した結晶を分離した。得られたウエット結晶を40℃で減圧乾燥し、化合物（1）のメタンスルホン酸塩の結晶（M s 4 型結晶）を11.1g得た。

粉末X線回折パターン：図2-5

1H-NMR（DMSO-d6）：δ 2.42 (s, 3H), 2.99-3.25 (dd, 2H), 3.11 (s, 6H), 3.53 (s, 3H), 3.69 (s, 3H), 4.79-4.87 (m, 1H), 7.19 (d, 2H), 7.38-7.47 (m, 5H), 7.55 (d, 1H), 7.78 (b, 2H), 9.28 (d, 1H)

Mass（ESI、実測値）：[M+H]+ 568.9

1C（メシル酸アニオンとして測定、実測値）：14.3 w/w%（M s O H として）

【測定方法1】粉末X線回折パターン

上記実施例1～2-5に記載されている粉末X線回折パターンの測定条件は以下の通りである。

装置：X'Pert（パナリティカル社製）

Target：Cu 全自動モノクロメータ

X線出力設定：40kV, 30mA

発散スリット：タイプ－固定タイプ、サイズ－1.0000°
測定力法 2 核磁気共鳴スペクトル (NMR)

上記実施例 1 ～ 3 に記載されている、1H-NMRスペクトルはTMS（S O. 00）を基準として、13G_NMRスペクトルはDMSO_d6（δ 39. 7）を基準として、Bruker Avance 400にて測定した。測定溶媒は特に言及の無い限り、Eur isotop 製アンプル入（0. 75ml） DMSO_d6を使用した。

測定力法 3 イオンクロマトグラフィー (ION)

上記実施例に記載されている 1C 値は、以下のように測定したアノニオン量に基づく結晶中の当該酸成分の重量濃度を示し、以下のイオンクロマトグラフィーの結果に基づく。化合物（1）で示される化合物を脱イオン水を加えて懸濁化させ、この懸濁液をディスポシフィルターに通液した後、下記条件で測定した。なお標準液としては、KBr、K2SO4、TsOH・H20、MsOH又はHNO3を脱イオン水で希釈した溶液を用いた。

(イオンクロマトグラフィー条件)

装置：イオンクロマトグラフDX-120（DIONEX製）
溶離液：1. 0M Na2C03 / 1. 0M NaHC03 / 脱イオン水=2. 7 / 0. 3 / 997

試験例 1 溶解度の測定

上記のようにして得られた各結晶の試料又は化合物（1）のフリーエ体の結晶、各50mgを蒸留水10mlに懸濁させ室温下で15分攪拌した後、上清部分を取
り、これを0. 2 μm HPLG用ディスポシフィルターに通液したのち、1 ～ 3. 5gを秤
量し、90% アセトニトリル水溶液で10mlにメスアップ後、化合物（1）の含有
量を下記の条件でHPLG測定した。結果は以下の表1に示した。

(HPLG分析条件)
装置：LG-10A series（島津製作所製）

Column：Inerts il（ジーエルサイエンス社）0DS-2 4.5mm×50mm, 5µm, 40°C

Flow Rate：1mL/min, UV at 254nm, 10μL Injection

溶離液A：0.1% TFA（トリフルオロ酢酸）/water

溶離液B：0.1% TFA/MeCN

Gradient program：0 → 25min (B: 0 → 90%)

<table>
<thead>
<tr>
<th>Entry</th>
<th>塩の形態（結晶形）</th>
<th>水への溶解度 (25°C, μg/ml, 15min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>フリーボディ</td>
<td>0.24</td>
</tr>
<tr>
<td>1</td>
<td>塩酸塩（C11形）</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>塩酸塩（C12形）</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>塩酸塩（C13形）</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>塩酸塩（C15形）</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>HBr塩（Br1形）</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>HBr塩（Br2形）</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>硫酸塩（S1形）</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>硫酸塩（S2形）</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>硫酸塩（S3形）</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>硝酸塩（N1形）</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>硝酸塩（N2形）</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>トシル酸塩（Ts1形）</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>メシル酸塩（Ms1形）</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>メシル酸塩（Ms2形）</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>メシル酸塩（Ms3形）</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>メシル酸塩（Ms4形）</td>
<td>9</td>
</tr>
</tbody>
</table>

このように、本発明の化合物（I）の薬的に許容できる酸との塩の結晶は、いずれもフリーボディの結晶に比べて格段に水への溶解度が向上し、医薬としてきわめて有用であることが示された。

試験例2 保存安定性の測定
式 (I) の化合物の塩の結晶を、40°C 75% RHで2ヶ月保存した時の保存安定性を下記の方法で測定した。このうち、好ましいCI1、Br1、Br2、Ms1及びMs3型についての結果をまとめて表2に示す。この結果から、本発明の好ましい結晶形の特に優れた保存安定性がわかれた。

<table>
<thead>
<tr>
<th>結晶形</th>
<th>加速試験 安定性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40°C 75%RH 2M</td>
</tr>
<tr>
<td>CI1</td>
<td>99.03% 残存</td>
</tr>
<tr>
<td>Br1</td>
<td>99.05% 残存</td>
</tr>
<tr>
<td>Br2</td>
<td>98.13% 残存</td>
</tr>
<tr>
<td></td>
<td>1.17% 加水分解体生成</td>
</tr>
<tr>
<td>Ms1</td>
<td>99.06% 残存</td>
</tr>
<tr>
<td>Ms3</td>
<td>97.41% 残存</td>
</tr>
<tr>
<td></td>
<td>1.81% 加水分解体生成</td>
</tr>
</tbody>
</table>

表2

試験3 大試験 碰 試 き

日本ベル社製 BELLS0RP-aqua3 を用いて水蒸気吸脱着を測定した。具体的には、化合物(I)で示される化合物約300mgを測定管に秤量し、50°Cで30分減
圧乾燥後、以下の条件にて水蒸気吸着量及び脱着量を測定した。
吸着温度: 25°C、平行時間: 500sec、飽和蒸気圧: 3.169 kPa
過剰導入量: 0.2又は1.0 cm³/円、吸着量増減許容量: 0.2又は1.0 cm³(STP)/g

得られた本発明のCII型結晶、Br2型結晶及びMs1型結晶の水蒸気
吸脱着等温線を、それぞれ、図26、図27及び図28に示す。いずれの図
においても、水分吸着量が3.0%〜4.0%未満であり、また、高湿度下にあつ
ても結晶の変化が極めて少ないことがわかる。したがって、これらの塩が極
めて安定であり、好ましい結晶特性を有することが確認された。

産業上の利用可能性

[0082] 4 インテグリン阻害剤として有用な化合物(I)の塩に係る本発明の結
晶は、取り扱いやすく、溶解性に優れ、4 インテグリン依存性の接着過程
が病態に関与する炎症性疾患、リウマチ様関節炎、炎症性腸疾患、全身性エ
リテマトーデス、多発性硬化症、シエーグレッセン症候群、喘息、乾せん、アレ
ルギー、糖尿病、心臓血管性疾患、動脈硬化症、再狭窄、腫瘍増殖、腫瘍転
移、移植拒絶いずれかの治療剤または予防剤の有効成分として有用である。
請求の範囲

[請求項1] 下記式（I）で示される化合物の医薬的に許容される酸塩の結晶。

[化1]

[請求項2] 式（I）で示される化合物の塩酸塩である請求項1記載の結晶。

[請求項3] 粉末X線回折パターンにおいて、20.8, 23.6, 25.3, 及び26.9の回折角（2θ）にピークを示すことを特徴とする、C11型結晶である請求項2記載の結晶。

[請求項4] 粉末X線回折パターンにおいて、5.24, 10.39, 21.04, 及び21.41の回折角（2θ）にピークを示すことを特徴とする、C12型結晶である請求項2記載の結晶。

[請求項5] 粉末X線回折パターンにおいて、4.21, 10.13, 10.30, 及び16.17の回折角（2θ）にピークを示すことを特徴とする、C13型結晶である請求項2記載の結晶。

[請求項6] 粉末X線回折パターンにおいて、4.07, 17.84, 23.83, 及び24.87の回折角（2θ）にピークを示すことを特徴とする、C14型結晶である請求項2記載の結晶。

[請求項7] 粉末X線回折パターンにおいて、4.09, 22.12, 23.17, 及び27.76の回折角（2θ）にピークを示すことを特徴とする、C15型結晶である請求項2記載の結晶。
[請求項8] 粉末X線回折パターンにおいて、22.32.22.90.26.43及び26.77の回折角（2θ）にピークを示すことを特徴とする、C16型結晶である請求項2記載の結晶。

[請求項9] 粉末X線回折パターンにおいて、16.65.20.99.22.61及び24.70の回折角（2θ）にピークを示すことを特徴とする、C17型結晶である請求項2記載の結晶。

[請求項10] 式（Ⅰ）で示される化合物の臭化水素酸塩である請求項1記載の結晶。

[請求項11] 粉末X線回折パターンにおいて、14.3.17.4.20.5及び24.9の回折角（2θ）にピークを示すことを特徴とする、Br1型結晶である請求項10記載の結晶。

[請求項12] 粉末X線回折パターンにおいて、18.9.20.6.23.3.25.0及び26.7の回折角（2θ）にピークを示すことを特徴とする、Br2型結晶である請求項10記載の結晶。

[請求項13] 粉末X線回折パターンにおいて、21.53.22.12.23.69及び25.39の回折角（2θ）にピークを示すことを特徴とする、Br3型結晶である請求項10記載の結晶。

[請求項14] 粉末X線回折パターンにおいて、4.07.17.78.23.62及び24.65の回折角（2θ）にピークを示すことを特徴とする、Br4型結晶である請求項10記載の結晶。

[請求項15] 粉末X線回折パターンにおいて、21.20.21.98.23.21及び23.93の回折角（2θ）にピークを示すことを特徴とする、Br5型結晶である請求項10記載の結晶。

[請求項16] 粉末X線回折パターンにおいて、17.25.23.38.24.55及び26.73の回折角（2θ）にピークを示すことを特徴とする、Br6型結晶である請求項10記載の結晶。

[請求項17] 式（Ⅰ）で示される化合物の硫酸塩である請求項1記載の結晶。

[請求項18] 粉末X線回折パターンにおいて、18.2.22.7.24.8。
及び 25.5 の回折角（2θ）にピークを示すことを特徴とする、S
1 型結晶である請求項17記載の結晶。

[請求項19] 粉末X線回折パターンにおいて、15.6、16.2、18.0、
及び19.2 の回折角（2θ）にピークを示すことを特徴とする、S
2 型結晶である請求項17記載の結晶。

[請求項20] 粉末X線回折パターンにおいて、13.0、18.7、22.1、
及び22.5 の回折角（2θ）にピークを示すことを特徴とする、S
3 型結晶である請求項17記載の結晶。

[請求項21] 粉末X線回折パターンにおいて、12.58、21.08、23.02、
及び23.93 の回折角（2θ）にピークを示すことを特徴とする、S
4 型結晶である請求項17記載の結晶。

[請求項22] 粉末X線回折パターンにおいて、4.04、21.06、21.46、
及び25.75 の回折角（2θ）にピークを示すことを特徴とする、S
5 型結晶である請求項17記載の結晶。

[請求項23] 式（I）で示される化合物の硝酸塩である請求項1記載の結晶。

[請求項24] 粉末X線回折パターンにおいて、12.8、22.5、23.3、
及び24.6 の回折角（2θ）にピークを示すことを特徴とする、N
1 型結晶である請求項23記載の結晶。

[請求項25] 粉末X線回折パターンにおいて、18.9、20.7、23.5、
及び26.5 の回折角（2θ）にピークを示すことを特徴とする、N
2 型結晶である請求項23記載の結晶。

[請求項26] 式（I）で示される化合物の p _ トルエンスルホン酸塩である請求
項1記載の結晶。

[請求項27] 粉末X線回折パターンにおいて、12.9、21.5、及び23.1
の回折角（2θ）にピークを示すことを特徴とする、T s 1 型結晶
である請求項26記載の結晶。

[請求項28] 式（I）で示される化合物のメタンスルホン酸塩である、請求項1
記載の結晶。
請求項29 粉末X線回折パターンにおいて、10.1、11.5、21.2、及び21.9の回折角 (2θ) にピークを示すことを特徴とする、M
s1型結晶である請求項28記載の結晶。

請求項30 粉末X線回折パターンにおいて、12.9、15.9、18.8、及び23.0の回折角 (2θ) にピークを示すことを特徴とする、M
s2型結晶である請求項28記載の結晶。

請求項31 粉末X線回折パターンにおいて、11.2、12.6、22.9、及び25.5の回折角 (2θ) にピークを示すことを特徴とする、M
s3型結晶である請求項28記載の結晶。

請求項32 粉末X線回折パターンにおいて、17.99、19.22、19.75、及び25.64の回折角 (2θ) にピークを示すことを特徴とする、M
s4型結晶である請求項28記載の結晶。

請求項33 請求項1〜32のいずれか1項記載の結晶を含有する医薬組成物。

請求項34 請求項1〜32のいずれか1項記載の結晶を含有する4インテグリン阻害剤。

請求項35 請求項1〜32のいずれか1項記載の結晶を含有する4インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤または予防剤。

請求項36 請求項1〜32のいずれか1項記載の結晶を有効成分とするリウマチ関節炎、炎症性腸疾患、全身性エリテマトーデス、多発性硬化症、シュ－グレン症候群、喘息、乾せん、アレルギー、糖尿病、心臓血管性疾患、動脈硬化症、再狭窄、腫瘍増殖、腫瘍転移、移植拒絶のいずれかの治療剤または予防剤。
图26

水蒸气吸着等温线

H2O吸着量（％）

相対湿度（％RH）
Br2の水蒸気吸着等温線

- 吸着方向
- 脱着方向
メチルメタノールの水蒸気吸着等温線

湿度（％RH）

図28
A. CLASSIFICATION OF SUBJECT MATTER
See extra sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C07D239/96, A61K3/517, A61P1/00-43/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2005/051925 Al (Ajiomoto Co., Inc.), 09 June 2005 (09.06.2005), claims; paragraph [0042]</td>
<td>1-36</td>
</tr>
<tr>
<td>Y</td>
<td>Sai shin Soyaku Kagaku, last volume, 25 September 1999 (25.09.1999), pages 347 to 354</td>
<td>1-36</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
14 April 1, 2011 (14.04.11)

Date of mailing of the international search report
26 April 1, 2011 (26.04.11)

Name and mailing address of the ISA/
Japanese Patent Office

Facsimile No. Authorized officer

Telephone No.
INTERNATIONAL SEARCH REPORT

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

(International Patent Classification (IPC))

CO7D239/9 6 (2006.01)i, A61K31/51 7 (2006.01)i, A61P1/04 (2006.01)i,
A61P3/1 0 (2006.01)i, A61P9/0 0 (2006.01)i, A61P9/1 0 (2006.01)i,
A61P11/06 (2006.01)i, A61P17/06 (2006.01)i, A61P25/0 0 (2006.01)i,
A61P29/0 0 (2006.01)i, A61P35/0 0 (2006.01)i, A61P35/4 (2006.01)i,
A61P37/0 6 (2006.01)i, A61P37/0 8 (2006.01)i, A61P43/0 0 (2006.01)i

(According to International Patent Classification (IPC) or to both national classification and IPC)
A. 発明の属する分野の分類（国際特許分類（I P C））

Int.Cl. 特別ページ参照

B. 調査を行った分野

調査を行った最前資料（国際特許分類（I P C））

Int.Cl. C07D239/96, A61K31/517, A61P1/00- 43/00

最小資料以外の資料で調査を行った分野に含まれるもの

日本国実用新型公報 1922—1996年
日本国公開実用新型公報 1971—2011年
日本国実用新型登録公報 1996—2011年
日本国登録実用新型公報 1994—2011年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>

" 引用文献のカテゴリー
IA 特別関連のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願 または特許であるが、国際出願 日以前に公表されたもの
IL 優先権主張に基づく公表文献は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
IB 口頭による開示、使用、展示等に言及する文献
IP 国際出願 日前の、かつ優先権主張の基礎となる出願

の 日の後に公表された文献
IA 特別関連のある文献であって、発明の原理又は理論の理解のために引用するもの
IE 特別関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
IL 特別関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進步性がないと考えられるもの
IP 同一パテントファミリー文献

国際調査機関の名称及びあて先
日本国特許庁（I SA／JP） 郵便番号100—8915 東京都千代田区霞が関三丁目4番3号
特許庁審査官（権限のある職員） 4P 4866
権原 克典 電話番号 03—3581—1101 内線 3492

様式 PCT／ISA／210（第2ページ）（2009年7月）