A vacuum conveying velocity control apparatus and method for particulate material.

An apparatus and a method for controlling the velocity of a particulate material conveyed by a gas flow under negative pressure in a duct said device comprising means for separating the flow into first and second streams. The first stream has a relatively high particulate material content and the second stream has a relatively low particulate material content. The flow of the second stream is restricted for example by a flow restricting or constricting orifice or valve. The duct diameter may increase incrementally along its length.
Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
This invention relates to the conveying of particulate material suspended or entrained in a gas and conveyed with the gas along a duct at a controlled velocity under negative pressure. Embodiments of the invention relate to the conveyance of catalyst from a reactor such as an oil refinery reactor to a cyclone, hopper or other receiving vessel under negative pressure. In the context of the present specification the term "negative pressure" relates to a pressure less than that at the initial location of the particulate material, and normally less than atmospheric pressure.

Catalyst materials used within oil refinery reactor vessels are routinely changed and the catalyst material is either discarded (if it is significantly damaged) or cleaned and re-used. Conventionally the catalyst is unloaded from the reactor vessel under vacuum. Catalyst is expensive and therefore damage to the catalyst has a significant impact on costs. Analogous problems occur with the conveying of other particulate materials, such as fragile or breakable particulate materials.

The existing vacuum systems which are used to draw particulate material such as catalyst from inside a contained location such as a containment vessel such as (for example a reactor) and through to access holes to a receiving vessel such as a cyclone, hopper or the like cause a considerable amount of damage to the particulate material, with up to 60% of the material being scrapped in the case, for example, of a catalyst material.

One of the causative factors of this damage within the existing systems is that the velocity of the particulate material is uncontrolled in the conveying path (usually a duct or hose) which extends from the pick-up point in the first vessel (e.g. the reactor) to the receiving (second) vessel (e.g. a hopper or cyclone). Furthermore the velocity of the particulate material on entry into the receiving vessel is very high due to the very high expansion rate of the conveying gas as it changes from atmospheric pressure at the pick-up point in the first vessel, to approximately 1/3 of a bar absolute in the receiving vessel (e.g. hopper or cyclone).

This has the effect of increasing conveying velocity from approximately 15 m/sec (which represents an exemplary minimum pickup velocity) or more to approximately 45 m/sec at the receiving vessel. This latter velocity tends to cause severe breakage of particulate
material such as catalyst in the terminal part(s) of the duct or hose near the receiving vessel and on the internal walls of the receiving vessel itself.

The present invention therefore seeks to provide a device, system or apparatus which reduces the damage caused to fragile particulate material, such as catalyst, as it is conveyed under negative pressure from a first vessel (such as a reactor) to a receiving vessel such as a hopper or cyclone.

The present invention further or alternatively seeks to enable the use of substantially similar equipment, devices or apparatus, with any necessary minor alternations or changes of configuration, both to unload under negative pressure particulate material such as spent catalyst from a first vessel such as a reactor and also to load particulate material such as catalyst with compressed air into a first vessel such as a reactor under positive pressure. This latter loading process of leading under positive pressure is described in our co-pending International patent application No. PCT/GB2006/002363.

According to a first aspect of the invention there is provided a device for controlling the velocity of particulate material being conveyed within a gas stream under negative pressure from a first location along a duct and into a receiving vessel at a second location, said device being configured to be located at or adjacent the discharge end of said duct and comprising means for separating the stream of particulate material and gas into a first stream containing a relatively high proportion of particulate material to gas and a second stream containing relatively low proportion of particulate material to gas and means for restricting the gas flow in said second stream.

In one embodiment of the invention the means for restricting the gas flow in the second stream is a flow restricting or constricting orifice. This orifice may, for example, be provided on an annular orifice plate located within the outlet for the gas stream. In other words, the orifice comprises a gas through-flow path defined in a said annular orifice plate.

In another embodiment of this aspect of the invention, the device is configured to operate at a pressure in the second vessel of about \(\frac{1}{3} \) to about \(\frac{1}{2} \) of a bar absolute. The pressure at the point where the particulate material enters the conveyance duct is approximately atmospheric pressure.
In still another embodiment the device is operatively located in the flow path of the conveying gas outlet of the receiving vessel. In a variation of this embodiment the device comprises a valve operative to control the flow of conveying gas through the said outlet.

In yet another embodiment of this aspect of the invention the device comprises detection means operative to determine when the level of particulate material in the second vessel has reached a predetermined level. The valve may be operable to prevent flow of conveyed particulate material into the second vessel when said predetermined level is reached.

In other embodiments of the invention, the particulate material is a granular material such as a fragile particulate material. Examples of such material include materials selected from the group comprising crystalline sugars, soap powder, plastic pellets, catalysts and similarly fragile materials. In one variation of this aspect of the invention, the particulate material is a catalyst. The catalyst may be for use in oil refinery reactors. Catalyst materials tend to be particularly fragile and may, for example, be made from alumina ceramic needles of about 6mm long and about 0.5mm in diameter.

In embodiments of this aspect of the invention, the content of particulate material in the second stream is minimal.

The second stream may be vented, directly or indirectly, to atmosphere.

In further embodiments of the invention a variable flow control device, such as a variable orifice flow control valve, is provided so that the velocity of the conveying gas can be actively adjusted. In these embodiments a velocity meter is located in the discharge side of the exhauster and the orifice is replaced by said variable flow control device. The variable flow control device acts to adjust the flow of gas in response to the velocity of the exhausted gas, as measured by the velocity meter, so as to maintain a fixed volume flow of gas at atmospheric pressure into the duct.

Thus, in embodiments of the invention, a variable flow control device (such as a variable orifice flow control valve) is provided which enables the maintenance of a fixed volume of
gas flow at atmospheric pressure into the duct in response to an air flow velocity meter located on the discharge side of the vacuum generating means.

According to a second aspect of the present invention there is provided apparatus for conveying a particulate material from a first location to a second location within a gas stream under negative pressure, said apparatus comprising a duct for conveying said particulate material from said first to said second location, a receiving vessel at said second location for receiving said particulate material and a device located at or adjacent the discharge end of said duct and comprising means for separating the stream of particulate material and gas into a first a first stream containing a relatively high proportion of particulate material to gas and a second stream containing relatively low proportion of particulate material to gas and means for restricting the gas flow in said second stream.

In an embodiment of this second aspect of the invention the diameter of the duct increases along its length, that is, between the entry and exit points of the particulate matter for conveyance such that the diameter at the exit point is greater than at the entry point. This increase in diameter may be incremental along the length of the duct. By increasing the duct diameter progressively along the length of the duct, the velocity increase as a result of the pressure change between inlet of the duct and the outlet of the duct, is considerably reduced.

In embodiments of this aspect of the invention, the apparatus further comprises a vacuum generating means for creating a vacuum in said apparatus. The vacuum generating means can generate a vacuum in said receiving vessel.

In further embodiments of this aspect of the invention, the means for restricting the gas flow is a flow restricting orifice. The orifice may be within an annular orifice plate.

In other embodiments of this aspect of the invention, the operational pressure in the receiving vessel is from about 1/2 to about 1/3 bar absolute.

In further embodiments of the second aspect of the invention the said device is located in the flow path of the conveying gas outlet of the receiving vessel.
In still further embodiments of the apparatus of the second aspect of the invention, said device comprises, or further comprises, a valve operative to control the flow of conveying gas through said outlet.

In yet further embodiments of this aspect of the invention, the apparatus further comprises detection means operative to determine when the level of particulate material in the receiving vessel has reached a predetermined level. The valve may be operable to prevent flow of conveyed particulate material into the second vessel when said predetermined level is reached.

In this aspect of the invention the particulate material may be a granular material such as a fragile particulate material. Examples of such materials include those selected from the group comprising crystalline sugars, soap powder, plastic pellets, catalysts and similarly fragile materials.

In one embodiment of this aspect of the invention, the particulate material is a catalyst. The catalyst may be for use in oil refinery reactors.

In yet further embodiments of the second aspect of the invention, the content of particulate material in the second stream is minimal.

The second stream may be vented directly or indirectly to atmosphere.

In embodiments of the invention, the apparatus is provided with a variable flow control device (such as a variable orifice flow control valve) which enables the maintenance of a fixed volume of gas flow at atmospheric pressure into the duct in response to an air flow velocity meter located on the discharge side of the vacuum generating means.

In particular in these embodiments said device comprises or includes a variable flow control means and wherein the apparatus further comprises an air flow velocity meter located on the discharge side of the vacuum generating means, whereby a predetermined volume of gas flow at atmospheric pressure into the duct is operatively be maintained by adjustment of said variable flow control means in response to the air flow measured by said air flow velocity meter.
By using the principle of exit gas velocity control combined with the use of an expanding duct diameter, excessive conveying velocity can be avoided when unloading particulate material such as catalyst under vacuum, thus reducing product breakage from between approximately 40 to 60% to less than approximately 10%. This adds considerable value to the unloaded particulate since, in the case for example of a catalyst a greater proportion remains in a state in which it can be re-used.

The apparatus according to this second aspect of the invention may further comprise a first vessel at the first location, within which the particulate material is initially contained. The first vessel may be an oil refinery reactor. The receiving vessel is a cyclone or hopper. The use of the apparatus according to the invention within this context enables the transfer of catalyst within a negative pressure system from the oil refinery reactor to the cyclone/hopper with negligible or minimal structural damage to the catalyst.

In another embodiment of the second aspect of the invention the apparatus further comprises a further pressure vessel (preferably a lock hopper or lock vessel) located downstream of the receiving vessel whereby particulate material can be transferred from the receiving vessel into the further pressure vessel without adjustment of the pressure in the receiving vessel. This arrangement enables the maintenance of a constant negative pressure within the apparatus. In other words, the pressure in the second (receiving) vessel does not then need to be equalized with atmospheric pressure in order to discharge the particulate material from the second vessel.

According to a third aspect of the invention there is provided a method of controlling the velocity of flow of a particulate material within a conveyance gas along a conveyance duct positioned between two vessels, said method comprising locating a device at the discharge end of the conveyance duct, wherein said device comprises means for separating the stream of particulate material and gas into first and second streams containing relatively high and low proportions respectively of particulate material to gas and means for restricting the gas flow in said second stream.

According to a fourth aspect of the invention there is provided a method of transferring a particulate material within a gas stream between a first and second vessel via a conveyance duct, and for controlling the flow velocity of the gas stream through said duct, said method comprising the steps of:
a) locating a device according to the first aspect of the invention at the discharge end of a conveyance duct;

b) generating a positive or negative pressure system within said duct to transfer said particulate material.

In one embodiment of the method, particulate material, for example catalyst, is transferred within a positive pressure system from a dense flow pot, Iso-Veyor™, rotary valve or road/rail tanker into an oil refinery reactor. An example of an ISO-Veyor™ is described in WO2005/087622 the contents of which are incorporated herein by reference.

In an alternative embodiment of the method particulate material, for example catalyst, is transferred within a negative pressure system from an oil refinery reactor to a hopper/cyclone.

Therefore according to the invention the same device can be used for both vacuum unloading of a particulate material such as used catalyst from a first vessel (such as a reactor) and low velocity pneumatic loading of the first vessel (e.g. reactor) with particulate material such as new or refreshed catalyst.

For a better understanding of the invention and to show how the same may be carried into effect, reference will be made, by way of example only, to the following drawings, in which:

Figure 1 is a schematic illustration of a device and apparatus of the invention in use for the transfer of catalyst from an oil refinery reactor.

Figure 2 is a schematic illustration of a device and apparatus of the invention showing the overall view of the complete oil refinery reactor with catalyst collection at ground level.

Figure 3 is a schematic illustration an embodiment of the invention showing the apparatus and device of the invention is a modified form positioned on the oil refinery reactor top when being used to load the reactor.

Figure 1 illustrates the device and apparatus of the invention being used to convey catalyst from a reactor 13. Vacuum pump/exhauster 3 communicates with receiving vessel 1 via a valve 14 and thereby creates a vacuum of approximately 1/3 bar absolute in
vessel 1 which causes the catalyst to be drawn up vacuum hose 5. Although not specifically illustrated in the drawings, the diameter of vacuum hose 5 increases at intervals from the pick-up point 6 to the receiving vessel 1 in order to minimize the velocity increase between the pick-up point 6 and the entry point to the receiving vessel 1. Orifice 4 is used to control the flow of conveying gas and thereby limit the conveying velocity in vacuum hose 5.

Initially, valve 14 is open and all other valves are closed so that the vacuum pump 3 communicates with receiving (second) vessel 1 whereby catalyst is drawn through hose 5 and into receiving vessel 1. Vessel 1 is provided with probes, sensors or the like 19A and 19B which determine respectively when the level of catalyst is above or below predetermined levels. When the catalyst level in vessel 1 reaches the predetermined level determined by probe 19A, valve 15 is opened so that the vacuum level in lock vessel 2 is the same as the vacuum level in vessel 1. Valve 16 is then opened so that the catalyst falls by gravity into vessel 2. When probe 19B determines that vessel 1 is empty, valves 15 and 16 are closed and valve 22 is opened thereby to equalise pressure between the inside and outside of lock vessel 2, typically to atmospheric pressure. Valve 12 is now opened and the catalyst falls into collection hopper 8 and via chute 9 into the 'lay-flat' hose 10 where it can fall by gravity without breakage to ground level where it is fed into container 11 (not shown). When vessel 2 is empty, valve 12 is closed and vessel 2 is ready to re-fill again from vessel 1.

Figure 2 shows the apparatus of the invention in use. Operator 18 controls the pick up point of hose end portion 5A which depends from hose 5. Operator 18 keeps the pick up point buried in catalyst C. Operator 20 controls the discharge of catalyst in the 'lay-flat' hose 10 by restricting the outlet of the hose so that the hose remains full and the catalyst is not damaged by falling down the hose. Bin 11 is used to collect the catalyst for transport to catalyst re-cycling plant.

As can be seen from Figures 1 and 2, receiving (second) vessel 1 is provided with a flow constricting or restricting orifice 4 in the outlet flow path by which the second stream containing a relatively low proportion of particulate material to gas exits the receiving vessel 1. Flow restricting orifice 4 causes an effective increase of pressure in vessel whereby the velocity of the particulate material in the conveying gas is made less on entry to the receiving vessel 1 than would be the case in the absence of orifice 4. Damage to
the particulate material is thereby significantly reduced. Also, because the flow restricting orifice 4 is located in the flow path of the second stream, which contains relatively little (if any) particulates material there is no danger of damage to the particulate material by collision of the particulate material with an orifice defining plate. Such collision damage would occur were the orifice to be located in hose or duct 5.

In a variation of the apparatus illustrated in Figures 1 and 2, the flow restricting orifice 4 takes the form of a variable flow control device (such as a variable orifice flow control valve). By using a variable flow control device, it is possible to maintain a fixed volume of gas flow at atmospheric pressure into the duct 8 by adjusting the variable flow control device in response to the output of an air flow velocity meter M located on the discharge side of the vacuum generating means 3.

Figure 3 illustrates the conversion of the apparatus of Figures 1 and 2 for use in loading particulate material such as catalyst into a vessel such as an oil refinery reactor. Hopper 8 is moved from its discharging position as shown in Figures 1 and 2 to its loading position as shown in Figure 3, such as by rotating hopper 8 by about 180°. Chute 9 and hose 10 now feed catalyst into the reactor 13 as described in the co-pending International patent application No. PCT/GB2006/002363, the contents of which are hereby incorporated by reference. In summary, Fig. 3 shows the device and apparatus of the invention using a dense phase blowpot system for loading of catalyst into a reactor. Storage hopper 101 (forming the initial location of the catalyst) holds material which is to be conveyed to reactor 13. For transfer of the catalyst into blowpot 103, initially conveying air valve 107 and the outlet valve 105 are closed. Vent valve 106 is open. Blowpot 103 is filled by gravity through open inlet valve 104. When the first vessel (blowpot) 103 is full, the inlet valve 104 and vent valve 106 close. Conveying gas inlet valve 107 and the outlet valve 105 now open and catalyst is conveyed down pipe (duct) 108 towards receiving vessel 1. Receiving vessel 1 has an outlet valve 16. The receiving vessel 1 has an outlet whereby conveying gas vents from vessel 1 through constricting orifice 104. Thus the stream of particulate material and gas separates into a first stream containing a relatively high proportion of particulate material (catalyst) which is retained in the receiving vessel and a second stream containing a relatively low proportion of particulate material to gas which vents through orifice 104 and valve 112. When the receiving vessel 1 is full, the pressure in lock hopper 2 is equalized with that of the receiving vessel 1 and catalyst is transferred from the receiving vessel 1 to the lock hopper 2 through outlet valve 16. Valve 16 is then
closed and lock hopper 2 is brought to atmospheric pressure prior to discharge of the catalyst into reactor 13 via hopper 8, chute 9 and hose 10.
Claims

1. A device for controlling the velocity of particulate material being conveyed within a gas stream under negative pressure from a first location along a duct and into a vessel at a second location, said device being configured to be located at or adjacent the discharge end of said duct and comprising means for separating the stream of particulate material and gas into a first stream containing a relatively high proportion of particulate material to gas and a second stream containing a relatively low proportion of particulate material to gas and means for restricting the gas flow in said second stream.

2. A device according to claim 1, wherein the means for restricting the gas flow is a flow restricting orifice.

3. A device according to claim 2, wherein the orifice is within an annular orifice plate.

4. A device according to any preceding claim, wherein the device is configured to operate at a pressure in the second vessel of about \(\frac{1}{2} \) to about \(\frac{1}{3} \) of a bar absolute.

5. A device as claimed in any preceding claim wherein the device is located in the flow path of the conveying gas outlet of the receiving vessel.

6. A device as claimed in claim 5, comprising a valve operative to control the flow of conveying gas through the said outlet.

7. A device according to claim 6, further comprising detection means operative to determine when the level of particulate material in the second vessel has reached a predetermined level and wherein the valve is operable to prevent flow of conveyed particulate material into the second vessel when said predetermined level is reached.

8. A device as claimed in any preceding claim wherein the particulate material is a granular material.

8.
9. A device as claimed in any preceding claim wherein the particulate material is a fragile particulate material.

10. A device as claimed in any preceding claim wherein the particulate material is selected from the group comprising crystalline sugars, soap powder, plastic pellets, catalysts and similarly fragile materials.

11. A device according to claim 10 wherein the particulate material is a catalyst.

12. A device according to claim 11, wherein the catalyst is for use in oil refinery reactors.

13. A device as claimed in any preceding claim wherein the content of particulate material in the second stream is minimal.

14. A device as claimed in any preceding claim wherein the second stream is vented directly or indirectly to atmosphere.

15. Apparatus for conveying a particulate material from a first location to a second location within a gas stream under negative pressure, said apparatus comprising a duct for conveying said particulate material from said first to said second location, a receiving vessel at said second location for receiving said particulate material and a device located at or adjacent the discharge end of said duct and comprising means for separating the stream of particulate material and gas into a first stream containing a relatively high proportion of particulate material to gas and a second stream containing relatively low proportion of particulate material to gas and means for restricting the gas flow in said second stream.

16. Apparatus according to claim 15, wherein the diameter of the duct increases along its length.

17. Apparatus according to claim 16, wherein said increase in diameter is incremental.

18. Apparatus according to any of claims 15 to 17, wherein said apparatus further comprises a vacuum generating means for creating a vacuum in said apparatus.
19. Apparatus as claimed in claim 18 wherein the vacuum generating means generates a vacuum in said receiving vessel.

20. Apparatus as claimed in any of claims 15 to 19 wherein the means for restricting the gas flow is a flow restricting orifice.

21. Apparatus as claimed in claim 20 wherein the orifice is within an annular orifice plate.

22. Apparatus as claimed in any of claims 15 to 21 wherein the operational pressure in the receiving vessel is from about \(\frac{1}{2} \) to about \(\frac{1}{3} \) bar absolute.

23. Apparatus as claimed in any of claims 15 to 22 wherein the said device is located in the flow path of the conveying gas outlet of the receiving vessel.

24. Apparatus as claimed in claim 23 further wherein said device comprises, or further comprises, a valve operative to control the flow of conveying gas through said outlet.

25. Apparatus as claimed in any of claims 15 to 24 further comprising detection means operative to determine when the level of particulate material in the receiving vessel has reached a predetermined level.

26. Apparatus as claimed in any of claim 24 further comprising detection means operative to determine when the level of particulate material in the receiving vessel has reached a predetermined level and wherein the valve is operable to prevent flow of conveyed particulate material into the second vessel when said predetermined level is reached.

27. Apparatus as claimed in any of claims 15 to 26 wherein the particulate material is a granular material.

28. Apparatus as claimed in any of claims 15 to 27 wherein the particulate material is a fragile particulate material.
29. Apparatus as claimed in any of claims 15 to 28 wherein the particulate material is selected from the group comprising crystalline sugars, soap powder, plastic pellets, catalysts and similarly fragile materials.

30. Apparatus according to claim 29 wherein the particulate material is a catalyst.

31. Apparatus according to claim 29, wherein the catalyst is for use in oil refinery reactors.

32. Apparatus as claimed in any of claims 15 to 31 wherein the content of particulate material in the second stream is minimal.

33. Apparatus as claimed in any of claims 15 to 32 wherein the second stream is vented directly or indirectly to atmosphere.

34. Apparatus according claim 18 or 19, wherein said device comprises or includes a variable flow control means and wherein the apparatus further comprises an air flow velocity meter located on the discharge side of the vacuum generating means, whereby a predetermined volume of gas flow at atmospheric pressure into the duct is operatively be maintained by adjustment of said variable flow control means in response to the air flow measured by said air flow velocity meter.

35. Apparatus of any of claims 15 to 34 further comprising a first vessel at the first location, within which the particulate material is initially contained.

36. Apparatus as claimed in claim 35 wherein the first vessel is an oil refinery reactor.

37. Apparatus as claimed in any of claims 15 to 36 wherein the receiving vessel is a cyclone or hopper

38. Apparatus according to any of claims 15 to 37, further comprising a further pressure vessel (preferably a lock hopper) located downstream of the receiving vessel whereby particulate material can be transferred from the receiving vessel
into the further pressure vessel without adjustment of the pressure in the receiving vessel.

39. Apparatus as claimed in claim 15 comprising a device as claimed in any of claims 1 to 14.

40. A method of controlling the velocity of flow of a particulate material within a conveyance gas along a conveyance duct positioned between two vessels, said method comprising locating a device at the discharge end of the conveyance duct, wherein said device comprises means for separating the stream of particulate material and gas into first and second streams containing relatively high and low proportions respectively of particulate material to gas and means for restricting the gas flow in said second stream.

41. A method of transferring a particulate material within a gas stream between a first and second vessel via a conveyance duct, and for controlling the flow velocity of the gas stream through said duct, said method comprising the steps of:
 a) locating a device according to any of claims 1 to 14 at the discharge end of a conveyance duct;
 b) generating a positive or negative pressure system within said duct to transfer said particulate material.

42. A method according to claim 41, wherein the particulate matter is transferred within a positive pressure system from a dense flow pot, Iso-Veyor, rotary valve or road/rail tanker into an oil refinery reactor.

43. A method according to claim 41, wherein the particulate matter is transferred within a negative pressure system from an oil refinery reactor to a hopper or cyclone.

44. A method according to any of claims 40 to 43, wherein the particulate matter is catalyst.

45. A method according to any of claims 40 to 44, wherein the device is located above an oil refinery reactor vessel.
46. A device, apparatus or method as substantially hereinbefore described with reference to the accompanying drawings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION/ SUBJECT MATTER

| INV. | B01J8/00 | B65G53/24 | B65G53/60 | B65G53/66 | B65G53/58 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| B01J | B65G | B65D |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 630 975 A (BECKER JOHN H [US]) 23 December 1986 (1986-12-23) column 7, line 7 - line 46; claims 1-25; figures 1, 2, 14 column 8, line 22 - line 41</td>
<td>1-45</td>
</tr>
<tr>
<td>X</td>
<td>WO 00/17079 A (EXXON CHEMICAL PATENTS INC [US]) 30 March 2000 (2000-03-30) abstract; claims 1-16; figure 1 page 1, line 25 - page 2, line 4 page 2, line 18 - line 22 page 3, line 5 - line 15</td>
<td>1-45</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the International filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or to establish the priority date
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the International filing date but later than the priority date claimed

- **T** later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **R** document member of the same patent family

Date of the actual completion of the International search

21 February 2007

Date of mailing of the international search report

02/03/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Oenhausen, Claudi a

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with Indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 2 125 358 A (BUEHLER MIAG GMBH) 7 March 1984 (1984-03-07) the whole document</td>
<td>1-45</td>
</tr>
</tbody>
</table>
Continuation of Box II.2

Claims Nos.: 46

Independent claim 46 attempts to define both an entity (e.g. a device or an apparatus) and a method; thus it is not clear in which category this claim is to be put. Furthermore, claim 46 refers to the content of the drawings only. For these reasons it is impossible to determine what the applicant seeks to claim. This renders a meaningful search impossible.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of Item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos. because they relate to subject matter not required to be searched by this Authority, namely:

2. [X] Claims Nos. because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. [] Claims Nos. because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [X] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [X] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4630975</td>
<td>23-12-1986</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 9424031</td>
<td>27-10-1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 2125358</td>
<td>07-03-1984</td>
<td>DE 3230315 A1</td>
<td>16-02-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2531684 A1</td>
<td>17-02-1984</td>
</tr>
<tr>
<td>GB 1474338</td>
<td>25-05-1977</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>