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METHOD FOR CONVERTING VALUES INTO SPIKES

BACKGROUND

Field

[0001] Aspects of the present disclosure generally relate to neural system
engineering and, more particularly, to systems and methods for converting values into

spikes for transmission in a neural network.
Background

[0002] An artificial neural network, which may comprise an interconnected group
of artificial neurons (i.e., neuron models), is a computational device or represents a
method to be performed by a computational device. Artificial neural networks may
have corresponding structure and/or function in biological neural networks. However,
artificial neural networks may provide innovative and useful computational techniques
for certain applications in which traditional computational techniques are cumbersome,
impractical, or inadequate. Because artificial neural networks can infer a function from
observations, such networks are particularly useful in applications where the complexity
of the task or data makes the design of the function by conventional techniques

burdensome.

[0003] Execution of large neural models may span multiple neural processors. The
information shared between neural processors may be limited to neural spikes. Still, the
model may specify for the use of non-spikes values (e.g., neuromodulators) and for
those values to be synchronized across neural processors for proper execution. Thus, it
is desirable to provide a neuromorphic mechanism to synchronize values across neural

processors of a neural network.
SUMMARY

[0004] In an aspect of the present disclosure, a method for transmitting values in a
neural network is disclosed. The method includes obtaining a parameter value and
encoding the parameter value based on at least one value used by a neuron. The

encoding is based on a spike(s) to be transmitted via a spike channel.
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[0005] In another aspect of the present disclosure, a method for receiving parameter
values in a neural network is disclosed. The method includes determining which neuron
will receive a spike representing an encoded value. The method also includes decoding

a spike(s) to determine a parameter value used by a neuron.

[0006] In yet another aspect of the present disclosure, an apparatus for transmitting
values in a neural network is disclosed. The apparatus includes a memory and a
processor(s) coupled to the memory. The processor(s) is (are) configured to obtain a
parameter value. The processor(s) is (are) also configured to encode the parameter
value based on a value(s) used by a neuron. The encoding of the parameter value is

based on a spike(s) to be transmitted via a spike channel.

[0007] In still another aspect of the present disclosure, an apparatus for receiving
parameter values in a neural network is disclosed. The apparatus includes a memory
and a processor(s) coupled to the memory. The processor(s) is (are) configured to
determine which neuron will receive a spike representing an encoded value. The
processor is further configured to decode at least one spike to determine a parameter

value used by a neuron.

[0008] In yet still another aspect of the present disclosure, an apparatus for
transmitting values in a neural network is disclosed. The apparatus includes means for
obtaining a parameter value. The apparatus also includes means for encoding the
parameter value based on at least one value used by a neuron. The encoding is based

on a spike(s) to be transmitted via a spike channel.

[0009] In a further aspect of the present disclosure, an apparatus for receiving
parameter values in a neural network is disclosed. The apparatus includes means for
determining which neuron will receive a spike representing an encoded value. The
apparatus also includes means for decoding a spike(s) to determine a parameter value

used by a neuron.

[0010] In an aspect of the present disclosure, a computer program product for
transmitting values in a neural network is disclosed. The computer program product
includes a non-transitory computer readable medium having encoded thereon program

code. The program code includes program code to obtain a parameter value and
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program code to encode the parameter value based on at least one value used by a

neuron. The encoding is based on a spike(s) to be transmitted via a spike channel.

[0011] In yet another aspect, a computer program product for receiving parameter
values in a neural network is disclosed. The computer program product includes a non-
transitory computer readable medium having encoded thereon program code. The
program code includes program code to determine which neuron will receive a spike
representing an encoded value. The program code also includes program code to

decode a spike(s) to determine a parameter value used by a neuron.

[0012] This has outlined, rather broadly, the features and technical advantages of
the present disclosure in order that the detailed description that follows may be better
understood. Additional features and advantages of the disclosure will be described
below. It should be appreciated by those skilled in the art that this disclosure may be
readily utilized as a basis for modifying or designing other structures for carrying out
the same purposes of the present disclosure. It should also be realized by those skilled
in the art that such equivalent constructions do not depart from the teachings of the
disclosure as set forth in the appended claims. The novel features, which are believed to
be characteristic of the disclosure, both as to its organization and method of operation,
together with further objects and advantages, will be better understood from the
following description when considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the figures is provided for the
purpose of illustration and description only and is not intended as a definition of the

limits of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The features, nature, and advantages of the present disclosure will become
more apparent from the detailed description set forth below when taken in conjunction
with the drawings in which like reference characters identify correspondingly

throughout.

[0014] FIGURE 1 illustrates an example network of neurons in accordance with

certain aspects of the present disclosure.
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[0015] FIGURE 2 illustrates an example of a processing unit (neuron) of a
computational network (neural system or neural network) in accordance with certain

aspects of the present disclosure.

[0016] FIGURE 3 illustrates an example of a spike-timing dependent plasticity

(STDP) curve in accordance with certain aspects of the present disclosure.

[0017] FIGURE 4 illustrates an example of a positive regime and a negative regime
for defining behavior of a neuron model in accordance with certain aspects of the

present disclosure.

[0018] FIGURE 5 is a high level block diagram illustrating an exemplary system
architecture for synchronizing values between neural processors in a neural network in

accordance with aspects of the present disclosure.

[0019] FIGURE 6 is a high level block diagram illustrating an exemplary system
architecture for synchronizing values between neural processors in a neural network in

accordance with aspects of the present disclosure.

[0020] FIGURE 7A is a high level block diagram illustrating an exemplary system

for encoding and decoding spikes in accordance with aspects of the present disclosure.

[0021] FIGURE 7B shows a pair of graphs illustrating exemplary encoding

techniques in accordance with aspects of the present disclosure.

[0022] FIGURE 8 illustrates an example implementation of a method for
synchronizing values across processing blocks in a neural network using a general-

purpose processor in accordance with certain aspects of the present disclosure.

[0023] FIGURE 9 illustrates an example implementation for synchronizing values
across processing blocks of the neural network in accordance with certain aspects of the

present disclosure.

[0024] FIGURE 10 illustrates an example implementation of the aforementioned
method for synchronizing values across processing blocks of a neural network in

accordance with certain aspects of the present disclosure.
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[0025] FIGURE 11 illustrates a method for converting values to spikes for
transmission in a neural network in accordance with certain aspects of the present

disclosure.

[0026] FIGURE 12 illustrates a method for receiving a parameter value in a neural

network in accordance with certain aspects of the present disclosure.

[0027] FIGURE 13 illustrates an example implementation of a neural network in

accordance with certain aspects of the present disclosure.
DETAILED DESCRIPTION

[0028] The detailed description set forth below, in connection with the appended
drawings, is intended as a description of various configurations and is not intended to
represent the only configurations in which the concepts described herein may be
practiced. The detailed description includes specific details for the purpose of providing
a thorough understanding of the various concepts. However, it will be apparent to those
skilled in the art that these concepts may be practiced without these specific details. In
some instances, well-known structures and components are shown in block diagram

form in order to avoid obscuring such concepts.

[0029] Based on the teachings, one skilled in the art should appreciate that the scope
of the disclosure is intended to cover any aspect of the disclosure, whether implemented
independently of or combined with any other aspect of the disclosure. For example, an
apparatus may be implemented or a method may be practiced using any number of the
aspects set forth. In addition, the scope of the disclosure is intended to cover such an
apparatus or method practiced using other structure, functionality, or structure and
functionality in addition to or other than the various aspects of the disclosure set forth.
It should be understood that any aspect of the disclosure disclosed may be embodied by

one or more elements of a claim.

[0030] The word “exemplary” is used herein to mean “serving as an example, instance,
or illustration.” Any aspect described herein as “exemplary” is not necessarily to be

construed as preferred or advantageous over other aspects.

[0031] Although particular aspects are described herein, many variations and

permutations of these aspects fall within the scope of the disclosure. Although some
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benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and

equivalents thereof.

AN EXAMPLE NEURAL SYSTEM, TRAINING AND OPERATION

[0032] FIGURE 1 illustrates an example artificial neural system 100 with multiple
levels of neurons in accordance with certain aspects of the present disclosure. The
neural system 100 may have a level of neurons 102 connected to another level of
neurons 106 through a network of synaptic connections 104 (ie., feed-forward
connections). For simplicity, only two levels of neurons are illustrated in FIGURE 1,
although fewer or more levels of neurons may exist in a neural system. It should be
noted that some of the neurons may connect to other neurons of the same layer through
lateral connections. Furthermore, some of the neurons may connect back to a neuron of

a previous layer through feedback connections.

[0033] As illustrated in FIGURE 1, each neuron in the level 102 may receive an input
signal 108 that may be generated by neurons of a previous level (not shown in FIGURE
1). The signal 108 may represent an input current of the level 102 neuron. This current
may be accumulated on the neuron membrane to charge a membrane potential. When
the membrane potential reaches its threshold value, the neuron may fire and generate an
output spike to be transferred to the next level of neurons (e.g., the level 106). In some
modeling approaches, the neuron may continuously transfer a signal to the next level of
neurons. This signal is typically a function of the membrane potential. Such behavior
can be emulated or simulated in hardware and/or software, including analog and digital

implementations such as those described below.

[0034] In biological neurons, the output spike generated when a neuron fires is referred
to as an action potential. This electrical signal is a relatively rapid, transient, nerve
impulse, having an amplitude of roughly 100 mV and a duration of about 1 ms. In a

particular embodiment of a neural system having a series of connected neurons (e.g., the
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transfer of spikes from one level of neurons to another in FIGURE 1), every action
potential has basically the same amplitude and duration, and thus, the information in the
signal may be represented only by the frequency and number of spikes, or the time of
spikes, rather than by the amplitude. The information carried by an action potential may
be determined by the spike, the neuron that spiked, and the time of the spike relative to
other spike or spikes. The importance of the spike may be determined by a weight

applied to a connection between neurons, as explained below.

[0035] The transfer of spikes from one level of neurons to another may be achieved
through the network of synaptic connections (or simply “synapses”) 104, as illustrated
in FIGURE 1. Relative to the synapses 104, neurons of level 102 may be considered
pre-synaptic neurons and neurons of level 106 may be considered post-synaptic
neurons. The synapses 104 may receive output signals (i.e., spikes) from the level 102

neurons and scale those signals according to adjustable synaptic weights wl(i’iﬂ),...,

wg’iﬂ) where P is a total number of synaptic connections between the neurons of
levels 102 and 106 and is an indicator of the neuron level. For example, in the example
of FIGURE 1, i represents neuron level 102 and i+1 represents neuron level 106.
Further, the scaled signals may be combined as an input signal of each neuron in the
level 106. Every neuron in the level 106 may generate output spikes 110 based on the
corresponding combined input signal. The output spikes 110 may be transferred to
another level of neurons using another network of synaptic connections (not shown in

FIGURE 1).

[0036] Biological synapses can mediate either excitatory or inhibitory
(hyperpolarizing) actions in postsynaptic neurons and can also serve to amplify
neuronal signals. Excitatory signals depolarize the membrane potential (i.c., increase
the membrane potential with respect to the resting potential). If enough excitatory
signals are received within a certain time period to depolarize the membrane potential
above a threshold, an action potential occurs in the postsynaptic neuron. In contrast,
inhibitory signals generally hyperpolarize (i.e., lower) the membrane potential.
Inhibitory signals, if strong enough, can counteract the sum of excitatory signals and
prevent the membrane potential from reaching a threshold. In addition to counteracting
synaptic excitation, synaptic inhibition can exert powerful control over spontancously

active neurons. A spontancously active neuron refers to a neuron that spikes without



WO 2015/112718 PCT/US2015/012464

further input, for example due to its dynamics or a feedback. By suppressing the
spontancous generation of action potentials in these neurons, synaptic inhibition can
shape the pattern of firing in a neuron, which is generally referred to as sculpturing.
The various synapses 104 may act as any combination of excitatory or inhibitory

synapses, depending on the behavior desired.

[0037] The neural system 100 may be emulated by a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device (PLD), discrete
gate or transistor logic, discrete hardware components, a software module executed by a
processor, or any combination thereof. The neural system 100 may be utilized in a large
range of applications, such as image and pattern recognition, machine learning, motor
control, and alike. Each neuron in the neural system 100 may be implemented as a
neuron circuit. The neuron membrane charged to the threshold value initiating the
output spike may be implemented, for example, as a capacitor that integrates an

electrical current flowing through it.

[0038] In an aspect, the capacitor may be climinated as the electrical current
integrating device of the neuron circuit, and a smaller memristor element may be used
in its place. This approach may be applied in neuron circuits, as well as in various other
applications where bulky capacitors are utilized as electrical current integrators. In
addition, each of the synapses 104 may be implemented based on a memristor element,
where synaptic weight changes may relate to changes of the memristor resistance. With
nanometer feature-sized memristors, the area of a neuron circuit and synapses may be
substantially reduced, which may make implementation of a large-scale neural system

hardware implementation more practical.

[0039] Functionality of a neural processor that emulates the neural system 100 may
depend on weights of synaptic connections, which may control strengths of connections
between neurons. The synaptic weights may be stored in a non-volatile memory in
order to preserve functionality of the processor after being powered down. In an aspect,
the synaptic weight memory may be implemented on a separate external chip from the
main neural processor chip. The synaptic weight memory may be packaged separately

from the neural processor chip as a replaceable memory card. This may provide diverse
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functionalities to the neural processor, where a particular functionality may be based on

synaptic weights stored in a memory card currently attached to the neural processor.

[0040] FIGURE 2 illustrates an example 200 of a processing unit (e.g., a neuron or
neuron circuit) 202 of a computational network (e.g., a neural system or a neural
network) in accordance with certain aspects of the present disclosure. For example, the
neuron 202 may correspond to any of the neurons of levels 102 and 106 from FIGURE
1. The neuron 202 may receive multiple input signals 204;-204y (X;-Xx), which may
be signals external to the neural system, or signals generated by other neurons of the
same neural system, or both. The input signal may be a current, a conductance, or a
voltage, real-valued or complex-valued. The input signal may comprise a numerical
value with a fixed-point or a floating-point representation. These input signals may be
delivered to the neuron 202 through synaptic connections that scale the signals
according to adjustable synaptic weights 206,-206n (W1.Wy), where N may be a total

number of input connections of the neuron 202.

[0041] The neuron 202 may combine the scaled input signals and use the combined
scaled inputs to generate an output signal 208 (i.c., a signal Y). The output signal 208
may be a current, a conductance, or a voltage, real-valued or complex-valued. The
output signal may be a numerical value with a fixed-point or a floating-point
representation. The output signal 208 may be then transferred as an input signal to other
neurons of the same neural system, or as an input signal to the same neuron 202, or as

an output of the neural system.

[0042] The processing unit (neuron) 202 may be emulated by an electrical circuit, and
its input and output connections may be emulated by electrical connections with
synaptic circuits. The processing unit 202 and its input and output connections may
also be emulated by a software code. The processing unit 202 may also be emulated by
an electric circuit, whereas its input and output connections may be emulated by a
software code. In an aspect, the processing unit 202 in the computational network may
be an analog electrical circuit. In another aspect, the processing unit 202 may be a
digital electrical circuit. In yet another aspect, the processing unit 202 may be a mixed-
signal electrical circuit with both analog and digital components. The computational
network may include processing units in any of the aforementioned forms. The

computational network (neural system or neural network) using such processing units
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may be utilized in a large range of applications, such as image and pattern recognition,

machine learning, motor control, and the like.

[0043] During the course of training a neural network, synaptic weights (e.g., the

weights w1 W *Vfom FIGURE 1 and/or the weights 206,-206x from

FIGURE 2) may be initialized with random values and increased or decreased according
to a learning rule. Those skilled in the art will appreciate that examples of the learning
rule include, but are not limited to the spike-timing-dependent plasticity (STDP)
learning rule, the Hebb rule, the Oja rule, the Bienenstock-Copper-Munro (BCM) rule,
etc. In certain aspects, the weights may settle or converge to one of two values (i.e., a
bimodal distribution of weights). This effect can be utilized to reduce the number of
bits for each synaptic weight, increase the speed of reading and writing from/to a
memory storing the synaptic weights, and to reduce power and/or processor

consumption of the synaptic memory.
Synapse Type

[0044] In hardware and software models of neural networks, processing of synapse
related functions can be based on synaptic type. Synapse types may comprise non-
plastic synapses (no changes of weight and delay), plastic synapses (weight may
change), structural delay plastic synapses (weight and delay may change), fully plastic
synapses (weight, delay and connectivity may change), and variations thereupon (e.g.,
delay may change, but no change in weight or connectivity). The advantage of this is
that processing can be subdivided. For example, non-plastic synapses may not require
plasticity functions to be executed (or waiting for such functions to complete).
Similarly, delay and weight plasticity may be subdivided into operations that may
operate together or separately, in sequence or in parallel. Different types of synapses
may have different lookup tables or formulas and parameters for each of the different
plasticity types that apply. Thus, the methods would access the relevant tables,

formulas, or parameters for the synapse’s type.

[0045] There are further implications of the fact that spike-timing dependent
structural plasticity may be executed independently of synaptic plasticity. Structural
plasticity may be executed even if there is no change to weight magnitude (e.g., if the

weight has reached a minimum or maximum value, or it is not changed due to some
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other reason) since structural plasticity (i.e., an amount of delay change) may be a direct
function of pre-post spike time difference. Alternatively, it may be set as a function of
the weight change amount or based on conditions relating to bounds of the weights or
weight changes. For example, a synapse delay may change only when a weight change
occurs or if weights reach zero but not if they are maxed out. However, it can be
advantageous to have independent functions so that these processes can be parallelized

reducing the number and overlap of memory accesses.
DETERMINATION OF SYNAPTIC PLASTICITY

[0046] Neuroplasticity (or simply “plasticity”) is the capacity of neurons and neural
networks in the brain to change their synaptic connections and behavior in response to
new information, sensory stimulation, development, damage, or dysfunction. Plasticity
is important to learning and memory in biology, as well as for computational
neuroscience and neural networks. Various forms of plasticity have been studied, such
as synaptic plasticity (e.g., according to the Hebbian theory), spike-timing-dependent
plasticity (STDP), non-synaptic plasticity, activity-dependent plasticity, structural

plasticity and homeostatic plasticity.

[0047] STDP is a learning process that adjusts the strength of synaptic connections
between neurons. The connection strengths are adjusted based on the relative timing of
a particular neuron’s output and received input spikes (i.e., action potentials). Under
the STDP process, long-term potentiation (LTP) may occur if an input spike to a certain
neuron tends, on average, to occur immediately before that neuron's output spike. Then,
that particular input is made somewhat stronger. On the other hand, long-term
depression (LTD) may occur if an input spike tends, on average, to occur immediately
after an output spike. Then, that particular input is made somewhat weaker, and hence
the name "spike-timing-dependent plasticity”. Consequently, inputs that might be the
cause of the post-synaptic neuron's excitation are made even more likely to contribute in
the future, whereas inputs that are not the cause of the post-synaptic spike are made less
likely to contribute in the future. The process continues until a subset of the initial set
of connections remains, while the influence of all others is reduced to an insignificant

level.



WO 2015/112718 PCT/US2015/012464
12

[0048] Since a neuron generally produces an output spike when many of its inputs
occur within a brief period, i.e., being cumulative sufficient to cause the output, the
subset of inputs that typically remains includes those that tended to be correlated in
time. In addition, since the inputs that occur before the output spike are strengthened,
the inputs that provide the earliest sufficiently cumulative indication of correlation will

eventually become the final input to the neuron.

[0049] The STDP learning rule may effectively adapt a synaptic weight of a synapse
connecting a pre-synaptic neuron to a post-synaptic neuron as a function of time

difference between spike time ¢, of the pre-synaptic neuron and spike time ¢, of the

post-synaptic neuron (iec., t=¢,, —t,,). A typical formulation of the STDP is to

increase the synaptic weight (i.e., potentiate the synapse) if the time difference is
positive (the pre-synaptic neuron fires before the post-synaptic neuron), and decrease
the synaptic weight (i.e., depress the synapse) if the time difference is negative (the

post-synaptic neuron fires before the pre-synaptic neuron).

[0050] In the STDP process, a change of the synaptic weight over time may be

typically achieved using an exponential decay, as given by,

ae’ +u,t>0

Aw(t):{ : (D

ae'* <0

where k,and k_ are time constants for positive and negative time difference,
respectively, a, and a are corresponding scaling magnitudes, and uis an offset that

may be applied to the positive time difference and/or the negative time difference.

[0051] FIGURE 3 illustrates an example graph diagram 300 of a synaptic weight
change as a function of relative timing of pre-synaptic and post-synaptic spikes in
accordance with the STDP. If a pre-synaptic neuron fires before a post-synaptic neuron,
then a corresponding synaptic weight may be increased, as illustrated in a portion 302 of
the graph 300. This weight increase can be referred to as an LTP of the synapse. It can
be observed from the graph portion 302 that the amount of LTP may decrease roughly
exponentially as a function of the difference between pre-synaptic and post-synaptic
spike times. The reverse order of firing may reduce the synaptic weight, as illustrated in

a portion 304 of the graph 300, causing an LTD of the synapse.
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[0052] As illustrated in the graph 300 in FIGURE 3, a negative offset u may be
applied to the LTP (causal) portion 302 of the STDP graph. A point of cross-over 306

of the x-axis (y=0) may be configured to coincide with the maximum time lag for
considering correlation for causal inputs from layer i-1. In the case of a frame-based
input (i.c., an input that is in the form of a frame of a particular duration comprising

spikes or pulses), the offset value u can be computed to reflect the frame boundary. A

first input spike (pulse) in the frame may be considered to decay over time either as
modeled by a post-synaptic potential directly or in terms of the effect on neural state. If
a second input spike (pulse) in the frame is considered correlated or relevant of a
particular time frame, then the relevant times before and after the frame may be
separated at that time frame boundary and treated differently in plasticity terms by
offsetting one or more parts of the STDP curve such that the value in the relevant times
may be different (e.g., negative for greater than one frame and positive for less than one

frame). For example, the negative offset u may be set to offset LTP such that the curve

actually goes below zero at a pre-post time greater than the frame time and it is thus part

of LTD instead of LTP.
NEURON MODELS AND OPERATION

[0053] There are some general principles for designing a useful spiking neuron
model. A good neuron model may have rich potential behavior in terms of two
computational regimes: coincidence detection and functional computation. Moreover,
a good neuron model should have two elements to allow temporal coding: arrival time
of inputs affects output time and coincidence detection can have a narrow time window.
Finally, to be computationally attractive, a good neuron model may have a closed-form
solution in continuous time and stable behavior including near attractors and saddle
points. In other words, a useful neuron model is one that is practical and that can be
used to model rich, realistic and biologically-consistent behaviors, as well as be used to

both engineer and reverse engineer neural circuits.

[0054] A neuron model may depend on events, such as an input arrival, output spike
or other event whether internal or external. To achieve a rich behavioral repertoire, a
state machine that can exhibit complex behaviors may be desired. If the occurrence of
an event itself, separate from the input contribution (if any) can influence the state

machine and constrain dynamics subsequent to the event, then the future state of the
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system is not only a function of a state and input, but rather a function of a state, event,

and input.

[0055] In an aspect, a neuron » may be modeled as a spiking leaky-integrate-and-

fire neuron with a membrane voltage v, (t) governed by the following dynamics,

dv,(t)
dt

:avn(t)+ﬁzwm,nym(t_Atm,n)’ (2)

where o and B are parameters, w,, is a synaptic weight for the synapse connecting a

pre-synaptic neuron m to a post-synaptic neuron #, and y,_ (t) is the spiking output of
the neuron m that may be delayed by dendritic or axonal delay according to Az, , until

arrival at the neuron »’s soma.

[0056] It should be noted that there is a delay from the time when sufficient input to
a post-synaptic neuron is established until the time when the post-synaptic neuron
actually fires. In a dynamic spiking neuron model, such as Izhikevich’s simple model, a

time delay may be incurred if there is a difference between a depolarization threshold

v, and a peak spike voltagev For example, in the simple model, neuron soma

peak *

dynamics can be governed by the pair of differential equations for voltage and recovery,

ie.,

dv

Ez(k(v—vt)(v—vr)—u+l)/C, (3)
d

—r=alblv=v,)-u). 4)

where v is a membrane potential, # is a membrane recovery variable, k is a parameter
that describes time scale of the membrane potential v, a is a parameter that describes
time scale of the recovery variable u, b is a parameter that describes sensitivity of the
recovery variable u to the sub-threshold fluctuations of the membrane potential v, v, is
a membrane resting potential, / is a synaptic current, and C is a membrane’s
capacitance. In accordance with this model, the neuron is defined to spike

whenv>v ..
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Hunzinger Cold Model

[0057] The Hunzinger Cold neuron model is a minimal dual-regime spiking linear
dynamical model that can reproduce a rich variety of neural behaviors. The model’s
one- or two-dimensional linear dynamics can have two regimes, wherein the time
constant (and coupling) can depend on the regime. In the sub-threshold regime, the
time constant, negative by convention, represents leaky channel dynamics generally
acting to return a cell to rest in a biologically-consistent linear fashion. The time
constant in the supra-threshold regime, positive by convention, reflects anti-leaky
channel dynamics generally driving a cell to spike while incurring latency in spike-

generation.

[0058] As illustrated in FIGURE 4, the dynamics of the model may be divided into
two (or more) regimes. These regimes may be called the negative regime 402 (also
interchangeably referred to as the leaky-integrate-and-fire (LIF) regime, not to be
confused with the LIF neuron model) and the positive regime 404 (also interchangeably
referred to as the anti-leaky-integrate-and-fire (ALIF) regime, not to be confused with
the ALIF neuron model). In the negative regime 402, the state tends toward rest (v_) at
the time of a future event. In this negative regime, the model generally exhibits
temporal input detection properties and other sub-threshold behavior. In the positive
regime 404, the state tends toward a spiking event (v,). In this positive regime, the
model exhibits computational properties, such as incurring a latency to spike depending

on subsequent input events. Formulation of dynamics in terms of events and separation

of the dynamics into these two regimes are fundamental characteristics of the model.

[0059] Linear dual-regime bi-dimensional dynamics (for states vand #) may be

defined by convention as,

dv

TPE:‘H'% (%)
du

s 6
T”dt u+r (6)

where g, and rare the linear transformation variables for coupling.
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[0060] The symbol p is used herein to denote the dynamics regime with the
convention to replace the symbol p with the sign “-” or “+” for the negative and

positive regimes, respectively, when discussing or expressing a relation for a specific

regime.

[0061] The model state is defined by a membrane potential (voltage) v and recovery
current #. In basic form, the regime is essentially determined by the model state.
There are subtle, but important aspects of the precise and general definition, but for the
moment, consider the model to be in the positive regime 404 if the voltage v is above a

threshold (v, ) and otherwise in the negative regime 402.

[0062] The regime-dependent time constants include 7_which is the negative
regime time constant, and 7, which is the positive regime time constant. The recovery
current time constantr is typically independent of regime. For convenience, the
negative regime time constant 7_is typically specified as a negative quantity to reflect

decay so that the same expression for voltage evolution may be used as for the positive

regime in which the exponent and 7, will generally be positive, as will be 7.

[0063] The dynamics of the two state elements may be coupled at events by
transformations offsetting the states from their null-clines, where the transformation

variables are
q,=-T,pu-v, (7
r=8(v+e) (8)

where 6, ¢, B and v_, v _are parameters. The two values for v, are the base for

reference voltages for the two regimes. The parameter v_ is the base voltage for the
negative regime, and the membrane potential will generally decay toward v_ in the
negative regime. The parameter v, is the base voltage for the positive regime, and the

membrane potential will generally tend away from v, in the positive regime.

[0064] The null-clines for v and u are given by the negative of the transformation

variables g, and r, respectively. The parameter & is a scale factor controlling the slope
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of the u null-cline. The parameter ¢ is typically set equal to —v_. The parameter S is
a resistance value controlling the slope of the v null-clines in both regimes. The 7,

time-constant parameters control not only the exponential decays, but also the null-cline

slopes in each regime separately.

[0065] The model may be defined to spike when the voltage v reaches a value vy .

Subsequently, the state may be reset at a reset event (which may be one and the same as

the spike event):

v="v 9)

u=u+Au (10)

where v_and Au are parameters. The reset voltage v _is typically set tov .

[0066] By a principle of momentary coupling, a closed form solution is possible not
only for state (and with a single exponential term), but also for the time required to

reach a particular state. The close form state solutions are

At

v(l‘+Al‘)=(v(t)+qp)eT” -q, (11)

u(t+At)=(u(t)+ r)e_; —r (12)

[0067] Therefore, the model state may be updated only upon events such as upon an
input (pre-synaptic spike) or output (post-synaptic spike). Operations may also be

performed at any particular time (whether or not there is input or output).

[0068] Moreover, by the momentary coupling principle, the time of a post-synaptic
spike may be anticipated so the time to reach a particular state may be determined in
advance without iterative techniques or Numerical Methods (e.g., the Euler numerical

method). Given a prior voltage state v, the time delay until voltage state v, is reached

is given by

v, +
At=t, log Lo (13)
Vo T4,
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[0069] If a spike is defined as occurring at the time the voltage state v reaches v,

then the closed-form solution for the amount of time, or relative delay, until a spike
occurs as measured from the time that the voltage is at a given state v is
Vg + .
T, log 9 i 3> v,

Aty = vty (14)

o0 otherwise

where v is typically set to parameter v, , although other variations may be possible.

[0070] The above definitions of the model dynamics depend on whether the model

is in the positive or negative regime. As mentioned, the coupling and the regime p may

be computed upon events. For purposes of state propagation, the regime and coupling
(transformation) variables may be defined based on the state at the time of the last
(prior) event. For purposes of subsequently anticipating spike output time, the regime
and coupling variable may be defined based on the state at the time of the next (current)

cvent.

[0071] There are several possible implementations of the Cold model, and executing
the simulation, emulation or model in time. This includes, for example, event-update,
step-event update, and step-update modes. An event update is an update where states
are updated based on events or “event update” (at particular moments). A step update is
an update when the model is updated at intervals (e.g., 1ms). This does not necessarily
require iterative methods or Numerical methods. An event-based implementation is
also possible at a limited time resolution in a step-based simulator by only updating the

model if an event occurs at or between steps or by “step-event” update.
VALUE SYNCHRONIZATION ACROSS NEURAL PROCESSORS

[0072] Aspects of the present disclosure are directed to synchronizing values in a
neural network over a spike interface. FIGURE 5 is a high level block diagram
illustrating an exemplary system architecture for synchronizing values between neural
processors in a neural network. The system architecture 500 comprises neural
processors 502 and 522 that may be utilized alone or in combination to emulate a neural

system. Further, the neural processors 502 and 522 may be included in the same
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processing chip or may be provided in separate processing chips. For ecase of
illustration and explanation, the system architecture 500 is shown as including two
neural processors (502 and 522). However, this is merely exemplary, and additional
neural processors or processing blocks may be included in the system architecture for

processing in the neural network.

Neural processor 502 may comprise a value generator (VG) 504. The value generator
504 may be configured to generate values to be shared with neurons in the system for
modeling neuron dynamics. In some aspects, the value may be a neuron parameter, a
synaptic weight or delay value, or other value or attribute for use in emulating a neural
system. For example, the value may correspond to a neuromodulator value such as a
common dopamine value to be applied to neurons across the neural network. In yet
another example, the value may correspond to identification information for a neuron or
neurons (e.g, 508) that have fired. In some aspects, the value may further include
timing information, for example, to indicate a time (t) at which a particular neuron fires
or a timing at which a value is to be applied or consumed by a neuron. There may be
one value generator 504, 524 for each processing block 502, 522 (as shown), or there
may be multiple value generators 504, 524 for each processing block 502, 522. For
example there can be one value generator 504, 524 for each neuron 508, 528, or even
one value generator 504, 524 for each neuron type or neuron cluster within each

processing block 502, 522.

[0073] The value generator 504 may be configured to perform a value calculation to
generate values based, for example, on neural properties such as spikes or other
attributes (e.g., synapse weight and/or delay). In some aspects, neurons 508 may send
spikes to the value generator 504 to affect the value calculation. Additionally, neurons
of remote processors (e.g., 522) in the neural system may also send spikes to the value
generator 504 to affect the value calculation. Further, while FIGURE 5 shows only one
value generator in a processing block, this is merely exemplary and neural processor
502 (as well as neural processor 522) could be configured with additional value
generators. For example, the neural processors 502, 522 could be configured with a

value generator for each neuron or neuron type.

[0074] The neural processor 502 may also include value neurons (VNs) 506a, 506D,

506¢ (collectively value neurons 506). The value neurons 506 may be configured to
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generate spikes. The spikes are similar to a binary value. That is, they are either on or
off. In some aspects, the value neurons 506 generate spikes that correspond to values
generated by the value generator 504. That is, the value neurons 506 may produce
output spikes encoded with the value generated by the value generator 504 based on a
spike protocol. For example, the value neurons 506 may encode the spikes using an

inter-spike interval (ISI), binary encoding or other protocol for generating spikes.

[0075] In some aspects, one or more of value neurons 506 may be used to manage a
value to be shared with other neurons in the neural network. For example, one or more
of the value neurons 506 may monitor a value (e.g., common dopamine value) used by
neurons 508. If adjustments are made to the value, the value neurons 506 may be used

to update other neurons (e.g., 528) to utilize the value with respect to the change.

[0076] The neural processor 502 may further comprise one or more neurons 508a,
508b (which may be collectively referred to as neurons 508). The neurons 508 may
receive spike inputs and consume values to model aspects of neuron behavior or
dynamics in a neural network. In turn, the neurons 508 may output spikes to affect
other neurons in the neural network. In some aspects, the neurons 508 may also send
spikes to the value neurons 506 to adjust the value generator 504. For example, the
neurons 508 may send spikes to the value neurons 506 to affect (e.g., delay) value
generation. The neurons 508 shown in FIGURE 5 may also represent neuron types,

rather than individual neurons.

[0077] The neural processor 502 may be configured to transmit information to and
receive information from remote neural processors (e.g., 522) in the neural network via
an interface (not shown). In some configurations, the interface may comprise a network
of synapses as illustrated in FIGURE 1. In some aspects, the interface may be
configured to transmit and receive spikes only. In such configurations, the scalar values
generated by the value generator 504 cannot be directly transmitted to the remote neural
processors (e.g., 522). However, because spikes may be transmitted via the interface,
information regarding the values generated by the value generator 504 may be
communicated to remote processors in the form of spikes produced by the value
neurons 506. That is, the neural processor 502 may share a value generated by the

value generator 504 with a remote neural processor (e.g., 522) by encoding the value
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into spikes using the value neurons 506 and transmitting the spikes to the remote neural

processor 522.

[0078] To receive the transmitted spikes from the neural processor 502, neural
processors 522 may comprise proxy neurons (P) 526a, 526b, and 526¢ (collectively
referred to as proxy neurons 526). The proxy neurons 526 may be configured to receive
spikes from the value neurons (e.g., 506). The proxy neurons 526 may provide the
spikes and/or other properties (e.g., neuron state) to a value generator 524. In doing so,
the proxy neurons 526 may, in some aspects, drive the value generator 524 to generate a

value on the remote neural processor 522 based on the received spikes.

[0079] The value generator 524, may in turn, perform a value calculation to
generate a value based on the received spikes and/or other properties. In some aspects,
the value generator 524 may be configured to perform a value calculation to generate a
value such that the value is synchronized with a first value generated by value generator
504. Further, in some aspects, the value generator 524 may be configured to generate a

value that is the same as that generated by the value generator 504.

[0080] One or more of neurons 528a, 528b, 528¢ (may be collectively referred to as
neurons 528) may consume the value generated by value generator 524 to further model

aspects of neuron behavior or dynamics in the neural network.

[0081] In some aspects, neural processor 522 may access a connectivity lookup
table to determine routing of the value generated by the value generator 524. The
connectivity lookup table may provide source and destination information for the
generated values. That is, the connectivity lookup table may identify the neurons that

are to consume a particular value.

[0082] In some aspects, a connectivity look up table may be used to determine
routing for the values generated via the value generators (e.g., 504, 524). The
connectivity lookup table may include source and destination information and may be
used to determine which neurons (e.g., 508, 528) are to receive the value generated. For
example, when the value generated by the value generator 524 identifies pre-synaptic
neurons that have fired, the connectivity lookup table may be used to determine the
neurons 528 to receive contribution from the pre-synaptic neurons that fired. In another

example, when the value generated by the value generator 524 corresponds to a shared
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neuromodulator value (e.g., a common dopamine value), the connectivity table may

indicate the neurons 528 to consume the generated value.

[0083] Additionally, in some cases, the neurons 508 and 528 may send spikes to the
value neurons (506) to adjust a value generated by the value generator (504). In other
cases, the neurons 508 and 528 may send spikes to proxy neurons 526 to adjust a value

generated by the value generator 524.

[0084] FIGURE 6 is a high level block diagram illustrating an exemplary system
architecture for synchronizing values between neural processors in a neural network.
As shown in FIGURE 6, neural processor 502 may be configured with additional proxy
neurons 616a, 616b, and 616¢ (collectively referred to as proxy neurons 616). The
proxy neurons 616 may be defined between the value neurons (506) and the value
generator (504) of the first neural processor 502. In some aspects, the proxy neurons
616 may be utilized to replicate a delay generated when transmitting the spikes from the

first neural processor 502 to the second neural processor 522.

[0085] Further, the neural processor 502 may be configured with a delay generator
626. As illustrated in FIGURE 6, the delay generator 626 may be defined within the
neural processor 502. However, this is merely exemplary, and the delay generator 626
may be included in other components of the neural processor 502 or may be provided as
a separate component. In some aspects, the delay generator 626 may be used to
replicate the delay generated when transmitting the spikes from the neural processor 502
to the second neural processor 522. The delay could approximate the delay between the
processors 502, 522 or could include some padding so the approximated delay is longer
than the actual delay. In some configurations, neural processor 522 may also be
configured with a delay generator to replicate the delay generated when transmitting the

spikes from the neural processor 522 to the neural processor 502.

[0086] Furthermore, in some configurations, the value neurons 506 of first neural
processor 502 may transmit a specific sequence of spikes to reset the second neural

processor 522.

[0087] Neurons on the remote neural processor 522 may access the value provided

from the first neural processor 502. Thus, the value generated in the neural processor
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502 may be deemed synchronized with the value generated in the remote neural

processor 522.

[0088] FIGURE 7A is a high level block diagram illustrating an exemplary system
for encoding and decoding spikes. As discussed above, value neurons 506 may monitor
or manage a value V1 that is to be shared with neurons across the neural network. In
some aspects, the value V1 may provide an indication of the neurons that spiked at a
particular time. The value V1 may also be a value that is to be shared by neurons across

the neural network such as a neuromodulator value (e.g., common dopamine value).

[0089] In the example of FIGURE 7A, the value neurons 506 manage the value V1.
When the value V1 is to be shared with a neuron across the neural network, the value
neurons 506 may be used to convert the value V1 to spikes for transmission across the
inter-block interface 712. In some aspects, the inter-block interface 712 may be
configured such that only spikes may be communicated via the interface, and can be, for
example, a network of synapses. Further, the inter-block interface 712 may be

configured to operate as a spike channel between neural processors.

[0090] In some aspects, the value may be divided into one or more component parts.
For example, the value V1 may be divided into its most significant bits and least
significant bits. In another example, the value V1 may be divided into a predefined

number of portions (e.g., 1/2 of the bits, 1/3 of the bits, etc.)

[0091] The value neurons 506 may generate spikes encoded with the value V1
based on a spike protocol. The spike protocol may employ an encoding scheme such as,
for example, absolute latency coding, relative latency coding, rate coding, ISI (inter-

spike interval) coding, binary coding and the like.

[0092] In absolute latency coding, the value may be encoded based on the time
between spike events for a particular neuron or set of neurons. For example, to encode
a value of 8, an 8 ms delay may be included between spike events for the neuron. In
some aspects, the value may also be scaled to generate the encoded value. Further, in

some aspects, the encoded value may be a function of the absolute latency value.

[0093] In relative latency coding, the value may be encoded according to the

interval between spikes for a plurality of neurons. For example, where a neuron N;
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spikes at a time t; and neuron N, spikes at a time t,, the value may be represented as the

time difference t,-t;.

[0094] In rate coding, the value may be represented according to a number of spikes
that occur within a particular interval. For example, spikes may be sampled for a 10 ms
interval with the encoded value corresponding to the number of spikes that occurred
during the 10 ms period. In some aspects, the value may be encoded based on a spike

rate for one neuron or a spike rate for multiple neurons.

[0095] The encoding schemes described above are merely exemplary and in some
aspects, the spike protocol may employ Inter-Spike Interval (ISI) coding, binary coding,

or other encoding schemes for generating spikes encoded with the value V1.

[0096] Connectivity information indicating a particular neuron or neurons that
spiked may also be included in the spikes transmitted via value neurons. The
connectivity information may be used to route the values encoded and transmitted as
spikes to neurons in a remote neural processor (e.g., 522). In some aspects, the
connectivity information may include an index identifying one or more neurons that
spiked (i.e., source neuron(s)). The connectivity information may further include
destination information identifying one or more neurons that are to receive contributions

based on the neuron that spiked.

[0097] The proxy neurons 526 receive the spikes sent from the processing block
502. In some aspects, spikes may be received by additional receiver neurons to provide
redundancy to recover from spike transmission issues (e.g. spike loss). For example, in
some aspects a spike train transmitted via value neuron 506a may be received via
multiple proxy neurons (e.g., (526a, 526b, and/or 526c). In a further example, a spike

train received via proxy neurons 526 and neurons 528 of neural processor 522.

[0098] The proxy neurons 526 then provide the spikes, which correspond to the first
value or a component thereof, to the value generator 524 which decodes the spikes and
generates a second value V2. In some aspects, the value generator 524 may be
configured to decode spikes encoded based on the spike protocol employed by value
neurons 506. Because the spikes may be encoded with timing information, the second

value V2 may be generated such that the second value V2 is synchronized with the first
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value V1. In some aspects, the second value V2 is the same as or equal to the first value

VI.

[0099] In some aspects, a connectivity look up table may be used to determine
routing for the generated values. The connectivity lookup table may include source and
destination information and may be used to determine which neurons of the neural
processor 522 are to receive the value generated by the value generator 524. For
example, when the value generated by the value generator 524 includes an index which
identifies pre-synaptic neuron or neurons that have fired, the connectivity lookup table
may be used to determine the neurons 528 (FIGURES 5 and 6) which are to receive
contribution from the pre-synaptic neurons that fired. In another example, when the
value generated by the value generator 524 corresponds to a shared neuromodulator
value (e.g., a common dopamine value), the connectivity table may indicate the neurons

528 which are to consume the generated value.

[00100] FIGURE 7B shows a pair of graphs 750 and 760 illustrating exemplary
encoding techniques in accordance with aspects of the present disclosure. Referring to
FIGURE 7B, graph 750 illustrates an example of encoding the value based on an inter-
spike interval. That is, a spike train may be configured to represent value information
according to a number of time steps between spike events for a neuron. As shown in
graph 750, trace 755 is provided to correspond to a value based on intervals between
spikes 758 for neuron N; over a period of time steps. In some aspects, the value
encoded increases for each time step without a spike event. For example, in graph 755,
there are two time periods before the first spike event for neuron Ny, thus the spike train
shown for N; may represent a value of 1 at the first time step and a value of 2 at the
second time step. At the third, fourth and fifth time steps, the delay increases, so the
value increases. At the sixth time step, and thereafter the delay between spikes of

neuron N is only one time period, so the encoded value returns to 1.

[00101] On the other hand, graph 760 illustrates a binary encoding approach in which
the value 765 may be represented at each time step based on whether a spike event
occurred or not. For example, N represents 1, N; represents 2, N3 represents 4, and N
represent 8. Thus, at the first time step, a value of 13 (8+4+1) is encoded. At the next

time step, a value of 7 (4+2+1) is encoded, and so forth.
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[00102] FIGURE 8 illustrates an example implementation 800 of the aforementioned
method for converting values to spikes in a neural network using a general-purpose
processor 802 in accordance with certain aspects of the present disclosure. Variables
(neural signals), synaptic weights, and system parameters associated with a
computational network (neural network) may be stored in a memory block 804, while
instructions executed at the general-purpose processor 802 may be loaded from a
program memory 806. In an aspect of the present disclosure, the instructions loaded
into the general-purpose processor 802 may comprise code for converting values to
spikes in a neural network. For example in some configurations, the general-purpose
processor 802 may comprise code for obtaining a parameter value. Further, in the
exemplary configuration, the general-purpose processor 802 may further comprise code

for encoding the parameter value based at least in part on a value used by a neuron.

[00103] In another exemplary configuration, the general-purpose processor 802 may
comprise code for determining a neuron to receive spikes representing an encoded
value. Further, in this exemplary configuration, the general-purpose processor 802 may
further comprise code for decoding the spikes to determine a parameter value to be used

by the neuron.

[00104] FIGURE 9 illustrates an example implementation 900 of the aforementioned
method for converting values to spikes for transmission in a neural network where a
memory 902 can be interfaced via an interconnection network 904 with individual
(distributed) processing units (neural processors) 9061...906N of a computational
network (neural network) in accordance with certain aspects of the present disclosure.
Variables (neural signals), synaptic weights, and system parameters associated with the
computational network (neural network) may be stored in the memory 902, and may be
loaded from the memory 902 via connection(s) of the interconnection network 904 into
each processing unit (neural processor) 906. In some aspects, values generated via the
processing blocks as well as a connectivity information may also be stored in memory
902 and loaded therefrom for further processing. In an aspect of the present disclosure,
the processing unit 906 may be configured to convert values to spikes. For example, in
some configurations, the processing unit 906 may be configured to obtain a parameter
value. In addition, the processing unit 906 of the exemplary configuration may be
further configured to encode the parameter value based at least in part on a value used

by a neuron.
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[00105] In another exemplary configuration, the processing unit 906 may be
configured to determine a neuron to receive spikes representing an encoded value.
Further, in this exemplary configuration, the processing unit 906 may be further
configured to decode the spikes to determine a parameter value to be used by the

ncuron.

[00106] FIGURE 10 illustrates an example implementation 1000 of the
aforementioned method for converting a value to spikes for transmission in a neural
network. As illustrated in FIGURE 10, one memory bank 1002 may be directly
interfaced with one processing unit 1004 of a computational network (neural network).
Each memory bank 1002 may store variables (neural signals), synaptic weights, and
system parameters associated with a corresponding processing unit (neural processor)
1004. In some aspects, values generated via the processing blocks may also be stored in
memory 1002 and loaded therefrom for further processing. Further, in some aspects a
connectivity information may be stored in memory 1002. In an aspect of the present

disclosure, the processing unit 1004 may be configured to convert the values to spikes.

[00107] FIGURE 11 illustrates a method for converting values to spikes for
transmission in a neural network in accordance with certain aspects of the present
disclosure. In block 1102, the neuron model obtains a parameter value. Furthermore, in
block 1104, the neuron model encodes the parameter value based at least in part on a

value used by a neuron.

[00108] FIGURE 12 illustrates a method for receiving a parameter value in a neural
network in accordance with certain aspects of the present disclosure. In block 1202, the
neuron model determines a neuron to receive spikes representing an encoded value.
Furthermore, in block 1204, the neuron model decodes the spikes to determine a

parameter value to be used by the neuron.

[00109] FIGURE 13 illustrates an example implementation of a neural network 1300
in accordance with certain aspects of the present disclosure. As illustrated in FIGURE
13, the neural network 1300 may have multiple local processing units 1302 that may
perform various operations, as described above. Each processing unit 1302 may
comprise a local state memory 1304 and a local parameter memory 1306 that store

parameters of the neural network. In addition, the processing unit 1302 may have a
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memory 1308 with local (neuron) model program, a memory 1310 with local learning
program, and a local connection memory 1312. Furthermore, as illustrated in FIGURE
13, each local processing unit 1302 may be interfaced with a unit 1314 for configuration
processing that may provide configuration for local memories of the local processing
unit, and with routing connection processing clements 1316 that provide routing

between the local processing units 1302.

[00110] In one configuration, a neuron model is configured for converting a value to
spikes for transmission in a neural network. In one aspect, the model includes an
obtaining means and/or encoding means, which may be the general-purpose processor
802, program memory 806, memory block 804, memory 902, interconnection network
904, processing units 906, processing unit 1004, local processing units 1302, and or the
routing connection processing elements 1316 configured to perform the functions
recited. In one aspect, the aforementioned means may be any module or any apparatus

configured to perform the functions recited by the aforementioned means.

[00111] In another configuration, a neuron model is configured for receiving a
parameter value. In one aspect, the model includes a determining means and/or
decoding means, which may be the general-purpose processor 802, program memory
806, memory block 804, memory 902, interconnection network 904, processing units
906, processing unit 1004, local processing units 1302, and or the routing connection
processing elements 1316 configured to perform the functions recited. In one aspect,
the aforementioned means may be any module or any apparatus configured to perform

the functions recited by the aforementioned means.

[00112] According to certain aspects of the present disclosure, each local processing
unit 1302 may be configured to determine parameters of the neural network based upon
desired one or more functional features of the neural network, and develop the one or
more functional features towards the desired functional features as the determined

parameters are further adapted, tuned and updated.

[00113] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,

but not limited to, a circuit, an application specific integrated circuit (ASIC), or
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processor. Generally, where there are operations illustrated in Figures, those operations
may have corresponding counterpart means-plus-function components with similar

numbering.

[00114] As used herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,
deriving, investigating, looking up (¢.g., looking up in a table, a database or another data
structure), ascertaining and the like. Also, “determining” may include receiving (e.g.,
receiving information), accessing (e.g., accessing data in a memory) and the like. Also,

“determining” may include resolving, selecting, choosing, establishing and the like.

[00115]  As used herein, a phrase referring to “at least one of” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of* a, b, or ¢” is intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

[00116] The various illustrative logical blocks, modules and circuits described in
connection with the present disclosure may be implemented or performed with a general
purpose processor, a digital signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array signal (FPGA) or other programmable
logic device (PLD), discrete gate or transistor logic, discrete hardware components or
any combination thereof designed to perform the functions described herein. A general-
purpose processor may be a microprocessor, but in the alternative, the processor may be
any commercially available processor, controller, microcontroller or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or

more microprocessors in conjunction with a DSP core, or any other such configuration.

[00117] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or

many instructions, and may be distributed over several different code segments, among
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different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[00118] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[00119] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus may include any number
of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[00120] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors.  Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thereof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, RAM (Random

Access Memory), flash memory, ROM (Read Only Memory), PROM (Programmable
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Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory),
EEPROM (Electrically Erasable Programmable Read-Only Memory), registers,
magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any
combination thercof. The machine-readable media may be embodied in a computer-

program product. The computer-program product may comprise packaging materials.

[00121] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thereof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as the case may be with

cache and/or general register files.

[00122] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may comprise one or more neuromorphic
processors for implementing the neuron models and models of neural systems described
herein. As another alternative, the processing system may be implemented with an
ASIC (Application Specific Integrated Circuit) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of the machine-readable media
integrated into a single chip, or with one or more FPGAs (Field Programmable Gate
Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gated logic,
discrete hardware components, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described throughout this disclosure.
Those skilled in the art will recognize how best to implement the described functionality
for the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[00123] The machine-readable media may comprise a number of software modules.

The software modules include instructions that, when executed by the processor, cause
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the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions

from that software module.

[00124] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to
another. A storage medium may be any available medium that can be accessed by a
computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray” disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable
media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer- readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.
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[00125] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer-readable medium having instructions stored (and/or
encoded) thercon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[00126] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a user terminal and/or base station as applicable. For
example, such a device can be coupled to a server to facilitate the transfer of means for
performing the methods described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base
station can obtain the various methods upon coupling or providing the storage means to
the device. Moreover, any other suitable technique for providing the methods and

techniques described herein to a device can be utilized.

[00127] It is to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.

[00128] WHAT IS CLAIMED IS:
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CLAIMS
1. A method for transmitting values in a neural network, comprising:
obtaining a parameter value; and

encoding the parameter value based at least in part on at least one value used by
a neuron, the encoding being based at least in part on at least one spike to be transmitted

via a spike channel.

2. The method of claim 1, further comprising encoding based at least in part on an

absolute latency code, and/or a relative latency code.

3. The method of claim 1, further comprising encoding based at least in part on a

rate code, Inter-Spike Interval encoding, or binary encoding.

4. The method of claim 1, further comprising splitting the parameter value into a

plurality of components, each component to be encoded by at least one neuron.

5. A method for receiving parameter values in a neural network, the method

comprising:
determining which neuron will receive a spike representing an encoded value; and
decoding at least one spike to determine a parameter value used by the neuron.

6. The method of claim 5, further comprising routing the spike based at least on

part on connectivity information.

7. The method of claim 6, in which the connectivity information includes an index

for a source neuron.

8. The method of claim 6, in which the connectivity information includes an index

for a plurality of source neurons.

9. The method of claim 5, in which the encoded value is represented by a plurality
of spikes, each corresponding to a sub component of the encoded value and being

decoded to determine the parameter value.
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10.  The method of claim 5, further comprising receiving the spike via a redundant
receiver neuron to recover from spike loss.
11.  An apparatus for transmitting values in a neural network, comprising

a memory; and

at least one processor coupled to the memory, the at least one processor being
configured:

to obtain a parameter value; and

to encode the parameter value based at least in part on at least one value used by
a neuron, the encoding being based at least in part on at least one spike to be transmitted

via a spike channel.

12. The apparatus of claim 11, in which the at least one processor is further
configured to encode the parameter value based at least in part on an absolute latency

code, and/or a relative latency code.

13.  The apparatus of claim 11, in which the at least one processor is further
configured to encode the parameter value based at least in part on a rate code, Inter-

Spike Interval encoding, or binary encoding.

14.  The apparatus of claim 11, in which the at least one processor is further
configured to split the parameter value into a plurality of components, each component

to be encoded by at least one neuron.

15.  An apparatus for receiving parameter values in a neural network, comprising:

a memory; and

at least one processor coupled to the memory, the at least one processor being
configured:

to determine which neuron will receive a spike representing an encoded value;
and

to decode at least one spike to determine a parameter value used by the neuron.

16.  The apparatus of claim 15, in which the at least one processor is further

configured to route the spike based at least on part on connectivity information.
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17. The apparatus of claim 16, in which the connectivity information includes an

index for a source neuron.

18. The apparatus of claim 16, in which the connectivity information includes an

index for a plurality of source neurons.

19.  The apparatus of claim 15, in which the encoded value is represented by a
plurality of spikes, each corresponding to a sub component of the encoded value and

being decoded to determine the parameter value.

20.  The apparatus of claim 15, in which the at least one processor is further
configured to receive the spike via a redundant receiver neuron to recover from spike

loss.

21.  An apparatus for transmitting values in a neural network, comprising

means for obtaining a parameter value; and

means for encoding the parameter value based at least in part on at least one
value used by a neuron, the encoding being based at least in part on at least one spike to

be transmitted via a spike channel.

22.  An apparatus for receiving parameter values in a neural network, comprising:
means for determining which neuron will receive a spike representing an
encoded value; and
means for decoding at least one spike to determine a parameter value used by the

ncuron.

23. A computer program product for transmitting values in a neural network,
comprising:

a non-transitory computer readable medium having encoded therecon program
code, the program code comprising;:

program code to obtain a parameter value; and

program code to encode the parameter value based at least in part on at least one
value used by a neuron, the encoding being based at least in part on at least one spike to

be transmitted via a spike channel.
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24. A computer program product for receiving parameter values in a neural network,
comprising:

a non-transitory computer readable medium having encoded therecon program
code, the program code comprising;:

program code to determine which neuron will receive a spike representing an
encoded value; and

program code to decode at least one spike to determine a parameter value used

by the neuron.
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