
United States Patent

USOO7231269B2

(12) (10) Patent No.: US 7.231,269 B2
Swenson et al. (45) Date of Patent: Jun. 12, 2007

(54) RECOVERY UPON ACCESS VIOLATION BY 6,832,380 B1 12/2004 Lau et al. T19,328
AUDIO PROCESSING OBJECT

FOREIGN PATENT DOCUMENTS

(75) Inventors: Steven E. Swenson, Redmond, WA EP O70.1209 3, 1996
(US); David W. Flenniken, Redmond, EP TO 1209 A2 * 3, 1996
WA (US) EP O965.923 12/1999

EP 965.923 A2 * 12/1999

(73) Assignee: Msion Corporation, Redmond, WA OTHER PUBLICATIONS

Bohannon, Philip. etal. Using Codewords to Protect Database Data
(*) Notice: Subject to any disclaimer, the term of this from a Class of Software errors. Data Engineering 1999. Proceed

patent is extended or adjusted under 35 ings 15th International in Sydney, Australia, Mar. 23-26 1999, pp.
U.S.C. 154(b) by 994 days. 276-285*

Bohannon et al., “Using codewords to protect database from a class
(21) Appl. No.: 10/393,661 of software errors.” DATA Engineering 1999. Proceedings 15th

International Conference on Sydney, Australia, Mar. 23-26 1999,
(22) Filed: Mar. 20, 2003 pp. 276-285.

O O * cited by examiner (65) Prior Publication Data
Primary Examiner Vivian Chin

US 2004/0186601 A1 Sep. 23, 2004 Assistant Examiner Devona E. Faulk

(51) Int. Cl (74) Attorney, Agent, or Firm—Lee & Hayes, PLLC
G06F 7700 (2006.01)
G06F II/00 (2006.01) (57) ABSTRACT

G06F 3/00 (2006.01) An operating system is logically separated into a partition
(52) U.S. Cl. 700/94; 714/15: 714/20; for a kernel and a partition for an audio Subsystem having

71.9/322 logically separate subpartitions. An audio application gen
(58) Field of Classification Search 700/94; erates a first audio datastream by executing the audio

71 9,322, 323; 714/15, 20; 704/200; 84/626 Subsystem. The context of a process for processing the first
See application file for complete search history. audio datastream is preserved in a first Subpartition. The

(56) References Cited processing of the first audio datastream with the process

U.S. PATENT DOCUMENTS

5,971,851 A * 10/1999 Pascal et al. 463,24
6,175,916 B1* 1/2001 Ginsberg et al............. T12/228
6,216, 173 B1 4/2001 Jones et al. 715/705
6,243,753 B1* 6/2001 Machin et al. 709,227

100 106(k+1

106(k-1)

Micro- f phone

106

takes place in a second subpartition. When the process
commits an access violation, the process is recovered by
restoring in the audio Subsystem the preserved context from
the first subpartition.

46 Claims, 5 Drawing Sheets

106(K-1) -

(k)

PC 124
Audio
Device
102(1)

Audio
Dewice
to2(n)

Audio Device . -
102(N)

Driver
104(1)

3river
104(n) Driver 14N)

U 1.
Audio subsystem 116

Process context, Service operating system 114 context.GlobalAudio Engine
Kernel 18

IN 12

A-W 122

U.S. Patent Jun. 12, 2007 Sheet 1 of 5 US 7.231,269 B2

100- 22, 7 106(k+1)

106(2) t 106(K-1)

106(k-1)

Audio Audio
Device Device
102(1) 102(n)
Driver Driver
104(1) 104(n) Driver 104(N)

OUT 112

Audio subsystem 116.
Process Context, Service

Operating System 114 Context, Global Audio Engine
Kernel 118

Audio Device
102(N)

U.S. Patent Jun. 12, 2007

Audio
Application

2O2

PrOCeSS
Context
270

Kernel 118

200/

222

Context

Sheet 2 of 5 US 7.231,269 B2

- ---- - - - - - - - - - - - - - - -m a - a Data flow
-- Control flow

Audio Subsystem 116

Service

272

y

224

Looped Buffer
212

214

Audio Device
Driver

U.S. Patent Jun. 12, 2007 Sheet 3 of 5 US 7,231,269 B2

/ 3OO
302 304 306

Initiate Audio Processing
Object (APO) To Produce
Global Effect (GFX) On
Audio Datastream To Be

Rendered By Audio
Device Driven By Audio

Device Driver 214

Service Context 272
Preserves Context For
GFX APO in Global
Audio Engine 274

Service Context 272
Preserves Context For
Input Buffer 208 and
Looped Buffer 212

Global Audio Engine 274
(i) GFX APO Performs Digital Signal
Processing On Audio Datastream in Input
Buffer 208;
(ii) Output Mixed Audio Datastream With GFX
to Looped Buffer 212

GFX APO initiates
In Global Audio
Engine 274

308

(...) O TO
04

318

Service Context GFX APO Executing Increment In Global Audio 272 Restores Crash
Engine 274 Context For O- GFX APO Counter

Terminates or input Buffer 208 Crash For GFX
Causes and Looped p APO

ACCeSS Violation Buffer 212

322a

Crash
Counter Less

Than
Limit 2

Diagnostic

Restart Global
Audio Engine
274 Without the
GFX APO 322b

(i. 22, 5

U.S. Patent Jun. 12, 2007 Sheet 4 of 5 US 7.231,269 B2

400
/

402 404 406

Initiate Audio
Processing Object
(APO) To Produce Service Context 272

AEE) - FEE EEGF is Be Rendered By pu Context 270
Audio Device Driven Looped Buffer 212
By Audio Device

Driver 214

Process Context 270 Outputs To input Buffer
208, Global Audio Engine 274 Gets input From

Input Buffer 208, Mixes, and Outputs To
Looped Buffer 212, Audio Device Driver 214

Gets input From Looped Buffer 212

Service Context 272
Detects The

Termination Of, Or
Access Violation By,
The FX APO And
Deletes The Input

Buffer 208

LFX APO Executing
In Process Context
270 Terminates or
Causes ACCess

Violation

410 412

U.S. Patent Jun. 12, 2007 Sheet 5 of 5 US 7,231,269 B2

Remote
Computing

Application
Programs

Network
Adapter

Application
System Bus Programs 528

Other Program
Modules 530

Program

US 7,231,269 B2
1.

RECOVERY UPON ACCESS VOLATION BY
AUDIO PROCESSING OBJECT

TECHNICAL FIELD

This invention generally relates to streaming audio pro
cessing and, more particularly, to recovery from an access
violation by an audio processing object during streaming
audio processing.

BACKGROUND

Computing systems, such as the personal computer (PC),
are increasingly being used for the recording and playing
back of streaming audio data. The PC can be used as a type
of media server where several audio, video and multimedia
applications are simultaneously running, each of which uses
the operating system (OS) of the PC. By way of example of
a PC as a media server, consider the following simultaneous
uses scenario. A Digital Video Disk is being played back by
a first media player application (MP) that uses a DVD player
on the PC. A microphone is being used for a Voice-Over
Internet Protocol in a Real Time Communication Applica
tion (RTC) for network telephony in which users of respec
tive computing systems talk to one another over a packet
Switched network, much as a telephone user talks to another
telephone user over a circuit switched network. System
Sounds are being generated by the OS during user interaction
with the PC. A Video-On-Demand application (VOD) is
being executed by the PC as streaming multimedia is being
received via a cable or satellite TV broadcast system. A
music disk (e.g., CD) is being played back by the execution
of a second media player application that uses a CD-ROM
drive of the PC. Another user is playing a video game on the
PC, where a corresponding game application is generating
an audio data stream based upon the users interaction with
the game application. One or more global audio effect
applications (GFX) can also be executing on the PC.
Examples of GFX include a reverberation effect application,
an audio distortion effect application, a speaker compensa
tion application performed by Digital Signal Processing
(DSP) of streaming audio data to be rendered at one or more
speakers, a multiband audio equalizer application is execut
ing so as to present a user interface (UI) that works with an
audio device (e.g., a sound card) to enable the PC user to
adjust audio output from the audio device for various presets
(e.g., concert hall, rock, classical, etc.), and other GFX that
do DSP on one or more audio data streams that are output
to one or more audio devices driven by one or more audio
drivers.
Any application listed in the above example, as well as

other audio visual applications, can be poorly written Such
that its execution fails and the application aborts. Such a
failure of the application can cause a serious failure of the
OS of the PC, also known as a computer crash, where the PC
itself stops working. A computer crash can signify a very
serious Software bug in the code in which the application is
written. In the instance of an audio application that requests
the OS to output to an audio device, the bug can result in an
access violation. The memory for a kernel (e.g., Scheduling
service) of the OS and the memory used to process the audio
in the OS are supposed to be completely isolated from each
other. An access violation occurs when the audio application
performs an access to memory that is not resident (e.g., the
memory access is not a legal or is impermissible). Access
violations typically occur when an audio application has an
audio device driver that is running in kernel mode. If the

10

15

25

30

35

40

45

50

55

60

65

2
audio application makes an access violation to the kernel
space of the OS or to the audio device driver, the access
violation can cause a computer crash.
As long as the kernel of the OS remains intact, an audio

application that crashes will not cause the kernel to be
unstable. Rather, only the audio application stops working
and must be restarted. An access violation of the kernel,
however, can cause the kernel to become unstable such that
there will be a fatal error from which no recovery is possible.
In a Microsoft Windows.(R) operating system environment, a
user of a PC is notified of a computer crash by a diagnostic
that is displayed on a blue screen. Thus, the term Blue
Screen of Death (BSOD) is conventionally used. When the
user gets the BSOD, there is no other recovery than to restart
or boot the PC.
A particular detriment to using a PC as a media server

occurs when just one of the several executing audio and
audio visual applications has a Software bug. The software
bug can cause different levels of disruption in the audio
being rendered from the PC. In the least disruption, only the
audio datastreams generated by the bug-laden application
are affected. At a higher level of disruption, all audio devices
are affected and perhaps cease working, which is a cessation
of the global rendering of audio to all audio devices. In an
even more severe scenario, the Software bug in one of the
audio applications causes a computer crash, thus requiring
all activity on the PC to cease until the OS is reloaded—
which can take several minutes.

Given the foregoing, it would be an advantage in the art
to provide an OS that services the audio requests of any kind
of audio application executing on a computing system while
isolating the audio application such that its failure during
execution causes neither global audio rendering to cease nor
a computer crash.

SUMMARY

In one implementation, a system audio service of an
operating system preserves the context of an audio applica
tion, where even though the processing of the audio appli
cation fails, the processing can be recovered. In another
implementation, a computing system has a processor for
executing an audio application to generate a first audio
datastream. The processor executes an operating system that
is logically separated into a partition for a kernel and a
partition for an audio Subsystem. The audio Subsystem is
separated into logically separate Subpartitions. A process
(e.g., an audio processing object) for processing the first
audio datastream with the audio Subsystem has a context that
is preserved in a first Subpartition prior to executing the
process in a second subpartition. When the process commits
an access violation, the process is recovered by restoring the
context thereof from the first subpartition. The preserved
context for the process includes address and data structure
information sufficient to recover the process by the restora
tion of the preserved context in the audio subsystem. When
the processor executes an audio application to generate a
second audio datastream to be output to a second audio
device different than a first audio device at which the first
audio data steam is to output, neither the access violation nor
the recovery of the process will effect audio that is to be
output by the second audio device.

BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description is given with reference to the
accompanying figures in which the same numbers are used

US 7,231,269 B2
3

throughout the disclosure and figures to reference like
components and features. Series 100 numbers refer to fea
tures originally found in FIG. 1, series 200 numbers refer to
features originally found in FIG. 2, and series 300 numbers
refer to features originally found in FIG. 3, and so on. 5

FIG. 1 shows an exemplary computing system in an
environment in which the computing system is being used as
a media server to service audio to a plurality of users in a
plurality of locations.

FIG. 2 shows an implementation in which an audio 10
application is executing in a computing system having an
operating system in communication with a driver for an
audio device.

FIG. 3 shows a flow chart illustrative of a process in
which an audio Subsystem of an operating system services a
request for executing an audio processing object (APO) to
produce a global effect (GFX) on an audio datastream to be
rendered by an audio device driven by an audio driver,
where various context of the audio subsystem are restored
after an access violation by the GFX APO using previously
preserved contexts.

FIG. 4 shows a flow chart illustrative of a process in
which an audio Subsystem of an operating system services a
request for executing an audio processing object (APO) to
produce a local audio effect (LFX) on an audio datastream
to be rendered by an audio device driven by an audio driver,
where various context of the audio subsystem are restored
after an access violation by the LFX APO using previously
preserved contexts.

FIG. 5 illustrates an example of a computing environment
Within which the computing System, software applications,
methods and systems described herein can be either fully or
partially implemented.

15

25

30

35
DETAILED DESCRIPTION

Multiple audio devices and application drivers for driving
the same can be in communication with a computing system
that is being used as a media server. As such, the computing 40
system can be simultaneously sending audio to more than
one of the audio devices. An Operating System (OS) of the
computing system has both a kernel and a built-in audio
Subsystem that is just one Subsystem of many Subsystems of
the operating system. One or more of the applications make 45
a request to the audio Subsystem to execute an Audio
Processing Object (APO) that will have a global effect
(GFX) on all audio that is being directed to one of the audio
devices. By way of example, the GFX APO can be a
reverberation effect, a distortion effect, a speaker compen- 50
sation effect, or another Digital Signal Processing (DSP)
effect.

The audio subsystem isolates the kernel of the OS from
the audio device drivers and from each other. This isolation,
which is a sandboxing technique, allows for recovery when 55
an audio application fails, such as by committing an access
violation. The isolation ensures that only the audio from a
failing application will cease, rather than all of the audio
from all applications that are executing. The isolation also
ensures that the access violation will not cause the comput- 60
ing system to crash, this avoiding a boot (e.g., bootstrap)
operation. The failing application can be restarted and
continue to produce audio. A user experiences only a
momentary loss of audio from the failure of the application.
The audio loss perceived by the user of the computing 65
system is limited to the audio of the failing application and
will be varied as to the period of missing sound.

4
In one implementation, two users can be using a Personal

Computer (PC) as a media server, where a first user is
playing a movie on a DVD on the PC's DVD player and the
sound from the movie is processed by a first sound card for
rendering at a first set of speakers. A second user is playing
a song on a compact disk (CD) using a CD reader of the PC.
As to the second user, the playback is to be rendered to a
second set of speakers that are in communication with a
second Sound card that is in communication with a moth
erboard of the PC. The second sound card is driven by an
audio device driver. The playback of the song is performed
by execution of a media player application on the PC. The
media player application calls for a GFX APO on an audio
data stream that is produced by the playback of the song. If
the GFX APO has a software bug that causes it to fail during
execution, such as by committing an access violation, the
second user will experience, for example, a five (5) second
loss of Sound during a recovery from the failure. During the
recovery, the computer will not need to be restarted and the
first user will not experience any loss of sound in the
playback of the movie on the DVD. The GFX APO is
reloaded and the audio Subsystem brings the audio back
where it left off for the playback of the song. The reloaded
GFX APO continues to execute so as to process an audio
datastream to be rendered to the second set of speakers with
the second Sound card. If any other audio device was
rendering audio using the PC, neither would that audio be
lost by the access violation or by the recovery.

FIG. 1 shows an environment 100 in which a PC 124 is
being used as a media server. A number of persons are seen
in FIG. 1, each of which is listening to audio rendered from
one or more speakers 106. PC 124 has portable media
readers, such as a Digital Video Disc (DVD) reader and a
Compact Disk (CD) reader, in an A-V section 122 to
playback multimedia including audio for the benefit of the
persons that are using PC 124 as a media server. PC 124 is
executing a plurality of multimedia applications to playback
portable media that is being read from the portable media
readers in the A-V section 122. Audio data is being com
municated to an input section 120 that is in communication
with an operating system (O/S) 114. One such multimedia
application may be the Windows(R Media Player software as
provided by the Microsoft Corporation, of Redmond, Wash.,
USA.
The O/S 114 of PC 124 has an output section 112 that

communicates with various audio devices 102(1-N) through
their corresponding drivers 104(1-N). By way of example,
the audio device 102 can be a two channel sound card, a pair
of Universal Serial Bus (USB) speakers, a network speaker
(TCP/IP speaker), or another device that can accommodate
the output of one or more channels of Sound, etc. For
instance, one audio device 102 can be a sound card that is
an expansion board mounted on a mother board of PC 124
that enables PC 124 to render sound to one of the speakers
106 by translating digital data into analog Sounds. Audio
device 102 can be used to render (playback) or capture
(record) audio data. For instance, audio device 102 can be
used to record sound input from a microphone 106(k-1)
connected to the PC 124, and can be used to manipulate
Sound stored on a disk. One person is depicted as speaking
into microphone 106(k-1)) while listening to one or more
speakers 106(k). Audio is rendered and captured through
operation of the O/S 114. Microphone 106(k-1) can be used
with speaker 106(k) in a network telephony environment in
which a person talks into microphone 106(k-1) so as to
speak to a user of another PC via a network, were each PC
is executing a real time communication application (RTC).

US 7,231,269 B2
5

The O/S 114 includes logically separate partitions, which are
an audio subsystem 116 and a kernel 118. The kernel 118 is
a scheduling service for the operating system 114. The audio
component 116 can include various Software components as
discussed below with respect to FIG. 2.
An implementation of the O/S 114 of FIG. 1 is seen in

FIG. 2, where an environment 200 enables sound to be
rendered by an audio device that is driven by an audio device
driver 214. The wide, dark lines in FIG. 2 are intended to
indicate that O/S 114 has two (2) logically separate parti
tions defined by line 220 and that the audio subsystem 116
has three (3) logically separate subpartitions defined by dark
lines 220–224. The two logically separate partition of O/S
114 are the kernel 118 and the audio subsystem 116 that are
separated by line 220. Each partition has its own address
space in user mode and it is completely isolated from each
of the other and from any other application that is running.
Similarly, each subpartition has its own address space in user
mode and it is completely isolated from each other partition
and from any other application that is running. All three (3)
subpartitions sit on top of the kernel 118 in user mode so that
if any one subpartition crashes, the PC 124 continues to run
without a fatal error. By the term “context, as used herein,
it is intended to mean the address space in a memory that is
associated with a process and the data structures that are
associated with that process, where the data structures are
needed by the operating system for the process to be
properly executed.
The environment 200 has solid lines with arrows that

reflect the flow of instructions that control the audio sub
system 116. Dashed lines with arrows in environment 200
indicate the flow of audio data streams. The three (3)
logically separate subpartitions in audio Subsystem 116 are
a process context 270, a service context 272, and a global
audio engine 274. The global audio engine 274 can be
synchronized with the audio device hardware driven by the
audio device driver 214. When synchronized, the global
audio engine 274 pumps data into a looped buffer 212 at the
right times. The synchronized pumping enables the audio
device driven by audio device driver 214 to read an audio
datastream out of the looped buffer 212 at the right times.
An audio application 202 runs in the process context 270.

The process context 270 has a separate address space for
each audio application 202 that is running in the audio
Subsystem 116. AS Such, the running of each audio applica
tion 202 will not effect another audio application (not
shown). The process context 270 performs processing of an
audio data stream for the audio application 202. Errors in the
software of the audio application 202 can be frequent due to
the amount, speed, and frequency of audio data processing
that is done during each wake up period by the audio
application 202.
The process context 270, defined by lines 220-222, is

serviced or managed by the service context 272. The process
context 270 is representative of a client (or application)
space which runs in a typical application process context.
The audio application 202 generates an audio datastream
that can be processed by a local effect engine (LFX) in the
process context 270, which is then output to an input buffer
208. The input buffer 208 is at an interfacing of the process
context 270 and the global audio engine 274. Stated other
wise, input buffer 208 stores the output from a local appli
cation operating in the process context 270. Although FIG.
2 depicts only one audio application 202 for the process
context 270, it is contemplated that the audio subsystem 116
could support a plurality of audio applications for the
process context 270 of the subsystem 116.

5

10

15

25

30

35

40

45

50

55

60

65

6
The service context 272 is defined by lines 222-224 in

audio subsystem 116. The service context 272 is a compo
nent of the audio subsystem 116 that is present when the O/S
114 loads upon a boot of the PC 124 or when a user logs on
or off. The service context 272 contains the application
program interfaces (API) that any audio application requires
in order to get access to the services of the audio Subsystem
116. The service context 272 is representative of a global
audio services space. Such as policy and system graph
services which is run in a system audio service. The service
context 272 remains after a crash of processing by the
process context 270.
The global audio engine 274 is a proxy for an audio

device (not shown—e.g., a Sound card) that is driven by the
audio device driver 214 to which the global audio engine
274 is in communication through the looped buffer 212. The
global audio engine 274 represents one process for each
global audio engine processing space, where each global
audio engine processing space is responsible for processing
all audio data for any one particular audio device. Addition
ally, the global audio engine 274 of the audio subsystem 116
can virtualize a single audio device by mixing multiple
connections to respective audio or multimedia applications,
each of which produces an audio data stream. When so
virtualized, the global audio engine 274 can present the
mixed audio data streams as one audio data stream to the
single audio device. As such, a multitude of simultaneously
executing applications can all be outputting to the same
audio device that they all share. Additionally, the global
audio engine 274 can enable multiple audio devices to
function at the same time while the PC 124 is being used as
a media server.
An audio data stream in the input buffer 208 can be used

as input to the global audio engine 274. The global audio
engine 274 performs an Audio Processing Object (APO) to
have a global effect (GFX) on an audio datastream to be
output at the audio device driven by audio device driver 214.
AS Such, the global audio engine 274 can mix and/or process
the audio datastream in the input buffer 208, where the input
buffer 208 is being used to store audio datastreams from a
plurality of audio applications. The result of the mixing
and/or processing of the audio datastreams in the input
buffer 208 is an output of a single mixed audio datastream
to the looped buffer 212. The looped buffer 212 interfaces
with the global audio engine 274 for input to the audio
device driver 214. As such, the looped buffer 212 can be
used to store output from the global audio engine 274 and
can be used as an input to the audio device driver 214.
The audio subsystem 116 of environment 200 provides

one process for each global audio engine 274. Each global
audio engine 274 is in turn responsible for the processing of
all audio data streams for a respective audio device via an
interface with a corresponding audio device driver. Although
FIG. 2 depicts only one audio device driver 214 for one
audio device, it is contemplated that the audio Subsystem
116 could support a plurality of audio devices and their
respective audio device drivers.

With reference to the foregoing, the audio application
202, the GFX APO executed by the global audio engine 274,
and the audio device driver 214 each represent software that
can be provided by a third party for use by the audio
subsystem 116 of environment 200 to render an audio data
stream at an audio device. As such, the environment 200
provides a place and a market for third parties to innovate
and provide audio software to a customer who utilizes PC
124 upon which the audio subsystem 116 of the environment
200 resides.

US 7,231,269 B2
7

The environment 200 shown in FIG. 2 isolates compo
nents of O/S 114 from the problems that result from access
violations caused by the execution of faulty third party
Software. This isolation, otherwise known as sandboxing, is
accomplished by preserving the context in which an audio
data stream is being processed in the subpartitions 270 and
274 of audio subsystem 116. In one implementation, only
the context of the global audio engine 274 is preserved by
the service context 272. If the global audio engine 274
crashes, such as may occur due to an access violation, the
crash will not affect either the process context 270 or the
audio application 202. If the audio application 202 crashes,
nothing in the audio subsystem 116 will be affected. If the
service context 272 crashes, the entire audio subsystem 116
will crash.

Recovery of the Global Audio Engine

When there is a failure in the processing of a GFX APO
in the global audio engine 274. Such as by an access
violation, the context of this processing that was preserved
in the service context 272 can be used to recover the
processing. After the recovery, the processing of an audio
data stream can resume in accordance with the preserved
context of the process as it has been preserved in the service
context 272. The servicing of audio requirements performed
by audio subsystem 116 is sandboxed from the kernel 276.
This sandboxing prevents system wide failures. Applications
that do crash or fail, including by local and global processing
applications failures, can be automatically recovered so that
processing can resume.

The preservation of the context of the processing, both
local and global, can be accomplished by putting the mecha
nism of the processing in its own an address space. Stated
otherwise, the context of the local audio engine's processing
routine, which occurs in the process context 270, is saved in
a separate address than the address at which is saved the
context of the processing routines of the global audio engine
274. The address space of the process is separate from an
address at which the context of the process is preserved.
When the mechanism of the processing is put in its own
address space, which is separate from the address of the
mechanism of the context, the mechanism of the processing
can crash while the mechanism of the context remains intact.
The kernel 118, which is logically separated from the audio
Subsystem 116, also remains intact. As such, the crash will
be limited to a termination of just the local processing for
one (1) audio application or just the global processing for
one (1) audio device. The crash will not cause the PC 124 to
fail, thus avoiding a system restart or reboot that would
otherwise be required in order to resume the rending of
audio. After the crash, the mechanism of processing can then
be restarted, rather that restarting the O/S 114 of PC 124, in
order to resume the rendering of audio. Some implementa
tions contemplate that the context is to be preserved so that
the failed processing can be started back up.
An example of a recovery from the failure in the global

audio processing of an audio data stream is now given by
way of an example of an implementation in which a media
player application is playing back audio data. The audio data
is being subjected to a global audio effect (GFX) using a
third party software Audio Processing Object (APO) that has
a bug in it. The GFX APO software is a digital signal
processing application that is processing an audio data
stream in the global audio engine 274. The environment 200
coordinates the preservation (e.g., storage) in the service
context 272 of the context of the processing that is occurring

10

15

25

30

35

40

45

50

55

60

65

8
in the global audio engine 274. As such, the address space
and data structures for the GFX APO in the global audio
engine 274 are stored in service context 272. Eventually, the
bug in the GFX APO executing in the global audio engine
274 performs an access violation. The access violation in
turn causes the processing in the global audio engine 274 to
crash. The consequence of the crash is that the audio that
was being rendered on an audio device via the audio device
driver 214 stops for a period of time. During this period of
time, the environment 200 coordinates the recovery from the
crash.

The recovery is accomplished by restoring the context of
the processing of the GFX APO in the global audio engine
274. The context is recovered from the service context 272
where the context was preserved. Accordingly, the preserved
context that is restored is the context of the input buffer 208,
the context of the GFX APO processing in the global audio
engine 274, and the context of the looped buffer 212. Once
there has been a restoration of each context from the service
context 272, the GFX APO processing in the global audio
engine 274 can continue. After the context restoration, the
audio can continue to be rendered on the audio device via the
audio device driver 214. A customer using the computing
system will hear a short loss in the audio (e.g., 5 seconds)
while the GFX APO is reloaded by restoration of its pre
served context in the global audio engine 274. The audio
then returns and resumes approximately where it had left off.
None of the other audio devices would lose audio by the
crash of the GFX APO because the audio of each audio
device is isolated by the environment 200 from that of other
audio devices.

During the recovery from the crash, the processing of
audio data by the global audio engine 274 will cause all
audio streaming to or from the audio device being serviced
by the audio device driver 214 to stop. Each audio applica
tion 202, however, will be unaware that the crash has
occurred. Because the service context 272, which is respon
sible for maintaining the structure of the audio graph of the
audio device, runs in a separate service context, the service
context 272 can be used to restore the context of the global
audio engine 274 after the crash due to its prior preservation.
The service context 272 also has control over the state of the
audio device driver 214 (i.e., whether started or stopped) and
the shared buffers (e.g., the input buffer 208, the looped
buffer 212) that are used between the subpartitions that
identify the different process contexts. The service context
272 will reconnect the input buffer 208, the looped buffer
212, and the global audio engine 274 in their respective
subpartitions. The audio application 202 will continue on,
transparent to the crash (e.g., as if the crash or access
violation had not happened).

In one implementation, the service context 272 can keep
track of the number of times that any third party GFX APO
software has crashed. After the number of times exceeds a
predetermined threshold, a diagnostic or other dialogue to a
user can be output on a User Interface (UI). The GFX APO
can also be disabled or it can be re-enabled after a warning
has been output on the UI to the user. Other “tiered
approaches to numerous access violations and Subsequent
recovery can be taken, such as where a diagnostic is output
on the UI and the execution of the third party GFX APO
software will not be restarted in the global audio engine 274.
A tiered approach to a restoration after an access violation
can be beneficial in avoiding excessive repetition in the
bringing up and taking down of a faulty global effects
component.

US 7,231,269 B2

With respect to the audio application 202, a crash in the
processing of audio data by the global audio engine 274 is
transparent to the operation and execution of the audio
application 202. Rather, the audio application 202 would
continue inputting into the process context 270 for output to
the input buffer 208 at the partition boundary between the
process context 270 and the global audio engine 274. The
service context 272 can then be used to restore the context
and perform an automatic recovery of the global audio
engine 274 while the audio application 202 remains unaware
of the GFX APO crash.

Because the buffers 208, 212 still exist after the process
ing in the global audio engine 274 crashes, the state of the
audio device driver 214 and the looped buffer 212 can be
restored. When the service context 272 sets up the process
ing in the global audio engine 274 after the processing
crashes, the service context 272 must know the address of
the buffers 208,212 so that the new global audio engine 274
can connect to these buffers and continue to receive audio
data from the audio application 202 which is otherwise
aware of neither the crash of the global audio engine 274 nor
the address of the buffers 208, 212. Rather, the service
context 272 maintains the buffers 208, 212 as objects so that
they can be setup in the global audio engine 274 when the
service context 272 recovers the global audio engine 274.
The service context 272 passes instructions to the recovered
global audio engine 274 that indicate that the buffers 208,
212 are to be used as inputs from the audio application 202
for a particular audio device. When the global audio engine
274 crashes, the restored global audio engine 274 gets the
address of the looped buffer 212 from the service context
272. After an access violation, the audio device driver 214
may still be running and the looped buffer 212 can still be
present.
The foregoing provides examples of an automatic recov

ery from a crashed GFX APO in the global audio engine 274
due to the preservation of context in the service context 272.
The preservation of context in the service context 272
ensures that the audio to only one audio device is only
disrupted for a short time as compared to the time required
to re-boot the PC 124. Software developers can provide
GFX APO to run on the audio subsystem 116 disclosed
herein, which GFX APO can still crash without bringing
down all audio devices or crashing the entire OS 114. The
GFX APO can still be brought back up as long as the context
has been preserved in the service context 272. The audio
subsystem 116 provides the global audio engine 274 corre
sponding to each audio device (e.g., Sound card, USB
speaker, etc.) Such that the global audio engine 274 can be
run in its own context and be preserved in the service context
272. As such, the audio subsystem 116 is fault tolerant,
robust against crashes/hangs, and can recover from crashes
in the processing of audio data in GFX APO by the global
audio engine 274.

Each audio device can be partitioned into a separate
process context, in accordance with the architecture seen in
environment 200. As such, crash-prone software that is
running as a global audio effect by processing in the global
audio effect 274 for one particular audio device will not
affect the processing of audio data in a global audio engine
for another audio device. Moreover, an automatic recovery
can be accomplished when the processing in the global
audio engine 274 crashes due to a bug in the global effects
code that is being processed. The recovery is possible
because the global state of the audio device is kept in the
services context 272. As such, the crashed GFX APO can be
brought back up and reconnected to the input buffer 208.

10

15

25

30

35

40

45

50

55

60

65

10
In general, a recovery from a crash in the processing in the

global audio engine 274 will take down audio to a corre
sponding audio device from every application that produces
an audio data stream for that audio device. In order to be as
resistant to crashing as possible, the global audio engine 274
for each audio device can be run in its own context, where
that context is preserved in the logically separate service
context 272 of the audio subsystem 116.
FIG.3 shows a process 300 for recovering from an access

violation by a GFX APO executing in a global audio engine.
In reference to FIGS. 2–3, process 300 begins at block 302
where the service context 272 preserves the context (e.g.,
address and data structures) for the input buffer 208 and the
looped buffer 212. At block 304, the APO for producing the
GFX on an audio datastream is initiated. An audio datas
tream is to be rendered by an audio device driven by the
audio device driver 214. Process 300 moves to block 306
where the service context 272 preserves the context for the
GFX APO in the global audio engine 274. After block 306,
process 300 moves to block 308 where the GFX APO is
initiated. The execution in the global audio engine 274
continues at block 310 where the global audio engine 274
executes the GFX APO to perform digital signal processing
on the audio datastream in input buffer 208. The output of
this processing, which can include mixed audio datastreams
from other local processes, is moved to the looped buffer
212. The mixed audio datastream in the looped buffer 212
has a global effect according to the processing by the global
audio engine 274.
At block 312, the GFX APO terminates or causes an

access violation. At block 314, the service context 272
detects the termination or access violation and restores the
context of the input buffer 208 and the looped buffer 212. At
block 316, a query is made as to whether an access violation
had occurred. If not, process 300 moves to block 304.
Otherwise, process 300 moves to block 318 where a crash
counter for the GFX APO is incremented. The crash counter
is queried at block 320 as to whether it exceeds a predeter
mined threshold. If so, a diagnostic 322a is displayed and
process 300 moves to a block 322bat which the global audio
engine 274 is restarted without the crash-prone GFX APO.
If the crash counter for the GFX APO does not exceed the
predetermined threshold, process 300 moves back to block
304.

Recovery of the Process Context

A recovery can be made from a failure in the local
processing of an audio data stream. For instance, a media
player application, seen in FIG. 2 as audio application 202,
passes an audio data stream for processing by a Local Effects
Audio Processing Object (LFX APO) in the process context
270. The LFX APO has a faulty portion of programming
code that, when executed, causes an access violation (e.g., a
bug is in the code). Prior to running the LFX APO in the
process context 270, the audio subsystem 116 of environ
ment 200 coordinates the preservation (e.g., storage) in the
service context 272 of the context of the processing that is
occurring in the process context 270. Eventually, the bug in
the LFX APO causes the software to perform an access
violation. The access violation in turn causes the processing
in the process context 270 to crash. The consequence of the
crash is that the audio that was being rendered to input buffer
208 stops for a period of time. As such, there will be a gap
in the audio that is to be rendered to an audio device via the
audio device driver 214. During this period of time, the
environment 200 coordinates the recovery from the crash.

US 7,231,269 B2
11

The recovery from the crash of the LFX APO in process
context 270 is accomplished by restoring the context of the
processing in the process context 270. Once the context has
been restored from the service context 272, the execution of
the audio application 202 can be restarted so that the LFX
APO processing in the process context 270 can continue.
Once the local processing has continued, an audio data
stream can be output to input buffer 208 and sound can
resume at the audio device via operation of the audio device
driver 214. No other audio application will crash because the
audio application 202 is isolated by the environment 200
from that of other audio applications.
A crash in the processing of the LFX APO by the

processing context 270 will disassociate the input buffer 208
from the audio application 202. Any audio data stream
remaining after the crash in the processing of the processing
context 270 will need to be cleaned up. When the crash
occurs, the service context 272 can be notified of the crash.
When so notified, the service context 272 can close down the
audio data streams remaining after the crash. In order to
clean up the remaining audio data streams, the service
context 272 can maintain a list created for the processing of
audio data by the process context 270. This list can be used
by the service context 272 to leave a thread that waits for the
exit of the process context 270 (or for that of any other such
process context) that has a remaining audio data stream.

If processing by the process context 270 crashes, the
service context 272 will stop and close all audio data streams
that had been opened from the processing by the process
context 270. If the audio application 202 crashes, neither the
audio device driven by audio device driver 214 nor the
global audio engine 274 will be affected. Rather, audio data
can still be streamed by other applications to either the audio
device driven by audio device driver 214 or to the global
audio engine 274. Due to the crash in process context 270,
however, the input buffer 208 will be disassociated from the
process context 270. As such, audio data in the input buffer
208 can not be used. When the service context 272 detects
that the processing by the process context 272 has crashed,
then each connection to the input buffer 208 is closed or
de-allocated. In one implementation, the audio application
202 is not automatically recovered. Rather, the audio appli
cation 202 can be restarted by a user, if so desired.

FIG. 4 shows a process 400 for recovering from an access
violation by a Local Effects (LFX) Audio Processing Object
(APO) executing in the process context 270. In reference to
FIGS. 2 and 4, process 400 begins at block 402 where the
APO for producing the LFX on an audio datastream is
initiated. The audio datastream is to be rendered by an audio
device driven by the audio device driver 214. At block 404,
the service context 272 preserves the context (e.g., address
and data structures) of the input buffer 208 and the looped
buffer 212. At block 406, the LFX APO begins executing in
the process context 270. At block 408, the process context
270 outputs to the input buffer 208 and the global audio
engine 274 gets input from the input buffer 208. The global
audio engine 274 mixes audio datastreams from the input
buffer 208 and outputs a mixed audio datastream to the
looped buffer 212. At block 410, the LFX APO terminates or
causes an access violation. At block 412, the service context
272 detects the termination or access violation and deletes
the input buffer 208.

Various operating systems for respective computing sys
tems can benefit from the foregoing implementations, par
ticularly where the operating system provides audio services
for some combination of the capture and the render of audio
data, and where the operating system is multi-threaded and

5

10

15

25

30

35

40

45

50

55

60

65

12
multi-tasking. Exemplary contemporary operating systems
include Mac OS (Version 10 and below) provided by Apple
Computer, Inc., Cupertino of California, USA, BeOS devel
oped by Be, Inc. of Mountain View, Calif., Windows(R OS
provided by Microsoft Corporation of Redmond, Wash.,
USA, and the freeware LinuxOR OS. Moreover, benefits from
this patent disclosure can be realized by any multi-threaded
operating system that allows untrusted media applications to
execute third party programs that can perform access vio
lations or otherwise stop the operating system from operat
ing correctly. For example, the operating system contem
plated herein provides an extensible media processing
system for untrusted third party media applications for audio
processing effects that can be used in a global context to alter
audio signals. Poorly written or malicious code can be run
without crashing a part of the audio system of the operating
system that is servicing a particular audio device. Crash
avoidance is accomplished in various implementations by
partitioning the audio Subsystem into logically separated
partitions using protection mechanisms in the operating
system, such as a process. The process minimizes the impact
to the operating system of the poorly written code. Address
space and data structures associated with the process are
used by the operating system for the process to run. As such,
the operating system runs the process in an isolated pro
cessing context as a form of memory protection and as a
form of context protection which can be represented as a
process (or a thread).

Exemplary Computing System and Environment
FIG. 5 illustrates an example of a computing environment

500 within which the applications, including the Real Time
Communication Application (RTC) and the media player
application (MP), described herein can be either fully or
partially implemented. Exemplary computing environment
500 is only one example of a computing system and is not
intended to Suggest any limitation as to the scope of use or
functionality of the network architectures. Neither should
the computing environment 500 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary computing
environment 500.

The computer and network architectures can be imple
mented with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use include,
but are not limited to, personal computers, server computers,
thin clients, thick clients, hand-held or laptop devices,
multiprocessor Systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputers, mainframe computers, gaming con
soles, distributed computing environments that include any
of the above systems or devices, and the like.
The applications (including the RTC and the MP) may be

described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer. Generally, program modules include routines,
programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. The applications (including the RTC and the MP)
may also be practiced in distributed computing environ
ments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located in both local and remote computer storage
media including memory storage devices.

US 7,231,269 B2
13

The computing environment 500 includes a general
purpose computing system in the form of a computer 502.
The components of computer 502 can include, but are not
limited to, one or more processors or processing units 504,
a system memory 506, and a system bus 508 that couples
various system components including the processor 504 to
the system memory 506.

The system bus 508 represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, such architectures can
include an Industry Standard Architecture (ISA) bus, a
Micro Channel Architecture (MCA) bus, an Enhanced ISA
(EISA) bus, a Video Electronics Standards Association
(VESA) local bus, and a Peripheral Component Intercon
nects (PCI) bus also known as a Mezzanine bus.

Computer system 502 typically includes a variety of
computer readable media. Such media can be any available
media that is accessible by computer 502 and includes both
Volatile and non-volatile media, removable and non-remov
able media. The system memory 506 includes computer
readable media in the form of volatile memory, such as
random access memory (RAM) 510, and/or non-volatile
memory, such as read only memory (ROM) 512. A basic
input/output system (BIOS) 514, containing the basic rou
tines that help to transfer information between elements
within computer 502. Such as during start-up, is stored in
ROM 512. RAM 510 typically contains data and/or program
modules that are immediately accessible to and/or presently
operated on by the processing unit 504.

Computer 502 can also include other removable/non
removable, Volatile/non-volatile computer storage media.
By way of example, FIG. 5 illustrates a hard disk drive 516
for reading from and writing to a non-removable, non
Volatile magnetic media (not shown), a magnetic disk drive
518 for reading from and writing to a removable, non
volatile magnetic disk 520 (e.g., a “floppy disk’), and an
optical disk drive 522 for reading from and/or writing to a
removable, non-volatile optical disk 524 such as a CD
ROM, DVD-ROM, or other optical media. The hard disk
drive 516, magnetic disk drive 518, and optical disk drive
522 are each connected to the system bus 508 by one or more
data media interfaces 525. Alternatively, the hard disk drive
516, magnetic disk drive 518, and optical disk drive 522 can
be connected to the system bus 508 by a SCSI interface (not
shown).
The disk drives and their associated computer-readable

media provide non-volatile storage of computer readable
instructions, data structures, program modules, and other
data for computer 502. Although the example illustrates a
hard disk 516, a removable magnetic disk 520, and a
removable optical disk 524, it is to be appreciated that other
types of computer readable media which can store data that
is accessible by a computer, such as magnetic cassettes or
other magnetic storage devices, flash memory cards, CD
ROM, digital versatile disks (DVD) or other optical storage,
random access memories (RAM), read only memories
(ROM), electrically erasable programmable read-only
memory (EEPROM), and the like, can also be utilized to
implement the exemplary computing system and environ
ment.

Any number of program modules can be stored on the
hard disk 516, magnetic disk 520, optical disk 524, ROM
512, and/or RAM 510, including by way of example, an
operating system 526, one or more application programs
528, other program modules 530, and program data 532.

10

15

25

30

35

40

45

50

55

60

65

14
Each of Such operating system 526, one or more application
programs 528, other program modules 530, and program
data 532 (or some combination thereof) may include an
embodiment of the RTC and/or MP disclosed herein. Oper
ating system 526 can include audio capture and render
services such that a media application can get a global audio
output system-wide mix for signal processing.
Computer system 502 can include a variety of computer

readable media identified as communication media. Com
munication media typically embodies computer readable
instructions, data structures, program modules, or other data
in a modulated data signal Such as a carrier wave or other
transport mechanism and includes any information delivery
media.
The term "modulated data signal” means a signal that has

one or more of its characteristics set or changed in Such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired con
nection, and wireless media Such as acoustic, RF, infrared,
and other wireless media. Combinations of any of the above
are also included within the scope of computer readable
media.
A user can enter commands and information into com

puter system 502 via input devices such as a keyboard 534
and a pointing device 536 (e.g., a “mouse'). A microphone
535 can be used to input vocal command that can be subject
to a voice recognition process for passing on the Vocal input.
Other input devices 538 (not shown) can include a joystick,
game pad, satellite dish, serial port, Scanner, and/or the like.
These and other input devices are connected to the process
ing unit 504 via input/output interfaces 540 that are coupled
to the system bus 508, but may be connected by other
interface and bus structures, such as a parallel port, game
port, or a universal serial bus (USB).
A monitor 542 or other type of display device can also be

connected to the system bus 508 via an interface, such as a
video adapter 544. Input/output interfaces 540 can include a
Sound card, an integrated (e.g., on-board) sound card, etc.
One or more speakers 537 can be in communication with
input/output interfaces 540. In addition to the monitor 542,
other output peripheral devices can include components
such as a printer 546 which can be connected to computer
502 via the input/output interfaces 540.
Computer 502 can operate in a networked environment

using logical connections to one or more remote computers,
Such as a remote computing device 548. By way of example,
the remote computing device 548 can be a personal com
puter, portable computer, a server, a router, a network
computer, a peer device or other common network node, and
the like. The remote computing device 548 is illustrated as
a portable computer that can include many or all of the
elements and features described herein relative to computer
system 502.

Logical connections between computer 502 and the
remote computer 548 are depicted as a local area network
(LAN) 550 and a general wide area network (WAN) 552.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter
net. When implemented in a LAN networking environment,
the computer 502 is connected to a local network 550 via a
network interface or adapter 554. When implemented in a
WAN networking environment, the computer 502 typically
includes a modem 556 or other means for establishing
communications over the wide network 552. The modem
556, which can be internal or external to computer 502, can
be connected to the system bus 508 via the input/output

US 7,231,269 B2
15

interfaces 540 or other appropriate mechanisms. It is to be
appreciated that the illustrated network connections are
exemplary and that other means of establishing communi
cation link(s) between the computers 502 and 548 can be
employed.

In a networked environment, such as that illustrated with
computing environment 500, program modules depicted
relative to the computer 502, or portions thereof, may be
stored in a remote memory storage device. By way of
example, remote application programs 558 reside on a
memory device of remote computer 548. For purposes of
illustration, application programs and other executable pro
gram components, such as the operating system, are illus
trated herein as discrete blocks, although it is recognized that
Such programs and components reside at various times in
different storage components of the computer system 502,
and are executed by the data processor(s) of the computer.

Although the invention has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.
What is claimed is:
1. A method comprising:
receiving a request for an operating system to execute an

audio processing object (APO) for a global audio effect
(GFX) to be performed upon an audio data stream to be
output at an audio device driven by an audio device
driver, wherein the operating system includes an audio
Subsystem having an input buffer, a looped buffer, and
logically separate contexts that include a service con
text, and a global audio engine;

preserving, in the service context, the context for the input
buffer, the global audio engine, and the looped buffer;

operating the global audio engine to perform digital signal
processing with the APO on an audio data stream in the
input buffer to form a digital signal processing (DSP)
audio data stream in the looped buffer;

inputting the DSP audio data stream in the looped buffer
to the audio device driver driving the audio device; and

upon a termination of, or an access violation by, the APO:
restoring each of the input buffer, the global audio

engine, and the looped buffer with the context
respectively preserved for each in the service con
text; and

optionally resuming the execution of the APO in the
global audio engine.

2. The method as defined in claim 1, wherein the termi
nation of, or an access violation by, the APO is detected by
the service context.

3. The method as defined in claim 1, wherein:
the context of the input buffer comprises an address and

a data structure associated with the input buffer;
the context of the global audio engine comprises an

address and a data structure associated with the global
audio engine; and

the context of the looped buffer comprises an address and
a data structure associated with the looped buffer.

4. The method as defined in claim 1, wherein upon an
access violation by the APO, the method further comprises:

incrementing a counter representative of a number of the
access violations by the APO; and

when the counter exceeds a predetermined limit, output
ting a diagnostic and prohibiting the resuming of the
execution of the APO in the global audio engine.

5

10

15

25

30

35

40

45

50

55

60

65

16
5. The method as defined in claim 1, wherein:
the operating system further comprises a plurality of said

looped buffers for a corresponding plurality of said
global audio engines; and

each said global audio engine outputs one said DSP audio
data stream to the corresponding said looped buffer to
provide input to a corresponding said audio device
driver for driving a corresponding said audio device.

6. The method as defined in claim 5, wherein:
the operating system further comprises a plurality of said

input buffers each containing an audio data steam to be
rendered by a corresponding said audio device; and

each said global audio engine corresponds to one said
input buffer.

7. The method as defined in claim 6, wherein each said
input buffer receives the corresponding said audio datas
tream from an audio application requesting audio services
from the operating system for at least one said audio device.

8. The method as defined in claim 1, further comprising
rendering the DSP audio data stream with the audio device
driven by the audio device driver.

9. The method as defined in claim 1, wherein the oper
ating system is in a memory having a plurality of separate
partitions including:

a partition for a kernel; and
a partition for the audio Subsystem that has separated

Subpartitions comprising:
a Subpartition for the service context; and
a Subpartition for the global audio engine.

10. The method as defined in claim 9, wherein the
plurality of separate partitions further comprises a partition
for a processing context having a local engine for executing
an APO to output the audio datastream to the input buffer.

11. The method as defined in claim 10, wherein:
the audio datastream in the input buffer comprises audio

data from a plurality of audio applications each of
which are to be rendered with the audio device; and

the global audio engine mixes the audio data from the
plurality of audio applications to form the DSP audio
data stream in the looped buffer.

12. The method as defined in claim 1, wherein the GFX
is selected from the group consisting of a reverberation
effect, an audio distortion effect, a speaker compensation
effect, a multiband audio equalizer effect.

13. One or more computer-readable media having com
puter-readable instructions thereon which, when executed
by the computing system, implement the method of claim 1.

14. A method comprising:
receiving a request from an audio application for an

operating system to execute an audio processing object
(APO) for a global audio effect (GFX) to be performed
upon an audio data stream to be output at an audio
device driven by an audio device driver, wherein:
the operating system has separate partitions in a
memory including:
a kernel; and
an audio Subsystem having an input buffer and a

looped buffer;
the partition of the audio Subsystem in the memory has

separate subpartitions including:
a service context; and
a global audio engine for executing the APO;

preserving addresses and data structures associated with
the input buffer, the looped buffer, and the global audio
engine in the service context;
operating the global audio engine to:

US 7,231,269 B2
17

perform digital signal processing with the APO on an
audio data stream in the input buffer to form a
digital signal processing (DSP) audio data stream;
and

output the DSP audio data stream to the looped
buffer;

inputting the DSP audio data stream in the looped
buffer to the audio device driver driving the audio
device for rendering the DSP audio data stream; and

upon a termination of or an access violation by the
APO:
restoring the input buffer with the preserved

addresses and data structures for the input buffer
in the service context;

restoring the global audio engine with the preserved
addresses and data structures for the global audio
engine in the service context;

restoring the looped buffer with the preserved
addresses and data structures for the looped buffer
in the service context, and

optionally resuming the execution of the APO in the
global audio engine.

15. The method as defined in claim 14, wherein the
termination of, or an access violation by, the APO is detected
by the service context.

16. The method as defined in claim 14, wherein the
partition of the audio subsystem in the memory further
comprises a separate subpartition for a processing context
having a local engine for executing an APO to output the
audio datastream to the input buffer.

17. The method as defined in claim 16, wherein:
the audio datastream in the input buffer comprises audio

data from a plurality of audio applications each of
which are to be rendered with the audio device; and

the global audio engine mixes the audio data from the
plurality of audio applications to form the DSP audio
data stream in the looped buffer.

18. The method as defined in claim 14, wherein:
the input buffer is logically situated in the partition of the

audio subsystem in the memory shared between the
partition of the process context and the partition of the
global audio engine; and

the looped buffer is logically situated in the partition of
the audio subsystem in the memory shared between the
partition of the global audio engine and the partition of
the kernel.

19. The method as defined in claim 14, wherein upon an
access violation by the APO, the method further comprises:

incrementing a counter representative of a number of the
access violations by the APO; and

when the counter exceeds a predetermined limit, output
ting a diagnostic and prohibiting the resuming of the
execution of the APO in the global audio engine.

20. The method as defined in claim 14, wherein:
the operating system further comprises a plurality of said

looped buffers for a corresponding plurality of said
global audio engines; and

each said global audio engine outputs one said DSP audio
data stream to the corresponding said looped buffer to
provide input to a corresponding said audio device
driver for driving a corresponding said audio device.

21. The method as defined in claim 20, wherein:
the operating system further comprises a plurality of said

input buffers each containing an audio data steam to be
rendered by a corresponding said audio device; and

each said global audio engine corresponds to one said
input buffer.

10

15

25

30

35

40

45

50

55

60

65

18
22. The method as defined in claim 21, wherein each said

input buffer receives the corresponding said audio datas
tream from a corresponding said audio application request
ing audio services from the operating system for at least one
said audio device.

23. One or more computer-readable media having com
puter-readable instructions thereon which, when executed
by the computing system, implement the method of claim
14.

24. A computer executable operating system comprising a
kernel and an audio Subsystem in logically separate parti
tions, wherein the audio Subsystem has an input buffer and
a looped buffer in communication with a device driver for
driving an audio device, the audio Subsystem also having a
plurality of logically separate subpartitions that include:

a global audio engine to execute an audio processing
object (APO) for a global audio effect (GFX) to be
performed upon an audio data stream in the input buffer
to form an audio datastream in the looped buffer to be
rendered by the audio device driven by the device
driver; and

a service context for preserving the context of the input
buffer, the global audio engine, and the looped buffer,
wherein upon a termination of or an access violation by
the APO executing in the global audio engine:
each of the input buffer, the global audio engine, and

the looped buffer is restored using the context
respectively preserved for each in the service con
text; and

the execution of the APO in the global audio engine
optionally resumes.

25. The computer executable operating system as defined
in claim 24, wherein:

the context of the input buffer comprises an address and
a data structure associated with the input buffer;

the context of the global audio engine comprises an
address and a data structure associated with the global
audio engine; and

the context of the looped buffer comprises an address and
a data structure associated with the looped buffer.

26. The computer executable operating system as defined
in claim 24, wherein upon an access violation by the APO:

a counter representative of a number of the access viola
tions by the APO is incremented; and

when the counter exceeds a predetermined limit, a diag
nostic is output and the APO is prohibited from execu
tion in the global audio engine.

27. The computer executable operating system as defined
in claim 24, wherein:

the operating system further comprises a plurality of said
looped buffers for a corresponding plurality of said
global audio engines; and

each said global audio engine outputs one said audio
datastream to the corresponding said looped buffer to
provide input to a corresponding said audio device
driver for driving a corresponding said audio device.

28. The computer executable operating system as defined
in claim 27, wherein the operating system further comprises
a plurality of said input buffers each containing an audio data
steam to be rendered by a corresponding said audio device;
and

each said global audio engine corresponds to one said
input buffer.

29. The computer executable operating system as defined
in claim 28, wherein each said input buffer receives the
corresponding said audio datastream from an audio appli

US 7,231,269 B2
19

cation requesting audio services from the operating system
for at least one said audio device.

30. The computer executable operating system as defined
in claim 24, wherein the plurality of logically separate
partitions further comprises a partition for a processing
context having a local engine for executing an APO to output
an audio datastream to the input buffer.

31. The computer executable operating system as defined
in claim 24, wherein:

the input buffer stores audio data from a plurality of audio
applications each of which are to be rendered with the
audio device; and

the global audio engine mixes the audio data from the
plurality of audio applications to form audio data in the
looped buffer.

32. An apparatus comprising:
means for storing a plurality of logically separate parti

tions that include:
a kernel for an operating system; and
an audio Subsystem for the operating system, the audio

Subsystem including:
an input buffer and a looped buffer in communication

with a means for driving a means for rendering
audio; and

a plurality of logically separate Subpartitions that
include:
a service context; and
a global audio engine;

means, when executing the audio Subsystem, for:
preserving the context of the input buffer, the global

audio engine, and the looped buffer in the service
context; and

executing an audio processing object (APO) to produce
a global audio effect (GFX) upon an audio datas
tream in the input buffer to form an audio datastream
in the looped buffer to be rendered by means for
rendering audio driven by the means for driving the
audio device;

means, upon an access violation by the APO executing in
the global audio engine, for:
restoring each of the input buffer, the global audio

engine, and the looped buffer using the context
respectively preserved for each in the service con
text; and

resuming the execution of the APO in the global audio
engine.

33. The apparatus as defined in claim 32, wherein:
the context of the input buffer comprises an address and

a data structure associated with the input buffer;
the context of the global audio engine comprises an

address and a data structure associated with the global
audio engine; and

the context of the looped buffer comprises an address and
a data structure associated with the looped buffer.

34. The apparatus as defined in claim 32, wherein upon an
access violation by the APO, the means for resuming:

increments a counter representative of a number of the
access violations by the APO; and

when the counter exceeds a predetermined limit, outputs
a diagnostic and prohibits the resuming of the execu
tion of the APO in the global audio engine.

35. The apparatus as defined in claim 32, wherein:
the audio Subsystem further comprises a plurality of said

looped buffers for a corresponding plurality of said
global audio engines; and

each said global audio engine outputs one said audio data
stream to the corresponding said looped buffer to

10

15

25

30

35

40

45

50

55

60

65

20
provide input to a corresponding said means for driving
a corresponding said means for rendering audio.

36. The apparatus as defined in claim 35, wherein the
audio Subsystem further comprises a plurality of said input
buffers each containing an audio data steam to be rendered
by a corresponding said means for rendering audio; and

each said global audio engine corresponds to one said
input buffer.

37. The apparatus as defined in claim 36, wherein each
said input buffer receives the corresponding said audio
datastream from an audio application requesting audio ser
vices from the operating system for at least one said means
for rendering audio.

38. The apparatus as defined in claim 32, wherein the
plurality of logically separate Subpartitions of the audio
Subsystem further comprises a Subpartition for a processing
context having a local engine for executing an APO to output
the audio datastream to the input buffer.

39. The apparatus as defined in claim 38, wherein:
the audio datastream in the input buffer comprises audio

data from a plurality of audio applications each of
which are to be rendered with the means for rendering
audio; and

the global audio engine mixes the audio data from the
plurality of audio applications to form the audio data
stream in the looped buffer.

40. A computing system comprising a processor for
executing an audio application to generate a first audio
datastream and for executing an operating system that is
logically separated into a partition for a kernel and a
partition for an audio Subsystem having logically separate
Subpartitions, wherein a process for processing the first
audio datastream with the audio Subsystem has a context that
is preserved in a first said Subpartition prior to executing the
process in a second said subpartition Such that when the
process commits an access violation, the process is recov
ered by restoring the context thereof from the first said
Subpartition.

41. The computing system as defined in claim 40, wherein
the preserved context for the process comprises address and
data structure information Sufficient to recover the process
by the restoration of the preserved context in the audio
Subsystem.

42. The computing system as defined in claim 40,
wherein:

the processor executes a second audio application to
generate a second audio datastream to be output to a
second audio device different than a first audio device
at which the first audio data steam is to output; and

the access violation and the recovery of the process
effects:
neither the execution of the second audio application;
nor the second audio datastream to be output to the

second audio device.
43. A computing system comprising:
a processor for executing an operating system and a

plurality of audio applications;
a plurality of multimedia reading devices for interoper

ating with the plurality of audio applications to respec
tively produce audio data for communication to the
operating system;

a plurality of audio devices driven by respective audio
device drivers for rendering the audio data communi
cated to the operating system;

storage for the plurality of audio applications and the
operating system, wherein the operating system has a

US 7,231,269 B2
21

plurality of logically separate partitions that include a
kernel and an audio Subsystem, wherein the audio
Subsystem has:
a plurality of logically separate Subpartitions that

include:
a process context,
a service context; and
a global audio engine;

an input buffer in communication with the process
context and the global audio engine; and

a looped buffer in communication with one of the audio
device drivers for driving one of the audio devices:

wherein the processor executes the operating system and
one of the audio applications so as to:
preserve the context of the input buffer, the global audio

engine, and the looped buffer in the service context;
generate audio data from the one said audio application

for input to the process context for output as an audio
datastream in the input buffer;

execute an audio processing object (APO) to produce a
global audio effect (GFX) upon the audio datastream
in the input buffer to form an audio datastream in the
looped buffer to be rendered by one of the audio
devices driven by one of the audio device drivers;
and

upon an access violation by the APO executing in the
global audio engine:
restore each of the input buffer, the global audio

engine, and the looped buffer using the context
respectively preserved for each in the service
context; and

resume the execution of the APO in the global audio
engine.

44. A computer readable storage medium containing
computer-executable instructions that include code seg
ments executable by a processor of the computer, compris
1ng

10

15

25

30

35

22
a first code segment for processing a request from an

audio application to generate a first audio datastream by
executing an operating system that is logically sepa
rated into a partition for a kernel and a partition for an
audio Subsystem having logically separate subparti
tions;

a second code segment for preserving in a first said
Subpartition the context of a process for processing the
first audio datastream; and

a third code segment for processing in a second said
Subpartition the first audio datastream with the process,
wherein when the process commits an access violation
the process is recovered by restoring in the audio
subsystem the preserved context from the first said
Subpartition.

45. The computer readable storage medium as defined in
claim 44, wherein the preserved context for the process
comprises address and data structure information Sufficient
to recover the process by the restoration of the preserved
context in the audio Subsystem.

46. The computer readable storage medium as defined in
claim 44, further comprising a fourth code segment for
processing a request from an audio application to generate a
second audio datastream by executing the operating system,
wherein the second audio datastream is directed to be output
to a second audio device different than a first audio device
at which the first audio data steam is to be output, wherein
the access violation and the recovery of the process effects:

neither the generation of the second audio datastream by
an execution of the second audio application;

nor the second audio datastream to be output to the second
audio device.

