EP 1 162 538 B1

\\)soocm; <EP

(19) p)

Europdisches Patentamt
European Patent Office

Office européen des brevets
(12)
(45) Date of publication and mention
of the grant of the patent:
12.05.2004 Bulietin 2004/20
(21) Application number: 01119226.7

(22) Date of filing: 12.02.1999

IR ERROCTATRIT RN

EP 1162 538 B1

(1)

EUROPEAN PATENT SPECIFICATION

(51) intcr”: GO6F 11/14, GO6F 9/46,
GO6F 12/08

(54) Transferring a resource from a first cache to a second cache

Ubertragung von Betriebsmitteln von einem Cache zu einem zweiten Cache

Transfert d’'une ressource d’une premiére mémoire cache vers une seconde mémoire cache

(84) Designated Contracting States:
DE FR GB NL

(30) Priority: 13.02.1998 US 74587 P
24.11.1998 US 199120

(43) Date of publication of application:
12.12.2001 Bulletin 2001/50

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
99906927.1 /1 055 173

(73) Proprietor: ORACLE CORPORATION
Redwood Shores, CA 94065 (US)

(72) Inventors:
¢ Bamford, Roger J.
San Francisco, CA 94109 (US)
* Klots, Boris
Belmont, CA 94002 (US)

(74) Representative: Viering, Jentschura & Partner
Postfach 22 14 43
80504 Miinchen (DE)

(56) References cited:
EP-A- 0 471 282
US-A- 5 327 556

EP-A- 0 657 813

e AHMED R E ET AL: "Cache-aided rollback error
recovery (CARER) algorithm for shared-memory
multiprocessor systems"” INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING. (FTCS). NEWCASTLE UPON
TYNE, JUNE 26 - 28, 1990, INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING SYSTEMS. (FTCS), LOS
ALAMITOS, IEEE COMP. SOC. PRESS, US, vol.
SYMP. 20, 26 June 1990 (1990-06-26), pages
82-88, XP010019527 ISBN: 0-8186-2051-X

* KERMARREC A-M ET AL: "A RECOVERABLE
DISTRIBUTED SHARED MEMORY
INTEGRATING COHERENCE AND
RECOVERABILITY" 25TH. INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING. DIGEST OF PAPERS. PASADENA,
JUNE 27 - 30, 1995, INTERNATIONAL
SYMPOSIUM ON FAULT TOLERANT
COMPUTING, LOS ALAMITOS, IEEE COMP.
SOC. PRESS, US, vol. SYMP. 25, 27 June 1995
(1995-06-27), pages 289-298, XP000597800
ISBN: 0-7803-2965-1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. it shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

116253881 | >

BNSDOCID: <EP

i EP 1 162 538 B1 .2

Description
FIELD OF THE INVENTION

[0001] The presentinvention relates to techniques for
reducing the penalty associated with one node request-
ing data from a data store when the most recent version
of the requested data resides in the cache of another
node.

BACKGROUND OF THE INVENTION

[0002] To improve scalability, some database sys-
tems permit more than one database server (each run-
ning separately) to concurrently access shared storage
such as stored on disk media. Each database server has
a cache for caching shared resources, such as disk
blocks. Such systems are referred to herein as parallel
server systems.

[0003] One problem associated with parallel server
systems is the potential for what are referred to as
“pings". A ping occurs when the version of a resource
that resides in the cache of one server must be supplied

to the cache of a different server. Thus, a ping occurs
after 2 database server A modifies resource x in
its cache, and database server B requires resource x for
modification. Database servers A and B would typically
run on different nodes, but in some cases might run on
the same node.

[0004] One approach to handling pings is referred to
herein as the "disk intervention" approach. The disk in-
tervention approach uses a disk as intermediary storage
to transfer the latest version of the resource between
two caches. Thus, in the example given above, the disk
intervention approach requires database server 1 to

whan
waoh,

‘write its cache version of resource x to disk, and for da-

tabase server 2 to retrieve this version from disk into its
cache. The disk intervention approach's reliance on two
disk I/Os per inter-server transfer of a resource limits
the scalability of parallel server systems. Specifically,
the disk I/Os required to handle a ping are relatively ex-
pensive and time consuming, and the more database
servers that are added to the system, the higher the
number of pings.

[0005] However, the disk intervention approach does
provide for relatively efficient recovery from single data-
base server failures, in that such recovery only needs
to apply the recovery (redo) log of the failed database
server. Applying the redo log of the failed database serv-
er ensures that all of the committed changes that trans-
actions on the failed database server made to the re-
sources in the cache of the failed server are recovered.
The use of redo logs during recovery are described in
detail in U.S. Patent Application No. 08/784,611, entitled
"CACHING DATA IN RECOVERABLE OBJECTS", filed
on January, 21, 1997.

[0006] Parallel server systems that employ the disk
intervention approach typically use a protocol in which

116253881 | >

10

15

20

25

30

35

40

45

50

55

all global arbitration regarding resource access and
modifications is performed by a Distributed Lock Man-
ager (DLM). The operation of an exemplary DLM is de-
scribed in detail in U.S. Patent Application Number
08/669,689, entitted "METHOD AND APPARATUS FOR
LOCK CACHING?, filed on June 24, 1996.

[0007] In typical Distributed Lock Manager systems,
information pertaining to any given resource is stored in
alock object that corresponds to the resource. Each lock
object is stored in the memory of a single node. The lock
manager that resides on the node on which a lock object
is stored is referred to as the Master of that lock object
and the resource it covers.

[0008] In systems that employ the disk intervention
approach to handling pings, pings tend to involve the
DLM in a variety of lock-related communications. Spe-
cifically, when a database server (the "requesting serv-
er') needs to access a resource, the database server
checks to see whether it has the desired resource
locked in the appropriate mode: either shared in case of
a read, or exclusive in case of a write. If the requesting
database server does not have the desired resource
locked in the right mode, or does not have any lock on
the resource, then the requesting server sends a re-
quest to the Master for the resource to acquire the lock
in specified mode.

[0009] Therequest made by the requesting database
server may conflict with the current state of the resource
{e.g. there could be another database server which cur-
rently holds an exclusive lock on the resource). If there
is no conflict, the Master for the resource grants the lock
and registers the grant. In case of a conflict, the Master
of the resource initiates a conflict resolution protocol.
The Master of the resource instructs the database serv-
er that holds the conflicting lock (the "Holder") to down-
grade its lock to a lower compatible mode.

[0010] Unfortunately, if the Holder (e.g. database
server A) currently has an updated ("dirty") version of
the desired resource in its cache, it cannot immediately
downgrade its lock. In order to do downgrade its lock,
database server A goes through what is referred to as
a "hard ping" protocol. According to the hard ping pro-
tocol, database server A forces the redo log associated
with the update to be written to disk, writes the resource
to disk, downgrades its lock and notifies the Master that
database server A is done. Upon receiving the notifica-
tion, the Master registers the lock grant and notifies the
requesting server-that the-requested lock has been
granted. At this point, the requesting server B reads the
resource into its cache from disk.

[0011] As described above, the disk intervention ap-
proach does not allow a resource that has been updated
by one database server (a "dirty resource") to be directly
shipped to another database server, Such direct ship-
ment is rendered unfeasible due to recovery related
problems. For example, assume that a resource is mod-
ified at database server A, and then is shipped directly
to database server B. At database server B, the re-

BNSDOCID: <EP

3 EP 1 162 538 B1 4

source is also modified and then shipped back to data-
base server A. At database server A, the resource is
modified a third time. Assume also that each server
stores all redo logs to disk before sending the resource
to another server to allow the recipient to depend on pri-
or changes.

[0012] After the third update, assume that database
server A dies. The log of database server A contains
records of modifications to the resource with a hole.
Specifically, server A's log does not include those mod-
ifications which were done by database server B. Rath-
er, the modifications made by server B are stored in the
database server B's log. At this point, to recover the re-
source, the two logs must be merged before being ap-
plied. This log merge operation, if implemented, would
require time and resources proportional to the total
number of database servers, includingthose that did not
fail.

[0013] The disk intervention approach mentioned
above avoids the problem associated with merging re-
covery logs after a failure, but penalizes the perform-
ance of steady state parallel server systems in favor of
simple and efficient recovery. The direct shipment ap-
proach avoids the overhead associated with the disk in-
tervention approach, but involves complex and nonscal-
able recovery operations in case of failures.

[0014] The document US-A-5,327,556 teaches a fast
technique for transferring units of data between trans-
action systems in a shared disk environment, whereby
dirty pages are transferred from an owning system to a
requesting system without writing it to disk.

[0015] The document AHMED R. E. ET AL.: "Cache-
Aided Roll-Back Error Recovery (CARER) Algorithms
for Shared-Memory Multiprocessor Systems”, INTER-
NATIONAL SYMPOSIUM ON FAULT TOLERANT
COMPUTING (FTCS), LOS ALAMITOS, US, June
26-28, 1990, IEEE COMP. SOC. PRESS, vol. 20, pages
82-88, 26 June 1990, teaches various cache-aided roll-
back recovery techniques for use in shared-memory
multiprocessor systems.

[0016] Based on the foregoing, it is clearly desirable
to provide a system and method for reducing the over-
head associated with a ping without severely increasing
the complexity or duration of recovery operations.

SUMMARY OF THE INVENTION

[0017] According to the invention, which is defined in
detail in the appended independent claims 1, 22 and 23,
a method, apparatus as well as a computer-readable
medium carrying computer executable instructions are
provided for transferring a resource from the cache of
one database server to the cache of another database
server without first writing the resource to disk. When a
database server (Requestor) desires to modify a re-
source, the Requestor asksforthe current version of the
resource. The database server that has the current ver-
sion (Holder) directly ships the current version to the Re-

1162538B1 | >

10

15

20

25

30

35

40

45

50

55

questor. Upon shipping the version, the Holder loses
permission to modify the resource, but continues to re-
tain a copy of the resource in memory. When the re-
tained version of the resource, or a later version thereof,
is written to disk, the Holder can discard the retained
version of the resource. Otherwise, the Holder does not
discard the retained version. In the case of a server fail-
ure, the prior copies of all resources with modifications
in the failed server's redo log are used, as necessary,
as starting points for applying the failed server's redo
log. Using this technique, single-server failures (the
most common form of failure) are recovered without
having to merge the recovery logs of the various data-
base servers that had access to the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The present invention is illustrated by way of
example, and not by way of limitation, in the figures of
the accompanying drawings in which like reference nu-
merals refer to similar elements and in which:

Figure 1 is a block diagram illustrating cache to
cache transfers of the most recent versions of re-
sources;

Figure 2 is a flowchart illustrating steps for transmlt-
ting a resource from one cache to another without
disk intervention according to an embodiment of the
invention;

Figure 3 is aflowchart illustrating steps for releasing
past images of resources, according to an embod-
iment of the invention;)
Figure 4 is a flowchart illustrating steps for recover-
ing after a single database server failure accordmg
to an embodiment of the invention;

Figure 5 is a block diagram illustrating a checkpoint
cycle according to an embodiment of the invention;
and

Figure 6 is a block diagram of a computer system
on which an embodiment of the invention may be
implemented.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0019] A method and apparatus for reducing the over-
head associated with a ping is described. In the foilow-
ing description, for the purposes of explanation, numer- .
ous specific details are set forth in order to provide a
thorough understanding of the present invention. It will
be apparent, however, to one skilled in the art that the
present invention may be practiced without these spe-
cific details. In other database servers, well-known
structures and devices are shown in block diagram form
in order to avoid unnecessarily obscuring the present
invention.

BNSDOCID: <EP

5 EP 1 162 538 B1 6

FUNCTIONAL OVERVIEW

[0020] According to one aspect of the invention, pings
are handled by shipping updated versions of resources
directly between database servers without first being
stored to disk, thus avoiding the I/O overhead associat-
ed with the disk intervention approach. Further, the dif-
ficulties associated with single-instance failure recovery
are avoided by preventing a modified version of a re-
source from being replaced in cache until the modified
resource or some successor thereof has been written to
disk, even if the resource has been transferred to an-
other cache.

[0021] For the purpose of explanation, a copy of a re-
source that cannot be replaced in cache is referred to
herein as a "pinned" resource. The act of making a
pinned resource replaceable is referredto as "releasing”
the resource.

THE M AND W LOCK APPROACH

[0022] According to one aspect of the invention, the
modify and write-to-disk permissions for a resource are
separated. Thus, a database server that has pemission

tc write an updated versicn of a resource from cache to
disk does not necessarily have permmission to update the
resource. Conversely, a database server that has per-
mission to modify a cached version of a resource does
not necessarily have permission to write that cached
version to disk.

[0023] According to one embodiment, this separation
of permissions is enforced through the use of special
locks. Specifically, the permission to modify a resource
may be granted by a "M" lock, while the permission to
write a resource to disk may be granted by a "W" lock.
However, it should be noted that the use of M and W
locks as described herein represents but one mecha-
nism for preventing a transferred version of a resource
from being replaced in cache until that version or a suc-
cessor thereof is written to disk.

[0024] Referring to Figure 2, it illustrates the steps
performed in response to a ping in a database system
that uses M and W locks, according to one embodiment
of the invention. At step 200, a database server that de-
sires to modify a resource requests the M lock from the
Master for the resource (i.e. the database server that
manages the locks for the resource). At step 202, the
Master instructs the database server currently holding
the M lock for the resource (" the Holder")to transfer the
M lock together with its cached version of the resource
to the requesting database server via direct transfer
over the communication channel(s) connecting the two
servers (the "interconnect").

[0025] At step 204, the Holder sends the current ver-
sion of the resource and the M lock to the Requestor. At
step 206, the Holder informs the Master about the trans-
fer of the M lock. At step 208, the Master updates the
lock information for the resource to indicate that the Re-

116253881 | >

10

15

20

25

30

35

40

45

50

55

questor now holds the M lock.
Pi RESOURCES

[0026] The holder of the M lock does not necessarily
have the W lock, and therefore may not have permission
to write the version of the resource that is contained in
its cache out to disk. The transferring database server
(i.e. the database server that last held the M lock) there-
fore continues to pin its version of the resource in dy-
namic memory because it may be asked to write out its
version to disk at some future point, as described below.
The version of the resource that remains in the transfer-
ring database server will become out-of-date if the re-
ceiving database server modifies its copy of the re-
source. The transferring database server will not nec-
essarily know when the receiving database server (or a
successor thereof) modifies the resource, so from the
time the transferring database server sends a copy of
the resource, it treats its retained version as "potentially
out-of-date". Such potentially out-of-date versions of a
resource are referred to herein as past-image resources
(P! resources).

RE!L EASING Pl RESOQURCES

[0027] After a cached version of a resource is re-
leased, it may be overwritten with new data. Typically, a
dirty version of a resource may be released by writing
the resource to disk. However, database servers with Pl
resources in cache do not necessarily have the right to
store the Plresources to disk. One technique for releas-
ing P! resources under these circumstances is illustrat-
ed in Figure 3.

[0028] Referring to Figure 3, when a database server
wishes to release a Pl resource in its cache, it sends a
request for the W lock (step 300) to the distributed lock
manager (DLM). In step 302, the DLM then orders the
requesting database server, or some database server
that has a later version of the resource (a successor) in
its cache, to write the resource out to disk. The database
server thus ordered to write the resource to diskiis grant-
ed the W lock. After the database server that was grant-
ed the W lock writes the resource to disk, the database
server releases the W lock.

[0029] The DLM then sends out a message to all da-
tabase servers indicating the version of the resource
written out (step 304), so that all earlier-Pl versions of
the resource can be released (step 306). For example,
assume that the version written to disk was modified at
time T10. A database server with a version of the re-
source that was last modified at an earlier time T5 could
now use the buffer in which it is stored for other data. A
database server with a version that was modified at a
later time T11, however, would have to continue to retain
its version of the resource in its memory.

BNSDOCID: <EP

7 EP 1 162 538 B1 8

PING MANAGEMENT UNDER THE M AND W LOCK
APPROACH

[0030] Accordingto one embodiment of the invention,
the M and W lock approach may be implemented to han-
dle pings as shall now be described with reference to
Figure 1. Referring to Figure 1, it is a block diagram that
illustrates four database servers A, B, C and D, all of
which have access to a database that contains a partic-
ular resource. At the time illustrated, database servers
A, Band C all have versions of the resource. The version
held in the cache of database server A is the most re-
cently modified version of the resource (modified attime
T10). The versions held in database servers B and C
are Pl versions of the resource. Database server D is
the Master for the resource.

[0031] At this point, assume that another database
server (the "Requestor") desires to modify the resource.
The Requestor requests the modify lock from the Mas-
ter. The Master sends a command to database server
A to down-convert the lock (a "BAST") due to the con-
flicting request from the Requestor. In response to the
down-convert command, the current image of the re-
source (whether clean or dirty) is shipped from database
server A to the Requestor, together with a permission to
modify the resource. The permission thus shipped does
not include a permission to write the resource to disk.
[0032] When database server A passes the M lock to
the Requestor, database server A downgrades his M
lock to a "hold" lock (and "H lock"). The H lock indicates
that the database server A is holding a pinned Pl copy.
Ownership of an H lock obligates the owner to keep the
P! copy in its buffer cache, but does not give the data-
base server any rights to write the P! copy to disk. There
can be multiple concurrent H holders for the same re-
source, but not more than one database serveratatime
can write the resource, therefore only one database
server can hold a W lock on the resource.

[0033] Priorto shippingthe resource, database server
A makes sure thatthe log is forced (i.e. that the recovery
log generated for the changes made by database server
A to the resource are durably stored). By passing the
modification permission, database server A loses its
own right to modify the resource. The copy of the re-
source (as it was just at the moment of shipping) is still
kept at the shipping database server A. After the ship-
ment of the resource, the copy of the resource retained
in database server A is a Pl resource.

COURTESY WRITES

[0034] After a database server ships a dirty resource
directly to another database server, the retained copy of
the resource becomes a pinned Pl resource whose buff-
er cannot be used for another resource until released.
The buffers that contain Pl resources are referred to
herein as Pl buffers. These buffers occupy valuable
space in the caches of the database servers, and even-

1162538B1 | >

15

20

25

30

35

40

45

50

55

tually have to be reused for other data.

[0035] To replace Pl buffers in the buffer cache (to be
aged out or checkpointed) a new disk write protocol, re-
ferred to herein as "courtesy writes", is employed. Ac-
cording to the courtesy write protocol, when a database
server needs to write a resource to disk, the database
server sends the request to the DLM. The DLM selects
a version of the resource to be written to disk, finds the
database server that has the selected version, and
causes that database serverto write the resource to disk
on behalf of the database server which initiated the write
request. The dafabase serverthat actually writes the re-
source to disk may be the database server which re-
quested the write, or some other database server, de-
pending on the latest trajectory of the resource.

[0036] Writing the selected version of the resource to
disk releases all P| versions of the resource in all buffer
caches of a cluster that are as old or oider than the se-
lected version that was written to disk. The criteria used
to select the version that will be written to disk shall be
described in greater detail hereafter. However, the se-
lected version can be either the latest Pl version known
to the Master or the current version ("CURR") of the re-
source. One benefit of selecting a version otherthan the
current version is that selection of another version
leaves the current copy uninterruptedly available for
modifications.

[0037] A database serverthatis holding a Pl resource
can write out its Pl copy provided that it has acquired a
W lock on the resource. The writes of the resource are
decoupled from the migration of the CURR resource im-
age among the various database servers.

EFFICIENCY FACTORS

[0038] There is no need to write a Pl copy each time
a resource is shipped to another database server.
Therefore, the goal of durably storing resources is to
keep the disk copies recent enough, and to keep the
number of non-replaceable resources in the buffer cach-
es reasonable. Various factors determine the efficiency
of a system that employs the courtesy write protocol de-
scribed above. Specifically, it is desirable to:

(1) minimize I/0 activity caused by writing dirty re-
sources to disk;

(2) keep the disk versions of resources current
enough to speed up recovery operations after a fail-
ure; and

(3) prevent overflow of the buffer cache with pinned
Pl resources.

[0039] Maximizing the first criteria has a negative im-
pact on the second and third criteria, and visa versa.
Therefore, a trade off is necessary. According to one
embodiment of the invention, a self-tuning algorithm
may be used which combines different techniques of
checkpointing (LRU mixed with occasional continuous

BNSDOCID: <EP

9 EP 1 162 538 B1

checkpointing) coupled with a control over the total IO
budget.

THE NEWER-WRITE APPROACH

[0040] An alternative to the courtesy-write protocol
described above is referred to herein as the write-newer
approach. According to the write-newer approach, all
database servers have permission to write their Pl re-
sources to disk. However, prior to doing so, a database
server acquires a lock on the disk-based copy of the re-
source. After acquiring the lock, the database server
compares the disk version with the Pl version that it de-
sires to write. If the disk version is older, then the Pl ver-
sion is written to disk. If the disk version is newer, then
the Pl version may be discarded and the buffer that it
occupied may be reused.

[0041] Unlike the courtesy-write protocol, the newer-
write approach allows a database server to release its
own Pl version, either by writing it to disk or determining
that the disk version is newer. However, the newer-write
approach increases contention for the lock of the disk-
based copy, and may incur a disk-1/O that would not
have been incurred with the courtesy-write approach.

PERMISSION STRINGS

[0042] Typical DLMs govern access to resources
through the use of a limited number of lock modes,
where the modes are either compatible or conflicting.
According to one embodiment, the mechanism for gov-
erning access to resources is expanded to substitute
lock modes with a collection of different kinds of permis-
sions and obligations. The permissions and obligations
may include, for example, the permission to write a re-
source, to modify a resource, to keep a resource in
cache, etc. Specific permissions and obligations are de-
scribed in greater detail below.

[0043] According to one embodiment, permissions
and obligations are encoded in permission strings. A
permission string might be augmented by a resource
version number since many permissions are related to
a version of a resource rather than to the resource itself.
Two different permission strings are conflicting if they
demand the same exclusive permission for the same
version of the resource (e.g. current version for modifi-
cation or a disk access for write). Otherwise they are
compatible. -

CONCURRENCY USING PERMISSION TRANSFERS

[0044] As mentioned above, when aresource is mod-
ified at one database server and is requested for further
modifications by another database server, the Master
instructs the database serverthat holds the current copy
(CURR copy) of the resource to pass its M lock (the right
to modify) together with the CURR copy of the resource
to the other database server. Significantly, though the

116253881 | >

10

15

20

ny
0

30

35

40

45

50

55

10

request for the M lock is sent to the master, the grant is
done by some other database server (the previous M
lock holder). This triangular messaging model deviates
significantly from the traditional two-way communication
where the response to a lock request is expected from
the database server containing the lock manager to
which the lock request was initially addressed.

[0045] According to one embodiment of the invention,
when the holder of the CURR copy of a resource (e.g.
database server A) passes the M lock to another data-
base server, database server A notifies the Master that
the M lock has been transferred. However, database
server A does not wait for acknowledgment that the
Master received the notification, but sends the CURR
copy and the M lock prior to receiving such acknowl-
edgement. By not waiting, the round trip communication
between the master and database server A does not im-
pose a delay on the transfer, thereby yielding a consid-
erable saving on the protocol latencies.

[0046] Because permissions are transferred directly
from the current holder of the permission to the reques-
tor of the permission, the Master does not always know
the exact global picture of the lock grants. Rather, the
Master knows only about the trajectory of the M lock,
about the database servers which just theld it lately' but
not aboutthe exactlocation of the lock at any given time.
According to one embodiment, this "lazy" notification
scheme is applicable to the M locks but notto W, X, or
S locks (or their counterparts). Various embodiments of
a locking scheme are described in greater detail below.

FAILURE RECOVERY

[0047] Within the context of the present invention, a
database server is said to have failed if a cache asso-
ciated with the server becomes inaccessible. Database
systems that employ the direct, inter-server shipment of
dirty resources using the techniques described herein
avoid the need for merging recovery logs in response to
a single-server failure. According to one embodiment,
single-serverfailures are handied as illustrated in Figure
4. Referring to Figure 4, upon a single-database server
failure, the recovery process performs the following for
each resource held in the cache of the failed database
server:

(step 400) determine the database server that held
the latest version of the resource; . .
(step 402) if the database server determined in step
400 is not the failed database server, then (step
404) the determined database server writes its
cached version of the resource to disk and (step
406) all PI versions of the resource are released.
This version will have all the committed changes
made to the resource (including those made by the
failed database server) and thus no recovery log of
any database server need be applied.

BNSDOCID: <EP

1 EP 1 162 538 B1

[0048] if the database server determined in step 402
is the failed database server, then (step 408) the data-
base server holding the latest Pl version of the resource
writes out its cached version of the resource to disk and
(step 410) all previous Pl versions are released. The
version written out to disk will have the commitied
changes made to the resource by all database servers
except the failed database server. The recovery log of
the failed database server is applied (step 412) to re-
cover the committed changes made by the failed data-
base server.

[0049] Alternatively, the latest PI version of the re-
source may be used as the starting point for recovering
the current version in cache, rather than on disk. Spe-
cifically, the appropriate records from the recovery log
of the failed database server may be applied directly to
the latest Pl version that resides in cache, thus recon-
structing the current version in the cache of the data-
base server that holds the latest Pl version.

MULTIPLE DATABASE SERVER FAILURE

[0050] In case of a multiple server failure, when nei-
ther the latest Pl copy nor any CURR copy have sur-
vived, it may happen that the changes made to the re-
source are spread over multiple logs of the failed data-
base servers. Under these conditions, the logs of the
failed database servers must be merged. However, only
the logs of the failed database servers must be merged,
and not logs of all database servers. Thus, the amount
of work required for recovery is proportional to the extent
of the failure and not to the size of the total configuration.
{0051] In systems where it is possible to determine
which failed database servers updated the resource, on-
ly the logs of the failed database servers that updated
the resource need to be merged and applied. Similarly,
in systems where it is possible to determine which failed
database servers updated the resource subsequent to
the durably stored version of the resource, only the logs
of the failed database servers that updated the resource
subsequentto the durably stored version of the resource
need to be merged and applied.

EXEMPLARY OPERATION

[0052] For the purpose of explanation, an exemplary
series of resource transfers shall be described with ref-
erence to Figure 1. During the series of transfers, a re-
source is accessed at multiple database servers. Spe-
cifically, the resource is shipped along a cluster nodes
for modifications, and then a checkpoint at one of the
database servers causes a physical |/O of this resource.
[0053] Referring again to Figure 1, there are 4 data-
base servers: A,B,C, and D. Database server D is the
master of the resource. Database server C first modifies
the resource. Database server C has resource version
8. At this point, database server C also has an M lock
(an exclusive modification right) on this resource.

116253881 | >

10

15

20

25

30

35

40

45

50

55

12

[0054] Assume that at this point, database server B
wants to modify the resource that database server C
currently holds. Database server B sends a request (1)
for an M lock on the resource. Database server D puts
the request on a modifiers queue associated with the
resource and instructs (message 2: BAST) database
server C to:

(a) pass modification permission (M lock) to data-
base server B,

(b) send current image of the resource to database
server B, and

(c) downgrade database server C's M lock to an H
lock.

[0055] After this downgrade operation, C is obligated
to keep its version of the resource (the Pl copy) in its
buffer cache.

[0056] Database server C performs the requested op-
erations, and may additionally force the log on the new
changes. In addition, database server C lazily notifies
(3 AckM) the Master that it has performed the operations
(AST). The notification also informs the Master that da-
tabase server C keeps version 8. Database server C
does not wait for any acknowledgment from the Master.
Consequently, it is possible that database server B gets
an M lock before the Master knows about it.

[0057] Meanwhile, assume that database server A al-
so decides to modify the resource. Database server A
sends a message (4) to database server D. This mes-
sage may arrive before the asynchronous notification
from database server C to database server D.

[0058] Database server D (the Master) sends a mes-
sage (5) to database server B, the last known modifier
of this resource, to pass the resource (after B gets and
modifies it) to database server A. Note that database
server D does not know whether the resource is there
or not yet. But database server D knows that the re-
source will eventually arrive at B.

[0059] After database server B gets the resource and
makes the intended changes (now B has version 9 of
the resource), it downgrades its own lock to H, sends
(6) the current version of the resource ("CURR re-
source") to database server A together with the M lock.
Database server B also sends a lazy notification (6
AckM) to the Master.

[0060] While this resource is being modified at data-
base server A, assume that a checkpointing mechanism
at database server C decides to write the resource to
disk. Regarding the asynchronous events described
above, assume that both 3AckM and 6 AckM have al-
ready arrived to the master. The operations performed
in response to the checkpointing operation are illustrat-
ed with reference to Figure 5.

[0061] Referringto Figure 5, since database serverC
holds an H lock on version 8, which does not include a
writing privilege, database server C sends message 1
to the Master (D) requesting the W (write) lock for its

BNSDOCID: <EP

13

version. At this point in time, the Master knows that the
resource was shipped to database server A (assuming
that the acknowledgments have arrived). Database
server D sends an (unsolicited) W lock to database serv-
er A (2 BastW) with the instruction to write the resource.
[0062] In the general case, this instruction is sent to
the last database server whose send notification has ar-
rived (or to the database server which is supposed to
receive the resource from the last known sender). Da-
tabase server A writes (3) its version of the resource.
The resource written by database server A is version 10
of the resource. By this time, the current copy of the re-
source might be somewhere else if additional request-
ors demanded the resource. The disk acknowledges
when the write is completed (4Ack).

[0063] When the write completes, database server A
provides database server D with the information that
version 10 is now on disk (5 AckW). Database server A
voluntarily downgrades its W lock (which it did not ask
for in the first place).

[0064] The Master (D) goes to database server C and,
instead of granting the requested W lock, notifies C that
the write completed (6). The Master communicates the
current disk version number to the holders of all Pl cop-
ies, s0 that aii earlier Pi copies at C can bereleased. In
this scenario, since database server C has no Pl copies
older than 10, it downconverts database server C's lock
to NULL.

[0065] The Master also sends an acknowledgment
message to database server B instructing database
server B to release its Pl copies which are earlier than
10 (7AckW(10)).

THE DISTRIBUTED LOCK MANAGER

[0066]
Master in a system that implements the direct-shipping
techniques described herein may have incomplete in-
formation about lock states at the database servers. Ac-
cording to one embodiment, the Master of a resource
maintains the following information and data structures:

(1) a queue of CURR copy requestors (either for
modification or for shared access) (the upper limit
on the queue length is the number of database serv-
ers in the cluster). This queue is referred to herein
as the Current Request Queue (CQ).

-{2) when a resource is sent to another CURR re-
questor, the senders lazily (asynchronously in a
sense that they do not wait for a acknowledgment)
notify the Master about the event. Master keeps
track of the last few senders. This is a pointer on
the CQ.

(3) the version number of the latest resource ver-

sion on disk.

(4) W lock grants and a W requests queue.
According to one embodiment, W pemission is

synchronous: it is granted only by the master, and

116253881 | >

In contrast with conventional DLM logic, the

EP 1 162 538 B1

10

15

20

I
>

30

35

40

45

50

55

14

the master ensures that there is not more than one
writer in the cluster for this resource. The Master
can make the next grant only after being notified
that the previous write completed and the W lock
was released. If there are more than one modifier,
a W lock is given for the duration of the write and
voluntarily released after the write. If there is only
one modifier, the modifier can keep the W permis-
sion.

(5) a list of H lock holders with their respective re-
source version numbers. This provides information
(though possibly incomplete) about the Pl copies in
buffer caches.

DISK WARM UP

[0067] Since the direct-shipment techniques de-
scribed herein significantly segregate the life cycles of
the buffer cache images of the resources and the disk
images, there is a need to bridge this gap on recovery.
According to one embodiment, a new step of recovery,
between DLM recovery and buffer cache recovery, is
added. This new recovery step is referred to herein as
'disk warm up'.

(0088l Although

Althcugh during normal cache operations a
master of a resource has only approximate knowledge
of the resource location and about the availability of Pl
and CURR copies, on DLM recovery (which precedes
cache recovery), the master of a resource collects com-
plete information about the availability of the latest Pl
and CURR copies in the buffer caches of surviving da-
tabase servers. This is true whether or not the master
of the resource is a new master (if before the failure the
resource was mastered on a failed database server) or
a surviving master.

[0069] After collecting this information, the Master
knows which database server possesses the latest copy
of the resource. At 'disk warm up' stage, the master is-
sues a W lock to the owner of this latest copy of the
resource (CURR if it is available, and latest PI copy if
the CURR copy disappeared together with the failed da-
tabase server). The master then instructs this database
server to write the resource to disk. When the write com-
pletes, all other database servers convert their H locks
to NULL locks (because the written copy is the latest
available). After those locks have been converted,
cache recovery can proceed as hommal.

[0070] Some optimizations are possible during the
disk warm up stage. For example, the resource does not
necessarily have to be written to disk if the latest image
is in the buffer cache of the database server performing
recovery.

ALTERNATIVES TO LOCK-BASED SCHEME

[0071] Various techniques for directly shipping dirty
copies of resources between database servers have
been described in the context of a locking scheme that

15 EP 1 162 538 B1 16

uses special types of locks (M, W and H locks). Specif-
ically, these special locks are used to ensure that (1)
only the server with the current version of the resource
modifies the resource, (2) all servers keep their Pl ver-
sions of the resource until the same version or a newer
version of the resource is written to disk, and (3) the disk-
based version of the resource is not overwritten by an
older version of the resource.

[0072] However, alock-based access control scheme
is merely one context in which the present invention may
be implemented. For example, those same three rules
may be enforced using any variety of access control
schemes. Thus, present invention is not limited to any
particular type of access control scheme.

[0073] For example, rather than governing access to
a resource based on locks, access may be governed by
tokens, where each token represents a particular type
of permission. The tokens for a particular resource may
be transferred among the parallel servers in a way that
ensures that the three rules stated above are enforced.
[0074] Similarly, the rules may be enforced using a
state-based scheme. In a state-based scheme, a ver-
sion of a resource changes state in response to events,
where the state of a version dictates the type of actions
that may be performed on the version. For example, a
database server receives the current version of a re-
source in its "current" state. The current state allows
modification of the resource, and writing to disk of the
resource. When a database server transfers the current
version of the resource to another node, the retained
version changes to a "P! writeable" state. In the Pl write-
able state, the version (1) cannot be modified, (2) cannot
be overwritten, but (3) can be written to disk. When any
version of the resource is written to disk, all versions that
are in Pl writeable state that are the same or older than
the version that was written to disk are placed in a "Pi
released" state. In the Pl released state, versions can
be overwritten, but cannot be modified or written to disk.

HARDWARE OVERVIEW

[0075] Figure 6 is a block diagram that illustrates a
computer system 600 upon which an embodiment of the
invention may be implemented. Computer system 600
includes a bus 602 or other communication mechanism
for communicating information, and a processor 604
coupled with bus 602 for processing information. Com-

puter system 600 also includes a main memory 606, -

such as a random access memory (RAM) or other dy-
namic storage device, coupled to bus 602 for storing in-
formation and instructions to be executed by processor
604. Main memory 606 also may be used for storing
temporary variables or other intermediate information
during execution of instructions to be executed by proc-
essor 604. Computer system 600 furtherincludes a read
only memory (ROM) 608 or other static storage device
coupled to bus 602 for storing static information and in-
structions for processor 604. A storage device 610, such

116253881 | >

10

15

20

25

30

3s

40

45

50

55

as a magnetic disk or optical disk, is provided and cou-
pled to bus 602 for storing information and instructions.
[0076] Computer system 600 may be coupled via bus
602 to a display 612, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 614, including alphanumeric and other keys, is
coupled to bus 602 for communicating information and
command selections to processor 604. Another type of
user input device is cursor control 616, such as a mouse,
a trackball, or cursor direction keys for communicating
direction information and command selections to proc-
essor 604 and for controlling cursor movement on dis-
play 612. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., x) and a second
axis (e.g., y), that allows the device to specify positions
in a plane.

[0077] Theinvention is related to the use of computer
system 600 for reducing the overhead associated with
a ping. According to one embodiment of the invention,
the overhead associated with a ping is reduced by com-
puter system 600 in response to processor 604 execut-
ing one or more sequences of one or more instructions
contained in main memory 606. Such instructions may
be read into main memory 606 from another computer-
readable medium, such as storage device 610. Execu-
tion of the sequences of instructions contained in main
memory 606 causes processor 604 to perform the proc-
ess steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in com-
bination with software instructions to implement the in-
vention. Thus, embodiments of the invention are not lim-
ited to any specific combination of hardware circuitry
and software.

[0078) The term "computer-readable medium" as
used herein refers to any medium that participates in
providing instructions to processor 604 for execution.
Such a medium may take many forms, including but not
limited to, non-volatile media, volatile media, and trans-
mission media. Non-volatile media includes, for exam-
ple, optical or magnetic disks, such as storage device
610. Volatile media includes dynamic memory, such as
main memory 606. Transmission media includes coaxial
cables, copper wire and fiber optics, including the wires
that comprise bus 602. Transmission media can also
take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data commu-
nications.

[0079] Common forms of computer-readable media -
include, for example, a floppy disk, a flexible disk, hard
disk, magnetic tape, or any other magnetic medium, a
CD-ROM, any other optical medium, punchcards, pap-
ertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other me-
dium from which a computer can read. ’

[0080] Various forms of computer readable media
may be involved in camrying one or more sequences of

BNSDOCID: <EP

17

one or more instructions to processor 604 for execution.
For example, the instructions may initially be carried on
a magnetic disk of a remote computer. The remote com-
puter can load the instructions into its dynamic memory
and send the instructions over a telephone line using a
modem. A modem local to computer system 600 can
receive the data on the telephone line and use an infra-
red transmitter to convert the data to an infra-red signal.
An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the
data on bus 602. Bus 602 carries the data to main mem-
ory 606, from which processor 604 retrieves and exe-
cutes the instructions. The instructions received by main
memory 606 may optionally be stored on storage device
610 either before or after execution by processor 604.
[0081] Computersystem 600 belongstoashareddisk
system in which data on one or more storage devices
(e.g. disk drives 655) are accessible to both computer
system 600 and to one or more other CPUs (e.g. CPU
651). Inthe illustrated system, shared access to the disk
drives 655 is provided by a system area network 653.
However, various mechanisms may alternatively be
used to provide shared access.

[0082] Computer system 600 also includes a commu-
nication interface 618 coupied to bus §02. Communica-
tion interface 618 provides a two-way data communica-
tion coupling to a network link 620 that is connected to
a local network 622. For example, communication inter-
face 618 may be an integrated services digital network
(ISDN) card or a modem to provide a data communica-
tion connection to a corresponding type of telephone
line. As another example, communication interface 618
may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN.
Wireless links may also be implemented. in any such
implementation, communication interface 618 sends
and receives electrical, electromagnetic or optical sig-
nals that carry digital data streams representing various
types of information.

[0083] Network link 620 typically provides data com-
munication through one or more networks to other data
devices. For example, network link 620 may provide a
connection through local network 622 to a host compu-
ter 624 or to data equipment operated by an Internet
Service Provider (ISP) 626. ISP 626 in turn provides da-
ta communication services through the world wide pack-
et data communication network now commonly referred
to as the "Internet" 628. Local network 622 and Internet
628 both use electrical, electromagnetic or optical sig-
nals that carry digital data streams. The signals through
the various networks and the signals on network link 620
and through communication interface 618, which carry
the digital data to and from computer system 600, are
exemplary forms of carrier waves transporting the infor-
mation.

[0084] Computer system 600 can send messages
and receive data, including program code, through the
network(s), network link 620 and communication inter-

116253881 | >

10

15

20

o
1

30

35

40

45

50

55

10

EP 1 162 538 B1 18

face 618. In the Intemet example, a server 630 might
transmit a requested code for an application program
through Internet 628, ISP 626, local network 622 and
communication interface 618.

- [0085] The received code may be executed by proc-

essor 604 as it is received, and/or stored in storage de-
vice 610, or other non-volatile storage for later execu-
tion. In this manner, computer system 600 may obtain
application code in the form of a carrier wave.

[0086] Whiletechniquesforhandling pings have been
described herein with reference to pings that occur
when multiple database servers have access to a com-
mon persistent storage device, these techniques are not
restricted to this context. Specifically, these techniques
may be applied in any environment where a process as-
sociated with one cache may require a resource whose
current version is located in another cache. Such envi-
ronments include, for example, environments in which
text servers on different nodes have access to the same
text material, environments in which media servers on
different nodes have access to the same video data, etc.
[0087] Handling pings usingthetechniques described
herein provides efficient inter-database server transfer
of resources so uptime performance scales well with in-
creasing number of database servers, and users perda-
tabase server. In addition, the techniques result in effi-
cient recovery from single-database server failures (the
most common type of failure) that scales well with in-
creasing number of database servers.

[0088] Significantly, the techniques described herein
handle pings by sending resources via the IPC trans-
port, not through disk intervention. Consequently, disk
I/Os for resources that result in a ping are substantially
eliminated. A synchronous |/O is involved only as long
as it is needed for the log force. In addition, while disk
I/0 is incurred for checkpointing and buffer cache re-
placement, such I/O does not slow down the buffer ship-
ment across the cluster.

[0089] The direct shipping techniques described
herein also tend to reduced the number of context
switches incurred by a ping. Specifically, the sequence
of round trip messages between the participants of the
protocol (requestor and holder) and the Master, is sub-
stituted by the communication triangle: Requestor, Mas-
ter, Holder, Requestor.

[0090] In the foregoing specification, the invention
has been described with reference to specific embodi-
ments thereof. It will, however, be evident that various
modifications and changes may be made thereto with-
out departing from the scope of the invention. The spec-
ification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.

Claims

1. A method for transferring a resource from a first
cache to a second cache, the method comprising

BNSDOCID: <EP

19 EP 1 162 538 B1 20

the steps of:

retaining a first copy of the resource in said first
cache while transferring a second copy of the
resource from the first cache to the second
cache without first durably storing said re-
source from said first cache to a persistent stor-
age (655); and

retaining at least one copy of the resource in
said first cache until said first copy of the re-
source or a successor thereof is durably stored.

The method of Claim 1 wherein said first cache is a
cache maintained by a first database server (A, B,
C, D) and said second cache is a cache maintained
by a second (A, B, C, D) database server.

The method of Claim 1 further comprising the steps
of:

allowing said first copy of said resource to be
modified in said first cache prior to transferring
said second copy to said second cache; and
preventing said first copy of said resource from
being modified after transferring said second
copy to said second cache.

4. The method of Claim 1 further comprising the steps

of:

after transferring said second copy to said sec-
ond cache, sending a request for permission to
release said first copy;

in response to said request, causing said first
copy or a successor thereof to be durably
stored (302); and

in response to said successor being durably
stored, sending a message that indicates that
said first copy can be released (304).

5. The method of Claim 4 wherein:

the step of sending a request for permission to
release said first copy is performed by a send-
ing process; and

the step of causing said first copy or a succes-
sor thereof to be durably stored includes the
step of causing a process other than the send-
ing process to store a successor to said first
copy of said resource (302).

6. The method of Claim 1 wherein the step of retaining

at least one copy of the resource in said first cache
includes the steps of:

prior to attempting to durably store said first

copy, determining whether a durably stored
copy of said resource is more recent than said

116253881 | >

10

15

20

25

30

35

40

45

50

55

11

first copy;

if said durably stored copy is more recent than
said first copy, then releasing said first copy
without durably storing said first copy; and

if said durably stored copy is not more recent
than said first copy, then durably storing said
first copy.

The method of claim 3 further comprising the step
of transferring a modify permission from a sending
process associated with the first cache (204) to a
receiving process associated with the second
cache along with said second copy of said resource.

The method of Claim 7 wherein:

pemissions for accessing said resource are
governed by a master (D); and

the step of transferring said modify permission
to the receiving process is performed prior to
receiving acknowledgement from said master
(D)for transfer of said modify permission to said
receiving process (204).

9. The method of Claim 1 further comprising the steps

of:

transferring a modify permission from a send-
ing process associated with said first cache to
a receiving process (204) associated with said
second cache along with said second copy of
the resource; :
wherein permissions for accessing said re-
source are governed by a master (D); and
wherein the step of transferring said modify per-
mission to said receiving process is performed
prior to said master (D) receiving acknowledge-
ment of the transfer of said modify permission
to said receiving process (204).

10. The method of Claim 1 further comprising the steps

of:

a receiving process associated with said sec-

ond cache sending a request for said resource

to a master (D) of said resource;

in response to said request from said receiving
- process, said master (D) of said resource send-

inga message to a sending process associated

with said first cache; and

said sending process transferring said second

copy to said receiving process in response to

said message from said master (D).

11. The method of Claim 1 further comprising perform-

ing the following steps after the step of transferring
said second copy to said second cache:

BNSDOCID: <EP

12.

13.

21 EP 1 162 538 B1 22

a sending process associated with said first
cache requesting a lock (300) from a lock man-
ager, wherein said lock grants permission to
write said resource to disk but not permission
to modify said resource;

said lock manager selecting a process that has
a version of said resource that is at least as re-
cent as said first copy;

said lock manager granting said lock to said se-
lected process; and

said selected process writing said version of
said resource to disk.

The method of Claim 11 further comprising the step
of, in response to said version of said resource be-
ing written to disk (302), said lock manager causes
all versions of said resource that are older than said
version to be released (306).

The method of Claim 1 further comprising the steps
of, after a failure of a cache that holds a dirty copy
of said resource:

determining whether the failed cache held the
iaiest version of the resouice {(402);

if the failed cache held the latest version of the
resource, then

writing a latest past image of the resource
to disk (408);

releasing all previous past images of the
resource (410); and

applying a recovery log of said failed cache
to reconstruct the latest version of the re-
source (412).

14. The method of Claim 13 furfher comprising the

steps of:

if the failed cache did not hold the latest version
of the resource, then

writing the latest version of the resource to
disk (404); and

releasing all past images of the resource
(406).

15. The method of Claim 1 further comprising the steps

of, after a failure of a plurality of caches that hoid
dirty versions of said resource:

determining whether any of the failed caches
held the latest version of the resource (400);
and

if any of the failed caches heldthe latest version
of the resource, then

merging and applying the recovery logs of

116253881 | >

10

15

20

)
&

30

35

40

45

50

55

12

16.

17.

18.

19.

said failed caches to reconstruct the latest
version of the resource.

The method of Claim 1, wherein the second copy
of the resource is a dirty version of the resource,
wherein the first cache and the second cache be-
long to a plurality of caches, and further comprising
the steps of:

maintaining separate recovery logs for each
cache of said plurality of caches; and

when a cache of said plurality of caches fails,
recoveringthe failed cache based on the recov-
ery log associated with said failed cache with-
outinspecting the separate recovery logs of the
other caches of said plurality of caches.

The method of Claim 16 wherein each cache of said
plurality of caches is a cache maintained by a sep-
arate database server (A, B, C, D) of a plurality of
database (A, B, C, D) servers.

The method of Claim 16 wherein:

allowing said first copy of said resource to
be modified in said first cache priorto trans-
ferring said second copy to said second
cache; and

preventing said first copy of said resource
from being modified after transferring said
second copy to said second cache.

The method of Claim 1, wherein the first cache re-
sides on a first node of a plurality of nodes (A, B, C,
D}, and the second cache resides on a second node
of said plurality of nodes (A, B, C, D), and further
comprising the steps of:

meodifying said resource in the first cache of the
first node of a plurality of nodes (A, B, C, D) to
create a modified version of said resource;
maintaining a checkpoint for said first node that
indicates where to begin work when said first
node fails;
retaining a first copy of said modified version in
- -said first cache while transferring a second
copy of said modified version from the first
cache to the second cache of the second node
of the plurality of nodes (A, B, C, D) without first
durably storing said modified version from said
first cache to a persistent storage (655); and
in response to an indication that another node
of said plurality of nodes (A, B, C, D) durably
stored a version of said resource that is at least
as recent as said modified version, advancing
the checkpoint.

BNSDOCID: <EP

20.

21.

22,

23.

24.

25.

23 EP 1 162 538 B1 24

The method of Claim 19, further comprising the step
of:

retaining at least one copy of said modified ver-
sion in said first cache until said first copy of
said modified version or a successor thereof is
durably stored.

The method of Claim 19, further comprising the step
of:

in response to the indication that another node
of said plurality of nodes durably stored the ver-
sion of said resource that is at least as recent
as said modified version, releasing said re-
source at the first node (306).

A computer-readable medium carrying one or more
sequences of instructions for transferring a re-
source from a first cache to a second cache, where-
in execution of the one or more sequences of in-
structions by one or more processors causes the
one or more processors to perform the steps of the
method recited in any one of Claims 1-21.

A system for transferring a resource, the system
comprising:

a first node that has a first cache that is com-
municatively coupled to a second cache from
among one or more other caches that are in-
cluded in one or more other nodes;

wherein said first node is configured to retain a
first copy of the resource in the first cache while
transferring a second copy of the resource from
the first cache to the second cache without first
durably storing said resource from said first
cache to a persistent storage (655); and
wherein said first node is configured to retain
at least one copy of the resource in

said first cache until said first copy of the resource
or a successor thereof is durably stored.

The system of Claim 23 wherein said first node is a
first database server (A, B, C, D) and at least one
of said one or more othernodes is second database
server (A, B, C, D) that includes said second cache.

The system of Claim 23, wherein

said first node is configured to allow said first
copy of said resource to be modified in said first
cache prior to transferring said second copy to
said second cache; and

said first node is configured to prevent said first
copy of said resource from being modified after
transferring said second copy to said second

116253881 | >

10

15

20

25

30

35

40

45

50

55

13

cache.

26. The system of Claim 23, wherein:

said first node is configured to send a request
to a master node (D) for permission to release
said first copy, after transferring said second
copy to said second cache; and

said first node is configured to receive a mes-
sage from said master node (D) that indicates
that said first copy can be released after said
master node (D) causes, in response to said re-
quest, said first copy or a successor thereof to
be durably stored.

27. The system of Claim 26, wherein

said first node comprises a sending process
that is configured to send the request for per-
mission to release said first copy; and

a process other than the sending process
stores a successor to said first copy of said re-
source.

28. The system of Claim 23 wherein said first node is

configured to retain at least one copy of the re-
source in said first cache by:

prior to attempting to durably store said first
copy, determining whether a durably stored
copy of said resource is more recent than said
first copy;

if said durably stored copy is more recent than
said first copy, then releasing said first copy
without durably storing said first copy; and

if said durably stored copy is not more recent
than said first copy, then durably storing said
first copy.

29. The system of Claim 25, wherein said first node is

configured to transfer a modify permission from a
sending process associated with the first cache to
a receiving process associated with the second
cache along with said second copy of said resource.

30. The system of Claim 29 wherein:

permissions for accessing said resource are
governed by a master node (D); and

said first node is configured to transfer said
modify permission to the receiving process pri-
or to said first node receiving acknowledge-
ment from said master node (D) for transfer of
said modify permission to said receiving proc-
ess.

31. The system of Claim 23 wherein:

BNSDOCID: <EP

25 EP 1 162 538 B1 26

said first node is configured to transfer a modify
permission from a sending process associated
with said first cache to a receiving process as-
sociated with said second cache along with
said second copy of said resource;
permissions for accessing said resource are
governed by a master (D); and

the transfer of said modify permission to said
receiving process is performed prior to said
master (D) receiving acknowledgement of the
transfer of said modify permission to said re-
ceiving process.

32. The system of Claim 23, wherein:

said first node includes a sending process as-
sociated with said first cache, wherein said
sending process is configuredto receive a mes-
sage from a master node (D) that receives a
request for said resource from areceiving proc-
ess associated with said second cache; and
said sending process transfers said second
copy to said receiving process in response to
said message from said master node (D).

33. The system of Claim 23, wherein:

said first node includes a sending process that
is configured to request a lock from a lock man-
ager after said second copy is transferred to
said second cache, wherein said lock grants
permission to write said resource to disk (655)
but not permission to modify said resource; and
said lock manager selects a process that has a
version of said resource that is at least as re-
cent as said first copy and grants said lock to
said selected process to cause said selected
process to write said version of said resource
to disk (655).

34. The system of Claim 23 wherein said lock manager

causes all versions of said resource that are older
than said version to be released, in response to said
version of said resource being written to disk (655).

35. The system of Claim 23 further comprising:

a master node (D) that is configured to deter-
mine, after a failure of a cache that holds a dirty
copy of said resource, whether a failed cache
held the latest version of the resource; and

wherein, if the failed cache held the latest ver-
sion of the resource, the master node (D) is
configured to cause a latest past image of the
resource to be written to disk (655), to cause ali
previous past images of the resource to be re-
leased, and to cause a recovery log of said
failed cache to be applied to reconstruct the lat-

1162538B1' | >

10

15

20

[\
0

30

35

40

45

50

55

14

36.

37.

38.

39.

40.

41.

est version of the resource.

The system of Claim 35 wherein the master node
(D) is configured to, if the failed cache did not hold
the latest version of the resource, cause the latest
version of the resource to be written to disk (655),
and to cause all past images of the resource to be
released.

The system of Claim 23 further comprising:

a master node (D) that is configured to, after a
failure of a plurality of caches that hold dirty ver-
sions of said resource, determine whether any
of the failed caches held the latest version of
the resource, and if any of the failed caches
held the latest version of the resource, then
merge and apply the recovery logs of saidfailed
caches to reconstruct the latest version of the
resource.

The system of Claim 23,

wherein the first cache and the second cache be-
long to a plurality of caches, wherein a separate re-
covery log ie maintained for each cache of said nlu-

rality of caches, and said system further comprises:

a master node (D) that is configured to recover
a failed cache from among said plurality of
caches based on the recovery log associated
with said failed cache without inspecting the
separate recovery logs of the other caches of
said plurality of caches.

The system of Claim 38, wherein each cache of said
plurality of caches is a cache maintained by a sep-
arate database server of a plurality of database
servers (A, B, C, D).

The system of Claim 38, wherein:

the first node is configured to allow said first
copy of said resource to be modified in said first
cache prior to transferring said second copy to
said second cache; and

the first node is configured to prevent said first
copy of said resource from being modified after
transferring said--second copy to said second
cache.

The system of Claim 23,
wherein said first node is configured to:

modify said resource in the first cache of said

first node to create a modified version of said

resource;

maintain a checkpoint for said first node that in-
. dicates where to begin work when said first

BNSDOCID: <EP

42.

43.

44.

27 EP 1 162 538 B1 28

node fails;

retain a first copy of said modified version in
said first cache while transferring a second
copy of said modified version from the first
cache to the second cache without first durably
storing said modified version from said first
cache to a persistent storage; and

in response to an indication that another node
of said plurality of nodes (A, B, C, D) durably
stored a version of said resource that is at least
as recent as said modified version, advance the
checkpoint.

The system of Claim 41, wherein the first node is
further configured to:

retain at least one copy of said modified version
in said first cache until said first copy of said
modified version or a successor thereof is du-
rably stored.

The system of Claim 41, wherein the first node is
further configured to:

in response to the indication that another node
of said plurality of nodes (A, B, C, D) durably
stored the version of said resource that is at
least as recent as said modified version, re-
lease said resource at the first node.

The system of Claim 23,

wherein said first node is configured to prevent said
first copy from being replaced in said first cache until
saidfirst copy of the resource or a successor thereof
is durably stored.

Patentanspriiche

1.

2,

Verfahren zum Ubertragen einer Ressource von ei-
nem ersten. Zwischenspeicher zu einem zweiten
Zwischenspeicher,

wobei das Verfahren die Schritte aufweist:

Beibehalten einer ersten Kopie der Ressource
in dem ersten Zwischenspeicher wéhrend des
Ubertragens einer zweiten Kopie der Ressour-
ce von dem ersten Zwischenspeicher zu dem
zweiten Zwischenspeicher, ohne die Ressour-
ce von dem ersten Zwischenspeicher vorher
dauerhaft in einen persistenten Speicher (655)
zu speichern; und

Beibehalten mindestens einer Kopie der Res-
source in dem ersten Zwischenspeicher bis die
erste Kopie der Ressource oder ein Versions-
nachfolger von ihr dauerhaft gespeichert ist.

Verfahren geman Anspruch 1, wobei der erste Zwi-

1162538B1 | >

10

15

20

25

30

35

40

45

50

55

15

schenspeicher ein Zwischenspeicher ist, dervon ei-
nem ersten Datenbankserver (A,B,C,D) verwaltet
wird, und der zweite Zwischenspeicher ein Zwi-
schenspeicher ist, der von einem zweiten Daten-
bankserver (A,B,C,D) verwaltet wird.

Verfahren geman Anspruch 1, ferner aufweisend
die Schritte:

Eméglichen, dass die erste Kopie der Res-
source in dem ersten Zwischenspeicher veran-
dert wird, bevor die zweite Kopie zu dem zwei-
ten Zwischenspeicher Ubertragen wird; und
Verhindern, dass die erste Kopie der Ressour-
ce verandert wird, nachdem die zweite Kopie
zu dem zweiten Zwischenspeicher libertragen
worden ist.

4. Verfahren gemaB Anspruch 1, ferner aufweisend

die Schritte:

Senden einer Anforderung fur die Genehmi-
gung zum Freigeben der ersten Kopie, nach-
dem die zweite Kopie zu dem zweiten Zwi-
schenspeicher Gbertragen worden ist;
Veranlassen, dass die erste Kopie oder ein Ver-
sionsnachfolger von ihr als Reaktion auf die An-
forderung dauerhaft gespeichert wird (302);
und

Senden einer Nachricht, die anzeigt, dass die
erste Kopie freigegeben werden kann (304), als
Reaktion darauf, dass der Versionsnachfolger
dauerhaft gespeichert ist.

5. Verfahren gemaf Anspruch 4, wobei:

der Schritt des Sendens einer Anforderung fur
die Genehmigung zum Freigeben der ersten
Kopie mittels eines Sendeprozesses durchge-
fahrt wird; und

der Schritt des Veranlassens, dass die erste
Kopie oder ein Versionsnachfolger von ihr dau-
erhaft gespeichert wird, den Schritt des Veran-
lassens, dass ein Prozess, der ein anderer als
der Sendeprozess ist, einen Versionsnachfol-
ger der ersten Kopie der Ressource speichert,
aufweist (302).

Verfahren gemaB Anspruch 1, wobei der Schritt des
Beibehaltens mindestens einer Kopie der Ressour-
ce in dem ersten Zwischenspeicher die Schritte auf-
weist:

Bestimmen, ob eine dauerhaft gespeicherte
Kopie der Ressource neuer als die erste Kopie
ist, bevor versucht wird die erste Kopie dauer-
haft zu speichern;

Freigeben der ersten Kopie ohne dauerhaftes

BNSDOCID: <EP

29 EP 1 162 538 B1 30

Speichern der ersten Kopie, falls die dauerhaft
gespeicherte Kopie neuer als die erste Kopie
ist; und

dauerhaftes Speichem der ersten Kopie, falls
die dauerhaft gespeicherte Kopie nicht neuer
als die erste Kopie ist.

Verfahren gemaB Anspruch 3, femer aufweisend
den Schritt des Ubertragens einer Anderungsge-
nehmigung von einem Sendeprozess, der dem er-
sten Zwischenspeicher zugeordnet ist (204), zu ei-
nem Empfangsprozess, der dem zweiten Zwi-
schenspeicher zugeordnet ist, zusammen mit der
zweiten Kopie der Ressource.

Verfahren gemaf3 Anspruch 7, wobei:

Genehmigungen fur das Zugreifen auf die Res-
source mittels eines Hauptservers (D) verwal-
tet werden; und

der Schritt des Ubertragens der Anderungsge-
nehmigung zu dem Empfangsprozess vor dem
Empfangen der Bestétigung von dem Haupt-
server (D) fur die Ubertragung der Anderungs-

genehmigung zu dem Empfangsprozess

durchgefihrt wird (204).

9. Verfahren geman Anspruch 1, ferner aufweisend

die Schritte:

Ubertragen einer Anderungsgenehmigung von
einem Sendeprozess, der dem ersten Zwi-
schenspeicher zugeordnet ist, an einen Emp-
fangsprozess (204), der dem zweiten Zwi-
schenspeicher zugeordnet ist, zusammen mit
der zweiten Kopie der Ressource;

wobei Genehmigungen fiir das Zugreifen auf
die Ressource mittels eines Hauptservers (D)
verwaltet werden; und

wobei der Schritt des Ubertragens der Ande-
rungsgenehmigung zu dem Empfangsprozess
durchgeflihrt wird, bevor der Hauptserver (D)
die Bestatigung fur die Ubertragung der Ande-
rungsgenehmigung zu dem Empfangsprozess
empféangt (204).

10. Verfahren gemaB Anspruch 1, ferner aufweisend
die Schritte: S .

ein Empfangsprozess, der dem zweiten Zwi-
schenspeicher zugeordnet ist, sendet eine An-
forderung fur die Ressource an einen Haupt-
server (D) der Ressource;

der Hauptserver (D) der Ressource sendet als
Reaktion auf die Anforderung des Empfangs-
prozesses eine Nachricht zu einem Sendepro-
zess, der dem ersten Zwischenspeicher zuge-
ordnet ist; und '

116253881 | >

5

10

15

20

25

30

35

40

45

50

55

16

der Sendeprozess Ubertragt die zweite Kopie
zu dem Empfangsprozess als Reaktion auf die
Nachricht von dem Hauptserver (D).

11. Verfahren gemaB Anspruch 1, das ferner nach dem

Schritt der Ubertragung der zweiten Kopie zu dem
zweiten Zwischenspeicher die Ausfihrung der fol-
genden Schritte aufweist:

ein Sendeprozess, der dem ersten Zwischen-
speicher zugeordnet ist, fordert eine Sperre
(300) von einem Sperrmanager an, wobei die
Sperre die Genehmigung zum Schreiben der
Ressource auf Platte erteilt, aber nicht die Ge-
nehmigung zur Anderung der Ressource;

der Sperrmanager wahlt einen Prozess aus,
der eine Version der Ressource aufweist, die
mindestens so neu wie die erste Kopie ist;

der Sperrmanager erteilt dem ausgewdhlten
Prozess eine Sperre; und

der ausgewahite Prozess schreibt die Version
der Ressource auf Platte.

. Verfahren geman Anspruch 11, ferner aufweisend

den Schritt, dass der Spermanager als Reaktion
auf das Schreiben der Version der Ressource auf
Platte (302), veranlasst, dass alle Versionen der
Ressource, die élter als die Version sind, freigege-
ben werden (306).

. Verfahren geméan Anspruch 1, das femer, nach ei-

nem Ausfall eines Zwischenspeichers, der eine ver-
schmutzte Kopie der Ressource enthélt, die Schrit-
te aufweist:

Bestimmen, ob der ausgefallene Zwischen-
speicher die letzte Version der Ressource ent-
halten hat (402);

falls der ausgefallene Zwischenspeicher die
letzte Version der Ressource enthalten hat,
dann:

Schreiben der letzten friiheren Abbild-Ko-
pie der Ressource auf Platte (408);
Freigeben aller vorherigen fritheren Ab-
bild-Kopien der Ressource (410); und
Verwenden eines Wiederherstellungspro-
tokolls des ausgefallenen Zwischenspei- -
chers, um die letzte Version der Ressource
zu rekonstruieren (412).

14. Verfahren geman Anspruch 13, ferner auf}‘:veisend

die Schritte: !

falls der ausgefallene Zwischenspeicher nicht
die letzte Version der Ressource enthalten hat,
dann

BNSDOCID: <EP

15.

16.

17.

18.

31

Schreiben der letzten Version der Res-
source auf die Platte (404); und
Freigeben aller friiheren Abbild-Kopien der
Ressource (4086).

Verfahren gemaB Anspruch 1, das ferner, nach ei-
nem Ausfall einer Mehrzahl von Zwischenspei-
chern, die verschmutzte Versionen der Ressource
enthalten, die Schritte aufweist:

Bestimmen, ob einer der ausgefallenen Zwi-
schenspeicher die letzte Version der Ressour-
ce enthalten hat (400); und

falls irgendeiner der ausgefallenen Zwischen-
speicher die letzte Version der Ressource ent-
halten hat, dann:

Zusammenfilhren und Verwenden der
Wiederherstellungsprotokolle der ausge-
fallenen Zwischenspeicher, um die letzte
Version der Ressource zu rekonstruieren.

Verfahren gemaR Anspruch 1, wobei die zweite Ko-
pie der Ressource eine verschmutzte Version der
Ressource ist, wobei der erste Zwischenspeicher
und der zweite Zwischenspeicher zu einer Mehr-
zahl von Zwischenspeichern gehdren, das ferner
die Schritte aufweist:

Verwalten von separaten Wiederherstellungs-
protokollen fur jeden Zwischenspeicher der
Mehrzahl von Zwischenspeichern; und

wenn ein Zwischenspeicher der Mehrzahl von
Zwischenspeichern ausgefallt, Wiederherstel-
len des ausgefallenen Zwischenspeichers ba-
sierend auf dem Wiederherstellungsprotokoll,
das dem ausgefallenen Zwischenspeicher zu-
geordnet ist, ohne die separaten Wiederher-
stellungsprotokolle der anderen Zwischenspei-
cher der Mehrzahl von Zwischenspeichern zu
Uberprifen.

Verfahren gemaB Anspruch 16, wobei jeder Zwi-
schenspeicher der Mehrzahl von Zwischenspei-
chern ein Zwischenspeicher ist, der von einem se-
paraten Datenbank-Server (A, B, C, D) einer Mehr-
zahl von Datenbank-Servern (A, B, C, D) verwaltet

- wird.

Verfahren gemiB Anspruch 16, wobei das Verfah-
ren ferner die Schritte aufweist:

Emoglichen, dass die erste Kopie der Res-
source in dem ersten Zwischenspeicher veran-
dert wird, bevor die zweite Kopie zu dem zwei-
ten Zwischenspeicher Uibertragen wird; und

Verhindern, dass die erste Kopie der Ressour-
ce verdndert wird, nachdem die zweite Kopie

116253881 | >

10

15

20

25

30

35

40

45

50

55

17

EP 1 162 538 B1

19.

20.

21.

22.

32

zu dem zweiten Zwischenspeicher Gbertragen
worden ist.

Verfahren gemaBs Anspruch 1, wobei sich der erste
Zwischenspeicher auf einem ersten Knoten einer
Mehrzahl von Knoten (A, B, C, D) befindet und der
zweite Zwischenspeicher sich auf einem zweiten
Knoten der Mehrzahl von Knoten (A, B, C, D) befin-
det, und das ferner die Schritte aufweist:

Verandern der Ressource in dem ersten Zwi-
schenspeicher des ersten Knotens einer Mehr-
zahlvon Knoten (A, B, C, D), um eine geander-
te Version der Ressource zu erzeugen;
Verwalten eines Kontrollpunkts fir den ersten
Knoten, der anzeigt, wo mit der Arbeit begon-
nen werden muss, wenn der erste Knoten aus-
falit;

Beibehalten einer ersten Kopie der gednderten
Version in dem ersten Zwischenspeicher wéah-
rend des Ubertragens einer zweiten Kopie der
gednderten Version von dem ersten Zwischen-
speicher zu dem zweiten Zwischenspeicher
des zweiten Knotens der Mehrzahl von Knoten
(A, B, C, D), ohne die gednderte Version von
dem ersten Zwischenspeicher vorher dauer-
haft in einen persistenten Speicher (655) zu
speichern; und

Vorversetzen des Kontrollpunkts als Reaktion
auf den Hinweis, das ein anderer Knoten der
Mehrzahl von Knoten (A, B, C, D) eine Version
der Ressource dauerhaft gespeichert hat, die
mindestens so neu wie die geanderte Version
ist.

Verfahren geman Anspruch 19, ferner aufweisend
die Schritte:

Beibehalten mindestens einer Kopie der geén-
derten Version in dem ersten Zwischenspei-
cher bis die erste Kopie der gednderten Version
oder ein Versionsnachfolger von ihr dauerhaft
gespeichert ist.

Verfahren gemaB Anspruch 19, ferner aufweisend
den Schritt:

Freigeben der Ressource an dem ersten Kno-
ten (306) als Reaktion auf den Hinweis, dass
ein anderer Knoten der Mehrzahl von Knoten
die Version der Ressource dauerhaft gespei-
chert hat, die mindestens so neu wie die geén-
derte Version ist.

Computerlesbares Medium, das eine Folge oder
mehrere Folgen von Befehlen fiir die Ubertragung
einer Ressource von einem ersten Zwischenspei-
cher zu einem zweiten Zwischenspeicher enthalt,

BNSDOCID: <EP

23.

24.

25.

26.

33 EP 1 162 538 B1 34

wobei die Ausfliihrung der einen Folge oder der
mehreren Folgen von Befehlen mittels eines Pro-
zessors oder mehrerer Prozessoren den einen Pro-
zessor oder die mehreren Prozessoren veranlasst,
die Schritte des in irgendeinem der Ansprtiche 1-21
geschilderten Verfahrens durchzufiihren.

System zum Ubertragen einer Ressource, welches
System aufweist:

einen ersten Knoten, der einen ersten Zwi-
schenspeicher aufweist, der kommunikativ mit
einem zweiten Zwischenspeicher aus einem
oder mehreren anderen Zwischenspeichem,
die in einem oder mehreren anderen Knoten
enthalten sind, gekoppelt ist;

wobei der erste Knoten eingerichtet ist, eine er-
ste Kopie der Ressource in dem ersten Zwi-
schenspeicher beizubehalten, wahrend des
Ubertragens einer zweiten Kopie der Ressour-
ce von dem ersten Zwischenspeicher zu dem
zweiten Zwischenspeicher, ohne die Ressour-
ce von dem ersten Zwischenspeicher vorher
dauerhaft in einen persistenten Speicher (655)
Zu speicheri; und

wobei der erste Knoten eingerichtet ist, minde-
stens eine Kopie der Ressource in dem ersten
Zwischenspeicher beizubehalten bis die erste
Kopie der Ressource oder ein Versionsnachfol-
ger von ihr dauerhaft gespeichert ist.

System gemaBn Anspruch 23, wobei der erste Kno-
ten ein erster Datenbank-Server (A, B, C, D) istund
mindestens einer der ein oder mehreren anderen
Knoten ein zweiter Datenbank-Server (A, B, C, D)
ist, der den zweiten Zwischenspeicher aufweist.

System gemaB Anspruch 23, wobei

der erste Knoten eingerichtet ist es zu ermég-
lichen, dass die erste Kopie der Ressource in
dem ersten Zwischenspeicher geéndert wird,
bevor die zweite Kopie zu dem zweiten Zwi-
schenspeicher Ubertragen wird; und

der erste Knoten eingerichtet ist, es zu verhin-
dern, dass die erste Kopie der Ressource ver-
andert wird, nachdem die zweite Kopie zu dem
zweiten Zwischenspeicher Ubertragen worden
ist.

System geman Anspruch 23, wobei

der erste Knoten eingerichtet ist, eine Anforde-
rung der Genehmigung fur das Freigeben der
ersten Kopie nach dem Ubertragen der zweiten
Kopie zu dem zweiten Zwischenspeicher an
den Hauptknoten (D) zu senden; und

der erste Knoten eingerichtet ist, eine Nach-

1162538B1 | >

10

15

20

N
4]

30

35

40

45

50

55

18

27.

28.

29.

30.

31.

richt von dem Hauptknoten (D) zu empfangen,
die anzeigt, dass die erste Kopie freigegeben
werden kann, nachdem der Hauptknoten (D) es
als Reaktion auf die Anforderung veranlasst,
dass die erste Kopie oder einen Versionsnach-
folger von ihr dauerhaft gespeichert wird.

System gemaf Anspruch 26, wobei

der erste Knoten einen Sendeprozess auf-
weist, der eingerichtet ist, eine Anforderung der
Genehmigung fur das Freigeben der ersten Ko-
pie zu senden; und

ein anderer Prozess als der Sendeprozess ei-
nen Versionsnachfolger der ersten Kopie der
Ressource speichert.

System gemén Anspruch 23, wobei der erste Kno-
ten eingerichtet ist, mindestens eine Kopie der Res-
source in dem ersten Zwischenspeicher beizube-
halten, durch:

Bestimmen, ob eine dauerhaft gespeicherte
Kopie der Ressource neuer ist als die erste Ko-
pie, bevor versucht wird die erste Konie dau-
erhaft zu speichern;

Freigeben der ersten Kopie ohne dauerhaftes
Speichern der ersten Kopie, falls die dauerhaft
gespeicherte Kopie neuer als die erste Kopie
ist; und

dauerhaftes Speichern der ersten Kopie, falls
die dauerhaft gespeicherte Kopie nicht neuer
als die erste Kopie ist.

System gemaR Anspruch 25, wobei der erste Kno-
ten eingerichtet ist, eine Anderungsgenehmigung
von einem Sendeprozess, der dem ersten Zwi-
schenspeicher zugeordnet ist (204), zu einem Emp-
fangsprozess, der dem zweiten Zwischenspeicher
zugeordnet ist, zusammen mit der zweiten Kopie
der Ressource zu Ubertragen.

System gemanR Anspruch 29, wobei:

Genehmigungen fur das Zugreifen auf die Res-
source mittels eines Hauptservers (D) verwal-
tet werden; und

der erste Knoten eingerichtet ist, die Ande-
rungsgenehmigung zu dem Empfangsprozess
zu Ubertragen, bevor der erste Knoten die Be-
stdtigung von dem Hauptserver (D) fiir die
Ubertragung der Anderungsgenehmigung zu
dem Empfangsprozess empfangt.

System geman Anspruch 23, wobei:

der erste Knoten eingerichtet ist, eine Ande-
rungsgenehmigung von einem Sendeprozess,

BNSDOCID: <EP

35

der dem ersten Zwischenspeicher zugeordnet
ist, an einen Empfangsprozess, der dem zwei-
ten Zwischenspeicher zugeordnet ist, zusam-
men mit der zweiten Kopie der Ressource zu
Ubertragen;

Genehmigungen fiir das Zugreifen auf die Res-
source mittels eines Hauptservers (D) verwai-
tet werden; und

das Ubertragen der Anderungsgenehmigung
zu dem Empfangsprozess durchgefuhrt wird,
bevor der Hauptserver (D) die Bestatigung fur
die Ubertragung der Anderungsgenehmigung
zu dem Empfangsprozess empfangt.

32. System geméB Anspruch 23, wobei:

der erste Knoten einen Sendeprozess auf-
weist, der dem ersten Zwischenspeicher zuge-
ordnet ist, wobei der Sendeprozess eingerich-
tet ist, eine Nachricht von einem Hauptknoten
(D) zu empfangen, der eine Anforderung fur die
Ressource von einem Empfangsprozess, der
dem zweiten Zwischenspeicher zugeordnet ist,
empfangt; und

der Sendeprozess die zweite Kopie zu dem
Empfangsprozess als Reaktion auf die Nach-
richt von dem Hauptserver (D) Ubertragt.

33. Verfahren geman Anspruch 23, wobei:

34.

35.

der erste Knoten einen Sendeprozess auf-
weist, der eingerichtet ist, eine Sperre von ei-
nem Sperrmanager anzufordern, nachdem die
zweite Kopie zu dem zweiten Zwischenspei-
cher Ubertragen ist, wobei die Spetrre die Ge-
nehmigung zum Schreiben der Ressource auf
Platte (655) erteilt, aber nicht die Genehmigung
zur Anderung der Ressource; und

der Sperrmanager einen Prozess auswéhlt, der
eine Version der Ressource aufweist, die min-
destens so neu wie die erste Kopie ist und dem
ausgewahlten Prozess die Sperre erteilt, um
den ausgewahlten Prozess zu veranlassen, die
Version der Ressource auf Platte {(655) zu
schreiben.

System gemaB Anspruch 23, wobei der Sperrma-
nager als Reaktion auf das Schreiben der Version
der Ressource auf Platte (655) veranlasst, dass alle
Versionen der Ressource, die élter als die Version
sind, freigegeben werden.

System gemaB Anspruch 23, ferner aufweisend:
einen Hauptknoten (D), der eingerichtet ist zu
bestimmen, nach einem Ausfall eines Zwi-

schenspeichers, der eine verschmutzte Kopie
der Ressource enthilt, ob ein ausgefallener

116253881 | >

10

15

20

25

30

35

40

45

50

55

19

EP 1 162 538 B1

36.

37.

38.

39.

36

Zwischenspeicher die letzte Version der Res-
source enthalten hat; und

wobei, falls der ausgefallene Zwischenspei-
cher die letzte Version der Ressource enthalten
hat, der Hauptknoten (D) eingerichtet ist zu ver-
anlassen, dass eine letzte friihere Abbild-Kopie
der Ressource auf Platte (655) geschrieben
wird, zu veraniassen, dass alle vorherigen frii-
heren Abbild-Kopien der Ressource freigege-
benwerden, und zu veranlassen, dass ein Wie-
derherstellungsprotokoll des ausgefallenen
Zwischenspeichers verwendet wird, um die
letzte Version der Ressource zu rekonstruie-
ren.

System gemaf Anspruch 35, wobei der Hauptkno-
ten (D) eingerichtet ist, falls der ausgefallene Zwi-
schenspeicher nicht die letzte Version der Ressour-
ce enthalten hat, zu veranlassen, dass die letzte
Version der Ressource auf Platte (655) geschrie-
ben wird und zu veranlassen, dass alle fritheren Ab-
bild-Kopien der Ressource freigegeben werden.

Verfahren geman Anspruch 23, ferner aufweisend:

einen Hauptknoten (D), der eingerichtet ist,
nach einem Ausfall einer Mehrzahl von . Zwi-
schenspeichern, die verschmutzte Versionen
der Ressource enthalten, zu bestimmen, ob ei-
ner der ausgefallenen Zwischenspeicher die
letzte Version der Ressource enthalten hat und,
falls irgendeiner der ausgefallenen Zwischen-
speicher die letzte Version der Ressource ent-
halten hat, die Wiederherstellungsprotokolle
der ausgefallenen Zwischenspeicher zusam-
menzufilhren und zu verwenden, um die letzte
Version der Ressource zu rekonstruieren.

System gemaB Anspruch 23, wobei der erste Zwi-
schenspeicher und der zweite Zwischenspeicher zu
einer Mehrzahl von Zwischenspeichemn gehéren,
wobei ein separates Wiederherstellungsprotokolt
fur jeden Zwischenspeicher der Mehrzahl von Zwi-
schenspeichern verwaltet wird und das System fer-
ner aufweist:

einen Hauptknoten (D), der eingerichtet ist, ei-
nen ausgefallenen Zwischenspeicher der .
Mehrzahl von Zwischenspeichermn wiederher-
zustellen, basierend auf dem Wiederherstel-
lungsprotokoll, das dem ausgefallenen Zwi-
schenspeicher zugeordnet ist, ohne die sepa-
raten Wiederherstellungsprotokolle der ande-
ren Zwischenspeicher der Mehrzahl von Zwi-
schenspeichern zu Gberprifen.

System gemanB Anspruch 38, wobei jeder Zwi-
schenspeicher der Mehrzahl von Zwischenspei-

BNSDOCID: <EP

37 EP 1 162 538 B1 38

chern ein Zwischenspeicher ist, der von einem se-
paraten Datenbank-Server einer Mehrzahl von Da-
tenbank-Servem (A, B, C, D) verwatltet wird.

40. System gemaf Anspruch 38, wobei

der erste Knoten eingerichtet ist es zu ermég-
lichen, dass die erste Kopie der Ressource in
dem ersten Zwischenspeicher verdndert wird,
bevor die zweite Kopie zu dem zweiten Zwi-
schenspeicher Ubertragen wird; und

der erste Knoten eingerichtet ist zu verhindern,
dass die erste Kopie der Ressource verdndert
wird, nachdem die zweite Kopie zu dem zwei-
ten Zwischenspeicher Gibertragen worden ist.

41. Verfahren gemafn Anspruch 23, wobei

der erste Knoten eingerichtet ist:

die Ressource in dem ersten Zwischenspei-
cher des ersten Knotens zu modifizieren, so
dass eine geanderte Version der Ressource er-
zeugt wird;

einen Kontrollpunkts fir den ersten Knoten zu
veirwalten, der anzeigt, wo mit der Arbeit be-
gonnen werden muss, wenn der erste Knoten

ausfallt;

eine ersten Kopie der gednderten Version in

dem ersten Zwischenspeicher wéhrend des
Ubertragens einer zweiten Kopie der gednder-
ten Version von dem ersten Zwischenspeicher
zu dem zweiten Zwischenspeicher des zweiten
Knotens beizubehalten, ohne die gednderte
Version von dem ersten Zwischenspeicher vor-
her dauerhaft in einen persistenten Speicher zu
speichern; und

den Kontrollpunkts als Reaktion auf den Hin-
weis, das ein anderer Knoten der Mehrzahi von
Knoten (A, B, C, D) eine Version der Ressource
dauerhaft gespeichert hat, die mindestens so
neu wie die gednderte Version ist, vorzuverset-
zen.

42, System gemaB Anspruch 41, wobei der erste Kno-

ten ferner eingerichtet ist:

mindestens eine Kopie der gednderten Version

--in- dem ersten Zwischenspeicher beizubehal-
ten, bis die erste Kopie der gednderten Version
oder ein Versionsnachfolger von ihr dauerhaft
gespeichert ist.

43. System gemaB Anspruch 41, wobei der erste Kno-

ten ferner eingerichtet ist:
die Ressource an dem ersten Knoten als Re-

aktion auf den Hinweis, dass ein anderer Kno-
ten der Mehrzah! von Knoten (A, B, C, D) die

116253881 | >

5

10

15

20

[+

30

35

40

45

50

55

20

Version der Ressource dauerhaft gespeichert
hat, die mindestens so neu wie die gednderte
Version ist, freizugeben.

44. System gemafB Anspruch 23,

wobei der erste Knoten eingerichtet ist zu ver-
hindern, dass die erste Kopie in dem ersten Zwi-
schenspeicher ersetzt wird, bis die erste Kopie oder
ein Versionsnachfolger von ihr dauerhaft gespei-
chert ist.

Revendications

Procédé de transfert d'une ressource d'une premiée-
re mémoire cache vers une seconde mémoire ca-
che, le procédé comprenant les étapes consistant
a

conserver une premiére copie de la ressource
dans ladite premiére mémoire cache tout en
transférant une seconde copie de la ressource
jusqu'ala premiére mémoire cache en direction

de la seconde mémoire cache sans stocker de
facon durable ladite ressource de ladite pre-

Qv WLt RLNT ToesSLuiLe LT Akl

miére mémoire cache vers une mémoire per-
manente (655); et

conserver au moins une copie de la ressource
dans ladite premiére mémoire cache jusqu'ace
que ladite premiere copie de la ressource ou
de son successeur soit stockée durablement.

Procédé selon la revendication 1, dans lequel ladite
premiére mémoire cache est une mémoire cache
conservée par un premier serveur de base de don-
nées (A, B, C, D) et ladite deuxiéme mémoire cache
estune mémoire cache conservée parun deuxiéme
serveur de base de données (A, B, C, D).

Procédé selon la revendication 1, comprenant en
outre les étapes consistant a:

autoriser une modification de ladite ressource
dans ladite mémoire cache avant le transfert de
ladite seconde copie dans ladite seconde mé-
moire cache; et

empécher une modification de ladite premiere
copie de ladite ressource-aprés le transfert de
ladite seconde copie dans ladite seconde mé-
moire cache.

Procédé selon la revendication 1, comprenant en
outre les étapes consistant a, aprés le transfert de
ladite seconde copie dans ladite seconde mémoire
cache, émettre une demande d'autorisation pour la
libération de ladite premiére copie;

en réponse a ladite demande, provoquer le

BNSDOCID: <EP

39 EP 1 162 538 B1 40

stockage durable (302) de ladite premiére co-
pie ou un successeur de cette copie; et

en réponse au stockage durable dudit succes-
seur, émeltre un message qui indique que ladi-
te premiére copie peut étre libérée (304).

5. Procédé selon la revendication 4, selon lequel:

l'étape consistant & envoyer une demande
d'autorisation de libération de ladite premiére
copie est exécutée au moyen d'un processus
d'émission; et

I'étape consistant & provoguer le stockage du-
rable de ladite premiére copie ou d'un succes-
seur de cette derniére inclut I'étape consistant
a amener un procédé autre que le processus
d'émission a stocker un successeur a ladite
premiére copie de ladite ressource (302).

Procédé selon la revendication 1, selon lequel I'éta-
pe de conservation d'au moins une copie de la res-
source dans ladite premiére mémoire comprend les
étapes consistant a:

avant d'essayer de stocker de fagon durable la-
dite premiére copie, déterminer si une copie
stockée de fagon durable de ladite ressource
est plus récente que ladite premiére copie;
siladite copie stockée de fagon durable est plus
récente que ladite premiére copie, libérer alors
ladite premiére copie sans stocker durable-
ment ladite premiére copie; et

si ladite copie stockée durablement n'est pas
plus récente que ladite premiére copie, alors
stocker durablement ladite premiére copie.

Procédé selon la revendication 3, comprenant en
outre I'étape consistant & transférer une autorisa-
tion de modification a partir d'un processus d'émis-
sion associé a la premiére mémoire cache (204)
pour un processus de réception associé ala secon-
de mémoire cache conjointement avec ladite se-
conde copie de ladite ressource.

Procédé selon la revendication 7, selon lequel:

les autorisations d'accés a ladite ressource
sont gérées par un maitre D, et

I'étape de transfert de ladite autorisation de mo-
dification au processus de réception est exécu-
tée avant la réception d'un accusé de réception
de la part dudit maitre (D) pour le transfert de
ladite autorisation de modification pour ledit
processus de réception (204).

9. Procédé selon la revendication 1, comprenant en

outre les étapes consistant a:

116253881 | >

10

15

20

25

30

35

40

45

50

55

21

transférer une autorisation de modification fai-
sant passer d'un processus d'émission associé
a ladite premiére mémoire cache a un proces-
sus de réception (204) associé a ladite seconde
mémoire cache conjointement avec ladite se-
conde copie de la ressource;

selon lequel des autorisations d'accés a ladite
ressource sont gérées par un maitre (D); et
selon lequel I'étape de transfert de ladite auto-
risation de modification vers ledit processus de
réception est exécutée avant que ledit maitre
(D) ne regoive I'accusé de réception du trans-
fert de ladite autorisation de modification audit
processus de réception (204).

10. Procédé selon la revendication 1, comprenant en

outre les étapes:

un processus de réception associé a ladite se-
conde mémoire cache envoyant une demande
pour ladite ressource a un maitre (D) de ladite
ressource;

en réponse a ladite demande provenant dudit
procédé de réception, envoi d'un message par
ledit maitre (D) de ladite ressource a un pro-
cessus d'émission associé a ladite premiére
mémoire cache; et

transfert de ladite seconde copie par ledit pro-
cessus d'émission audit processus de récep-
tion en réponse audit message provenant dudit
maitre (D).

11. Procédé selon la revendication 1, comprenant en

outre l'exécution des étapes indiquées ci-aprés
aprés I'étape de transfert de ladite seconde copie a
ladite seconde mémoire cache:

un processus d'émission associé a la premiére
mémoire cache demandant un accés (300) a
partir du gestionnaire d'acces, ledit accés ac-
cordant l'autorisation d'écrire ladite ressource
sur le disque, mais pas l'autorisation de modi-
fier ladite ressource;

ledit gestionnaire d'accés sélectionnant un pro-
cédé qui posséde une version de ladite res-
source qui est au moins aussi récente que la-
dite premiére copie;

ledit gestionnaire d'accés accordant ledit accés
audit processus sélectionné; et

ledit procédé sélectionné écrivant ladite ver-
sion de ladite ressource sur le disque.

12. Procédé selon la revendication 11, comprenant en

outre I'étape consistant en ce qu'en réponse au fait
que ladite version de ladite ressource est écrite sur
le disque (302), ledit gestionnaire d'accés provoque
la libération (306) de toutes les versions de ladite
ressource, qui sont plus anciennes que ladite ver-

BNSDOCID: <EP

13.

14.

15.

16.

41

sion.

Procédé selon la revendication 1, comprenant en
outre les étapes consistant &, aprés une défaillance
d'une mémoire cache qui conserve une copie usa-
gée de ladite ressource:

déterminer si la mémoire cache défaillante a
conservé la version la plus récente de la res-
source (402);

si la mémoire cache défaillante a conservé la
version la plus récente de |a ressource, alors
écrire la derniére image passée de laressource
sur un disque (408);

libérer toutes les images passées précédentes
de la ressource (410); et

appliquer un journal de récupération de ladite
mémoire cache défaillante pour reconstituer la
version la plus récente de la ressource (412).

Procédé selon ia revendication 13, comprenant en
outre les étapes consistant a:

si la mémoire défaillante n'a pas conservé la

v
ressource, alors

version la plus récente de la
écrire la version'la plus récente de la ressource
sur un disque (404); et

libérer toutes les images passées de la res-

source (4086).

Procédé selon la revendication 1, comprenant en
outre les étapes consistant &, aprés une défaillance
d'une pluralité de mémoires cache qui conservent
des versions usagées de ladite ressource:

déterminer si 'une quelconque des mémoires
cache défaillante a conservé la version la plus
récente de la ressource (400); et

si 'une quelconque des mémoires cache de-
faillantes a conserver la version la plus récente
de la ressource, alors

fusionner et appliquer les journaux de récupé-
ration desdites mémoires cache défaillantes
pour reconstituer la version la plus récente de
la ressource.

Procédé selon la revendication 1, selon lequel la se-

conde copie de la ressource estuneversionusagée -

de la ressource, dans laquelle la premiére mémoire
cache et la seconde mémoire cache font partie
d'une pluralité de mémoires cache et comprenant
en outre les étapes consistant a:

conserver des journaux de récupération sépa-
rés pour chaque mémoire cache de ladite plu-
ralité de mémoires cache; et

lorsqu'une mémoire cache de ladite pluralité de
mémoires cache est défaillante, récupérer la

116253881 | >

10

15

20

25

30

35

40

45

50

55

22

EP 1 162 538 B1

17.

18.

19.

42

mémoire cache défaillante sur la base du jour-
nal de récupération associé a ladite mémoire
cache défaillante sans inspection des journaux
de récupération séparés des autres mémoire
cache de ladite pluralité de mémoires cache.

Procédé selon la revendication 16, selon lequel
chaque mémoire cache de la pluralité de mémoires
cache est une mémoire cache conservée par un
serveur de base de donnée séparé (A, B, C, D)
d'une pluralité de serveurs de base de données (A,
B, C, D).

Procédé selon la revendication 16, selon lequel:

le procédé comprend en outre les étapes con-
sistant a:

autoriser une modification de ladite pre-
miére copie de ladite ressource dans ladite
premiére mémoire cache avant le transfert
de ladite seconde copie a ladite seconde
mémoire cache; et

empécher une modification de ladite pre-
miére copie de ladite ressource aprés le
transfert de ladite seconde copie a ladite
seconde mémoire cache.

Procédé selon la revendication 1, selon lequel la
premiére mémoire cache réside en un premier
noeud d'une pluralité de noeuds (A, B, C, D), et la
seconde mémoire cache réside dans un second
noeud de ladite pluralité de noeuds (A, B, C, D) et
comprenant en outre les étapes consistant a:

modifier ladite ressource dans ladite premiére
mémoire cache du premier noeud parmi une
pluralité de noeuds (A, B, C, D) pour créer une
version modifiée de ladite ressource;
maintenir un point de contréle dudit premier
noeud qui indique ol commencer le travail lors-
gue ledit premier noeud est défaillant;
conserver une premiére copie de ladite version
modifiée dans ladite premiére mémoire cache
tout en transférant une seconde copie de ladite
version modifiée depuis ladite premiére mé-
moire cache vers ladite seconde mémoire ca-
che du second noeud de la pluralité de noeuds -
(A, B, C, D) sans stocker tout d'abord de fagon
durable ladite version modifiée depuis ladite
premiére mémoire cache vers une mémoire
permanente (655); et

en réponse a une indication du fait qu'un autre
noeud parmi ladite pluralité de noeuds (A, B, C,
D) a stocké durablement une version de ladite
ressource qui est au moins aussi récente que
ladite version modifiée, avancerle point de con-
tréle.

BNSDOCID: <EP

20.

21.

22,

23.

43 EP 1 162 538 B1 44

Procédé selon la revendication 19, comprenant en
outre I'étape consistant a:

conserver au moins une copie de ladite version
modifiée dans ladite premiére mémoire cache
jusqu'a ce que ladite premiére copie de ladite
version modifiée ou un successeur de cette co-
pie soit stockée durablement.

Procédé selon la revendication 19, comprenant en
outre I'étape consistant a:

en réponse a lindication du fait qu'un autre
noeud de ladite pluralité de noeuds a stocké du-
rablement la version de ladite ressource, qui
est au moins aussi récente que ladite version
modifiée, libérer ladite ressource dans le pre-
mier noeud (306).

-
I oragina

Support lisible p
sieurs séquences d'instructions pour transférer une
ressource depuis une premiére mémoire cache
vers une seconde mémoire cache, l'exécution de la
une ou plusieurs séquences d'instructions par un
processeur ou la pluralité de processeurs améne le
processeur ou la pluralité de processeurs a exécu-
ter les étapes du procédé indiqué dans l'une quel-

congue des revendications 1 a4 21.

Systéme pourtransférer une ressource, le systéme
comprenant:

un premier noeud qui posséde une premiére
mémoire cache qui est couplée, de maniere a
communiquer a une seconde mémoire cache
parmi une ou plusieurs autres mémoires cache,
qui sont contenues dans un ou plusieurs autres
noeuds;

dans lequel ledit premier noeud est configuré
de maniére & conserver une premiére copie de
la ressource dans la premiére mémoire cache
tout en transférant une seconde partie de la
ressource depuis la premiere mémoire cache
vers la seconde mémoire cache sans mémori-
ser tout d'abord de fagon durable ladite res-
source depuis ladite premiére mémoire cache
en direction d'une mémoire permanente (655);
et P .

dans-lequel ledit premier noeud est configuré
de maniére a conserver au moins une copie de
la ressource dans ladite premiére mémoire ca-
che jusqu'a ce que ladite premiére copie de la
ressource ou un successeur de cette copie soit
stockée de fagon durable.

24. Systéme selon larevendication 23, dans lequel ledit

premier noeud est un premier serveur de base de
données (A, B, C, D), et au moins un du ou desdits

1162538B1 | >

O

10

15

hy
(=]

25

30

35

40

45

50

55

23

plusieurs autres noeuds est le second serveur de
base de données (A, B, C, D) qui inclut ladite se-
conde mémoire cache.

25. Systeme selon la revendication 23, dans lequel

ledit premier noeud est configuré de maniére a
permettre une modification de ladite premiére
copie de ladite ressource dans ladite premiére
mémoire cache avant le transfert de ladite se-
conde copie & ladite seconde mémoire cache;
et

ledit premier noeud est configuré de maniére a
empécher que ladite premiére copie de ladite
ressource soit modifiée aprés le transfert de la-
dite seconde copie a ladite seconde mémoire
cache.

26. Systéeme selon la revendication 23, dans lequel:

ledit premier noeud est configuré de maniére a
envoyer une demande a un noeud maitre (D)
pour permettre la libération de ladite premiére
copie, aprés transfert de ladite seconde copie
a ladite seconde mémoire cache; et

ledit premier noeud est configuré de maniére a
recevoir de la part dudit noeud maitre (D) un
message qui indique dans ladite premiére co-
pie peut étre libérée aprés que ledit premier
noeud maitre (D) a provoqué la mémorisation
durable de ladite premiére copie ou d'un suc-
cesseur de cette derniére, en réponse a ladite
demande.

27. Systeme selon la revendication 26, dans lequel

ledit premier noeud comprend un procédé
d'émission qui est congu de maniére a émettre
la demande d'autorisation de libération de ladi-
te premiére copie; et

un procédé autre que le procédé d'émission
mémorise un successeur a ladite premiére co-
pie de ladite ressource.

28. Systéme selon la revendication 23, dans lequel ledit

premier noeud est congu de maniére a conserver
au moins une copie de la ressource dans ladite pre-
miére mémoire cache par:

avant d'essayer de mémoriser de fagon dura-
ble ladite premiére copie, détermination du fait
qu'une copie mémorisée de fagon durable de
ladite ressource est plus récente que ladite pre-
miére copie;

si ladite copie mémorisée de fagon durable est
plus récente que ladite premiére copie, alors li-
bération de ladite premiére copie sans mémo-
risation durable de ladite premiére copie; et

BNSDOCID: <EP

45 EP 1 162 538 B1 46

si ladite copie mémorisée de fagon durable
n'est pas plus récente que ladite premiére co-
pie, alors mémorisation durable de ladite pre-
miére copie.

29. Systeme selon larevendication 25, dans lequel ledit

premier noeud est configuré de maniére a transfe-
rer une autorisation de modification depuis un pro-
cédé d'émission associé a la premiére mémoire ca-
che a un procédé de réception associé a la seconde
mémoire cache, conjointement avec une seconde
copie de ladite ressource.

30. Systéme selon la revendication 29, dans lequel:

les autorisations d'accés a ladite ressource
sont gérées par un noeud maitre (D); et ledit
premier noeud est configuré de maniére a
transférer ladite autorisation de modification au
procédé de réception avant que ledit premier
noeud regoit un accusé de réception de la part
dudit noeud maitre (D) pour le transfert de la-
dite autorisation de modification audit procédé
de réception.

31. Systeme selon la revendication 23, dans lequel:

ledit premier noeud est configuré de maniére a
transférer une autorisation de modification de-
puis un procédé d'émission associé a ladite
premiére mémoire cache a un procédé de ré-
ception associé a ladite seconde mémoire ca-
che conjointement avec ladite seconde copie
de ladite ressource;

des autorisations d'accés a ladite ressource
sont gérées par un maitre (D); et

le transfert de ladite autorisation de modifica-
tion audit procédé de réception est exécuté
avant que ledit maitre (D) regoive l'accusé de
réception du transfert de ladite autorisation de
modification audit procédé de réception.

32. Systéme selon la revendication 23, dans lequel:

ledit premier noeud inclut un procédé d'émis-
sion associé a ladite premiére mémoire cache,
selon leque! procédé d'émission étant configu-
- ré de maniére a recevoir un message de la part
d'un noeud maitre (D) qui regoit une demande
pour ladite ressource a partir d'un procédé de
réception associé a ladite seconde mémoire
cache; et
ledit procédé d'émission transfert ladite secon-
de copie audit procédé de réception en réponse
audit message provenant dudit noeud maitre
(D).

33. Systéme selon la revendication 23, dans lequel:

116253881 | >

10

15

20

N
1]

30

35

40

45

50

55

24

34.

35.

36.

37.

ledit premier noeud inclut un procédé d'émis-
sion qui est configuré de maniére a demander
un accés a partir d'un gestionnaire d'accés
aprés que ladite seconde copie a été transférée
a ladite seconde mémoire cache, ledit accés
octroyant une autorisation d'écrire ladite res-
source sur ledit disque (655) mais pas l'autori-
sation de modifier ladite ressource; et

ledit gestionnaire d'accés sélectionne un pro-
cédé qui possede une version de ladite res-
source, qui est au moins aussi récente que la-
dite premiére copie et octroie ledit accés audit
procédé sélectionné pour amener leditprocédé
sélectionner a écrire ladite version de ladite
ressource sur le disque (655).

Systéme selon la revendication 23, dans lequel ledit
gestionnaire d'accés provoque la libération de tou-
tes les versions de ladite ressource qui sont plus
anciennes que ladite version, en réponse au fait
que ladite version de ladite ressource est écrite sur
le disque (655).

Systéme selon la revendication 23, comprenant en

niitro-
CUulrel

un noeud maitre (D) qui est configuré de ma-
niére a déterminer, aprés une défaillance d'une
mémoire cache qui conserve une copie usagée
de ladite ressource, si une mémoire cache en
panne a conservé la version la plus récente de
la ressource; et

dans lequel, si la mémoire cache défaillante a
conservé la version la plus récente de la res-
source, le noeud maitre (D) est configuré de
maniére a provoquer l'écriture d'une image
passée la plus récente de la ressource sur le
disque (655) de maniére & provoquer la libéra-
tion de toutes les images passées antérieures
de la ressource, et pour provoquer l'application
d'un journal de récupération de ladite mémoire
cache en panne pour reconstituer la version la
plus récente de la ressource.

Systéme selon la revendication 35, dans lequel si
la mémoire cache défaillante n'a pas conservé la
version la plus récente de la ressource, le noeud
maitre (D). déclenche {'écriture de la version la plus
récente de la ressource sur le disque (655) et dé-
clenche la libération de toutes les images passées
de la ressource.

Systéme selon la revendication 23, comprenant en
outre:

un noeud maitre (D) qui est configuré de ma-
niére a déteminer, aprés une défaillance d'une
pluralité de mémoires cache qui conservent

o

BNSDOCID: <EP

38.

39.

40.

4.

47 EP 1 162 538 B1 48

des versions usagées de ladite ressource, si
l'une” quelconque des mémoires cache dé-
faillantes a conservé la version la plus récente
de laressource et, sil'une quelconque des mé-
moires défaillantes a conservé la version la
plus récente de la ressource, alors fusionner et
appliquer les journaux de récupération desdi-
tes mémoires cache défaillantes pour recons-
tituer la version la plus récente de la ressource.

Systéme selon la revendication 23, dans lequel la
premiére mémoire cache et la seconde mémoire
cache font partie d'une pluralité de mémoires cache
et dans lequel ledit journal de récupération séparé
est conservé pour chaque mémoire cache de ladite
pluralité de mémoires cache, et ledit systéme com-
porte en outre:

un noeud maitre (D), qui est configuré de ma-
niére a récupérer une mémoire cache défaillan-
te pami ladite pluralité de mémoires cache sur
la base du journal de récupération associé a
ladite mémoire cache défaillante sans inspec-
tion des journaux de récupération séparés des
autres mémoires cache de ladite pluralité de

mémoires cache.

Systeme selon la revendication 38, dans lequel
chaque mémoire cache de ladite pluralité de me-
moires cache est une mémoire cache conservée
par un serveur de base de données séparé parmi
une pluralité de serveurs de base de données (A,
B, C, D).

Systéme selon la revendication 38, dans lequel:

le premier noeud est configuré de maniére &
permettre une modification de ladite premiére
copie de ladite ressource dans ladite premiéere
mémoire cache avant le transfert de ladite se-
conde copie a ladite seconde mémoire cache;
et

le premier noeud est configuré de maniére a
empécher que ladite premiére copie de ladite
ressource soit modifiée apres le transfert de la-
dite seconde copie a ladite seconde mémoire
cache.

Systéme selon larevendication 23, dans lequel! ledit
premier noeud est configuré de maniére a:

modifier ladite ressource dans la premiére mé-
moire cache dudit premier noeud pour créer
une version modifiée de ladite ressource;
conserver un point de contrble pour ledit pre-
mier mode qui indique ou le travail doit com-
mencer lorsque ledit premier noeud est dé-
faillant;

116253881 | >

10

15

25

30

35

40

45

50

55

25

conserver une premiére copie de ladite version
modifiée dans ladite premiére mémoire cache
tout en conservant une seconde copie de ladite
version modifiée depuis la premiére mémoire
cache dans la seconde mémoire cache sans
mémoriser tout d'abord de fagon durable ladite
version modifiée depuis ladite premiére mé-
moire cache vers une mémoire permanente; et
en réponse a une indication qu'un autre noeud
de ladite pluralité de noeuds (A, B, C, D) a stoc-
ké de fagon durable une version de ladite res-
source qui est au moins aussi récente que la-
dite version modifiée, faire avancer le point de
contréle.

42. Systéme selon la revendication 41, dans lequel le

premier noeud est en outre configuré de maniére a:

conserver au moins une copie de ladite version
modifiée dans ladite premigre mémoire cache
jusqu'a ce que ladite premiére copie de ladite
version modifiée et d'un successeur de cette
version soit stocké de fagon durable.

43. Systéme selon la revendication 41, dans lequel le

premier noeud est en outre configuré pour:

enréponse a l'indication qu'un autre noeud par-
mi ladite pluralité de noeuds (A, B, C, D) a stoc-
ké de fagon durable la version de ladite res-
source qui est au moins aussi récente que la-
dite version modifiée, libérer ladite ressource
au niveau du premier noeud.

44. Systéme selon la revendication 23, dans lequel ledit

premier noeud est configuré de maniére a empé-
cher que ladite premiére copie soit remplacée dans
ladite premiére mémoire cache jusqu'a ce que ladi-
te premiére copie de la ressource ou un successeur
de cette copie soit stocké de fagon durable.

BNSDOCID: <EP

EP 1 162 538 B1

Database Server D

1162538B1 | >

—- fg-> bg msg
— bg-> bg msg
---» bg-> bg lazy msg
=g block xfer

block

version x

(MASTER)
\
A b A%
|
4RegM | 3 AckM(8}{
5BastM !
{ 6ACKM(S) X8
E 1 ReqM '
:: Database Server C .
6 Block+M ' 3 Block+M
9
Database Server B
Fig. 1

26

Fig. 2

LNSDOCID: <EP 1162538B1 | >

EP 1 162 538 B1

200

REQUESTOR REQUESTS M
LOCK FROM MASTER

l

202

MASTER INSTRUCT.
HOLDER TO DOWNGRADE

.

204

HOLDER SENDS CURRENT COPY
OF RESOURCE AND M LOCK
DIRECTLY TO REQUESTOR

l

206

HOLDER INFORMS MASTER
ABOUT TRANSFER OF M LOCK

l

208

MASTER UPDATES LOCK INFORMATION
TO INDICATE REQUESTOR HOLDS MLOCK

27

BNSDOCID: <EP

Fig. 3

116253881 | >

EP 1 162 538 B1

300

PI HOLDER REQUESTS WLOCK

'

302
DLM CAUSES THEPI

MmEOAL 1IN AP QL ire
RESOURCE, OR A SUCCESSCR

THEREOF, TO BE WRITTEN TO DISK

:

304

DLM INFORMS DATABASE
SERVERS OF VERSION
OF RESOURCE WRITTEN TO DISK

!

306
DATABASE SERVERS WITH EARLIER
VERSIONS OF RESOURCE RELEASE
| THEIR VERSIONS

28

Fig. 4

EP 1 162 538 B1

400

DETERMINE DATABASE SERVER THAT

HELD THE LATEST VERSION
OF RESOURCE

NO

k 4

402

DID FAILED SERVER
" HAVE LATEST
VERSION?

404

LATEST VERSION
IS WRITTEN TO DISK

o ;

406

RELEASE ALL
Pl VERIONS OF
THE RESOURCE

BNSDOCID: <EP 116253881 | >

29

YES

408

WRITE LATEST PI
VERSION OF RESOURCE
TODISK

I

410 -

* ALL PREVIOUS Pi
VERSIONS ARE
RELEASED

'

412

APPLY RECOVERY LOG OF
FAILED SERVER TO
RESOURCE

EP 1 162 538 B1

— bg-> bg msg
- --»bg-> bg lazy msg

Database S D ==~ block write
atabase Server
version x
(MASTER)
v : \\ -
] Ackwy)// E \ 6ACKW(10) ®

A\

Database Server A 2BastW§'§~
a aselrver /// 1Rqu(8&

10 | 7 AckW(10) 8
A E |
: Database Server C
3v0 '
\
4 Ack
9
— °
Database Server B
Fig. 5

30

BNSDOCID: <EP 1162538B1 | >

EP 1 162 538 B1

9¢9

8¢9

£59 MHOMLIN
- +S9 Ndd Y34V WELSAS 658 SIAINA ¥SIA
1SOH
029 “]0)¢] |
\xz:. B9 _
WOMIIN | SRGRIENT 3OVAILNI 709 " K
W01 | NOLLYOINNNINOD ¥0S53004d | —— 4 1081N0D
_ ! HOSY¥ND
! |
f |
| |
" |
|
| <9 719
" " sna AN_H..L HV 3DIA30 LNdNI
| i
" |
L3NY3LNI _ “
|
. |
i
_ qamosma w . | IHV e
_ | AHOWAN
3 | ! AV1dSia
vy
vanas | | JOVHOLS Woy NIVIV | .
— llllllllllllllllllll []
-- 99l

31

1162538B1 | >

BNSDOCID: <EP

