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INTRA—DIECODER COMPONENT BLOCK MESSAGING

Cross Reference to Related Applications

This patent application is related to simultaneously filed U.S. Patent
Application No. 10/055,076, filed 23 January, 2002 (Attorney Docket No. PU020003)
entited DUAL CHIEN SEARCH BLOCKS IN AN ERROR-CORRECTING
DECODER; and U.S. Patent Application No. 10/055,470, filed 23 January, 2002
(Attorney Docket No. PU020001) entited CHIEN SEARCH CELL FOR AN
ERROR-CORRECTING DECODER, both of which are incorporated herein by
reference in their entireties.

Field of the Invention

The present invention relates to digital communication system error detection
and correction.

Background of the Invention
An important function of any modem digital communications system is error

control coding. Error control coding is the field of communications that deals with
techniques for detecting and correcting errors in a d’igital system. Generally, error
detecting/correcting schemes are utilized whenever it is desired to ensure that,
during transmission or through storage of digital data, error is not introduced into the
data, or in the alternative, if error is introduced into the data, that the introduced error
is corrected. The ability to detect and/or correct data errors is accomplished by
adding redundancy to the data. The inclusion of redundant bits in transmitted or
stored data results in a coded signal or field comprised of more bits than the original
uncoded signal or field.

One frequently used scheme for error detection/correction is through the use '
of so-called Reed-Solomon codes. Reed-Solomon codes are non-binary systematic
cyclic linear block codes. Non-binary codes work with symbols that are comprised of
several bits. Non-binary code, such as the Reed-Solomon code, are good at
correcting burst errors because the correction by these codes is done on the symbol
level. A systematic code, such as the Reed-Solomon code, generates codewords
that contain the message symbols in unaltered form. The encoder applies a
reversible mathematical function to the message symbols in order to generate the



10

15

20

25

30

WO 03/063363 PCT/US03/01913

2

redundancy, or parity, symbols. The codeword is then formed by appending the
parity symbols to the message symbols. The Reed-Solomon code is considered a
cyclical code because a circular shift of any valid codeword also produces another
valid codeword. Cyclic codes are popular because there exist efficient and
inexpensive decoding techniques to implement them. Finally, the Reed-Solomon
code is considered linear because the addition of any two valid codewords results in
another valid codeword.

A typical Reed-Solomon decoder is comprised of the following major
component blocks: (i) a syndrome generating block, (ii) an error polynomial block,
(iii) an error location block, and (iv) an error magnitude block, (v) an error correcting
block, and (vi) a delay block. The syndrome generating block is used to receive a
codeword and generate a syndrome from the codeword. The syndrome is utilized to
create an error polynomial in the error polynomial block. The error polynomial is
passed onto the error location and error magnitude blocks, in which error locations
and magnitudes for a codeword are respectively determined. An error vector is
generated from the error location and magnitude. A delayed version of the received
codeword is corrected by the error correcting block using the error vector
corresponding to a specific codeword. The delay block is comprised of a memory to
store the received codeword while the decoding process is performed to produce the
error vector.

Prior art decoders use these blocks to form a "delivery pipeline.” That is, the
input to one block only depends on the output of a previous block and there is no
feedback from one component block to a previous or subsequent block. Therefore,
only one codeword at a time may be processed, and the next codeword to be
processed isn’t begun until the processing of the previous codeword is completed.

Summary of the Invention

The inefficiencies of the prior art are overcome in the present invention, a
method and apparatus for performing data error detection within a codeword. A
decoder performing the data error detection is comprised of a syndro'me generator
for calculating a syndrome from the codeword; an error polynomial generator for
generating an error polynomial from the syndrome; an error location generator for
determining an error location from the error polynomial; and an error magnitude
generator for calculating an error magnitude from the error polynomial. The decoder
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is characterized in thatlit is adapted to send an intra-decoder inactivity message from
at least one componeht selected from a group comprising the syndrome generator,
the error polynomial generator, the error location generator, and the error magnitude
generator.

Brief Description of the Drawings

Reference to the following description of the present invention should be
taken in conjunction with the accompanying drawings, wherein:

Fig. 1 i.s a block diagram representation of a digital data delivery system
incorporating an error correcting scheme;

Fig. 2 is a flow chart illustrating & typical error correcting scheme methodology;

Fig. 3 is a hierarchical representation for various error correcting schemes;

Fig. 4 is a block diagram representation of a Reed-Solomon (RS) decoder;

Fig. 5 is a block diagram representation for an exemplary embodiment of a
Reed-Solomon (RS) decoder, as used in accordance with the principles of the
present invention;

Fig. 6 is a block diagram illustrating an exemplary intra-decoder handshaking
protocol, in accordance with the principles of the present invention;

Fig. 7 is a block diagram ilustrating a handshaking protocol between
functional blocks of an exemplary embodiment of a Reed-Solomon (RS) decoder, in
accordance with the principles of the present invention;

Fig. 8 is a timing diagram for exemplary Reed-Solomon (RS) decoders,
demonstrating the efficiencies associated with a decoder using intra-block
handshaking, in accordance with the principles of the present invention;

Fig. 9 is a block diagram representation for an exemplary embodiment of a
Reed-Solomon (RS) decoder utilizing a Chien block in addition to a Chien/Forney
block, in accordance with the principles of the present invention;

Fig. 10 is a block diagram representation for a typical prior art Chien search
cell implemented in a Reed-Solomon (RS) decoder; and

Fig. 11 is a block diagram representation for an improved Chien search cell
implemented in a Reed-Solomon (RS) decoder in which memory requirements and
delay are both reduced, in accordance with the principles of the present invention.
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Detailed Description of the Invention

With reference to Fig. 1, there is depicted a block diagram representation of a
digital data delivery system 100 incorporating an error detecting/correcting scheme,
in accordance with the principles embodied in the present invention. Generally, error
detecting/correcting schemes are utilized whenever it is desired to ensure that,
during transmission or through storage of digital data, error is not introduced into the
data, or in the alternative, if error is introduced into the data, that the introduced error
is corrected. The ability to detect and/or correct data errors is accomplished by
adding redundancy to the data. The inclusion of redundant bits in transmitted -or
stored data results in a coded signal or field comprised of more bits than the original
uncoded signal or field. The quid pro quo for tolerating this additional overhead is
the ability to detect, or to detect and correct, errors. The performance improvement
gained using error control coding is often measured in terms of coding gain.
Suppose an uncoded communications system achieves a given bit error rate (BER)
at a signal-to-noise ratio (SNR) of 30 dB. If an error control coding scheme with a
coding gain of 3 dB were added to the system, the coded system would be able to
achieve the BER at the even lower SNR of 27 dB. Alternatively, if the system was
operated at a SNR of 30dB, the BER achieved by the coded system would be the
same BER that the uncoded system achieved at an SNR of 33 dB. The power of the
coding gain is that it allows a communications system to either (i) maintain a desired
BER at a lower SNR than was possible without coding, or (ii) achieve a higher BER
than an uncoded system could attain at a given SNR. |

By way of example, it is the function of the encoder 110 to accept digital data
from the data source and transmit the data via a channel or store the data in a
storage medium (shown collectively as a channel or storage device 115) or otherwise
manipulate or process the data. It is often the case that, during the process of
transmission or storage, data may be introduced to noise or error 125, thus
becoming corrupted or altered in form from the original digital data. Decoder 120
functions to detect and correct, or in the alternative merely to detect, whether or not a
prescribed portion of the digital data has become corrupted.

With reference to Fig. 2, there is depicted a flow chart illustrating the various
error  detecting/correcting processes available within the: context of a
transmitter/channel/receiver environment. Although described in such a context, it
would be apparent to those skilled in the art that sgch error detecting/correcting
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processes would also apply equally to broadcast transmission, digital data storage,
or any other process ir|1 which digital data (whether in the form of a data field, packet,
stream, etc.) is processed or manipulated. By way of example, merely illustrative
and not meant to be exhaustive or exclusive, the following technologies/devices may
utilize error detection/correction schemes to improve performance, integrity, and
reliability: (i) various storage devices, including but not limited to tape, compact
disc (CD), digital versatile disc (DVD), barcodes, etc., (ii) wireless or mobile
communications (including cellular telephones, two way transceivers, microwave
links, etc., (iii) satellite communications, (iv) digital radio, digital television (DTV),
digital video broadcasting (DVB), etc., (v) modems, including but not limited to cable,
V.pcm, ADSL, xDSL, etc.

In accordance with step 210, after initially establishing a link and negotiating
transmission channel parameters, a transmitting source processes digital data in a
form suitable for transmission. In accordance with step 215, and prior to
transmission, the source generates an error code; the error code based at least in
part upon the value of the digital data to be transmitted, thus providing a degree of
data redundancy. In accordance with step 220, the generated error code is
appended, attached, multiplexed, or otherwise included along with the digital data,
and transmitted from the transmitter to the receiver. In accordance with step 225,
the digital data and the error code are received at the receiver. Initial signal
processing, if required, is implemented at the receiver, in accordance with step 230.
In accordance with step 235, the receiver accesses the error code’s redundant bits
and processes the information contained therein according to the error control code
scheme being utilized. In accordance with step 240, should the redundant bits
processed affirmatively check against the received digital data, then the data is
presumed to be uncorrupted. Further signal processing (if any) of the digital data is
resumed at the receiver, in accordance with step 245.

Should, however, the redundant bits processed indicate that the received
digital data is corrupted (contains at least one bit error), then the data errors are
evaluated to determine whether the errors are correctable within the error control
scheme being utilized, in accordance with step 250. That is, some error control
schemes are only capable of error detection, but do not include the quality and type
of redundant data to allow for correction of those errors. Other error control schemes
may utilize only their error detecting capabilities despite the fact thgt they may have
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both error detecting and correcting capability. Often, this is the scheme utilized when
the accuracy of any particular data signal, message, or packet is not of paramount
importance, but rather consistent and timely delivery of data is of paramount
importance. An example of such an application is synchronous streamed data for
vbice, audio, and video applications. Additionally, even when an error correcting
scheme is utilized to detect and correct errors, if the number or burst of errors
detected is greater than the error correcting capability (that is, exceeds the redundant
information provided by the error code bits), then the data is simply not recoverable.
In accordance with step 255, if the data is correctable, then the data errors are
corrected and further signal processing (if any) is resumed at the receiver. If
however, the errors are uncorrectable, then an evaluation is performed to determine
whether accuracy of the data is essential, in accordance with step 260. If data
accuracy is essential, as would be in pure data systems, the likelihood that a single
bit error is critical is great and a retransmit request is sent back to the transmitting
source, in accordance with step 265. If however, the accuracy of the uncorrectable
data is not essential, as is the case with data messages of a synchronous nature
(such as voice, audio, or video), then the corrupted and uncorrectable data is simply
discarded and the next sequential data message is processed, in accordance with
step 270. - -

With reference to Fig. 3, there is depicted a hierarchical representation for
various error code classifications and schemes. Error codes 310 can be divided into
two basic classifications: (i) automatic retransmission request (ARQ) or detection
codes 315, and (ii) forward error correction (FEC) codes 320. ARQ is a detection-
only type of coding, where errors in a transmission can be detected by the receiver
but not corrected. The receiver must ask.for any data received and request that data
received with detected errors be retransmitted. Since these retransmissions will
steal valuable bandwidth, ARQ codes are generally used for “clean” transmission
mediums (those with a lower probability of error). One of the most common
examples is simple parity checking 325, which is often used to detect data errors in
RAM. Another example is a cyclic redundancy check (CRC) 330, which is used to
detect errors in a transmission over Ethernet, for example. [f errors are detected, the ’
message will be retransmitted. Since Ethernet is primarily transmitted over wire, the
chance for errors is less than for some other mediums. CRC and ARQ are merely
two illustrative examples of error detection code schemes; and other error detection



10

15

20

25

30

WO 03/063363 PCT/US03/01913
7

code schemes are known to those skilled in the art. Error codes that merely detect
errors and do not colrrect them add significantly less redundancy than do error
correction codes. Furthermore, an error detection decoder is much less complex
than an error correction decoder. Systems utilizing error detection code schemes
are generally bandwidth tolerant with respect to the overhead incurred for data
retransmission. That is, data retransmission does not significantly affect overall
system throughput.

Since a noisy medium stands a fair chance of introducing error into a given
transmission, the use of ARQ methods means constant retransmission of data,
reducing system throughput to unacceptable levels. In these cases, error correction
code, as the name implies, allows not only detection of errors at the receiving end,
but correction of errors as well. This reduces the need for data retransmission, which
is then only required when the number of errors is greater than the number that can
be corrected by the error correction method utilized. Error correction is also used for
one-way communications, where the opportunity for the receiver to request that the
sender retransmits is unavailablel. lllustrative examples of these one-way paths
include some satellite transmissions and magnetic tape storage mediums.

Error correction codes may be divided into two main subcategories. The first
being block codes 335 and the second being convolutional codes 340. Block
codes 335 are frequently used error correction codes that work with message blocks
of a defined finite length. Block codes 335 are so named because the subcategory
utilizes an encoder that processes a block of message symbols and then outputs a
block of codeword symbols. Block codes can generally be classified into two types;
binary codes 345 and non-binary codes 355. One example of a binary code 345 is-
the Hamming code 350, characterized by having four information bits and three
check bits per character. An example of a non-binary code is the Reed-Solomon
code 360.

In contrast, convolutional code 340 encoders work on a continuous stream of
message symbols and simultaneously generate a continuous encoded output
stream. These codes get their name because the encoding process can be viewed
as the convolution of the message symbols and the impulse response of the
encoder. Two examples of convolutional codes 340 are Trellis coded
modulation (TCM) 365 and binary convolutional coding 370.
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Fig. 4 is a block diagram representation of an exemplary Reed-Solomon (RS)
decoder. As previously described, Reed-Solomon codes are non-binary systematic
cyclic linear block codes. Non-binary codes work with symbols that are comprised of
several bits. A common symbol size for non-binary codes is 8 bits, or a byte. Non-
binary code, such as the Reed-Solomon code, are good at correcting burst errors
because the correction of these codes is done on the symbol level. By working with
symbols in the decoding process, these codes can correct a symbol with a burst of 8
errors just as easily as they can correct a symbol with a single bit error. A systematic
code, such as the Reed-Solomon code, generates codewords that contain the
message symbols in unaltered form. The encoder applies a reversible mathematical
function to the message symbols in order to generate the redundancy, or parity,
symbols. The codeword is then formed by appending the parity symbols to the
message symbols. The Reed-Solomon code is considered a cyclical code because
a circular shift of any valid codeword also produces another valid codeword. Cyclic
codes are popular because there exist efficient and inexpensive decoding techniques
to implement them. Finally, the Reed-Solomon code is considered linear because
the addition of any two valid codewords results in another valid codeword.

The theory of error control codes utilizes a mathematical construct known as
finite fields or Galois fields. A Galois field is a set that contains a finite humber of
elements. The operations of addition and multiplication on this set are defined and
the operations behave as would be expected from normal arithmetic. For example,
the additive identity element is 0 and the multiplicative identity element is 1.
Reed-Solomon code is implemented utilizing Galois field mathematics, which is
responsible for the cyclical and linear nature of the code, and operates on Galois
fields of order g=p™ where pis a prime positive integer and m is a positive integer.
A Galois field of order g is denoted by GF(q) and it contains g distinct elements.

A given Reed-SoIdmon code is indicated by referring to it as an (n,k) code.
The parameter n indicates the codeword length in terms of the number of symbols in
the codeword. The parameter k indicates the number of message symbols in the
codeword. The number of parity symbols added is thus n - k. The error correcting
capability of the code is t = (n - k) / 2. The code can detect and correct T errors
where 0 < T < t. The codeword is based upon the message symbols and is

generated with a Reed-Solomon encoder. Since Reed-Solomon is a systematic
code, the n message symbols are transmitted as is and the n — k parity symbols are
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appended to the message symbols to form the codeword. The values of the parity
symbols, which add redundancy to the transmitted codeword, depend upon the
message symbols. This redundancy is exploited by the receiver’s decoder to detect
and correct errors.

At the receiver's decoder, codewords are received as input to the syndrome
generating block 410. The first step performed by the decoder is syndrome
calculation, performed by the syndrome generating block 410 (also frequently
referred to as the syndrome generating module, or simply the syndrome generator).
The syndrome is comprised of n-k symbols and the values are computed from the
received codeword. The syndrome depends upon the error vector only, it is
indepgndent from the transmitted codeword. That is to say, each error vector has a
unique syndrome vector, but many different received codewords will have the same
syndrome if their error pattern is the same. The reason the syndrome is first
calculated is because doing so narrows the search field for the error vector. First
knowing the syndrome will narrow the number of proper error vectors to 2™k error
vectors out of 2" total possible error vectors.

One method by which the syndrome generating block 410 calculates the
syndrome is by dividing the received codeword by the generator polynomial using
Galois field algebra. The remainder of this division is called the syndrome
polynomial s(x). The actual syndrome vector S(x) is computed by evaluating s(x) at
o. through o™ However, this method may not be optimally efficient from a hardware

perspective, and an altemative method that is frequently used in hardware is to
directly evaluate the received codeword R(x) at o through o™, The syndrome
generating block 410 computes the syndrome S by evaluating the received codeword
R at o through o™, that is, R(c) through R(@™). In the Reed-Solomon code, n-k=
ot , and thus there are 2t syndrome values to compute: [S1 S2 S3...5(2t)]. These
values are typically computed in parallel, the first syndrome generator evaluates the

received codeword at o to form S7, the next syndrome generator evaluates the

received codeword at o to form S2, and so on.

Once the syndrome is calculated by the syndrome generating block 410, its
value is passed onto the error polynomial block 420. There, the syndrome is utilized
to create an error location polynomial. This process involves solving simultaneous
equations of ¢ unknowns. Several fast algorithms are available for these
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calculations, including Berlekamp-Massey algorithm or Euclid’s algorithm. These
algorithms take advantage of the special matrix structure of Reed-Solomon codes
and greatly reduce the computational effort required.

The error polynomial block 420 passes the error location polynomial (once
determined) to the error location block 430 and the error magnitude block 440. The
error location block 430 solves for the roots of the error location polynomial to
determine error location. Typically, this is accomplished utilizing a Chien search
algorithm, or Chien cell. Error locations determined by the error location block 430
are passed to the error magnitude block 440, along with the previously determined
error location polynomial. The error magnitude block 440 determines the error
magnitude by solving simultaneous equations with f unknowns. A fast and widely
used algorithm used in implementing the error magnitude block 440 is the Forney
algorithm.

The calculated error location and error magnitude are forwarded to the error
correcting block 450 for recovering a corrected codeword, should it be corrupted.
Often, the combination of error location and error magnitude is referred to as an error
vector. The error vector is the same size as the codeword and contains non-zero
values in locations that correspond to errors. All other locations contain zeros.
Another input to the error correcting block 450 is the output of a delay block 460.
The delay block 460 takes the received codeword and outputs the same received
codeword, with delay. The error correcting block 450, in one embodiment, is
implemented using a Galois field adder 452 along with a LIFO (Last In, First Out)
block 454. The errors in the received codeword are corrected by adding the received
codeword to the error vector using the Galois field adder 452. A LIFO block 454 is
utilized because the error vector is generated in the reverse order of the received
codeword, and therefore a LIFO operation must be applied to either the received
codeword or the error vector in order to match the order of the bytes up in both
vectors. The output of the error correcting block 450 is the decoder’s estimate of the
original codeword.

Fig. 5 is a block diagram representation for an exemplary embodiment of a
Reed-Solomon (RS) decoder. The input is a received codeword which is forwarded
to the syndrome generating block 510. Once the syndrome S(x) is calculated by the
syndrome generating block 510, its value is passed onto the Euclid’s algorithm
block 520. Euclid’s algorithm processes the syndrome S(x) in order to generate the
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error location polynomlial A(x) and the error magnitude polynomial Q(x). That is, it

solves the following equation that is referred to as the Key Equation:

AX) [1 + S(X)] = Q(x) mod X2 Eq. 1

The algorithm used in Reed-Solomon decoding is based on Euclid’s algorithm for
finding the greatest common devisor (GCD) of two polynomials. Euclid’s algorithm is
a well-known iterative polynomial division algorithm.

Once the error location polynomial A(x) has been computed, it needs to be
evaluated to find its roots. The Chien search algorithm is used to find‘these roots.
The Chien search is a brute force algorithm that evaluates the polynomial for all
possible input values, and then determines which outputs are equal to zero. If an

error occurs in position j, then the following equation equals zero:

> A,-oc'ij = 0, wherei=0..(n1) Eq. 2

j=0

The Chien search evaluates equation 2 for all the values of jand j and counts
the number of times that the equation is equal to zero. The location of the zeros are
the error locations, and the number of zeros is the number of symbols in error.

In an exemplary embodiment, there are (t+1) stages of the Chien search that
are implemented in hardware. Each of these stages (where a stage is comprised of
a multiplier, a multiplexer and a-register) represents a different value for j in the
above Chien search equation. The search is run for n clock cycles (each clock cycle
represents a different value of iin the above equation) and the output of the adder is
examined to see if it is equal to zero. If it is equal to zero, a zero detect block will
output a 1, otherwise, it will output a zero. The output of the Chien search block is
thus a string of n bits that have values of either '0' or '1". Each '1' represents the
location of a symbol in error.

For the first clock cycle the multiplexer will route the error location polynomial
coefficient into the register. For the remaining (n-1) clock cycles, the output of the
multiplier will be routed via the multiplexer into the register. The exponents of the
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multipliers have negative values. However, these values can be precomputed using
a modulo operator. The exponent of o is equal to (=i modulo n) = (—i modulo 255).
For example, o' equals a®*, o® equals 0**, and so on.

The Forney algorithm is used to compute the error values Yi. In order to
compute these values, the Forney algorithm uses the error location polynomial A(x)

and the error magnitude polynomial Q(x). The equation for the error values is

e}
A'(x)

for x = o where o' is a root of A(X) Eg. 3
The computation of the formal derivative A'(x) is actually quite simple. For

example, assume A(x) = X + a®XZ + aX + of. A'(X) thus equals

Ax) =30+ 20X + Eq. 4
=(oc4+oc4+oc4) X2+(oc3+0c3)X+oc

=at X2+

The derivative is formed by taking the coefficients of the odd powers of X, and
assigning them to the next lower power of X (which will be even).

The Q(x) polynomial is then evaluated along with the A'(x) polynomial using
the same type of hardware as used for the Chien search. To evaluate Q(x), the o
coefficient would be added with the Q4 coefficient times o, the Qs coefficient times
o2, and so on up to the O coefficient times o. The output of these multipliers is

then summed.

The numerator is then multiplied by the denominator using an inverse multiply.
The inverse multiply contains a lookup table that finds the inverse of the

denominator. For example, if the denominator was o, the inverse is o®. This can

then be expressed as

(-i mod n)

o3 mod 265) _ 262

o = o Eq.5
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Since the same type of hardware is needed for both the Chien search and the
Forney algorithm, the two functions can be combined in the same block, shown as
the Chien/Forney block 530. In this implementation, two adders are used at the
output of the Chien search. The first adder sums up the values for the even stages,
and the other adder sums up the values for the odd stages. To form the final Chien
search output, the outputs of these two adders are then summed and the zero detect
block detects the locations of the roots. The output of the adder for the odd stages is
also used in the Forney algorithm. The sum of the odd stages represents the
denominator of the Forney equation. This summed value is inverted and then
multiplied by the numerator value that is formed from evaluating the error magnitude
polynomial. The output is AND’ed with the zero detect output since the error values
are only valid for the actual error locations (and they should be set to zero
otherwise).

Thus, the Chien/Forney block 530 uses the error location polynomial and the
error magnitude polynomial to generate an error vector, which is forwarded to the
error correcting block 540. The error vector is the same size as the codeword and
contains non-zero values in locations that correspond to errors. All other locations
contain zeros. Another input to the error correcting block 540 is the output of a delay
block 550. The delay block 550 takes the received codeword and outputs the same
received codeword, with delay. In the instant embodiment, the error correcting
block 540 is implemented using a Galois field adder 544 along with a LIFO
block 542. The errors in the received codeword are corrected by adding the received
codeword to the error vector using the Galois field adder 544. A LIFO block 542 is
utilized because the error vector is generated in the reverse order of the received
codeword, and therefore a LIFO operation must be applied to either the received
codeword or the error vector in order to synchronize the order of the bytes for both
vectors. The output of the error correcting block 540 is the decoder’s estimate of the

original codeword.

Intra-Decoder Component Block Messaging
As previously described, a Reed-Solomon decoder has at least four main

components, or functional blocks. They are the syndrome generator, the error
polynomial block, the error location block, and error magnitude block. If the decoder
corrects errors in addition to detecting them, then the decoder also includes an error
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correcting block. In prior art decoders, these blocks form a "delivery pipeline” in that
the input to one block only depends on the output of a previous block. That is, there
is no feedback from one block to a previous block. A Reed-Solomon decoder also
requires the implementation of a memory or buffer block to store the received
codeword while the decoding process is performed for a specific codeword (indicated
by the delay block of Figs. 4 and 5). Error location/magnitude blocks produce an
error vector at the completion of the decoding process and this error vector is XORed
with the received codeword that is stored in memory in order to form the decoder
output. Typically, the size of the memory that is used is equal to one codeword and
thus the decoder can only process a single codeword at a time.

Fig. 6 is a block diagram illustrating an exemplary embodiment of an internal
decoder handshaking protocol, in accordance with the principles of the present
invention. Intra-decoder block A 610 and intra-decoder block B 620 represent any
two blocks within a Reed-Solomon decoder (selected from the functional blocks
described above) which utilize feedback or communication between blocks. The
decoding "delivery pipeline” is data channel 630, which is representative of any prior
art unidirectional channel between functional blocks of a Reed-Solomon decoder.
Additionally and in accordance with the present invention, feedback channels are
also shown. The feedback channels may be thought of as means for one functional
block to convey its present or future inactivity to an upstream or downstream
functional block. For example, assume intra-decoder block A 610 has completed its
processing function for a specific codeword. Intra-decoder block A 610 launches an |
inactivity message to intra-decoder block B 620 indicating that it is ready to forward
the result of its computational function for a specified codeword to intra-decoder
block B 620. Thus, this type of inactivity message is called a
"Ready-To-Send" (RTS) message 650. Conversely, assume intra-decoder
block B 620 has completed its processing function for a specific codeword.
Intra-decoder block B 620 launches an inactivity message to intra-decoder
block A 610 indicating that it is ready to receive. Thus, this type of inactivity
message is called a "Ready-To-Receive" (RTR) message 640.

_ This embodiment of the present invention, a decoder implementation with
feedback or handshaking between functional blocks is advantageous in that it
enables a user-configurable architecture suitable for an Intellectual Property (IP) core
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that allows the user tolcustomize the performance of the decoder based on the size
of the memory that he wishes to use to implement it.

Fig. 7 is a block diagram illustrating a handshaking protocol between
functional blocks of an exemplary embodiment of a Reed-Solomon (RS) decoder.
The function, purpose, and operation of syndrome generating block 410, error
polynomial block 420, error location block 430, error magnitude block 440, error
correcting block 450 (including Galois field adder 452 and LIFO block 454), and
delay block 460 are sufficiently described with respect to Fig. 4 and therefore not
repeated here. Newly included in Fig. 7, the aforementioned inactivity messages (or
handshaking signals) are shown. The handshaking signals (e.g., RTS and RTR
messages) are used by the processing blocks to indicate when they have data to
send and/or when they are ready to receive data. Therefore, syndrome generating
block 410 and error polynomial block 420 are able to exchange an RTS message via
an RTS channel 710 or an RTR message via an RTR channel 712. Error polynomial
block 420 and error location block 430 are able to exchange an RTS message via an
RTS channel 718 or an RTR message via an RTR channel 720. Error polynomial
block 420 and error magnitude block 440 are able to exchange an RTS message via
an RTS channel 724 or an RTR message via an RTR channel 726. Error magnitude
block 420 and error correcting block 450 are able to exchange an RTS message via
an RTS channel 724 or an RTR message via an RTR channel 726. Syndrome
generating block 410 is also adapted to request the next received codeword by
sending an RTR message via an RTR channel 740. Etrror correcting block 450 is
also adapted to send an RTS message to the output processing stages via RTS
channel 760. Additionally, depending upon the implementation of the present
invention chosen, it may be necessary to send any RTR or RTS message to the
delay block 460 (via message channels 750), for the purpose of adjusting the delay
appropriately so that the received codeword being checked and corrected is properly
synchronized with the error vector at the error correcting block 450.

The advantageous utility derived from the present invention is that by enabling
handshaking between intra-decoder functional blocks, a functional block is able to
request receipt of more data to process when it becomes inactive (that is, it
completes its last procedure). Similarly, a functional block is able to‘signal a
downstream functional block that it has completed its procedure and can forward the
result whenever the downstream functional block is able to receive that result. For
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example, although typically a syndrome generating block 410 will utilize a fixed (and
known) number of clock cycles to generate a syndrome for a received codeword of a
particular length, the error polynomial block 420 is an iterative process whose
execution time can vary. In addition, typically the error location block 430 and error
magnitude block 440 will take a fixed and (and known) number of clock cycles, but if
it is determined that too many errors exist within a codeword such that it is
uncorrectable, further processing may be aborted with respect to that codeword, and
the error location block 430 and error magnitude block 440 can request to begin work
on the next codeword by sending an RTR message to the error polynomial block 420
via the appropriate RTR channels 720,726. Therefore, error location block 430 and
error magnitude block 440 can also take a variable number of clock cycles to
complete.

lt should be noted that the embodiment of the present invention shown in
Fig. 7 is but one of several embodiments which may be implemented without
deviating from the spirit and scope of the invention. For example, it is not required
that each of the functional blocks of the decoder are equipped to send RTS and RTR
messages. Rather, as a matter of design choice, it may be desirable to enable
handshaking between the syndrome generating block 410 and the error polynomial
block 420 only. A number of other variations are also possible. Furthermore,
although RTS and RTR messages are illustrated and described as being
communicated over RTS and RTR channels, such a description is merely a logical
description, and the messaging channels may be incorporated over one common
physical layer messaging channel separate from the data channel, or alternatively,
the messaging channels may be incorporated over the same physical layer as the
data channel itself.

In accordance with the principles of the present invention, a user can
customize the performance of the decoder by changing the memory allocation size.
Therefore, an embodiment with allocated memory size equal to the length of one
codeword will have a hardware and power-efficient design, but it will only be able to
process one codeword at a time. An embodiment with allocated memory size that is
larger than one codeword length can process one codeword while starting to load a
second codeword. An embodiment with allocated memory the size of two codewords
will enable two codewords to be processed simultaneously, and so on. Of course,
increasing the size of incorporated memory correspondingly leads to more expense
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in terms of hardware e}nd power, but the benefit is a corresponding increase in the

~ speed of the decoding process and a decrease in latency, since a greater number of

codewords can be processed in a given amount of time. The handshaking signals
completely automate the process so that the user only needs to input the memory
size utilized by the decoder. By controlling this single parameter, the user can
customize the performance of the decoder in terms of speed, power and size (gate
count).

Fig. 8 is a timing diagram for exemplary Reed-Solomon (RS) decoders,
demonstrating the efficiencies associated with a decoder using intra-block
handshaking, in accordance with the principles of the present invention. The upper
portion of the timing diagram 810 illustrates the time required for processing in a
typical decoder without intra-block handshaking. Under this scheme, the processing
of codeword 1 (CW1) begins at time . The CW1 syndrome is generated at time
and the result is passed to the error polynomial block. The error polynomial block
completes processing CW1 at time #, and so on until CW1 is completely processed
at time t,. The processing of codeword 2 (CW2) therefore begins at time &. This
single-function sequential-processing continues for CW2 until at time f the error
location and error magnitude calculations for CW2 are complete. Note that it takes a
total of (fs-to) units of time to process two codewords without intra-block handshaking.

The lower portion of the timing diagram 820 illustrates the processing times in
a decoder with intra-block handshaking. Note that by implementing a memory large
enough for three codewords, the decoder can simultaneously process three
codewords at a time. This efficiency is achieved since each block is able to receive
more data the moment it finishes processing because it informs the previous block
that it is ready. In this illustrative example, the processing of codeword 3 (CW3) is
completed sometime between time and t7.

Dual Chien Search Blocks In An Error-Correcting Decoder
One exemplary embodiment of the present invention uses dual Chien search

blocks to implement the error correction process. A decoder utilizing the principles of
this embodiment of the present invention reduces both the decoder latency and the
decoder storage/memory requirements.

Fig. 9 is a block diagram representation for an exemplary embodiment of a
Reed-Solomon (RS) decoder utilizing dual Chien search blocks, in accordance with
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the principles of the present invention. The input is a received codeword, which is
forwarded to the syndrome generating block 910. Once the syndrome S(x) is
calculated by the syndrome generating block 910, the syndrome is forwarded to
Euclid’s algorithm block 920. Euclid’s algorithm is used to process the syndrome

S(x) in order to generate the error location polynomial A(x) and the error magnitude
polynomial Q(x).

In the instant embodiment of the present invention, a new Chien block 930 is
incorporated for determining the number of errors in a codeword. Once the error
location polynomial A(x) has been computed, Chien block 930 applies the Chien

search algorithm to evaluate the roots. The Chien search is a brute force algorithm
that evaluates the polynomial for all possible input values, and then determines
which outputs are equal to zero. If an error occurs in position i, then the following

equation equals zero:

Z Ajoc'“ = 0, where i=0.. (n-1) Eq. 6

Jj=0

The Chien block 930 evaluates the above equation for all the values of iand j and -
counts the number of times that the equation is equal to zero. The resulting number
is the number of errors detected.

As previously described, the error polynomial must be evaluated both for error
location and error magnitude. Since the same type of hardware is needed to
implement both the Chien search and the Forney algorithms, the two functions can
be combined in the same block, shown as the Chien/Forney block 940. In this
implementation, two adders are used at the output of the Chien search. The first
adder sums up the values for the even stages, and the other adder sums up the
values for the odd stages. To form the final Chien search output, the outputs of
these two adders are then summed and the zero detect block detects the locations of
the roots. The output of the adder for the odd stages is also used in the Forney
algorithm. The sum of the odd stages represents the denominator of the Forney .
equation. This summed value is inverted and then multiplied by the numerator value
that is formed from evaluating the error magnitude polynomial. The output is AND’ed
with the zero detect output since the error values are only valid for the actual error
locations (and they should be set to zero otherwise).
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Thus, the Chien/Forney block 940 uses the error location polynomial and the
error magnitude polynlomial to generate an error vector, which is forwarded to the
error correcting block 950. The error vector is the same size as the codeword and
contains non-zero values in locations that correspond to errors. All other locations
contain zeros. Another input to the error correcting block 950 is the output of a delay
block 960. The delay block 960 takes the received codeword and outputs the same
received codeword, with delay. In the instant embodiment, the error correcting
block 950 is implemented using a Galois field adder 954 along with a LIFO
block 952. The errors in the received codeword are corrected by adding the received
codeword to the error vector using the Galois field adder 954. A LIFO block 952 is
utilized because the error vector is generated in the reverse order of the received
codeword, and therefore a LIFO operation must be applied to either the received
codeword or the error vector in order to match the order of the bytes up in both
vectors. The output of the error correcting block 950 is the decoder’s estimate of the
original codeword.

A Reed-Solomon decoder cén only correct up to terrors, where the number of
parity bytes included is 2t If greater than t errors are detected, it generally is
desirable to forward the received codeword to the decoder output, unaltered and
uncorrected, since the codeword is uncorrectable if greater than t errors are
detected. In prior art Chien/Forney implementations, an entire codeword must be
processed before the number of errors can be determined. Thus, the operation
takes N clock cycles where N is the length of the codeword. Once the Chien/Forney
computation is completed, the number of errors is determined and compared to the
value of t If the number of errors is less than or equal to t, the error values from the
Chien/Forney block are subjected to an "eXclusive OR" (XOR) operation with the
received codeword to perform error correction, thus generating the final decoder
output. However, if the number of errors is greater than £, the received codeword is
forwarded unaltered as the decoder output. Thus, the prior art method requires the
entire received codeword to be stored until the completion of processing by the
Chien/Forney block. Such a scheme also introduces a latency delay because the
decoder output can't be forwarded until the entire N clock cycles of the block are
completed.

In contrast, the instant embodiment of the present invention subjects
codewords to the Chien algorithm twice; the first time to determing the number Aof
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errors, and the second time to determine error location. Thus, when Chien block 930
detects that the number of errors is greater than the threshold value , the received
codeword is passed on as the decoder output and the memory is freed. Conversely,
when the number of errors is less than or equal to the threshold value f, the data is
passed on to the Chien/Forney block in order to determine the actual error locations
and magnitudes. Such an implementation would be optimized when utilized in
conjunction with the handshaking embodiment of the present invention shown in
Figs. 6-8. Such a combination enables the Chien/Forney block 940 to compute
errors concurrently while the Chien block 930 is determining the number of errors for
the next codeword. Thus, the output of the Chien/Forney block 940 can be
immediately sent out and the corresponding memory freed. ;

Enhanced Chien Search Cell For An Error Correcting Decoder

As previously described, the Chien/Forney block receives two polynomials as
inputs; the error location and error magnitude polynomials; and generates an error
vector as an output. The error vector is a vector of N bytes that represent the
decoder's estimate of the errors in a received codeword. The error vector is
subjected to an eXclusive OR (XOR) operation with the received codeword in order
to correct errors to form the decoder’s estimate of the original codeword. Prior art
decoders using a Chien/Forney block to determine the error vector produce the error
vector in reverse order with respect to the codeword vector. That is, the codeword
and the error vector cannot undergo the XOR operation without the error vector (or
conversely, the codeword) being subjected to further processing. Typically, this
further processing takes the form of a LIFO (Last In, First Out) operation on either
the error vector or the received codeword, the purpose being to reverse the order of
the input so that the codeword and error vector can undergo the XOR operation.
Unfortunately, this introduces a delay of N clock cycles where N is the number of
bytes in a codeword. Additionally, some prior art implementations use a memory
size greater than the length of a single codeword, thus requiring the memory to be
broken down into two or more separate LIFO clocks. Doing so can cause addressing
complications and also limits the memory size to an integral multiple of the codeword
length.

One exemplary embodiment of the present invention is a new Chien search
cell which produces an output in correct synchronization with respect to the
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codeword. That is, nelither error vector nor the codeword vector requires reversal
prior to being subjected to the XOR operation, thus eliminating the need for a LIFO
block or other reversal means. Therefore, a shorter latency period is achieved since
a delay of N clock cycles is not required. Furthermore, the instant embodiment of the
present invention simplifies the addressing scheme (with respect to the prior art) and
supports memory sizes other than merely integral multiples of the length of a
codeword. For example, a memory two and one half times the length of a codeword
may be used, which allows the: decoder to process two codewords while a portion of
the next codeword is being loaded.

Fig. 10 is a block diagram representation for a typical prior art Chien search
cell 1000, the basic building block for Chien search and Chien/Forney blocks. The
Chien search block is used to evaluate the error location polynomial A, for the

purpose of finding its roots. The locations of the roots correspond to the locations in
the received codeword that are in error. The Chien search cell of Fig. 10 is used to
implement the equation:

:
Xj =Z Aj o “, where i=0 .. (N-1) Eq.7

j=0

Calculation of equation 9 results in a null (zero) value for byte positions in the
codeword that correspond to errors. The Chien search cell 1000 is the hardware
architecture used to implement a single stage of the above equation. Each stage

processes a single coefficient of the error location polynomial 4, thus there are a

total of (t+1) stages (since the error location polynomial can have a maximum degree
of tand a polynomial of degree thas (#+1) coefficients).

The Chien search cell 1000 processes the error location polynomial coefficient
in an iterative manner. On the first iteration, the multiplexer1020 receives the
appropriate polynomial coefficient 1010 corresponding to the codeword being
processed and routes the polynomial coefficient to the register 1030. On subsequent
clock cycles, the output of the register is first forwarded to multiplier 1040 where it is
multiplied by o’ and then routed by the multiplexer 1020 back to the register for
storage. This process is performed for a total of N clock cycles. Referring back to
equation 9, the index i indicates the iteration number and the index j indicates the
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Chien search cell stage. That is, the value of j increments from O to t and thus there
are a total of (#+1) Chien search cell stages implemented in hardware.

As an illustrative example, assume that the cell represents the second stage (j
= 1). Thus, on each clock cycle, the register output will be multiplied by o’ and the

result is stored back in the register. This produces the following sequence:
A+ Ao X + oty o'+ () oo X+

where X" represents a delay of n clock cycles:
By combining terms, the final sequence produces is:

A+ Ao X+ A + M+ ..+ aor NN

The problem associated with this implementation is that the error locations are
produced in the reverse order of the corresponding codeword bytes, and thus they
need to be reversed by a LIFO block before being added to the codeword for
correction. A LIFO block is a hardware storage element containing a plurality of
registers. Once all the registers are filled, the LIFO block sends out its outputs. The
last element at the input becomes the first element at the output, and so on. There
are two problems with using a LIFO block. One is that it is a large storage/memory
element and thus it increases the gate count and the power consumption of the IC. -
Another problem is that the LIFO block introduces a latency of N clock cycles. This
latency occurs because it takes N clock cycles for the LIFO block to initially fill up,
and no outputs can be generated until the last element is read into the LIFO.

Fig. 11 is a block diagram representation for an improved Chien search
cell 1100, in which memory requirements and delay are both reduced, in accordance
with the principles of the present invention. The underlying principle of the instant
embodiment of the present invention is to enable the Chien search block to produce
a sequence that is mathematically equivalent to that produced by the standard Chien
search, albeit with coefficients generated in the opposite order (hereinafter referred
io as the "normalized order"). The instant embodiment implements the following two
equations (equations 10 and 11) used to generate error locations in a normalized
order for codeword correction.
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t .
Xi =Z Ao 1) whe‘re i=0 _Eq.8
Jj=0
: .
Xi=y Ao ~ wherei=1.. (N-1) . Eq.9
=0

Recall that the prior art Chien search cell 1000 of Fig. 10 processes the error
location polynomial coefficient in an iterative manner, beginning with an alpha
exponent of '0’ which is decremented with each clock cycle until the exponent
decreases to a value of -j(N-1). For the instant embodiment of the Chien search
cell 1100 of Fig. 11, the value of the alpha exponent begins at a value of -j(N-1) and
is incremented with each clock cycle until the exponent reaches 0.

Therefore, during the first clock cycle, the polynomial coefficient 1110 is
multiplied by /™" (where j is the stage number) by premultiplier 1150, forwarded to
the multiplexer 1120, and routed to the register 1130 for storage. On subsequent
clock cycles, the output of the register 1130 is forwarded to multiplier 1140 where it is
multiplied by ol and then routed by the multiplexer 1120 back to the register.

As an illustrative example, assume that the cell represents the second stage (j
=1). This produces the following sequence:

™I 4 e ™ Max? + (Aor ™ Doy + ...

Combining terms produces the following sequence:
Aor ™ 4 AorNEX 4 ?»oc"(N'S)X2+ e+ ACTXNZ XN

It is to be noted that the coefficients generated in this sequence are identical
to that produced by a standard Chien search cell 1000 of Fig. 10, except that they
are now in reverse order (as denoted by the reverse order of the delay coefficients).
The Chien search cell 1100 of Fig. 11 does utilize an extra Galois field multiplier (two
instead of one), but they are small and inexpensive to implement in hardware. The
advantage and utility that results from no longer requiring a LIFO block for reversal
and from avoiding the delay required to fill the LIFO outweigh the disadvantage of
supplying an extra Galois field multiplier for each Chien search cell. '
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It is a common design practice to combine the Chien search and Forney
algorithm within a single block since both algorithms require the performance of
similar functions. The principles of the instant embodiment of the present invention
as illustrated and described in conjunction with Fig. 11 apply equally to the Forney
block cells as well, since the Forney algorithm processes the error magnitude
polynomial using very similar hardware. It would be known to those skilled in the art
that the principles of the present invention may be extended to the design of Forney
block cells and Chien/Forney block cells.

Many existing systems use "off-the-shelf" integrated circuits that encode and
decode Reed-Solomon codes. These ICs tend to support a certain amount of
programmability (for example, RS(255,k) where t = 1 to 16 symbols). A recent trend
is towards VHDL or Verilog designs (logic cores or intellectual property cores).
These have a number of advantages over standard ICs. A logic core can be
integrated with other VHDL or Verilog components and synthesized to an FPGA
(Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) —
this enables so-called "System on Chip" designs where multiple modules can be
combined in a single IC. Depending on production volumes, logic cores can often
give significantly lower system costs than "standard" ICs.

Although the present invention is described in the context of a hardware
implementation, the principlés of the invention should not be construed as being so
limited. Until recently, software implementations in "real-time" required too much
computational power for all but the simplest of Reed-Solomon codes (i.e. codes with
small values of ). The major difficulty in implementing Reed-Solomon codes in
software is that general purpose processors do not support Galois field arithmetic
operations. For example, to implement a Galois field multiply in software requires a
test for 0, two log table look-ups, modulo add and anti-log table look-up. However,
careful design together with increases in processor performance mean that software
implementations can operate at relatively high data rates.

While this invention has been described in terms of exemplary embodiments
and/or configurations, the present invention can be further modified within the spirit
and scope of this disclosure. This application is therefore intended to cover any
variations, uses, or adaptations of the invention using its general principles. Further,
this application is intended to cover such departures from the present disclosure as
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come within known or customary practice in the art to which this invention pertains
|
and which fall within the limits of the appended claims.
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CLAIMS

1. In a cyclic linear block code error correcting decoder having at least four
blocks, said blocks including a syndrome generating block (410), an error polynomial
block (420), an error location block (430), and an error magnitude block (440), a
method for performing data error correction of a codeword, said method comprising
the acts of:

calculating a syndrome from said codeword in said syndrome generating
block (410);

generating an error pblynomial from said syndrome in said error polynomial
block (420);

determining an error location from said error polynomial in said error location
block (430); and

calculating an error magnitude from said error polynomial in said error
magnitude block (440), '

said method characterized in that at least one of said at least four blocks is
adapted to transmit an inactivity message (640,650) to other ones of said at least

four blocks.

2. The method of claim 1 further comprising the act of:
correcting said codeword responsive to said error location and said error

magnitude.

3. The method of claim 1 wherein said inactivity message is a
ready-to-receive message (640).

4. The method of claim 1 wherein said inactivity message is a ready-to-send

message (650).

5. The method of claim 1 wherein said error polynomial block is a Euclid’s

algorithm block.

6. The method of claim 1 wherein said error polynomial block is a

Berlekamp-Massey algorithm block.
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7. The method pf claim 1 wherein said error location block is a Chien search
block. ’

8. The method of claim 1 wherein said error magnitude block is a Forney
algorithm block.

9. The method of claim 1 wherein the acts associated with said error location
block and said error magnitude block are performed within a combined Chien/Forney
block.

10. The method of claim 1 wherein said cyclic linear block code error
correcting decoder is a Reed-Solomon decoder.

11. A decoder for performing data error detection within a codeword, said
decoder comprising: ‘

means for calculating a syndrome (410) from said codeword;

means for generating an error polynomial (420) from said syndrome;

means for determining an error location (430) from said error polynomial; and

means for calculating an error magnitude (440) from said error polynomial,

said decoder characterized in that an adaptation to send an intra-decoder
inactivity message (640,650) is incorporated within at least one component selected
from a group comprising said means for calculating said syndrome (410), said means
for generating said error polynomial (420), said means for determining said error
location (430), and said means for calculating said error magnitude (440).

12. The decoder of claim 11 further comprising a means for correcting said
codeword (450) responsive to receipt of said codeword, said error location, and said

error magnitude as inputs.

13. The decoder of claim 11 wherein said decoder is a Reed-Solomon

decoder.

14. The decoder of claim 11 wherein said intra-decoder inactivity message is

a ready-to-receive message (640).
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15. The decoder of claim 11 wherein said intra-decoder inactivity message is
a ready-to-send message (650).

16. The decoder of claim 11 wherein said means for generating an error
polynomial (420) is a Euclid’s algorithm block.

17. The decoder of claim 11 wherein said means for generating an error
location (430) block is a Chien search block.

18. The decoder of claim 11 wherein said means for calculating an error
magnitude (440) is a Forney algorithm block.

19. A decoder for performing data error detection within a codeword, said
decoder comprising:

a syndrome generator (410) for calculating a syndrome from said codeword,;

an error polynomial generator (420) for generating an error polynomial from
said syndrome;

an error location generator (430) for determining an error location from said
error polynomial; and

an error magnitude generator (440) for calculating an error magnitude from
said error polynomial, '

said decoder characterized in that an adaptation to send an intra-decoder
inactivity message (640,650) is incorporated within at least one component selected
from a group comprising said syndrome generator (410), said error polynomial
generator (420), said error location generator (430), and said error magnitude

. generator (440).

20. The decoder of claim 19 further comprising an error corrected codeword
generator (450) for correcting said codeword responsive to receipt of said codeword,

said error location, and said error magnitude as inputs.



WO 03/063363 PCT/US03/01913

1/8

/,125

100
NOISE/ERRORS
110 115 120
: [ Y /- /-
ENCODER CHANNEL OR DECODE
l_"’_’ — stoRAGE DEVICE [ ] PEo O R [ _1
DATA
DATA
SOURCE DATA
FIG. 1
PRIOR ART
410 o J 40 L [440
SYNDROME ERROR ERROR ERROR
INPUT#-4->| GENERATING [—> POLYNOMIAL |- LOCATION [—>MAGNITUDE
BLOCK BLOCK BLOCK BLOCK
[460
o| DELAY

OUTPUT

FIG. 4
PRIOR ART




WO 03/063363 PCT/US03/01913

T 2/8
PROCESS GENERATE _
DATA SIGNAL > ERROR CODE 215
210 ATTACH AND
TRANSMIT 220
DATA RECEIVED
ORACCESSED [ ~—22°
INITIAL SIGNAL
PROCESSING  [—~—230
ACCESS REDUNDANT 045
BITS AND PROCESS |—~—235 )
DATA GOOD
CONTINUE
SIGNAL
PROCESSING
CORRECT DATA
AND CONTINUE
SIGNAL
PROCESSING

L255

ACCURACY
ESSENTIAL

2(0 J(

DISCARD DATAAND o
CONTINUE RECEIVING RE;E%%'\QSTSOR
NEW DATA f6. 2

PRIOR ART



PCT/US03/01913

WO 03/063363

3/8

€ Id
09€—1 NOWO10S-a33Y oNINAYH T 05€
EmJ m@mJ X
TYNOILNTOANOD NOILYINAON
a3aoo GGE -
AHVNIE SIT13YL AHVYNIG-NON [ AHVNIG Gve
1 T 1 T

YNOLLNTOANOD — 0%€ aee —1 Mo07d 4D

1 ) 1

14V dORid

02€—] NOILO3Hd0D

1

ﬁ\omm ]

Gt

MO3HO ALIHVd

il

Gle—

NOILO313d

f

oLe—""

$3d00




PCT/US03/01913

WO 03/063363

09
9 ‘DI o, v

H1Y
aM007d Wva (e | o008
HIA0OIA-VHINI [« \ T HIA0O3A-VHLNI

029 .\ 099 019 \

0
W I 2
G 'OId
AV1Ea €
1Nd1no omm\
M0071d M001d M001d
AINHOS f—— WHLIHODTY |« ONILYHINTD «—o— 1NdNI
/NIIHD s,arnon3 JNOHANAS

—1 4
ova omm\ 0¢s \ 0 _.m\



PCT/US03/01913

WO 03/063363

Z 9ld

1nd1no

092
> ceL—
— Q&L
" 1 0t ova 81 ON¢J oL
= ), N
Mol [€----- MOO1g €—“- Mo01g@ [€T- M09
JANLINDYIN (€ NOILYDOT f¢&———— TVINONATOd [¢—— ONILYHINTD «——e—— 1 NdNI
opp—] HoWed | ---- > douu3 | M --» douwwa |- ./- » INOHANAS |- v -=>

T A ! A
! " 02L AV o:k ofL
| 1 1 !
! TC20 N C

I



PCT/US03/01913

WO 03/063363

6/8

pa—— ] 8 ‘DI
ww ﬁ mﬁ m# S m“ muq _.H S
“ ——— . N
1 I _ I [ . : !
i ! ! | _
" ; € M3 ¢ M3 I MO | " Y0019 IANLINOYIN HOHH3
" " " EMO | TMO | LMD " 30078 NOLLYOO HOHHT
" " L g MO gmo|  [Lmo 009 TYINONATOd HOHH3
" : S " emo. | zmo Lm0 | 30078 HOLYHINTD IWOHANAS
| | | | | s T
i 1 I I I | I I DNIMYHSANYH M¥D01g-VHLNI /M
| | | | | I | |
i | | | | | | |
| | { I | | | ]
I I l ! [ I I [ 018
| | | | | 1 | | \/
| | | |

ZMD L L MO L %0019 IANLINDYIN HOHHA
! ZMD " “ LMD " 00718 NOLLYOO1 HOHY3
“ | ZMD " _ L MO 0014 TVINONATOd HOHH3

I I

_ | | ZMD : | LMo | 0019 HOLYHANID INOHANAS
| ] | i |
| | |

ONIMYHSANYH X0019-YHLNI O/M




PCT/US03/01913

WO 03/063363

7/8

6 Old

0S6
1Nd1N0
096
| “
_
| 04l +)< “ AV13a
_
0019 € 0019 30014
AINHOL ————] 0074 INHLIHODTY ONILYHINTD — 1ndNI
NTIHD NAIHO s.a1on3 JNOHANAS
cvm\ om.m\ 0c6 \ 0 5\



WO 03/063363 PCT/US03/01913

8/8
1000 /\(1040
POLYNOMAL] | MULTIPLEXER »| REGISTER |—e—» OUT
COEFFICIENT >
K‘IO‘IO L1020 C1030
FIG. 10
PRIOR ART
1100
1140
MULTIPLEXER | 5| REGISTER |-6—»0UT

POLYNOMIAL
COEFFICIENT

L111o C1150 L”QO

C1130

FIG. 11



WO 03/063363 —————PCT/US03/01913 ——

INTERNATIONAL SEARCH REPORT International application No.
PCT/US03/01913

A.  CLASSIFICATION OF SUBJECT MATTER
IPC(7) :HO3SM 13/00
USCL :714/781, 784
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. :  714/781, 782, 7883, 784, 785, 793

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST
search terms: error polynomial, error locator, error magnitude, euclid algorithm, berlekam-massey algorithm

C.  DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,P «TUS 6,415,413 B1 (PAN et al.) 02 July 2002, col. 4, line 46 - col. 5, | 1-11
line 6.

AP ~1US 6,374,383 B1 (WENG) Figure 1 and col. 3, lines 1-59. 1-11

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
"E" earlier document published on or after the international filing date X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other o X . i X
special reason (as specified) Y docu.ment of particular releyance;' the claimed invention cannot E!e
considered to involve an inventive step when the document is
o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p" document p.ub.lished prior: to the international filing date but later  wgu document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the:international search report
28 MARCH 2003 R 2003
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 EMMANUEL Jy. MOISE ‘g 4,7 kbl
. . 1Tl L » = oo
Facsimile No. ~ (708) 305-3230 Telephone No. (70?{%0%—976 sz

Form PCT/ISA/210 (second sheet) (July 1998)*



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

