A marine vessel capable of being equipped and reequipped for use in marine support tasks is disclosed. The marine vessel comprises a hull having a fore bow, an aft stern, and port and starboard sides, and a wheelhouse disposed between the bow and stern and extending above the hull. A substantially flat platform extends between the wheelhouse and the stern and between the port and starboard sides. At least one modular mission pod is provided having a lower surface adapted to be releasably secured to the platform. The modular mission pod carries equipment suitable to equip the marine vessel to perform at least one marine support task.
MARINE VESSEL HAVING MODULAR MISSION PODS

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable

BACKGROUND OF THE INVENTION

[0003] 1. Field of Invention

[0004] The invention relates to marine vessels, and more particularly, to a boat which is adapted to receive a variety of modular pods, each pod being equipped for a particular application.

[0005] 2. Description of the Related Art

[0006] The use of marine vessels to accomplish a variety of tasks in a marine environment is known in the art. For example, in the support operations of large maritime vessels of the type used in activities such as offshore oil drilling, military naval activities, seafaring cargo transportation, etc., it is known to utilize smaller vessels to perform certain support tasks, such as transportation of personnel, cargo, and equipment to and from the large vessel. For example, in situations of fire, search and rescue activities, fire prevention and suppression, emergency medical response, security support, spill containment, and emergency evacuation, etc. Typically, the smaller support vessels used in these types of support operations are each designed and equipped for a particular type of activity, and are often designed to remain in a hoisted, stored, or otherwise idle configuration on or near the large vessel when the particular activity for which the support vessel is designed is not being performed.

[0007] In several marine support operations, such as those support operations involving security and/or emergency response, rapid deployment of a support vessel which is properly equipped for a particular support operation is important. However, in environments in which properly equipped support vessels are kept in a stored condition on a large vessel, and particularly in environments in which the vessels are stored in a hoisted, stored position above the water level, such rapid deployment of a support vessel is often delayed by the need to first configure the support vessel to a usable condition, for example by removing the support vessel from the hoisted position and placing on the support vessel in the water. In certain situations, applicable laws governing safety protocol during removal of a hoisted support vessel from the hoisted configuration and placement of the support vessel in to the water prohibit such actions from being performed while persons are aboard the support vessel. Thus, in several applications, it may be necessary that configuration of the support vessel to a usable condition is performed prior to occupation of the support vessel by people, such as for example operators of the vessel and/or emergency response personnel, thereby resulting in additional delay in deployment of the support vessel. In other situations, applicable laws may prohibit the removal of a hoisted support vessel from the hoisted configuration and placement of the support vessel into the water while the support vessel carries certain equipment, such as for example pressurized gas tanks or other equipment which may pose a hazard if handled improperly. In these applications, it may be necessary that configuration of the support vessel to a usable condition is performed prior to equipping the support vessel with the equipment necessary to perform the function of the support vessel.

[0008] In several environments, a large maritime vessel may include and/or carry a number of support vessels, with each support vessel being equipped to perform a specific support task. However, due to space restrictions aboard the large vessel, it may be implausible for the large vessel to include and/or carry sufficient numbers of support vessels equipped to properly perform each support task which may be required. For example, an offshore oil-drilling platform may house a support vessel equipped for use in controlling oceanic oil spills, a support vessel equipped for use in suppressing fires at sea, and a support vessel equipped for medical emergency response and/or evacuation. In this example, when a situation arises in which a particular specialized task, for example fire suppression at sea, is to be performed, only the support vessel equipped for use in fire suppression may be deployed, while the rest of the support vessels may remain undeployed on the large vessel. In the event of a large fire, the single deployed support vessel equipped for use in suppressing fires may be insufficient to effect proper fire suppression.

[0009] In light of the above, there is a need in the art for a marine support vessel having quickly interchangeable modular sets of equipment, with each set of equipment being suitable to equip the support vessel for use in performing a specific support task, such that the modular equipment sets allow the support vessel to be quickly and properly equipped and/or reequipped for use in one of a plurality of support tasks.

BRIEF SUMMARY OF THE INVENTION

[0010] According to one embodiment of the present general inventive concept, a marine vessel is disclosed which is capable of being equipped and reequipped for use in marine support tasks. In one embodiment, the marine vessel comprises a hull having a bow, an aft stern, and port and starboard sides, and a wheelhouse disposed between the bow and stern and extending above the hull. A substantially flat platform extends between the wheelhouse and the stern and between the port and starboard sides. At least one modular mission pod is provided having a lower surface adapted to be releasably secured to the platform. The modular mission pod carries equipment suitable to equip the marine vessel to perform at least one marine support task.

[0011] According to certain features of the present general inventive concept, the marine vessel may further include a plurality of releasable fasteners configured to releasably fix the modular mission pod lower surface to the platform. Each the releasable fastener may define a quick-release mechanism to allow for swift fastening and release of the modular mission pod to and from the platform. In certain embodiments, each releasable fastener may be in communication with a control disposed remote from the releasable fastener and configured to allow remote fastening and release of the modular mission pod to and from the platform.
According to certain features of the present general inventive concept, an aft wall of the wheelhouse may define a door to provide access to an interior of the wheelhouse from the platform.

According to certain features of the present general inventive concept, the specific equipment carried by each specific modular mission pod may vary. For example, in one embodiment, the modular mission pod may include a cargo container. Such cargo container may be sized to span between the port and starboard sides of the hull and between the wheelhouse and the stern. In another embodiment, the modular mission pod may comprise a liquid storage tank configured to carry a measure of liquid. The liquid storage tank may define at least one orifice to allow access to and from an interior of the liquid storage tank and a cap received by the orifice for limiting flow to and from the liquid storage tank. In certain embodiments, the modular mission pod may further comprise at least one fluid conduit to allow utilization of liquid from within the liquid storage tank by the marine vessel.

According to certain features of the present general inventive concept, the modular mission pod may further comprise a plurality of rails extending generally upward about a perimeter of the lower surface. Such rails may allow cargo to be contained by or on the modular mission pod.

In some embodiments, the modular mission pod may be configured to equip the marine vessel for transportation, launch, or retrieval of a device selected from the group consisting of a boat, a submarine, an unmanned vehicle, a torpedo, and a missile. The modular mission pod may comprise a frame configured to support the device and at least one conveyance apparatus configured to launch or retrieve the device or from the marine vessel. The frame may have an aft portion configured to extend aft of the stern when the modular mission pod is secured to the platform, the aft portion assisting in the launch or retrieval of the device.

In some embodiments, the modular mission pod equipment may comprise fire emergency response equipment. For example, in some embodiments, the fire emergency response equipment may include a hose nozzle in fluid communication with a source of fire retardant and a pump configured to pump fire retardant from the fire retardant source through the nozzle. In other embodiments, the modular mission pod may define a substantially enclosed room. In some embodiments, the modular mission pod may further define a door along an aft wall of the wheelhouse, the door being operable to allow access to an interior of the substantially enclosed room from an interior of the wheelhouse. In some embodiments, the modular mission pod equipment may comprise medical emergency response equipment. In other embodiments, the modular mission pod equipment may include at least one weapon mounted externally of the room. In other embodiments, the modular mission pod equipment may comprise at least one chemical containment boom. In such embodiments, the modular mission pod may define an aft feed portal configured to dispense the chemical containment boom from an aft portion of the modular mission pod to allow placement of the chemical containment boom on a surface aft of the marine vessel.

According to certain features of the present general inventive concept, the marine vessel may further comprise a launch ramp hinged along an aft portion of the modular mission pod and rotatable between a stored position in which an opposite second end of the ramp extends generally upward from the stern and a deployed position in which the ramp second end extends below the platform aft of the stern. In certain embodiments, the launch ramp may further include a flotation buoy secured to the ramp second end. In some embodiments, the marine vessel may further include at least one electrical connection between the modular mission pod and the platform, the electrical connection configured to convey power to the equipment carried by the modular mission pod.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:

FIG. 1 is a top view of one embodiment of a marine vessel constructed in accordance with several features of the present invention;
FIG. 2 is a side view of the marine vessel of FIG. 1;
FIG. 3 is a perspective view of the marine vessel of FIG. 1;
FIG. 4 is a perspective view of the marine vessel of FIG. 1, showing one embodiment of a modular mission pod secured thereon;
FIG. 5 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 6 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 7 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 8 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 9 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 10 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 11 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 12 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon;
FIG. 13 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon; and
FIG. 14 is a perspective view of the marine vessel of FIG. 1, showing another embodiment of a modular mission pod secured thereon.

DETAILED DESCRIPTION OF THE INVENTION

A marine vessel having modular mission pods is disclosed herein and in the accompanying figures. The marine vessel having modular mission pods, or vessel, provides a marine support vessel which is capable of being quickly equipped and/or reequipped for use in a variety of marine support tasks.
One embodiment of a vessel is identified at reference numeral 10 in FIGS. 1-3. Referring to FIGS. 1-3, the vessel 10 includes generally a boat hull 12 defining a forward bow 14, an aft stern 16, and port and starboard sides 18 and 20, respectively. At least one boat motor 24 of the type known to one of skill in the art is provided proximate the stern 16 to propel and/or allow steering of the vessel 10 along the surface of a body of water. In the illustrated embodiment, a wheelhouse 22 is provided at a central portion of the hull 12 and projects generally upwardly from respective upper edges 25, 30 of the port and starboard sides 18, 20. In the illustrated embodiment, the wheelhouse 22 is substantially fully enclosed and houses suitable controls, i.e., steering, throttle, etc. (not shown) in mechanical and/or electrical communication with the motor 24 so as to allow one or more operators to drive the vessel 10 from within the wheelhouse 22.

Referring to FIG. 3, the vessel 10 defines a substantially flat cargo platform 26 extending between respective upper edges 25, 30 of the port and starboard sides 18, 20 and between the wheelhouse 22 and the stern 16. In the illustrated embodiment, a door 38 is provided along an aft wall of the wheelhouse 22, thereby providing access from the platform 26 to the interior of the wheelhouse 22. In the illustrated embodiment, the platform 26 defines first and second side walls 34, 36 extending generally upwardly from the port and starboard side upper edges 25, 30, respectively, between the wheelhouse 22 and the stern 16. A plurality of fastener eyes 40 are provided along the side walls 34, 36 and the port and starboard side upper edges 25, 30 for receiving one or more lines to allow the vessel 10 to be lashed to another structure, for example, for tying the vessel 10 to a dock or for allowing the vessel 10 to be hoisted to and from a water surface. In the illustrated embodiment, a plurality of cleats 48 are provided at various locations around the vessel 10 to further allow lashing of the vessel 10 to another structure.

As will be further described hereinbelow, the cargo platform 26 is configured to receive thereon one or more of a plurality of modular mission pods, illustrated generally at 32 in the Figures. Each mission pod 32 carries suitable equipment to equip the vessel 10 for use in performing one of a plurality of support tasks. For example, FIG. 4 illustrates one embodiment of a mission pod 32, in which the mission pod 32 is adapted to equip the vessel 10 with an enclosed cargo container for use, for example, in transporting cargo to and/or from a large vessel. In this embodiment, the mission pod 32 is defined by a generally rectangular enclosed cargo container 32a sized to fit on the cargo platform 26 and to generally span between the first and second side walls 34, 36 and between the wheelhouse 22 and the stern 16. It will be understood by one of skill in the art that the exact dimensions of the cargo container 32a may vary without departing from the spirit and scope of the present invention. For example, in the embodiment of FIG. 5, a cargo container 32b is provided which spans only a portion of the surface area of the cargo platform 26.

A plurality of fasteners 42 are provided to fasten the mission pod 32 to the platform 26. For example, referring to FIG. 3, in one embodiment a plurality of first fastener members 42 are provided at various locations along the platform 26. Suitable second fastener members (not shown) are provided at matching locations along an underside of the mission pod 32, such that each first fastener member 42 of the platform 26 mates with a second fastener member of the mission pod 32 to fasten the mission pod 32 to the platform 26. In several embodiments, the fastener members 42 include quick-release mechanisms to allow for swift removal and/or fastening of the mission pod 32 to the platform 26. In several embodiments, a plurality of second fastener members are provided at selected locations along an underside of each mission pod 32, such that each fastener member of the mission pod 32 aligns with and mates with a first fastener member 42 of the platform 26 when the mission pod 32 is placed on the platform 26. In this manner, at least a portion of the various first and second fastener members 42 cooperate to releasably secure the mission pod 32 in place on the platform 26.

In several embodiments, suitable controls are provided to allow selective locking and/or unlocking of the fasteners 42 from a location remote from the mission pod 32, such as for example from within the wheelhouse 22, from a location below the platform 26, from a location onboard a large vessel, or from another remote location. Furthermore, in several embodiments, a plurality of fastener eyes 40 are provided at various locations along each mission pod 32 to allow fastening of the mission pod 32 to a hoist, crane, or other such structure, in order to facilitate lifting of the mission pod 32 from the platform 26 and placement of the mission pod 32 on the platform 26.

FIGS. 6-14 illustrate several additional embodiments of mission pods 32 which may be employed to accomplish the vessel 10 of the present general inventive concept. Referring to FIG. 6, in one embodiment, a mission pod 32 is provided to facilitate transportation of liquids by the vessel 10. In the embodiment of FIG. 6, the mission pod 32 is defined by a liquid storage tank 32c which is configured to receive and carry a measure of liquid, such as for example fuel, water, a liquid chemical, or other such liquid. In this embodiment, the liquid storage tank 32c includes at least one orifice for receiving liquid into the liquid storage tank 32c and allowing liquid to be removed therefrom. The liquid storage tank 32c further includes a cap 76 received within the orifice for limiting liquid flow to and from the liquid storage tank 32c. In certain more discreet embodiments, the liquid storage tank 32c and the vessel 10 cooperate to define suitable connections, fluid conduits, or the like to allow the vessel 10 to utilize liquid stored within the liquid storage tank 32c, such as for example a fuel line running from an interior of the liquid storage tank 32c to an intake of the at least one boat motor 24 to allow the liquid storage tank 32c to act as a fuel reserve for the at least one boat motor 24.

Referring to FIG. 7, in one embodiment, a mission pod 32 is provided to facilitate open or uncovered transportation of cargo by the vessel 10. In this embodiment, the mission pod 32 is defined by a pallet 32a comprising a substantially flat surface 78 which is adapted to carry a unit of cargo, such as the generator 80 illustrated in FIG. 7, thereon. In the illustrated embodiment, a plurality of rails 82 extend upwardly about a perimeter of the surface 78 to limit movement of the cargo from atop the surface 78 and to allow for lashing of the cargo to the rails 82.

Referring to FIG. 8, in one embodiment, a mission pod 32e is provided to equip the vessel 10 for transportation, launch, and/or retrieval of a device, such as for example a smaller boat or submarine, an unmanned vehicle, a torpedo, a missile, or the like (hereinafter “device”). In the embodiment of FIG. 8, the mission pod 32e is defined by a platform 84 having a frame 86 disposed thereon suitable to support and carry a device 88. In a preferred embodiment, the mission pod 32e includes suitable conveyance apparatus (not shown), such as for example conveyor belts, rollers, hoists, block and
tackle devices, etc., suitable to accomplish launch and/or retrieval of the device 88 to and/or from the mission pod 32e. In the illustrated embodiment, an aft portion 90 of the frame 86 is configured to extend aft of the stern 16 of the vessel 10, thereby further facilitating launch and/or retrieval of the device 88 to and/or from the mission pod 32e.

[0042] As shown in FIG. 9, in one embodiment, a mission pod 32e is provided to equip the vessel 10 for use in response to a fire emergency, such as for example for use in fighting a fire at sea. In this embodiment, the mission pod 32e includes a platform 92 having a hose nozzle 94 mounted thereon. The hose nozzle 94 is in fluid communication with a source of fire retardant 96, such as the illustrated tank of fire retardant chemical, via a suitable hose 98. A pump 100 is provided in communication with both the source 96 and the nozzle 94 to pump fire retardant from the source 96 and to project the fire retardant through the nozzle 94. In another embodiment, in lieu of the source of fire retardant 96, the pump 100 is configured to pump water from beneath the vessel 10 and to project the pumped water through the nozzle 94.

[0043] FIG. 10 illustrates another embodiment of a mission pod 32g, in which the mission pod 32g is configured to equip the vessel 10 for response to an emergency medical situation, such as for example a search and rescue operation at sea. In the embodiment of FIG. 10, the mission pod 32g includes a workstation 102, which is defined by a substantially enclosed room in the illustrated embodiment. The workstation 102 may, in certain embodiments, serve as a base of operations for emergency response personnel, such as for example search and rescue crews, emergency medical personnel, etc. It will be understood that the workstation 102 may contain suitable equipment necessary to equip the vessel 10 for the task for which the mission pod 32g is employed. For example, in a search and rescue operation, the workstation 102 may contain suitable equipment for surveying the area around the vessel 10, such as for example optical enhancement devices, sonar, radar, etc., as well as equipment for safely retrieving one or more persons from the area around the vessel 10. In an emergency medical situation, the workstation 102 may contain suitable equipment of the type known to one of skill in the art for use in treating a victim of the emergency medical situation. In the illustrated embodiment, the workstation 102 is disposed along the platform 26 of the vessel 10 immediately adjacent the aft wall of the wheelhouse 22, such that the door 38 of the wheelhouse 22 opens directly to the interior of the workstation 102. In this configuration, personnel within the workstation 102 are able to quickly access the interior of the wheelhouse 22, and conversely, personnel within the wheelhouse 22 are able to quickly access the interior of the workstation 102.

[0044] In the illustrated embodiment, the mission pod 32g further includes several devices to allow transportation of personnel to and from the platform 26 of the vessel 10, for example to assist in rescue operations. For example, in the illustrated embodiment, the workstation 102 extends aft from the wheelhouse 22 and terminates at a location approximately halfway along the platform 26. A small watercraft 104 is disposed on the platform 26 aft of the workstation 102. In the illustrated embodiment, the small watercraft 104 is an inflatable raft of the type often used in connection with water rescue activities. A launch ramp 106 is provided along an aft portion of the mission pod 32g. In the illustrated embodiment, the launch ramp 106 is comprised of a panel 108 which is hinged at a first end 112 thereof along the stern 16 of the vessel 10 and is rotatable about the hinged first end 112 between a stored position (see FIG. 10), in which the opposite second end 114 of the panel 108 extends upward from the stern 16 of the vessel 10, and a deployed position (not shown), in which the second end 114 extends below the platform 12, aft of the stern 16, toward the surface of water surrounding the vessel 10. In the illustrated embodiment, a flotation buoy 110 is provided along the second end 114 to encourage flotation of the second end 114 on or near the surface of water surrounding the vessel 10. Furthermore, in the illustrated embodiment, a roof structure 116 is provided to the mission pod 32g which is marked with suitable indicia to assist in identifying the vessel 10 as an emergency response vessel from above, as by an observer in an airborne helicopter or other suitable location above the vessel 10.

[0045] FIG. 11 illustrates another embodiment of a mission pod 32h, in which the mission pod 32h is configured to equip the vessel 10 for transportation of personnel. In the embodiment of FIG. 11, the mission pod 32h is defined by a cabin which may, in various embodiments, be configured to hold one or more persons for transportation in the vessel 10. In the illustrated embodiment, as with the workstation 102 of FIG. 10, the cabin of the mission pod 32h is disposed along the platform 26 of the vessel 10 immediately adjacent the aft wall of the wheelhouse 22, such that the door 38 of the wheelhouse 22 opens directly to the interior of the cabin. In certain embodiments, the mission pod 32h further includes a door 118 which opens to the stern 16 of the vessel 10 to allow more convenient boarding and deboarding of the cabin. In the embodiment of FIG. 12, a mission pod 32i is provided which is configured to equip the vessel 10 for transportation of medical patients, such as for example during medical evacuations from disaster areas or other such environments. In this embodiment, the cabin is marked with suitable indicia to assist in identifying the vessel 10 as an emergency response vessel. Furthermore, as discussed above with regard to the embodiment of FIG. 10, in the embodiment of FIG. 12, the mission pod 32i may contain suitable equipment of the type known to one of skill in the art for use in treating a medical patient.

[0046] Referring to FIG. 13, in one embodiment, a mission pod 32j is provided to equip the vessel 10 for response to a marine chemical spill, such as for example a marine oil spill. In the embodiment of FIG. 13, the mission pod 32j includes a rack 120 which is configured to carry a chemical containment boom 122, of the type known in the art for use in containment of marine oil spills. An aft portion of the mission pod 32j defines a feed portal 124 which is designed to dispense the boom 122 from the rack 120 and allow placement of the boom 122 on a water surface aft of the vessel 10.

[0047] In the embodiment of FIG. 14, a mission pod 32k is provided to equip the vessel 10 for response to a naval combat situation, such as for example a pirate attack, hijacking of a marine vessel, etc. In the embodiment of FIG. 14, the mission pod 32k includes a cabin 126 which is at least partially armored for protection from damage to the interior of the cabin 126. At least one weapon 125 is provided along the mission pod 32k. In one embodiment, the weapon 125 is in operative communication with suitable controls located within the cabin 126, such that a user may remain in a relatively safe position within the cabin 126 while operating the weapon 125. In another embodiment, the weapon 125 is provided with controls for operation of the weapon outside the cabin 126.
With regard to each of the mission pods 32, it will be understood that suitable connections may be provided between the mission pod 32 and the vessel 10 so as to allow the vessel 10 to provide appropriate electrical power, water supply, control signals, etc., to the mission pod 32 as necessary to allow operation of the various components of the mission pod 32 from the vessel 10. For example, in several embodiments, an interface of the mission pod 32 and the vessel 10 defines an electrical connection (not shown) configured to place the mission pod 32 in electrical communication with a battery, generator, or other electrical source aboard the vessel 10, so as to allow the electrical source aboard the vessel 10 to power at least one portion of the mission pod 32. The electrical connection further serves to place various components of the mission pod 32 in communication with suitable controls located, for example, within the wheelhouse 22 of the vessel 10, to allow an operator of the vessel 10 within the wheelhouse to also control components of the mission pod 32 from within the wheelhouse 22.

While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.

Having thus described the aforementioned invention, what is claimed is:
1. A marine vessel capable of being equipped and reequipped for use in marine support tasks, said marine vessel comprising:
 a hull having a fore bow, an aft stern, and port and starboard sides;
 a wheelhouse disposed between said bow and stern and extending above said hull;
 a substantially flat platform extending between said wheelhouse and said stern and between said port and starboard sides; and
 at least one modular mission pod having a lower surface adapted to be releasably secured to said platform, said modular mission pod being adapted to support equipment suitable for a marine vessel to perform at least one marine support task.
2. The marine vessel of claim 1 further including a plurality of releasable fasteners configured to releasably fix said modular mission pod lower surface to said platform.
3. The marine vessel of claim 2, each said releasable fastener defining a quick-release mechanism to allow for swift fastening and release of said modular mission pod to and from said platform.
4. The marine vessel of claim 3, each said releasable fastener being in communication with a control disposed remote from said releasable fastener and configured to allow remote fastening and release of said modular mission pod to and from said platform.
5. The marine vessel of claim 1, wherein an aft wall of said wheelhouse defines a door to provide access to an interior of said wheelhouse from said platform.
6. The marine vessel of claim 1, wherein said modular mission pod includes a cargo container.
7. The marine vessel of claim 6, said cargo container being sized to span between said port and starboard sides of said hull and between said wheelhouse and said stern.
8. The marine vessel of claim 1, said modular mission pod comprising:
 a liquid storage tank configured to carry a measure of liquid said liquid storage tank defining at least one orifice to allow access to and from an interior of said liquid storage tank; and
 a cap received by said orifice for limiting flow to and from said liquid storage tank.
9. The marine vessel of claim 8, said modular mission pod further comprising at least one fluid conduit to allow utilization of liquid from within said liquid storage tank by said marine vessel.
10. The marine vessel of claim 1, said modular mission pod further comprising a plurality of rails extending generally upwardly about a perimeter of said lower surface, said rails allowing cargo to be contained by said modular mission pod.
11. The marine vessel of claim 1, said modular mission pod being configured to equip said marine vessel for transportation, launch, or retrieval of a device selected from the group consisting of a boat, a submarine, an unmanned vehicle, a torpedo, and a missile.
12. The marine vessel of claim 11, said modular mission pod comprising a frame configured to support said device and at least one conveyance apparatus configured to launch or retrieve said device to or from said marine vessel.
13. The marine vessel of claim 12, said frame having an aft portion configured to extend aft of said stern when said modular mission pod is secured to said platform, said aft portion being configured to assist in launch or retrieval of the device.
14. The marine vessel of claim 1, said modular mission pod equipment comprising fire emergency response equipment.
15. The marine vessel of claim 14, said fire emergency response equipment including a hose nozzle in fluid communication with a source of fire retardant and a pump configured to pump fire retardant from said fire retardant source through said nozzle.
16. The marine vessel of claim 1, said modular mission pod defining a substantially enclosed room.
17. The marine vessel of claim 16, said modular mission pod further defining a door along an aft wall of said wheelhouse, said door being openable to allow access to an interior of said substantially enclosed room from an interior of said wheelhouse.
18. The marine vessel of claim 16, said modular mission pod equipment comprising medical emergency response equipment.
19. The marine vessel of claim 16, said modular mission pod equipment including at least one weapon mounted externally of said room.
20. The marine vessel of claim 1 further comprising a launch ramp hinged along an aft portion of said modular mission pod and rotatable between a stored position in which an opposite second end of said ramp extends generally upward from said stern and a deployed position in which said ramp second end extends below said platform aft of said stern.
21. The marine vessel of claim 20, said launch ramp further including a flotation buoy secured to said ramp second end.
22. The marine vessel of claim 1, said modular mission pod equipment comprising at least one chemical containment boom.
23. The marine vessel of claim 22, said modular mission pod defining an aft feed portal configured to dispense said chemical containment boom from an aft portion of said modular mission pod to allow placement of said chemical containment boom on a surface aft of said marine vessel.

24. The marine vessel of claim 1 further including at least one electrical connection between said modular mission pod and said platform, said electrical connection configured to convey power to said equipment.